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Abstract

Hypergraphs generalize graphs by allowing hyperedges to join any number of vertices, while superhypergraphs
further extend this idea by layering iterated powersets to capture hierarchical, self-referential connections.
A food web models an ecosystem as a directed graph whose nodes are species and whose edges represent
predator–prey interactions. In this paper, we introduce two novel extensions of classical food webs: the Food
HyperWeb, which encodes each predator’s entire prey set as a hyperedge, and the Food 𝑛-SuperHyperWeb,
which embeds multilevel trophic relationships within an 𝑛-fold superhypergraph structure. We provide for-
mal definitions, establish their foundational properties, and present illustrative examples demonstrating their
effectiveness for ecological network analysis.
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1 Preliminaries

This section introduces the fundamental concepts and definitions that underpin the discussions in this paper.
Throughout, all sets are assumed to be finite.

1.1 Power Set and 𝑛-th Power Set

The power set of 𝑆 is the collection of all subsets of 𝑆, including the empty set and 𝑆 itself. The 𝑛-th power set
of 𝑆 is obtained by iteratively applying the power set operation 𝑛 times, starting from 𝑆 [1–5].

Definition 1.1 (Universal Set). Let𝑈 be a set containing all elements under consideration. Throughout, every
set 𝑆 is assumed to satisfy 𝑆 ⊆ 𝑈.

Definition 1.2 (Base Set). A base set 𝑆 is any subset 𝑆 ⊆ 𝑈 from which further constructions—such as
powersets and hyperstructures—are formed.

Definition 1.3 (Power Set). The power set of 𝑆, denoted P(𝑆), is the collection of all subsets of 𝑆:

P(𝑆) = { 𝑋 | 𝑋 ⊆ 𝑆}.

Definition 1.4 (Iterated Power Set). [6–9] For each integer 𝑛 ≥ 1, define the 𝑛-fold iterated power set of 𝑆 by

P1 (𝑆) = P(𝑆),

P𝑘+1 (𝑆) = P
(
P𝑘 (𝑆)

)
(𝑘 ≥ 1).

Equivalently, one may write 𝑃𝑛 (𝑆) = P𝑛 (𝑆).

Definition 1.5 (Nonempty Iterated Power Set). [6, 10] Define the nonempty iterated power set by

P∗
1 (𝑆) = P(𝑆) \ {∅},

P∗
𝑘+1 (𝑆) = P∗ (P∗

𝑘 (𝑆)
)

(𝑘 ≥ 1),

where P∗ (𝑋) = P(𝑋) \ {∅} for any set 𝑋 .
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Example 1.6 (Nonempty Iterated Power Set in Beverage Selection). Let 𝑆 = {Tea, Coffee} represent two
drink options. Then:

P∗
1 (𝑆) = P(𝑆) \ {∅}

=
{
{Tea}, {Coffee}, {Tea,Coffee}

}
.

The second-level nonempty iterated power set is

P∗
2 (𝑆) = P∗ (P∗

1 (𝑆)
)

=

{
{{Tea}}, {{Coffee}}, {{Tea,Coffee}}, {{Tea}, {Coffee}},

{{Tea}, {Tea,Coffee}}, {{Coffee}, {Tea,Coffee}}, {{Tea}, {Coffee}, {Tea,Coffee}}
}
.

For instance, {{Tea}, {Coffee}} ∈ P∗
2 (𝑆) can model offering both a “tea-only” service and a “coffee-only”

service as distinct package options. One may continue to P∗
3 (𝑆) = P∗ (P∗

2 (𝑆)), whose elements are nonempty
collections of these service-packages.

1.2 Hypergraphs and SuperHypergraphs

Hypergraphs generalize ordinary graphs by allowing each hyperedge to join an arbitrary nonempty subset of
vertices, thereby modeling higher-order relations among elements [11–16]. A SuperHyperGraph further ex-
tends this idea by incorporating iterated powerset structures, enabling multi-layered, self-referential connections
among hyperedges [17–24].

Definition 1.7 (Hypergraph). [11, 25] Let 𝑉 be a finite set of vertices. A hypergraph is a pair

𝐻 =
(
𝑉, 𝐸

)
, 𝐸 ⊆ P(𝑉) \ {∅},

where each element of 𝐸 is called a hyperedge. No restriction is imposed on the size of a hyperedge.

