
1 

 

Social media data reveal novel habitats for invasive species 1 

Shawan Chowdhury*1, Rochita Debnath2, Niloy Hawladar2, Scarlett R. Howard1, Kathryn A. 2 

Hodgins1, Bob B.M. Wong1, Ivan Jarić3, 4 3 

 4 

* corresponding author (shawan.chowdhury@monash.edu) 5 

 6 
1School of Biological Sciences, Monash University, Clayton, Australia 7 
2Department of Zoology, University of Dhaka, Bangladesh 8 
3CNRS, AgroParisTech, Ecologie Société Evolution, Université Paris-Saclay, Gif-sur-Yvette, 9 

France 10 
4Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České 11 

Budějovice, Czech Republic 12 

 13 

Keywords 14 

Citizen science; data integration; Facebook; GBIF; iEcology; invasive species; online data; 15 

tropics 16 

 17 

Acknowledgement 18 

We thank the numerous volunteers for collecting data and sharing their records on GBIF and 19 

social media. IJ was supported by grant no. 23-07278S from the Czech Science Foundation. 20 

SRH acknowledges the ARC Discovery Early Career Researcher Award (DECRA): 21 

DE230101556 for funding support. 22 

 23 

Author contributions 24 

SC conceptualised the idea, everyone contributed to the idea; SC, RD, and NH collected the 25 

Facebook data; SC wrote the first draft of the paper, everyone contributed to the paper; SC 26 

did the analyses, everyone contributed to the analyses.  27 

 28 

Conflict of interest 29 

The authors declare no competing interests. 30 

 31 

Data and code availability 32 

The GBIF data is publicly available (GBIF, 2025). We uploaded the Facebook data in the 33 

supplementary section.  34 



2 

 

All the codes used in the analysis are publicly available in the GitHub repository 35 

(https://github.com/ShawanChowdhury/InvasiveSpecies_SocialMedia_Bd).  36 

 37 

Abstract 38 

Invasive alien species pose significant threats to biodiversity, yet their distributions remain 39 

poorly documented across much of the tropics. Using Bangladesh, a megapopulated tropical 40 

country, we combine species distribution data from Facebook and the Global Biodiversity 41 

Information Facility (GBIF) to evaluate how data integration improves invasive alien species 42 

distribution. Our compiled dataset contains 11,469 occurrence records for 65 species. 43 

Although Facebook contributed only 6% of the total records, it provided more data than 44 

GBIF for two-thirds of the species and served as the unique source of distribution data for 45 

23 species. Incorporating Facebook data increased estimated range sizes for 44 species and 46 

expanded the spatial extent of species distributions by 14%. Facebook records also 47 

exhibited distinct environmental patterns, often in urban and human-impacted areas. Our 48 

study demonstrates that social media can help fill critical biodiversity data gaps in under-49 

sampled regions, and should be integrated into invasive species monitoring and 50 

conservation planning frameworks. 51 

 52 

Background 53 

Global biodiversity faces an existential crisis due to various natural and human-induced 54 

threats (Pereira et al., 2012; Dirzo et al., 2014). Over 47,000 species are at risk of extinction, 55 

~28% of those assessed by the International Union for Conservation of Nature (IUCN) Red 56 

List (IUCN, 2025). The Living Planet Index Report indicates a staggering 73% decrease in 57 

wildlife over the last 50 years (WWF, 2024). Climate change, agricultural intensification, and 58 

invasive alien species are major threats impacting these alarming biodiversity trends 59 

(Capinha et al., 2015; Seebens et al., 2017; Tilman et al., 2017; Bradshaw et al., 2021). Such 60 

losses are not just of ecological concern—they affect economies, food security, and human 61 

well-being (Cardinale et al., 2012). Ecologists and conservationists are actively working to 62 

improve the situation, leading to the emergence of global biodiversity targets (Green et al., 63 

2019). The most recent of these, set by the Convention on Biological Diversity, is the 64 

