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Resumen 
La masa corporal es crucial para escalar y comparar las tasas fisiológicas. Por ejemplo, 

la masa corporal seca es importante para determinar la tasa metabólica de un 

organismo, ya que excluye el peso del agua metabólicamente inactiva. Obtener 

medidas repetidas de la masa corporal a lo largo de la vida de un individuo es trivial. En 

cambio, normalmente solo podemos obtener una única estimación de la masa corporal 

seca por individuo, ya que los métodos clásicos requieren la eutanasia final seguida del 

secado. Presentamos técnicas de imagen y modelado para estimar la masa corporal 

seca individual en renacuajos de rana Africana de uñas (Xenopus laevis), permitiendo 

el muestreo repetido de los mismos individuos. Aplicamos principios alométricos y 

comprobamos si la anatomía externa proporcionaría estimaciones fiables de la masa 

corporal seca. En concreto, describimos un procedimiento para integrar renacuajos en 

medios de agarosa para obtener datos morfológicos en 3D y, a continuación, 

evaluamos las predicciones de masa seca entre nueve modelos de máxima 

probabilidad y aprendizaje automático con validación cruzada. El modelo con mejor 

rendimiento y flexibilidad es un modelo alométrico que utiliza estimaciones del volumen 

corporal para predecir la masa corporal seca (r² de validación = 0,75). Sin embargo, 

otros modelos basados   únicamente en la masa corporal húmeda o diseñados para 

reducir el número de variables de entrada necesarias también pueden ser 

logísticamente viables. Analizamos las ventajas, desventajas y futuras direcciones de 

los nueve modelos y ofrecemos consejos prácticos para la recopilación y el análisis de 

datos. Esta investigación sienta una base sólida para la investigación continua sobre la 

importancia biológica de la masa corporal seca, en particular en el contexto del 

crecimiento y la ecología fisiológica. El desarrollo futuro de enfoques similares es 

crucial para comprender la importancia de los índices de masa corporal para la 

estandarización y comparación de las tasas fisiológicas en plantas y animales. 

 
 
 
 
 



Abstract 
Body mass is crucial for scaling and comparing physiological rates. For example, dry 

body mass is important in determining an organism’s metabolic rate since it excludes 

metabolically inactive water weight. Obtaining repeated measurements of body mass 

throughout an individual’s lifetime is trivial. In contrast, we are normally able to obtain 

only a single estimate of dry body mass per individual since classical methods require 

end-point euthanasia followed by drying. We present imaging and modeling techniques 

for estimating individual dry body mass in African clawed frog (Xenopus laevis) 

tadpoles, which allows repeated sampling of the same individuals. We applied 

allometric principles and tested whether external anatomy would yield reliable estimates 

of dry body mass. Specifically, we describe a procedure to embed tadpoles in agarose 

media for obtaining morphological data in 3-D and then we evaluate dry mass 

predictions among nine cross-validated maximum likelihood and machine learning 

models. The best performing and flexible model is an allometric model that uses 

estimates of body volume to predict dry body mass (validation r2 = 0.75). However, other 

models based only on wet body mass or meant to reduce the number of necessary 

input variables may also be logistically tractable. We discuss the pros, cons, and future 

directions of all nine models and give practical advice for users on data collection and 

analysis. This research develops a strong foundation for continued research on the 

biological importance of dry body mass, particularly in the context of growth and 

physiological ecology. Future development of similar approaches is crucial for 

understanding the importance of body mass indices for standardization and comparison 

of physiological rates in plants and animals. 
 
 
 
 
 
 
 
 



Introduction 
Body mass is a key feature used to understand processes in form, function, 

ecology, and evolution. For example, body size is central in studies of organismal 

growth and development [1–3], physiology [4–6], movement and distribution [7–9], 

ecogeographical gradients [10–12], and even survival [13]. In the fields of physiological 

ecology or evolutionary ecology [14], body mass is necessary for understanding the 

mechanisms that drive the empirical pattern of metabolic scaling [5,15,16] and 

comparing physiological rates among cells, tissues, individuals, or species of different 

sizes [5,17–22]. Researchers have quantified mass in many ways when performing 

comparisons of physiological rates.  

