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Abstract 1 

Meta-analysis is a powerful tool for synthesizing behavioral research and identifying 2 

general patterns. However, are the conclusions we draw from these analyses truly 3 

representative across animal groups? Alternatively, are our conclusions shaped by 4 

taxonomic biases in the underlying research? For example, in animal behavior, vertebrates 5 

are often overrepresented in the research we conduct. This taxonomic imbalance raises 6 

concerns about the validity of generalizations drawn in the field, especially from meta-7 

analyses. To examine this issue, we examined the meta-analyses published in Animal 8 

Behaviour, Behavioral Ecology, and Behavioral Ecology and Sociobiology from 2000 – 2024. 9 

We then conducted a “meta-meta-analysis” to calculate the degree to which overall effects 10 

in prior meta-analytical results may have been mis-estimated due to taxonomic bias. We 11 

found that taxonomic biases in the primary research systematically influence effect size 12 

estimates in meta-analyses and can lead to improper inferences and generalizations. On 13 

average, meta-analytical averages are mis-estimated by ~35% (p << 0.01) and significance 14 

changes in about 25% of instances when sampling is taxonomically representative. Because 15 

meta-analyses aggregate data, they propagate the biases present in an area of research, 16 

leading to potentially incorrect generalizations. Addressing this taxonomic bias is critical to 17 

generalizations that describe the true richness of animal behavior. 18 

Introduction 19 

A major goal of animal behavior research is to understand why animals behave the way 20 

they do from both proximate and ultimate perspectives (Tinbergen 1963). Drawing general 21 

conclusions to answer such questions across species can be challenging and meta-analyses 22 

have emerged as the primary tool for doing so. However, the inferences drawn from any 23 

analysis, including meta-analyses, are reliant on whether the data being used are an 24 

appropriate sample (Gurevitch and Hedges 1999, Jennions et al. 2013, Konno et al. 2020). 25 

Put another way, if the data going into behavioral meta-analyses are not representative of 26 

animal behavior broadly, then the resulting inferences may be incorrect. 27 

 Biases in the data used in meta-analyses is a topic that has been extensively explored 28 

(e.g. Dickersin 2005, Rothstein et al. 2005). However, most of this discussion has focused on 29 
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issues like the well-known “file drawer problem” and time-lag bias. The file drawer problem 30 

concerns publication bias wherein “statistically significant” findings are more likely to be 31 

published (reviewed by Dickersin 2005). This bias leads to the absolute magnitude of effect 32 

sizes being overestimated. Time-lag bias refers to the general observation that effect sizes 33 

tend to decrease over time (Trikalinos and Ioannidis 2005), as has been found in ecology 34 

generally (Jennions and Møller 2002). Time-lag bias leads to the absolute magnitude of 35 

effect sizes being overestimated early in a field’s development. While not trivial, both types 36 

of biases can be at least partially addressed statistically within meta-analyses (Nakagawa 37 

and Santos 2012, Nakagawa et al. 2022).  38 

 More generally, and potentially more importantly, we do not have a good idea of how 39 

taxonomically biased the data going into meta-analyses might be (Gurevitch and Hedges 40 

1999). However, for animal behavior research, we do know that individual research 41 

projects are conducted in a highly taxonomically biased manner. Rosenthal et al. (2017) 42 

examined papers published in Animal Behaviour between 1953 and 2015 and found that 43 

vertebrates were strongly over-represented (Figure 1A). At the coarsest level, vertebrates 44 

represent only 5% of animal species but were the focus of study in 71% of surveyed 45 

studies. Even within vertebrates there was considerable bias in what animals were studied 46 

(Rosenthal et al. 2017): endotherms were far more frequently studied than expected based 47 

on their taxonomic representation (Figure 1B) and well over 50% of all studies were on 48 

birds or mammals (Figure 1B). Even when invertebrates were specifically studied, most 49 

behavioral research was conducted in a single order (Hymenoptera, Rosenthal et al. 2017). 50 