Kunming-Montreal Global Biodiversity Framework (GBF), which aims to minimise the 65 

biodiversity decline by protecting 30% of the globe by 2030 (CBD, 2022).  66 

Biological invasions are a major driver of global biodiversity decline, as non-native species 67 

can outcompete, prey on, or spread disease to native species (Simberloff et al., 2013). These 68 

invasions also disturb ecosystem functions and lead to significant economic and social costs 69 

worldwide (Early et al., 2016). GBF Target 6 aims to reduce the introduction of invasive alien 70 

species by half and minimise their impact (CBD, 2022). Achieving such targets requires 71 

detailed species distribution data, which are absent from the vast majority of the planet 72 

(Troudet et al., 2017). Our understanding of global biodiversity is limited primarily due to 73 

the lack of monitoring data from the tropics (Collen et al., 2008; Hortal et al., 2015). While 74 

https://github.com/ShawanChowdhury/InvasiveSpecies_SocialMedia_Bd
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systematic monitoring has been practised in the developed world for decades, it remains 75 

scarce in the tropics, even though tropical rainforests harbour over half the world’s known 76 

biodiversity (Collen et al., 2008). The situation is gradually improving, however, thanks to 77 

the growing popularity of citizen science, where anyone can contribute to biodiversity 78 

recording (Callaghan et al., 2021; Mason et al., 2025). Over the past few decades, 79 

biodiversity observation data volume has increased significantly, primarily due to citizen 80 

science initiatives and technological advances (Pocock et al., 2018; Heberling et al., 2021). 81 

For instance, species occurrence data in the most extensive biodiversity repository, the 82 

Global Biodiversity Information Facility (GBIF), rose twelvefold from 2009 to 2021, largely 83 

due to the inclusion of citizen science records (Heberling et al., 2021). However, citizen 84 

science data come with limitations. In particular, many authors have highlighted the 85 

temporal and spatial bias in citizen science data: most observations are for birds and 86 

originate from the developed world, particularly Western Europe and North America 87 

(Amano et al., 2016; Bowler et al., 2025). This is because citizen science applications have 88 

struggled to gain traction in the tropics (Pocock et al., 2019) due to various barriers, such as 89 

limited access to technology, language and cultural barriers, and the lack of institutional 90 

support and data infrastructure (Danielsen et al., 2014). 91 

Citizen science data need not be confined to structured platforms like iNaturalist; individuals 92 

can contribute to biodiversity recording in various ways. One such option is online data 93 

sharing (Jarić et al., 2020, 2021; Correia et al., 2021; Caley & Cassey, 2023). With the 94 

increasing availability of smartphones and fast internet, along with the growing popularity 95 

of social media (e.g., Facebook, Instagram), anyone from anywhere in the world can take 96 

biodiversity photographs and share them on social platforms (Callaghan et al., 2022). If 97 

properly harvested, these data can address numerous ecological questions (Di Minin et al., 98 

2015; Toivonen et al., 2019; Sbragaglia et al., 2022; Chowdhury et al., 2023a; Vardi et al., 99 

2024; Baasanmunkh et al., 2025). For instance, social media data can potentially lessen the 100 

biodiversity knowledge gap (Marcenò et al., 2021; Chowdhury et al., 2023a), increase 101 

knowledge of threatened taxa (Rosa & Freitas, 2024), improve conservation assessments 102 

(Chowdhury et al., 2023b, 2024a), track the movement of highly range-shifting species to 103 

understand their movement dynamics better (Chowdhury et al., 2025), provide data on 104 

underrepresented species (ElQadi et al., 2017; Moore et al., 2024), track changes in species 105 

caused by seasonal or climatic change (Elquadi et al., 2023), map ecosystem services, 106 

promote conservation through marketing and education, and facilitate conservation 107 

communication (Di Minin et al., 2015). Such insights are especially valuable in countries that 108 

are poorly represented in global biodiversity repositories. While previous studies have used 109 

social media data to monitor charismatic species, their use to track invasive alien species 110 

distributions and spread remains largely underexplored (Jarić et al., 2021). However, such 111 

additional records from social media can be utilised to obtain new distributions for invasive 112 

alien species (e.g., Allain et al., 2019; Rothman et al., 2020; Šmejkal et al., 2024). 113 