Common body mass indices include wet (live), dry, or fat-free (lean) mass and 

they are used for a variety of purposes. For example, the different body mass indices 

include wet mass [23–29], dry mass [23,25,27,29–31], lean mass [23,24,32], dry lean 

mass [23], or combinations thereof [23,25–27,29,33]. The choice of mass index can 

depend on the logistics of data collection in the field or lab, affordability, or model 

assumptions related to correlations among the different mass indices and selected 

physiological rates. For example, dry body mass is used as an indicator of metabolic 

rate since it factors out the non-metabolizing mass of water in the body. Previous work 

required transformations among body mass indices, such as among dry and wet mass 

[34,35], but these types of tools are not widely available for many taxa. Furthermore, 

many of the latter indices are typically only obtainable once following euthanasia. While 

available tools let us evaluate correlations between wet body mass and physiological 

rates through time [36–38], the same does not apply to other mass indices. The latter is 

a barrier in physiological research since it limits our ability to investigate relationships 

between body mass indices and physiological rates through time, such as across the 

seasons, development, or throughout the lifespan. Instead, researchers depend on 

relating repeated measurements of physiological rate through time with a single 

estimate of body mass obtained at or near the experimental endpoint [23,39,40] or by 

comparing population means between discretely modeled time points like seasons 

[25,29]. The goal of this study is to develop a predictive model for obtaining repeated 
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estimates of dry body mass on the same individuals without the need for euthanasia, 

thus reducing the number of euthanized animals needed in future experiments. 

Here, we describe approaches for estimating dry body mass using 

morphometrics. Body mass is the net result of an animal's metabolic needs and energy 

consumption, in other words, body mass is the product of growth [5,15,41]. Since 

growth may also be expressed not by an organism’s mass, but by an organism’s 

volume, we can express growth in terms of changes in volume [42–44]. Next, just as 

whole-animal measurements of mass-specific metabolic rates average together all 

tissue types [34], one approach for estimating body mass from body volumes is to 

average together the density of all tissue types such that the relationship between the 

logarithms of mass and volume follows an allometric scaling (power) law [3,45,46]. In a 

simple example using a sphere of uniform density, volume is directly proportional to 

mass. The surface area and length (radius) of the sphere are also proportional to mass, 

but estimation or measurement errors can make either measurement a suboptimal 

predictor of the mass of the sphere. To obtain reliable estimates of dry body mass, we 

can empirically estimate a linear transformation between body volume (or areas and 

lengths) and body mass after drying.  

Despite the importance of body mass indices other than wet (live) body mass, 

few researchers have attempted to develop surrogates for dry or lean body mass in 

vertebrates. Most research in this area comes from plant biology where the dry body 

mass of leaves was estimated from the product of surface area and the average optical 

path difference of the cells in water [47]. The method was validated using model 

spheres and performed as predicted from theory. Others have used data on tree height, 

diameter, and age with density and volume models to estimate stem dry mass [48]. In 

animals, both length [49,50] and other body measurements [51] are significantly 

correlated to dry body mass in terrestrial and aquatic invertebrates. Live body mass and 

head width have also been used as predictors of dry body mass in insects including 

both dried specimens and those contained in dehydrating preservatives [52]. In 

vertebrates, similar studies have focused on quantifying water loss following 

preservation as a function of initial wet body mass [53–56]. Other studies in adult 

amphibians have used allometric models to estimate animal or tissue volumes using 
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linear measurements [57–59]. While wet body mass is an indicator of water loss during 

preservation, we still lack a general understanding of how morphology, animal or tissue 

volumes, and dry body mass are linked in vertebrate animals. Overall, morphological 

and empirical approaches are promising in developing predictive models of dry mass or 

dehydrating processes. 

Amphibian larvae are a great system for learning how anatomy varies with dry 

body mass. Specifically, anuran (frog and toad) tadpoles are easy to work with and are 

commercially available. For example, clawed frog (Xenopus) larvae are easily 

obtainable, the husbandry is simple [60,61], and the small size of tadpoles makes them 

amenable to studies of functional morphology and metabolic rates alike. The larvae of 

many frogs, including Xenopus, and toads are also partly translucent, allowing for easy 

measurement of a variety of traits. The small body size of tadpoles and their permeable 

skin makes them dry quickly, relative to larger vertebrates. Looking forward, amphibian 

larvae have varied diets and exhibit plastic morphologies, developmental rates, and 

reproductive or social behaviors, making them a target for applied research [62–68]. 