Interestingly, this bias in favor of vertebrates is reduced in sexual selection and sexual 51 

conflict research. Zuk et al. (2014), found that roughly 30 percent of sexual selection and 50 52 

percent of sexual conflict research is conducted with insects. However, even in these areas 53 

of study, vertebrates remain over-represented and over 20 percent of the work done on 54 

insects was from a single genus (i.e. Drosophila, Zuk et al. 2014). 55 

This potential for biased inferences also impacts beyond our basic understanding of 56 

behavior. From an applied perspective, as discussed by Rosenthal et al. (2017), taxonomic 57 

bias in the study of behavior can affect conservation and management efforts, 58 

understanding population dynamics, and understanding zoonotic disease risk. 59 

Consequently, evaluating the presence of taxonomic bias in animal behavior meta-analyses 60 

and considering how such bias may affect the inferences we draw is of considerable 61 

importance. Specifically, it is necessary to know whether the conclusions we draw from 62 

meta-analyses are representative and generalizable.  63 

We sought to address this concern by asking two questions: First, is the taxonomic 64 

bias identified by Rosenthal et al. (2017) also present in the data used in meta-analyses? 65 

Second, does taxonomic bias lead to misestimation and incorrect inferences in meta-66 

analytical results? 67 



 68 
Figure 1. Taxonomic bias in the animals used in the study of animal behavior as identified by 69 
Rosenthal et al. (2017) both in general (a) and just within vertebrates (b).  70 

Methods 71 

To answer these two questions, we identified the meta-analyses published in three leading 72 

behavioral journals. We then determined the taxonomic representation of the constituent 73 

studies used in these meta-analyses and how estimates from these meta-analyses would 74 

change if the data were sampled in a taxonomically representative manner. 75 

Identifying meta-analyses 76 

To identify meta-analyses in animal behavior, we searched the journals Animal Behaviour, 77 

Behavioral Ecology and Sociobiology, and Behavioral Ecology for meta-analyses published 78 

in 2000 – 2024 using Web of Science (Core Collection, Science Citation Index Expanded). 79 

We used the search string TS=(meta-anal* OR meta OR meta anal*). This search returned 80 

118 articles and was conducted on 4 February 2025. The titles and abstracts of these 81 

articles were then screened based on two search criteria: 1) the study had to have been 82 

identified by the authors as a meta-analysis, and 2) the study had to have been focused on 83 

non-human animals. Based on these search criteria, we identified a total of 75 articles for 84 

secondary screening (sensu Foo et al. 2021). 85 

During the secondary screening we verified that the 75 articles met our inclusion 86 

criteria. Additional inclusion criteria at this stage were that the meta-analyses were not 87 

taxonomically restricted (e.g. focused solely on primates) and that available data were 88 

sufficient to estimate effect size means for vertebrates and invertebrates. When data were 89 

not available from online sources, we requested the data directly from the authors. This 90 

ultimately led to a sample size of 15 articles and 43 estimates (Figure 2).  91 



 92 
Figure 2. PRISMA diagram of included studies and effect size estimates 93 

Identifying taxonomic representation 94 

For each article we determined whether specific estimates within a meta-analysis were 95 

from vertebrates or invertebrates. We then compared this representation of estimates to 96 

that expected based on known animal diversity. Because of the expected lack of non-97 

vertebrate estimates (Figure 1a) and the large number of non-vertebrate phyla, we 98 

compared the representation of vertebrates and invertebrates. We compared this 99 

representation based on the taxonomic diversity without accounting for differences in 100 

abundance.  101 

Estimating taxonomic misestimation of meta-analytical results 102 

To determine the degree to which taxonomic representation could lead to misestimation of 103 

meta-analytical results, we compared meta-analytic grand means to estimates of what 104 

those means would be if estimates were drawn proportionally from the diversity of 105 

Animalia. We did so by calculating the marginalized means for each included meta-analysis 106 

under the assumption of taxonomically representative sampling (sensu Nakagawa et al. 107 