Here, we evaluate the utility of social media data as potential data sources to improve 114 

understanding of invasive alien species distributions. We focus on Bangladesh, a densely 115 

populated tropical country, which serves as a useful and representative case study where 116 

biodiversity data are poorly represented in global repositories. Similarly, we use Facebook 117 
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as a social media platform due to its popularity in Bangladesh (Chowdhury et al., 2023a). By 118 

collating species occurrence records from Facebook and GBIF, we investigate how 119 

supplementary data from Facebook improves the grid-based distribution and the range of 120 

invasive alien species using the minimum convex polygon. Additionally, we use generalised 121 

linear models to explore the preferential bias in documenting species observations. 122 

 123 

Data 124 

We obtained the list of invasive alien species for Bangladesh from Mukul et al. (2020), which 125 

is the most comprehensive invasive alien species database for Bangladesh. We collated the 126 

species occurrence data using two approaches. First, we extracted the occurrence data from 127 

GBIF (https://www.gbif.org/; GBIF, 2025) using the rgbif package (Chamberlain et al., 2025) 128 

in R (R Core Team, 2022, version 4.2.2). GBIF contains data from thousands of citizen science 129 

applications, including iNaturalist (Heberling et al., 2021), so we did not use any other 130 

database.  131 

We obtained the species occurrence data from Facebook following Chowdhury et al. 132 

(2024b). Initially, we created a list of relevant Facebook groups by searching individual taxa 133 

(plants, insects, molluscs, fishes, and birds), obtained from the invasive alien species list. 134 

Once we created the list (97 groups, Supplementary Table S1), we searched each group by 135 

species scientific name, common name, and local names. We compiled species common 136 

names and local names using IUCN Bangladesh (2015). We carefully checked each post to 137 

obtain the event date (day, month, year), location, life stage, and photographer's name. As 138 

Facebook does not provide specific geolocation information, we georeferenced the location 139 

(longitude and latitude) using Google Maps (https://www.google.com/maps).  140 

We collected predictor variable data to compare the nature of the distributions between 141 

different data sources. Using the geodata R package (Hijmans et al., 2024), we extracted the 142 

annual mean temperature, rainfall, and elevation for Bangladesh from WorldClim 143 

(https://www.worldclim.org/). We downloaded the most recent human footprint index map 144 

(for 2020) from the Wildlife Conservation Society (WCS, 2005; 145 

https://wcshumanfootprint.org/data-access), and built areas from the Global Human 146 

Settlement Database (Pesaresi et al., 2024; https://human-147 

settlement.emergency.copernicus.eu/download.php).  148 

 149 

Data cleaning and preparation 150 

We cleaned the Facebook and GBIF data using two different approaches. We excluded GBIF 151 

data if i) the location information was missing, ii) species names were mismatched, iii) 152 

records were outside the borders of Bangladesh, and iv) there were duplicate records. We 153 

excluded observations from Facebook if the i) photograph was not clear enough to identify 154 

up to the level of species, ii) location was coarser than 100 km2, or iii) photograph was not 155 

from Bangladesh.  156 

https://www.gbif.org/
https://www.google.com/maps
https://www.worldclim.org/
https://wcshumanfootprint.org/data-access
https://human-settlement.emergency.copernicus.eu/download.php
https://human-settlement.emergency.copernicus.eu/download.php
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We compiled species occurrence data from both sources to create three groups: Facebook, 157 

GBIF, and Overall (data from Facebook and GBIF). We used Facebook and GBIF to compare 158 

the distribution of species occurrence records using the grid-based distribution. In contrast, 159 

we used GBIF and Overall datasets to compare the differences in area, which were 160 

calculated using the minimum convex polygon.  161 

Using the terra R package (Hijmans, 2025), we reprojected, cropped, and masked all 162 

environmental predictor layers to a uniform spatial resolution of 1 km × 1 km, using the 163 

WGS84 coordinate reference system and the geographic extent of Bangladesh. We used the 164 

tidyverse R package (Wickham et al., 2019) for all data processing and the ggplot2 R package 165 