Definition 1.8 (𝑛-SuperHyperGraph). [18, 22] Let 𝑉0 be a finite base set. Define the iterated powersets by

P0 (𝑉0) = 𝑉0,

P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
, 𝑘 ≥ 0.

For a fixed 𝑛 ≥ 1, an 𝑛-SuperHyperGraph is a pair

SHG(𝑛) =
(
𝑉, 𝐸

)
,

where
𝑉, 𝐸 ⊆ P𝑛 (𝑉0) and 𝑉 ≠ ∅, 𝐸 ≠ ∅.

Elements of 𝑉 are called 𝑛-supervertices and elements of 𝐸 are called 𝑛-superedges.

Example 1.9 (Corporate Hierarchy as a 2-SuperHyperGraph). Let the set of employees be

𝑉0 = {𝐴, 𝐵, 𝐶, 𝐷},

with 𝐴 = Alice, 𝐵 = Bob, 𝐶 = Carol, and 𝐷 = Dave. First-level subsets (teams) are chosen as

𝑇1 = {𝐴, 𝐵}, 𝑇2 = {𝐶, 𝐷},

so 𝑇1, 𝑇2 ∈ P(𝑉0). Next, define two departments as elements of the second-level iterated power set:

𝐷1 = {𝑇1}, 𝐷2 = {𝑇2}, so {𝐷1, 𝐷2} ⊆ P2 (𝑉0).

Thus we set
𝑉2 = { 𝐷1, 𝐷2} ⊆ P2 (𝑉0), 𝐸2 =

{
{ 𝐷1, 𝐷2}

}
⊆ P2 (𝑉0).

The pair
𝐹 (2) =

(
𝑉2, 𝐸2

)
is a 2-SuperHyperGraph encoding the hierarchy: employees → teams → departments → the company division.
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1.3 Food Web

A food web is a directed graph representing species as nodes and predator–prey interactions as directed edges
in an ecosystem [26–32].

Definition 1.10 (Food Web). [26, 27] Let 𝑉 be a finite set whose elements represent biological species (or
trophic groups) in an ecosystem. A food web is the directed graph

𝐺 = (𝑉, 𝐸),

where the edge set 𝐸 ⊆ 𝑉 ×𝑉 satisfies

(𝑢, 𝑣) ∈ 𝐸 ⇐⇒ species 𝑢 preys upon species 𝑣.

We require additionally that

• There are no self-loops: (𝑣, 𝑣) ∉ 𝐸 for all 𝑣 ∈ 𝑉 .

• There are no parallel edges: 𝐸 is a set (not a multiset).

Thus 𝐺 encodes all direct predator–prey relationships among the species in the ecosystem.

Example 1.11 (Simple Pond Food Web). Consider a small pond ecosystem with five trophic levels:

𝑉 = { 𝐴, 𝑍, 𝑆, 𝐵, 𝐷},

where

• 𝐴 = Algae

• 𝑍 = Zooplankton

• 𝑆 = Small Fish

• 𝐵 = Big Fish

• 𝐷 = Duck

The predator–prey relationships are captured by

𝐸 = { (𝑍, 𝐴), (𝑆, 𝑍), (𝐵, 𝑆), (𝐷, 𝐵), (𝐷, 𝑆) },

meaning:

𝑍 → 𝐴 (zooplankton eats algae),
𝑆 → 𝑍 (small fish eat zooplankton),
𝐵 → 𝑆 (big fish eat small fish),
𝐷 → 𝐵 (duck eats big fish),
𝐷 → 𝑆 (duck also eats small fish).

Thus the directed graph 𝐺 = (𝑉, 𝐸) illustrates a simple pond food web.

2 Main Results

In this section, we formally define the concepts of the Food HyperWeb and the Food SuperHyperWeb, and
briefly examine their structural properties.
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2.1 Food HyperWeb

Food HyperWeb is a hypergraph whose vertices represent species and whose hyperedges correspond to each
predator’s unique complete prey set.

Definition 2.1 (Base Food Web). Let 𝑉0 be a finite set of species and let

𝐺 = (𝑉0, 𝐸0)

be the directed graph (the Food Web) where (𝑢, 𝑣) ∈ 𝐸0 if and only if species 𝑢 preys upon species 𝑣.