2023).  108 

For example, consider a meta-analysis based on 100 estimates with 75 estimates 109 

coming from vertebrates and 25 from invertebrates. This degree of taxonomic mis-110 

representation is consistent with the findings of Rosenthal et al. (2017). Assuming equal 111 

                  
                     
       

                   
                 

                        
                            
                     

                 
                

                       
                                 

     
                                 
                        

                   
                   
      

                     
                      
      



precision of estimates, the grand mean effect size in this meta-analysis would be primarily 112 

driven by the mean for vertebrates: if the mean effect size for vertebrates were 0.5 and the 113 

mean for invertebrates was -0.5, the overall “grand mean” would be 0.25. However, this 114 

overall mean is taxonomically biased as vertebrates only represent around 5% of all 115 

animals (vertebrates: 4.74%; Catalogue of Life, 2025). If the estimates in this hypothetical 116 

example were drawn proportionally from the animal kingdom, the grand mean would 117 

instead have been estimated as -0.45. 118 

We estimated the marginalized means given the observed data (“data-proportional”) 119 

and under taxonomic representative sampling (“taxonomic-representative”) with the 120 

metafor package in R (Viechtbauer 2010, Viechtbauer and Lo pez‐Lo pez 2022, 121 

Nakagawa et al. 2023). This process is known as “poststrafication” and is often used in 122 

recalibrating survey results (Gelman et al. 2021).  Using the predict function of 123 

metafor, we estimated the marginalized taxonomic-representative value with an 124 

assumption of 5% of estimates being from vertebrates and 95% of estimates being from 125 

invertebrates. This also allowed us to estimate the uncertainty around the taxonomic-126 

representative mean (Viechtbauer and Lo pez-Lo pez 2022).  127 

Many of the constituent studies conducted multiple meta-analyses and we 128 

attempted to replicate as many of those as possible. In all cases we attempted to replicate 129 

the original analyses either using code originally provided by the authors or de novo code 130 

based on the described methods and as the effect sizes used or described by the authors. 131 

When possible, this included the inclusion of phylogenetic error structure. For each meta-132 

analysis we estimated the data-proportional (µdp) and taxonomic-representative (µtr) 133 

overall mean estimates, their uncertainties, and statistical significances (⍺ < 0.05). 134 

Data analysis 135 

For each meta-analytical estimate pair from a study, we compared the data-proportional 136 

versus taxonomic-representative estimates to quantify the relative, proportional effect of 137 

taxonomic misrepresentation on overall effects in meta-analysis. To do so, we calculated the 138 

absolute value of the log ratio (Hedges et al. 1999): 139 

|𝑙𝑜𝑔
𝜇𝑡𝑟
𝜇𝑑𝑝

| 140 

we used the absolute value as this allowed comparison across studies regardless of 141 

whether data-proportional or taxonomic-representative estimates were larger. This also 142 

allowed us to compare estimates across meta-analyses even when those original meta-143 

analyses used different effect sizes. The two limitations of this approach are that it does not 144 

allow analysis in cases where the signs of estimates change and the use of absolute values 145 

can result in over-estimation of magnitudes (Morrissey 2016, see below). Fortunately, sign 146 

changes only occurred for 3 of the 43 pairs of estimates (see results). 147 



 As an additional analysis, we also calculated the absolute difference between data-148 

proportional and taxonomic-representative estimates. Because the constituent meta-149 

analyses used different effect sizes themselves (i.e. Zr, log-odds ratios, and various 150 

standardized mean differences), we first transformed all effect sizes to Zr following 151 

equations in Borenstein et al. (2009). We then calculated the absolute value of the 152 

differences between data-proportional and taxonomic-representative Zr scores. 153 