(Wickham, 2016) for all visualisations. 166 

 167 

Grid-based distribution 168 

To quantify the difference between GBIF and Facebook data, we converted species 169 

distribution into a 1 km × 1 km grid. We considered a species to be present in a grid if at 170 

least one occurrence record existed within that particular grid. We created separate 171 

presence maps for each data source - GBIF, Facebook and Overall. Some species were not 172 

represented in all data sources, so the number of maps depended on the number of sources 173 

from which we obtained their data. 174 

 175 

Minimum convex polygon 176 

We calculated a minimum convex polygon (MCP) surrounding the occurrence records 177 

(Joppa et al., 2016) for each invasive alien species in Bangladesh. We used the sf R package 178 

(Pebesma & Bivand, 2023) and created two MCPs for each species, using the GBIF and 179 

Overall datasets. For computational efficiency, we rasterised the MCP using the fasterize R 180 

package (Ross, 2024) and removed areas outside the borders of Bangladesh. 181 

 182 

Statistical analyses 183 

We tested whether there was any difference between species occurrence records from 184 

Facebook and GBIF, using five environmental predictors (built areas, human footprint index, 185 

temperature, rainfall, and elevation) that impact species distribution. We fitted linear 186 

models using the broom R package (Robinson et al., 2025) to estimate standardised effect 187 

sizes for each environmental predictor. We standardised values (z-scored) within each 188 

environmental variable to allow comparison across variables with different units and 189 

magnitudes. For each taxonomic group (e.g., fishes, birds), we fitted separate linear models 190 

for each predictor using the formula where the response variable was the standardised 191 

environmental value and the categorical predictor was the data source, resulting in 25 192 

comparisons in total. From each model, we extracted the estimated effect size (i.e., the 193 

mean difference between Facebook and GBIF records), standard error, and p-value. We 194 

considered differences statistically significant at p < 0.05. Effect sizes and 95% confidence 195 
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intervals were visualised using coefficient plots stratified by taxonomic group. To account 196 

for multiple comparisons, we also applied the Benjamini–Hochberg false discovery rate 197 

correction and report adjusted p-values (p_adj) for transparency (Supplementary Table S2). 198 

 199 

Distribution of spatial data 200 

Our compiled data contained 11,469 occurrence records (GBIF: 10,745, Facebook: 710) for 201 

65 species. Although Facebook data accounted for only 6% of the compiled data, there were 202 

substantial differences across taxa. For example, we obtained more records from Facebook 203 

for plants, molluscs, and fishes. Nearly 85% of the GBIF data (N = 9,687) were for a single 204 

bird species (the rock pigeon, Columba livia), and for many species, we obtained a higher 205 

number of occurrence records from Facebook (for 43 species (66%); Figure 1A). There were 206 

34 species, which were present in either Facebook or GBIF (unique to the data source). For 207 

23 species, we exclusively obtained occurrence data from Facebook (the majority being 208 

plants), while 11 species were sourced only from GBIF (spanning multiple taxa) (Figure 1A). 209 

Four species were entirely absent from GBIF but had over 20 occurrence records each in the 210 

Facebook dataset, including two fish species (Pterygoplichthys multiradiatus, Pangasius 211 

sutchi) and two plants (Hyptis suaveolens, Triumfetta rhomboidei).  212 
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 213 

Figure 1. Taxonomic patterns in species occurrence data from GBIF and Facebook. A) The 214 

number of species occurrence records by taxa and data source, where each circle represent 215 

one species, and B) the proportion of 1 ×  1 km grid cells containing species records from 216 

GBIF (blue), Facebook (red), or both sources (grey) for each taxonomic group. 'Both' (in B) 217 

indicates species were recorded by both sources within the same grid cell. 218 

 219 

Our grid-based distribution analysis shows that the total number of distribution grids 220 

increased by 14% after incorporating Facebook data, while there was a 5% overlap in the 221 

grids (Figure 1B). Same as for occurrence records, we obtained more occurrence grid cells 222 

using Facebook data for plants, molluscs, and fishes (Figure 1B). For 43 species, we obtained 223 

a larger number of grid cells using Facebook data, whereas for the billygoat-weed 224 

(Ageratum conyzoides) we obtained an equal number of grid cells using GBIF and Facebook 225 

data. 226 



8 

 