Definition 2.2 (Food HyperWeb). Let 𝐺 = (𝑉0, 𝐸0) be a Food Web. Define the Food HyperWeb

𝐻 = (𝑉1, 𝐸1)

by
𝑉1 = 𝑉0, 𝐸1 =

{
𝑒𝑢 ⊆ 𝑉0 : 𝑒𝑢 = { 𝑣 ∈ 𝑉0 : (𝑢, 𝑣) ∈ 𝐸0}, 𝑒𝑢 ≠ ∅

}
.

Each hyperedge 𝑒𝑢 collects all prey of predator 𝑢.

Example 2.3 (Simple Pond Food HyperWeb). Consider the same small pond ecosystem as in the Food Web
example:

𝑉0 = { 𝐴, 𝑍, 𝑆, 𝐵, 𝐷},

where
𝐸0 = {(𝑍, 𝐴), (𝑆, 𝑍), (𝐵, 𝑆), (𝐷, 𝐵), (𝐷, 𝑆)},

with species labels:

• 𝐴: Algae

• 𝑍: Zooplankton

• 𝑆: Small Fish

• 𝐵: Big Fish

• 𝐷: Duck

The Food HyperWeb 𝐻 = (𝑉1, 𝐸1) is obtained by grouping each predator’s prey into a hyperedge:

𝑉1 = 𝑉0, 𝐸1 = { 𝑒𝑍 , 𝑒𝑆 , 𝑒𝐵, 𝑒𝐷},

where
𝑒𝑍 = { 𝐴}, (zooplankton eats algae);
𝑒𝑆 = { 𝑍}, (small fish eat zooplankton);
𝑒𝐵 = { 𝑆}, (big fish eat small fish);
𝑒𝐷 = { 𝐵, 𝑆}, (duck eats big fish and small fish).

Thus 𝐻 is the hypergraph whose vertices are the five species and whose hyperedges capture each predator’s
full prey set.

Example 2.4 (Marine Food HyperWeb). Consider a simple marine ecosystem with six species:

𝑉0 = { 𝑃, 𝑍, 𝐾, 𝐹, 𝑆, 𝐻},

where

• 𝑃: Phytoplankton

• 𝑍: Zooplankton

• 𝐾: Krill
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• 𝐹: Small Fish

• 𝑆: Seal

• 𝐻: Shark

The predator–prey relations (the Food Web 𝐺 = (𝑉0, 𝐸0)) are

𝐸0 = { (𝑍, 𝑃), (𝐾, 𝑍), (𝐹, 𝐾), (𝐹, 𝑍), (𝑆, 𝐹), (𝑆, 𝐾), (𝐻, 𝑆), (𝐻, 𝐹) }.

From this we form the Food HyperWeb 𝐻 = (𝑉1, 𝐸1) with 𝑉1 = 𝑉0 and

𝐸1 = { 𝑒𝑍 , 𝑒𝐾 , 𝑒𝐹 , 𝑒𝑆 , 𝑒𝐻 },

where each hyperedge collects all prey of a given predator:

𝑒𝑍 = { 𝑃}, (zooplankton eats phytoplankton);
𝑒𝐾 = { 𝑍}, (krill eats zooplankton);
𝑒𝐹 = { 𝐾, 𝑍}, (small fish eat krill and zooplankton);
𝑒𝑆 = { 𝐹, 𝐾}, (seal eats small fish and krill);
𝑒𝐻 = { 𝑆, 𝐹}, (shark eats seal and small fish).

Thus 𝐻 is the hypergraph whose vertices are the six marine species and whose hyperedges exactly describe
each predator’s full prey set.

Theorem 2.5 (Food HyperWeb is a Hypergraph). Let 𝐻 = (𝑉1, 𝐸1) be the Food HyperWeb constructed from
a Food Web 𝐺 = (𝑉0, 𝐸0) as in Definition 2.1. Then

𝐸1 ⊆ P(𝑉1) \ {∅}, 𝑉1 is finite,

so 𝐻 satisfies the axioms of a finite hypergraph.