 For both the relative and absolute differences between pairs, the standard deviation 154 

of the differences was estimated as: 155 

√𝑠𝑑𝑑𝑝
2 + 𝑠𝑑𝑡𝑟

2 − 2𝑠𝑑𝑑𝑝 × 𝑠𝑑𝑡𝑟 × 𝑟 156 

where sddp and sdtr are the estimate standard deviations of the overall meta-analytical 157 

means (reported in the metafor outputs as standard errors) and r represents the 158 

correlation between the uncertainties (because the uncertainties are based on the same 159 

datasets). For the differences in Zr scores, we used the estimated uncertainties in the above  160 

equation. For the absolute value of log ratios, sddp and sdtr were calculated as sddp/ µdp and 161 

setr/ µtr, respectively. r is not analytically known but is between 0 and 1 and so was set to 162 

0.8. This did not affect our conclusions or estimation (Supplemental Materials). 163 

To estimate the overall effect of taxonomically biased sampling on meta-analytical 164 

inferences, we next fit a random effects meta-analysis with the study an estimate was 165 

drawn from as a random effect to the absolute standardized mean differences. We also 166 

included individual estimate identity as a random effect because each estimate was based 167 

on a different sample size and often addressing a different question. The overall effect size 168 

was estimated while weighting by the inverse of the standardized mean difference’s 169 

sampling variance (Borenstein et al. 2009). We evaluated the magnitude and uncertainty of 170 

the grand mean as indicative of taxonomic bias in meta-analytical inferences. A significant 171 

grand mean would indicate significant taxonomic bias in meta-analytical estimates. 172 

Importantly, calculating the grand mean of absolute values results in positive bias 173 

(Morrissey 2016). Therefore, we used an “analyze-then-transform” approach following 174 

Morrissey (2016). To do so, we transformed the meta-analytic grand means of the 175 

magnitude of taxonomic bias (xgm) and its uncertainty (segm) according to a folded normal 176 

distribution as:  177 

𝑥𝑓𝑜𝑙𝑑𝑒𝑑 = 𝑠𝑒𝑔𝑚√
2

𝜋
× 𝑒

(
−𝑥𝑔𝑚

2

2𝑠𝑒𝑔𝑚
2 )

+ 𝑥𝑔𝑚 × 𝐞𝐫𝐟 (
𝑥𝑔𝑚

√2𝑠𝑒𝑔𝑚2
) 178 

𝑠𝑑𝑓𝑜𝑙𝑑𝑒𝑑 = 𝑥𝑔𝑚
2 + 𝑠𝑒𝑔𝑚

2 + 𝑥𝑓𝑜𝑙𝑑𝑒𝑑
2  179 

where xfolded is the transformed grand mean and sdfolded is its standard deviation. erf is the  180 

Gauss error function. Uncertainties of parameters from linear models, like those provided 181 



by the metafor package, are reported as standard errors but these values specifically refer 182 

to the standard deviation of the parameter’s sampling distribution and so were used here in 183 

lieu of standard deviations. We calculated the folded values for both the relative and 184 

absolute analyses. 185 

We next conducted a heterogeneity analyses to determine the contributors to 186 

variability in taxonomic bias. We determined whether there was significant heterogeneity 187 

among estimates based on Cochran’s Q and its significance. We then calculated the 188 

proportion of variation (I2) attributable to sampling error, to study differences, and to 189 

estimate differences within studies (Nakagawa and Santos 2012). 190 

Because we were analyzing differences between marginal means, as opposed to 191 

original findings, there are not clear expectations of publication bias or approaches to 192 

testing for such bias. Moreover, because our estimates were constrained to be positive, 193 

typical funnel plots and trim-and-fill analyses were not appropriate. Given the lack of either 194 

a basis or methods, we did not conduct publication bias tests.  195 

 All analyses were conducted in the R statistical language (v4.5.0, R_Core_Team 196 

2025).  197 

Data availability 198 

All data and analysis code are available at OSF_LINK. 199 

200 
Figure 3. a) Data included in meta-analyses by taxa. b) Overall (large dot) and individual estimates 201 
(small dots) of the percentage misestimation due to taxonomic misrepresentation (uncertainty 202 
around this misestimation is smaller than the point).  203 