 227 

 228 

Changes in invasive alien species distribution 229 

We obtained MCPs for 54 species. Using the Overall data (combined GBIF and Facebook 230 

data), the range size increased for 44 species, compared to using only GBIF data, while there 231 

was no change for 10 species (Figure 2). Among species for which the range increased using 232 

the Overall data, the range size varied substantially across taxa (range 15-94,913 km2, 233 

median = 24,811 km2). For example, the range size increased by 15 km2 for the invasive 234 

aquatic weed, the giant salvinia (Salvinia molesta), and 94,913 km2 for the shrub, the 235 

diamond burbark (Triumfetta rhomboidea). For 15 species, the range polygon increased by > 236 

10,000 km2. Compared to the GBIF data, the mean range size increased dramatically across 237 

taxa using the Overall data, except for birds. The range size increased between 4,801 km2 238 

(insects) and 31,291 km2 (fishes) (Figure 2). 239 

 240 

Figure 2. The contribution of species occurrence data from Facebook to expand invasive 241 

alien species range estimates. Histograms show changes in estimated range size (minimum 242 

convex polygons) across taxa when Facebook records were added to GBIF data. A value of 0 243 
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indicates no change in range size, which could result either from a lack of Facebook records 244 

for that species or from Facebook records being fully nested within existing GBIF ranges. 245 

 246 

Patterns of data collection 247 

Our linear models identified statistically significant differences (p < 0.05) between GBIF and 248 

Facebook data for 15 out of 25 predictor–taxon combinations (Figure 3; Supplementary 249 

Table S2). However, after correcting for multiple comparisons using the Benjamini–250 

Hochberg false discovery rate, only 11 comparisons remained significant (p_adj < 0.05), all 251 

of which involved plants, insects, or molluscs. The strongest divergences were observed for 252 

plants and insects, where Facebook records were associated with significantly higher 253 

temperature, human footprint, and built area values. Among molluscs, only rainfall showed 254 

a significant difference, with lower values in Facebook records. In contrast, birds and fishes 255 

exhibited minimal differences between sources; for birds, only built areas were marginally 256 

significant (p = 0.015), and for fishes, elevation differed (p = 0.038), but neither remained 257 

significant after correction. 258 

 259 
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Figure 3. Effects of environmental variables on species occurrence across taxa and data 260 

sources.  261 

 262 

Facebook can reduce critical distribution gaps 263 

Invasive alien species are well-known for their severe negative impacts on ecosystems, 264 

economies, and human well-being (Mollot et al., 2017; Diagne et al., 2021). If not properly 265 

monitored, they can disrupt entire ecosystems (Peller & Altermatt, 2024). The GBF aims to 266 

halve the impact of invasive alien species by 2030. Achieving this goal requires detailed, up-267 

to-date distribution data for each species—data that remain scarce across much of the 268 

tropics. Using Bangladesh as a case study, we demonstrate that incorporating species 269 

distribution data from Facebook can reduce this knowledge shortfall. Although Facebook 270 

contributed a relatively small proportion of the total records (6%), it provided more 271 

occurrence data than GBIF for two-thirds of the species analysed. In general, Facebook data 272 

provided a more diverse picture: for 66% of the 65 invasive alien species assessed, more 273 

occurrence records were available from Facebook than from GBIF. Notably, for 23 species, 274 

Facebook was the only source of distribution data. Incorporating Facebook data also 275 

expanded the species range size by two-thirds of the assessed species. These expanded 276 

ranges could reflect more realistic distribution patterns of invasive alien species that GBIF 277 

failed to capture due to limited sampling effort or reporting biases. Our results highlight the 278 

untapped potential of social media in improving invasive alien species monitoring, 279 

particularly in underrepresented regions. While we only focused on Facebook, future efforts 280 

could benefit from integrating data across multiple social platforms (e.g., Instagram, TikTok) 281 

to enhance biodiversity monitoring further. 282 

 283 

Facebook posts reflect distinct environmental patterns 284 

The data from GBIF indicated a significant bias towards birds, with one species, the rock 285 

pigeon, making up 85% of all records. This taxonomic bias corresponds with earlier studies 286 

on citizen science contributions, reflecting a predominance of birds and taxa from the 287 