This study opens the doors for understanding how abiotic and biotic factors impact 

physiology, growth, and development through an organism’s life, independently of 

non-metabolizing water content in the body.  

The purpose of this study is to design new tools for obtaining repeated measures 

of dry body mass from the same individuals without harming live animals. Additionally, 

we seek to estimate the relationship between wet and dry body mass which is important 

in transforming between different body mass indices. Following allometric principles, we 

hypothesize that morphology is a strong indicator of dry body mass. We predict that 

body volume is a significant predictor of dry body mass and that body volume is the best 

predictor of dry body mass relative to surface areas and lengths, possibly due to the 

limitations of using predictors of lower dimensions when predicting dry body mass. In 

this study, we demonstrate how we may reliably estimate dry body mass using several 

alternative models and these models are suitable for obtaining dry body mass through 

ontogeny. 
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Methods and Materials 
Animals and housing 

This study was approved by the Stanford University under the Administrative 

Panel on Laboratory Animal Care (APLAC, Protocol #33097). Xenopus laevis tadpoles 

of Gosner stages 44–54 (N=61; Xenopus 1, Corp (Dexter, Michigan, USA) were placed 

into aquaria (18.09 cm L x 11.13 cm W x 13.34 cm H). The tank included 0.1X Marc’s 

modified Ringer’s solution (MMR) to avoid osmotic stress [69], shelter made of PVC 

pipe, and an air pump with a bubbling stone to aerate the water tank. Tanks were 

maintained at 25C and  50% water changes (0.1X MMR) were performed every 2 days 

and as needed. Tadpoles were fed crushed tadpole food pellets (Josh’s Frogs, Owosso, 

Michigan, USA) three times per week. Animals were isolated for 24 hours without food 

prior to further experimentation to allow time for defecation and to avoid confounding 

our estimates of wet and dry body mass with food mass.  

 

Imaging and data collection 

Tadpole embedding, imaging, and measurement methods are available in a 

step-by-step guide at protocols.io: dx.doi.org/10.17504/protocols.io.rm7vzk1wrvx1/v1 

[70]. Each tadpole was anesthetized in a container with 10 mL of 0.03% buffered 

MS-222 for roughly 1 min. We lightly brushed the tadpole’s body with a paint brush to 

confirm successful anesthesia. Next, we filled a chambered coverglass (5 cm L x 2 cm 

W x 1 cm H; Thermo Scientific, Waltham, Massachusetts, USA) halfway with 1.5% 

melted agarose at 42 ℃. We placed the tadpole into this chamber and positioned its 

body parallel to the length of the coverglass, but closer to one corner of the coverglass 

to improve the quality of the photographs and measurements. Placing the tadpole 

medially and parallel to the length of the coverglass resulted in poor quality photographs 

and measurement accuracy during preliminary trials. We then confirmed optimal body 

positioning and added 2-3 drops of MS-222 with a plastic transfer pipette to ensure 

anesthesia throughout the entire imaging process, and then filled the chambered 

coverglass containing the tadpole with melted agarose. Ad hoc addition of MS-222 was 

necessary (e.g., if the tadpole twitched) to guarantee the efficacy of the procedure for all 

tadpoles. 
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Embedding tadpoles in the chambered coverglass allowed imaging of the whole 

tadpole from all three dimensions (dorsal, lateral, and frontal). Images were taken using 

a Leica Si9 microscope at a magnification of 0.6x and 1x. The pictures were taken using 

the default settings in the LAS EZ v. 3.4.0 (Leica Microsystems, Wetzlar, Germany). We 

included 1 mm grid paper placed in the same horizontal plane as the tadpole in every 

image to convert pixels to real distances. After imaging, we removed the tadpoles from 

the agarose media by gently breaking apart the agarose using a paint brush and then 

placed them into conditioned (isotonic) DI water to remove any agarose clinging onto 

the body. Once clean, we transferred the tadpoles into a petri dish to remove excess 

water and obtained the wet mass on an analytical scale (Model PMF523/E, Fisher 

Scientific, Pittsburgh, United States). 