Proof. By definition 𝑉1 = 𝑉0 is finite. Each hyperedge

𝑒𝑢 = { 𝑣 ∈ 𝑉1 : (𝑢, 𝑣) ∈ 𝐸0}

is nonempty exactly when 𝑢 preys on at least one species, hence 𝑒𝑢 ∈ P(𝑉1) \ {∅}. Moreover, the assignment
𝑢 ↦→ 𝑒𝑢 is injective, so there are no duplicate hyperedges. Thus 𝐻 meets the standard definition of a finite
hypergraph [12]. □

Theorem 2.6 (Reconstruction of Food Web by Flattening). The original Food Web 𝐺 = (𝑉0, 𝐸0) is recovered
from the Food HyperWeb 𝐻 = (𝑉1, 𝐸1) via

𝐸0 =
{
(𝑢, 𝑣) ∈ 𝑉1 ×𝑉1 : 𝑣 ∈ 𝑒𝑢, 𝑒𝑢 ∈ 𝐸1

}
.

Proof. By construction 𝑒𝑢 = {𝑣 : (𝑢, 𝑣) ∈ 𝐸0}. Hence

(𝑢, 𝑣) ∈ 𝐸0 ⇐⇒ 𝑣 ∈ 𝑒𝑢,

so the directed edges of 𝐺 coincide exactly with the incidences of vertices in hyperedges of 𝐻. Therefore
flattening 𝐻 recovers 𝐸0. □
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2.2 Food SuperHyperWeb

Food SuperHyperWeb is an n-superhypergraph whose vertices are iterated species subsets and whose hyper-
edges encode complete multilevel hierarchical predator–prey relationships.

Definition 2.7 (Food 𝑛-SuperHyperWeb). Let 𝐺 = (𝑉0, 𝐸0) be a finite directed graph (the Food Web), and for
each 𝑢 ∈ 𝑉0 write

𝑃(𝑢) = { 𝑣 ∈ 𝑉0 : (𝑢, 𝑣) ∈ 𝐸0}

for its prey set. Fix an integer 𝑛 ≥ 1, and let P𝑛 (𝑉0) denote the 𝑛-fold iterated powerset of 𝑉0. Define

𝑉𝑛 = P𝑛 (𝑉0), 𝐸𝑛 =
{
𝑒
(𝑛)
𝑢 : 𝑢 ∈ 𝑉0, 𝑃(𝑢) ≠ ∅, 𝑒 (𝑛)𝑢 = P𝑛

(
𝑃(𝑢)

)}
.

Then the pair
𝐹 (𝑛) =

(
𝑉𝑛, 𝐸𝑛

)
is called the Food 𝑛-SuperHyperWeb.

Example 2.8 (Forest Ecosystem as a Food 2-SuperHyperWeb). Let the species set be

𝑉0 = {𝐺, 𝑀, 𝑂, 𝐹},

where
𝐺 = Grass, 𝑀 = Mouse, 𝑂 = Owl, 𝐹 = Fox.

The Food Web 𝐺 = (𝑉0, 𝐸0) has predator–prey arcs

𝐸0 = {(𝑀,𝐺), (𝑂, 𝑀), (𝐹,𝑂), (𝐹, 𝑀)}.

For each 𝑢 ∈ 𝑉0, its prey set is

𝑃(𝑀) = {𝐺}, 𝑃(𝑂) = {𝑀}, 𝑃(𝐹) = {𝑂, 𝑀}, 𝑃(𝐺) = ∅.

Fix 𝑛 = 2. Then
𝑉2 = P2 (𝑉0), 𝐸2 = { 𝑒 (2)𝑢 : 𝑢 ∈ {𝑀,𝑂, 𝐹}},

with
𝑒
(2)
𝑀

= P2 (𝑃(𝑀)
)
= P2 ({𝐺}) =

{
∅, {∅}, {{𝐺}}, {∅, {𝐺}}

}
,

𝑒
(2)
𝑂

= P2 ({𝑀}) =
{
∅, {∅}, {{𝑀}}, {∅, {𝑀}}

}
,

𝑒
(2)
𝐹

= P2 ({𝑂, 𝑀}
)
,

which has 222
= 16 elements (all subsets of P({𝑂, 𝑀})). Thus

𝐹 (2) =
(
𝑉2, 𝐸2

)
is the Food 2-SuperHyperWeb encoding the multi-level trophic structure:

species → prey sets P−→ collections of prey-sets.

Example 2.9 (Agricultural Food 2-SuperHyperWeb). Let the set of trophic species be

𝑉0 = {𝐺, 𝐼, 𝐶, 𝐶𝑜, 𝐻},

where
𝐺 = Grass, 𝐼 = Insect, 𝐶 = Chicken, 𝐶𝑜 = Cattle, 𝐻 = Human.