Global North (Troudet et al., 2017). In contrast, Facebook exhibited a more equitable 288 

distribution of records across various taxa, especially for fishes, molluscs, and plants, 289 

including species not represented in GBIF. To further investigate the preferential bias among 290 

different data source, we compared Facebook and GBIF data using multiple environmental 291 

predictors. Facebook posts were primarily from areas with higher temperatures, greater 292 

human impacts, and more urban environments, particularly for plants and insects. This 293 

observation highlights that social media can yield valuable insights into species distributions 294 

in human-altered environments, which are frequently overlooked in conventional 295 

biodiversity monitoring. Such representation is crucial for tracking invasive alien species, 296 

considering that many tend to flourish in disrupted or urban settings (McKinney, 2006). By 297 

documenting these occurrences, social media could provide early warnings or new insights 298 

into the proliferation and spread of invasive alien species. 299 
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Although we only focused on Bangladesh, our results highlight the value of the approach to 300 

other tropical countries with limited biodiversity monitoring. However, it should be noted 301 

that the popularity of social media data may vary depending on the region, digital access, 302 

and taxonomic expertise, among other factors. Future research should explore how social 303 

media can be leveraged across different regions and platforms, and how data quality can be 304 

improved through community engagement, automated species recognition, and verification 305 

tools. 306 

 307 

Limitations and ethical considerations in using social media data 308 

Due to the lack of an automated extraction process, harvesting species locality data from 309 

Facebook is time-consuming (Chowdhury et al., 2024b). On average, it took about 25 310 

minutes to complete the entire process (all locality records) for each species (from data 311 

extraction to geo-referencing). While time-intensive, this approach yielded valuable 312 

information, particularly for tropical species that are poorly represented in conventional 313 

databases. Given this potential, there is a pressing need to develop automated or semi-314 

automated tools to extract and standardise biodiversity data from social media platforms 315 

(Sheard et al., 2024). 316 

Like any other online data, when extracting distribution data from Facebook, we should 317 

always strictly maintain standard data privacy concerns (Di Minin et al., 2021). Only posts 318 

from public groups or pages should be used unless private group administrators give explicit 319 

permission. Furthermore, we should be careful when sharing such data publicly. Observer 320 

names should be anonymised, and detailed location data should be generalised where 321 

necessary to prevent unintended consequences, such as poaching of wildlife or habitat 322 

disturbance (Di Minin et al., 2021). Responsible data handling practices are essential to 323 

ensure that efforts to close biodiversity knowledge gaps do not introduce new risks for 324 

people or biodiversity. 325 

In addition to privacy concerns, social media data may be prone to issues such as species 326 

misidentification, lack of metadata (e.g., date or observer effort), and duplicated records. 327 

Addressing these challenges requires careful curation, cross-validation with expert datasets, 328 

and, where possible, the integration of machine learning tools for automated image 329 

verification (van Klink et al., 2022; Sheard et al., 2024). 330 

 331 

Conclusion 332 

Detailed species distribution data are crucial for effective conservation planning and 333 

achieving global biodiversity goals, including those specified in the GBF. Using various 334 

approaches, we show that social media platforms such as Facebook can greatly improve the 335 

spatial and taxonomic coverage of invasive alien species data, especially in areas with 336 

limited data, like the tropics. Incorporating social media data with those from global 337 

biodiversity databases, such as GBIF, can help bridge the key knowledge gaps, highlight 338 

poorly-known species, and improve the known distribution of invasive alien species, many 339 
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of which present immediate threats to ecosystems and local livelihoods. Conservation 340 

agencies and biodiversity data platforms should consider integrating social media records 341 

into biodiversity monitoring systems to harness this potential fully. By investing in data 342 

collection tools, validation processes, and community involvement in high-biodiversity yet 343 

under-monitored regions, the resolution and effectiveness of invasive alien species 344 

surveillance could see significant enhancement. Including these unconventional data 345 

sources in national and global biodiversity strategies can render monitoring more inclusive, 346 

adaptable, and impactful, particularly in the most needed areas. 347 

 348 
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