We euthanized the tadpoles by applying 20% benzocaine gel to the body and 

confirming the animal was unresponsive prior to flash freezing in liquid nitrogen. Briefly, 

a small petri dish was placed in a container filled with liquid nitrogen until equilibrium 

was reached. The petri dish was then moved to an insulated container and filled with 

liquid nitrogen. Then, we placed the tadpole into the liquid nitrogen and covered the 

petri dish with a lid. The insulated container was filled with liquid nitrogen until the petri 

dish was halfway immersed. The container was then covered with a lid to minimize heat 

transfer. We weighed the tadpoles on a pre-weighed glass slide 15 minutes after flash 

freezing to guarantee euthanasia. Next, we placed the glass slide with the tadpole in a 

separate petri dish and moved it to a drying oven set at 37℃ and left to dry for up to 72 

hours. The dry mass was obtained by subtracting the weight of the glass slide from the 

final weight of the dried tadpole on the glass slide. 

We obtained 15 measurements from each tadpole image using Fiji v. 1.54f [71]. 

These 15 measurements (see Fig. 1, Fig. S1) included (1) the dorsal length, width, and 

area for the body and the tail, (2) the lateral body height, tail length and height, and the 

body, tail, tail muscle, and limb bud areas, and (3) the frontal body width and area. We 

also obtained 10 additional variables, including tail muscle area, and tail and body 

volume estimated in different ways. Including the animal’s wet and dry mass, we 

obtained 27 (15+10+2) measurements from each tadpole (Table 1).  

https://paperpile.com/c/dTWv4a/nQy0


 
Figure 1. Tadpoles embedded in agarose media and anatomical traits measured. A. Image showing 

agarose-embedded tadpole in chambered coverglass from dorsal view. B. Image showing 

agarose-embedded tadpole in chambered coverglass from lateral view. C. Dorsal measurements 

obtained in this study (see Table 1). D. Lateral measurements obtained in this study (see Table 1). BL is 

body length, BW is body width, BL is body height, BA is body area, TL is tail length, TW is tail width, TH is 

tail height, TA is tail area, TmA is tail muscle area, and LBA is limb bud area. Images C, D are composite 

images obtained by stitching individual images (see Methods and Materials). 



Table 1. Initial input variables used in all models. M is model (see Data analysis in Methods). View is 

the 3-dimensional origin of each trait. NA is not available, L is lateral, D is dorsal, F is frontal, and 

Composite is traits obtained from two views. T is tail, Tm is tail muscle, B is body, A is area, L is length, W 

is width, and H is height. 1 and 2 indicate traits included in the initial and final fits for each model (M1–8), 

respectively.  

View Units Trait Description M1 M2 M3 M4 M5 M6–8 

NA g wet mass  1, 2     1, 2 

Dorsal mm body length snout-vent  1    1, 2 

 mm body width postorbital width  1    1, 2 

 mm tail length vent to end of tail  1    1, 2 

 mm tail width width at vent  1, 2    1, 2 

 mm2 body area    1   1, 2 

 mm2 tail area    1, 2   1, 2 

Lateral mm body height postorbital height  1, 2    1, 2 

 mm tail length   1, 2    1, 2 

 mm tail height height at vent  1, 2    1, 2 

 mm2 body area    1   1, 2 

 mm2 tail area    1   1, 2 

 mm2 

tail muscle 

area    1   1, 2 

 mm2 fin area LTA-LTmA   1, 2   1, 2 

 mm2 limb bud area   1, 2 1, 2   1, 2 

Frontal mm body width eye to eye  1, 2    1, 2 

 mm2 body area    1, 2   1, 2 

Composite mm3 body volume 1 LBA*DBW    1  1, 2 

 mm3 body volume 2 LBA*FBW    1  1, 2 

 mm3 body volume 3 LBH*DBA    1, 2  1, 2 

 mm3 body volume 4 DBL*FBA    1  1, 2 

 mm3 tail volume 1 LTA*DTW    1  1, 2 

 mm3 tail volume 2 LTH*DTA    1  1, 2 

 mm3 

tail muscle 

volume LTmA*DTW    1, 2  1, 2 

 mm3 body volume 5 LBH*DBL*DBW     1, 2 1, 2 

 mm3 tail volume 3 LTH*DTL*DTW     1, 2 1, 2 

 