Results 204 

Taxonomic Representation of Data in Meta-Analyses 205 

We found that the data used in behavioral meta-analyses was highly taxonomically biased 206 

in favor of vertebrates (Figure 3a). 65% of the estimates used in meta-analyses were from 207 

vertebrates, slightly less than the bias observed more broadly in behavioral research 208 

(Rosenthal et al. 2017), but far, far greater than the 5% expected according to taxonomic 209 

representation.   210 

Relative Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences 211 

The meta-analytical mean, after transformation due to the folded distribution, of absolute 212 

log ratios was 0.30 (s.e. = 0.08, p << 0.01; Figure 4). Put another way, meta-analytical means 213 

are, on average, misestimated by 35% (Figure 3b). Significance changed between the data-214 

proportional and taxonomic-representative estimates for 10 of 43 estimate pairs (Figure 4), 215 

though the signs of effects only changed for 3 pairs. 216 

There was significant heterogeneity among estimates (Qdf:39 = 102.15, p << 0.01). Of 217 

this heterogeneity, most was attributable to sampling variance (I2 = 0.69). But there was 218 

also considerable heterogeneity among studies (I2 = 0.13) and among estimates within 219 

studies (I2 = 0.19).  220 

Absolute Effect of Taxonomic Misrepresentation on Meta-Analytical Inferences 221 

The meta-analytical mean of absolute differences between Zr scores was 0.15 (s.e. = 0.05, p 222 

< 0.01). However, one estimate pair differed by around 3 times more than the next largest 223 

difference (Figure S1). When excluded, the difference dropped to 0.098 (se = 0.026) but 224 

remained significant (p < 0.01). Whether with or without this extreme data point, these 225 

effects translate to large differences in more conventional effect sizes: a difference between 226 

Zr scores of 0.15 corresponds to a difference of 0.29 between correlations and a difference 227 

of 0.098 to 0.20. There was significant heterogeneity among estimates (Qdf:41 = 2.1 × 105, p 228 

<< 0.01) but 99% of this heterogeneity was attributable to sampling variance with no 229 

appreciable heterogeneity among studies or estimates (I2 < 0.01).  230 



 231 
Figure 4. Within-study estimates and standard errors of the relative magnitude of taxonomic bias on 232 
meta-analytical estimates.      233 



Discussion 234 

We found that the degree of taxonomic bias on meta-analytical estimates in the study of 235 

animal behavior was surprisingly large (Figure 3). Specifically, our results demonstrate that 236 

meta-analytical means from behavioral meta-analysis are misestimated by around 35%. In 237 

many cases, the observed magnitude of misestimation led to changes in significance for 238 

around 25% of estimates. This degree of an effect can lead to incorrect inferences being 239 

drawn.  240 

 As one example, consider the findings of Royaute  et al. (2018). We use this example 241 

as one of us (NAD) was the senior author of that study and so as to not single out other 242 

authors. In Royaute  et al. (2018), the authors concluded that correlations between 243 

behaviors and physiological or life-history traits were not in the direction expected 244 

according to the “pace-of-life” syndrome (POLS) hypothesis proposed by Re ale et al. (2010). 245 

This was a novel and surprising finding given the intuitive predictions of POLS and its 246 

dramatic impact on discussions of how behavior might be integrated with physiology and 247 

life-history. The conclusion in that paper was based on the meta-analytical mean, estimated 248 

as r = 0.06 (95% CI: -.01 : 0.14), which was predicted to have been positive according to 249 