The Food Web 𝐺 = (𝑉0, 𝐸0) has predator–prey arcs

𝐸0 = {(𝐼, 𝐺), (𝐶, 𝐼), (𝐶𝑜, 𝐺), (𝐻,𝐶), (𝐻,𝐶𝑜)}.

Hence each prey set is

𝑃(𝐼) = {𝐺}, 𝑃(𝐶) = {𝐼}, 𝑃(𝐶𝑜) = {𝐺}, 𝑃(𝐻) = {𝐶,𝐶𝑜}.
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Fix 𝑛 = 2. Then
𝑉2 = P2 (𝑉0), 𝐸2 = { 𝑒 (2)𝑢 : 𝑢 ∈ {𝐼, 𝐶, 𝐶𝑜, 𝐻}},

with
𝑒
(2)
𝐼

= P2 ({𝐺}
)
=
{
∅, {∅}, {{𝐺}}, {∅, {𝐺}}

}
,

𝑒
(2)
𝐶

= P2 ({𝐼}) = {
∅, {∅}, {{𝐼}}, {∅, {𝐼}}

}
,

𝑒
(2)
𝐶𝑜

= P2 ({𝐺}
)

(same as 𝑒 (2)
𝐼

),

𝑒
(2)
𝐻

= P2 ({𝐶,𝐶𝑜}) ,
which has 222

= 16 elements, each representing a possible “meal bundle” drawn from the basic prey sets
{𝐶,𝐶𝑜}. Therefore

𝐹 (2) =
(
𝑉2, 𝐸2

)
is the Food 2-SuperHyperWeb encoding both primary producer consumption and human dietary options in a
two-layer superhypergraph structure.

Theorem 2.10. 𝐹 (𝑛) = (𝑉𝑛, 𝐸𝑛) is an 𝑛-SuperHyperGraph.

Proof. By construction 𝑉𝑛 is a finite set and each hyperedge

𝑒
(𝑛)
𝑢 = P𝑛

(
𝑃(𝑢)

)
is a nonempty element of P𝑛 (𝑉0). Distinct predators 𝑢 yield distinct hyperedges, so there are no duplicates.
Hence 𝐹 (𝑛) satisfies the definition of an 𝑛-SuperHyperGraph. □

Theorem 2.11 (Generalization of Food HyperWeb and Food Web). Define the “full flattening” of a nested set
by taking the union of all its elements at every level. Since

𝑒
(𝑛)
𝑢 = P𝑛

(
𝑃(𝑢)

)
,

flattening 𝑒 (𝑛)𝑢 recovers exactly the prey set 𝑃(𝑢). Therefore{
𝑃(𝑢) : 𝑢 ∈ 𝑉0, 𝑃(𝑢) ≠ ∅

}
= 𝐸1 and

{
(𝑢, 𝑣) : 𝑣 ∈ 𝑃(𝑢)

}
= 𝐸0,

showing that 𝐹 (𝑛) simultaneously generalizes the Food HyperWeb 𝐻 = (𝑉0, 𝐸1) and the original Food Web
𝐺 = (𝑉0, 𝐸0).

Proof. Immediate from the identity
⋃
𝑋∈𝑒 (𝑛)𝑢

⋃ · · ·⋃ 𝑋 = 𝑃(𝑢) and the definitions of 𝐸1 and 𝐸0. □

3 Conclusion and Future Works

In this paper, we introduced two novel extensions of classical food webs: the Food HyperWeb, which encodes
each predator’s entire prey set as a hyperedge, and the Food 𝑛-SuperHyperWeb, which embeds multilevel
trophic relationships within an 𝑛-fold superhypergraph structure.

For future work, we plan to explore practical applications of these models in real ecological and agricultural
networks. Additionally, we aim to extend the framework using uncertainty-based approaches such as Fuzzy Sets
[33,34], Intuitionistic Fuzzy Sets [35,36], HyperFuzzy Sets [37–39], Bipolar Fuzzy Sets [40,41], Neutrosophic
Sets [42–44], Hesitant Fuzzy Sets [45, 46], and Plithogenic Sets [47–50] to better handle ambiguity and
incomplete information in ecological systems.
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