 



Data analysis 

We compared the performance of eight models to test our predictions that 

morphology, namely body volumes, are reliable estimators of dry body mass. The eight 

models include those of wet body mass (model 1), length measurements (model 2), 

surface areas (model 3), volumes (models 4–5) and all data (models 6–9). The first five 

models were ordinary least squares (OLS) regression models based on maximum 

likelihood. The final four were machine learning models including one random forest, 

two adaptive lasso, and one neural network. The first lasso model sparsely optimized 

the mean square error while the second gave the sparsest model within one standard 

error of the minimum loss (mean square error). We included machine learning models 

since each has beneficial properties that may outperform likelihood-based models. For 

example, random forest models allow for the modeling of potential non-linearities, the 

adaptive lasso optimizes prediction ability while reducing the number of necessary input 

variables and exhibits the oracle property [72], neural networks can model all possible 

interactions in a dataset, and all can perform automatic feature selection (taking 

multicollinearity into account). We used variance inflation factors (VIF) and a cutoff of 

VIF = 10 to remove collinear terms from each likelihood model [73]. For example, we 

obtained estimates of body width from both dorsal and lateral views but either may 

serve as an optimal predictor of dry mass. We show the initial and final variables for 

each model in Table 1. We natural log-transformed all data except limb bud area which 

we square root transformed since some tadpoles did not have limb buds. Finally, we 

evaluated prediction ability in each model after confirming that each model exhibited 

appropriate model diagnostics. 

We used repeated K-fold cross-validation to evaluate model performance as 

determined primarily by the mean square error and its standard deviation. We also 

measured the mean absolute error, r2, and their standard deviations. Specifically, we 

used 200 repeats of 5-fold cross-validation to guarantee each randomly sampled 

validation set contained at least 10 samples (N = 61 samples / 5 folds = 12.2 samples 

per validation set) and to estimate error for each prediction metric using at least 1,000 

(200 x 5) validation sets. We implemented this procedure for models 1–6 using the caret 

package v. 6.0-94 in R version 4.4.1 [74,75]. To obtain comparable metrics for the 
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adaptive lasso, we back-calculated the population mean and standard deviations for all 

performance metrics across 200 samples of (non-repeated) 5-fold cross-validation using 

the R package glmnet 4.1-8 [76,77]. We were not able to obtain estimates for the r2 of 

the adaptive lasso since this is not currently implemented in glmnet 4.1-8. Next, we 

describe how we fitted the neural network model and obtained its performance metrics. 

We implemented a feed-forward neural network using keras3 v. 1.2.0 and 

tensorflow v. 2.16.0 in R [78,79]. Prior to fitting the model, we split the data into 

60-20-20% training, validation, and testing sets to guarantee the model validation and 

testing steps were performed on at least 12 samples and the model was trained using at 

least 30 (N = 36) samples. In general, neural networks use the training set to sample 

network parameters, the validation set to tune hyperparameters and evaluate model 

performance after each gradient update, and the testing set to give an unbiased 

estimate of out-of-sample model performance for unseen data (as in standard 

cross-validation). We selected hyperparameters by determining the hyperparameter 

combination that resulted in the lowest validation error (mean square error). Here, we 

define validation error as the median of 3 replicate model fits for each hyperparameter 

combination. This is necessary to reduce sampling error since fitting neural networks 

includes a stochastic component that affects model performance. The hyperparameters 

we varied included the number of neural layers from 0 to 25 (by one) and the number of 

neurons per layer from 200 to 2,500 (by 100), each using a learning rate of 0.001 

across 200 epochs. We selected this arbitrarily broad range after determining the 

standard suggestions of 1–3 layers and neurons per layer of 0.5X, 1X, and 2X the 

sample size did not yield usable results, but we still included these in the 

hyperparameter search [80–82]. We also applied a stop rule to end sampling if the 

validation error (mean square error) did not decrease after 50 epochs to protect against 

oversampling local minima across the search space and decrease computation time. 