POLS. However, as reported by Royaute  et al. (2018), there was a significant difference 250 

between vertebrates and invertebrates regrading support for POLS. There also was 251 

substantial taxonomic bias in the data that went into Royaute  et al.'s (2018) analysis. Here, 252 

via the estimation of marginal means adjusting for taxonomic bias, we see that if the 253 

sampling of vertebrates and invertebrates was taxonomically proportional, the meta-254 

analytical mean would have been estimated as r = 0.22 and would have been significantly 255 

different than zero. While this is a relatively modest absolute difference in estimates, it is a 256 

large relative difference (~2.4 times, Figure 4). This ends up resulting in a substantive 257 

reinterpretation of the evidence for POLS: If the data going into the original analysis were 258 

consistent with actual taxonomic representation, and the estimates of the original analysis 259 

hold, this would have been taken as meta-analytical support for POLS. We suspect similar 260 

changes in conclusions might be drawn from other meta-analyses if taxonomic bias is 261 

similarly addressed.    262 

 While changes in interpretation like this might be discouraging, they also are of 263 

intrinsic interest. Sub-group analysis (Borenstein et al. 2009), a long-standing part of meta-264 

analyses in other fields and stratification, would allow the evaluation of when a hypothesis 265 

like POLS holds in some taxonomic groups and not others. Such analyses may allow for 266 

greater insight than currently provided by most behavioral meta-analyses. It is also perhaps 267 

more interesting to ask why POLS holds in invertebrates but not vertebrates rather than 268 

simply asking whether the hypothesis is supported in general. 269 

This example and our overall finding confirms concerns raised by others. In 270 

particular, Gurevitch and Hedges (1999) discussed how researcher biases and taxonomic 271 



preferences in the generation of original data have the potential to affect subsequent meta-272 

analytical inferences. However, the degree to which this was an actual problem was not 273 

clear until our analysis here. This is a concerning problem and not a new one. As discussed 274 

by Rosenthal et al. (2017), taxonomic bias in the study of animal behavior is pervasive and 275 

pronounced (their data are recreated in Figures 1a & 1b). As a caveat, our analysis of the 276 

absolute magnitude of the effect on meta-analytical estimates demonstrates a somewhat 277 

smaller impact of taxonomic bias, a change of ~0.3 in magnitude of correlation coefficients. 278 

However, this is not entirely unexpected because effect sizes estimated in meta-analyses are 279 

typically quite small (Møller and Jennions 2002, Low-De carie et al. 2014) and so absolute 280 

differences will necessarily be constrained to also be small. Further, we were initially 281 

concerned with relative and inferential impacts, which cannot be determined from absolute 282 

differences. 283 

It is also worth emphasizing that relatively few studies could be included in our 284 

analyses and, as a result, that the effects of taxonomic bias might be even more severe. 285 

Specifically, 53 meta-analyses published in Animal Behaviour, Behavioral Ecology, and 286 

Behavioral Ecology and Sociobiology were taxonomically restricted (Figure 2). Put another 287 

way, the taxonomic bias in the 15 studies included here necessarily underestimates the bias 288 

present in the 53 studies for which it could not even be estimated. In some cases taxonomic 289 

restriction may be because a specific hypothesis applies to, for example, mammals but not 290 

reptiles. However, it is also possible that this represents a secondary opportunity for 291 

researchers to express taxonomic preferences (Gurevitch and Hedges 1999). Taxonomically 292 

restricted meta-analyses, when not necessary, will further reduce the generality of 293 

conclusions. 294 

If a broad goal of animal behavior research is to increase our general understanding 295 

of behavior, our results demonstrate that taxonomic bias should be a major concern. If, 296 

instead, we are primarily interested in examining personally interesting examples of 297 

behavior, the bias is of less importance. Regardless, a primary aim of meta-analyses is to 298 

draw generalizable inferences. Our results suggest that the taxonomic bias inherent in the 299 

behavioral literature makes this generalization difficult. This may profoundly affect how 300 

right and wrong we are about our understanding of behavior. Addressing this bias will 301 

require individual researchers to consider whether their study system choices will increase 302 

the generality of our field’s understanding.  303 
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Figure S1. Within-study estimates and standard errors of the magnitude of taxonomic bias 379 
(absolute differences) on meta-analytical estimates.     380 