We obtained the final out-of-sample performance metrics (mean square error, mean 

absolute error, and r2) using the testing set. All sampled networks contained a 

normalizing layer (to improve model quality and reduce computation time), used 

Rectified Linear Unit (ReLU) activation for signal propagation (to avoid vanishing 

gradients), and an Adam optimizer for automatic tuning of the learning rate [83,84]. 
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Results 
Overall, we found that most models exhibited statistically similar prediction ability 

with notable differences in the AICc of likelihood models and in the validation or testing 

mean square error of each model (Fig. 2; Table 2). We provide equations and relevant 

statistics for each model in Tables 3–9. Since the random forest model (6) and neural 

network model (8) have thousands and hundreds of thousands of parameters, 

respectively, we also provide code to fit all models in this study (To be updated after 

acceptance: dryad.org/; github.com/). Tadpoles were 22.48–46.04 mm (mean = 33.67, 

std. dev. = 5.50) in total length, exhibited wet body masses of 4.745–4.982 g (mean = 

4.834, std. dev. = 0.062), and had dry body masses of 0.002–0.017 (mean = 0.008, std. 

dev. = 0.004). We found all tadpoles dried completely within 48 hours. We describe 

each model below. 

 The likelihood models (1–5) exhibited statistically similar validation metrics (Fig. 

2), with Model 5 standing out as the single best likelihood model according to AICc 

(Table 2). The wet body mass model (1) yielded the predictions with the lowest accuracy 

(highest validation error). The mean absolute error of the natural log of wet body mass 

was 0.3050 and yields a mean percentage error of 35.66% =  (Fig. (𝑒0.3050 − 1) 𝑥 100%

3). Despite this, wet body mass is a significant predictor of dry body mass in the 

measured tadpoles (Table S1; F = 89.342, p < 0.001). The lengths model (2) ranked 

among the worst models and exhibited a mean percentage error of 29.19%. The dorsal 

tail width, lateral body height, and lateral tail height were all significant predictors of dry 

body mass (Table S2; F = 13.564–122.775, p ≦ 0.001). The surface area model (3) 

was among the worst performing models with a mean percentage error of 30.51%. 

Model 3 had two significant predictors including lateral fin area (F = 8.030, p = 0.006) 

and dorsal tail area (F = 118.955, p < 0.001). The volumes model (4), whose volumes 

were estimated from areas and lengths, ranked among the best models (Table 2). 

Model 4 exhibited a mean percentage error of 27.02%. Its significant predictors included 

body volume as estimated from the product of lateral body height and dorsal body area 

(F = 155.779, p <0.001) and tail muscle volume which we obtained as the product of 

lateral tail muscle area and dorsal tail width (F = 8.237, p =0.006) . The last model 

based on likelihood, model 5, ranked highest among the surveyed likelihood models 



and had a mean percentage error of 27.00% (Fig. 3). Its predictors included body 

volume (F = 161.939, p < 0.001) estimated as the product of dorsal body length, dorsal 

body width, and lateral body height , and tail volume (F = 10.111, p = 0.002) obtained as 

the product of dorsal tail length, dorsal tail width, and lateral tail height. Next, we 

describe the performance of the machine learning models (6–8) included in this study. 

 
Figure 2. Plot of performance metrics for surveyed models. Models are as in Table 1 and the main 

text. Models 1–6 are likelihood models and models 6–8 are machine learning models. MAE is the mean 

absolute error and MSE is the mean square error. Error bars indicate ∓ 1 standard deviation of the mean. 

r2 is not implemented for Model 7. Model 8 lacks error bars because metrics are based on a single testing 

set of N = 12. The theoretical best model has a high r2 and low errors (MAE or MSE). 

 
 
 
 



Table 2. Performance metrics for surveyed models. Rank is the model rank based on MSE and shown 

only for validation metrics obtained using repeated K-fold cross validation. # Var is the number of final 

predictor variables. AICc is the Akaike Information Criterion corrected for small sample size for likelihood 

models. MSE is the mean square error. MAE is the mean absolute error. r2 is the coefficient of 

determination. SD is the standard deviation. r2 is not implemented for Model 7. Model 8 lacks standard 

deviation estimates because metrics are based on a single testing set of N = 12. The theoretical best 

model has a high r2, low errors (MAE or MSE), and a low AICc. 

Model 
(Rank) 

# Var AICc MSE MAE r2 MSE 
SD 

MAE 
SD 

r2 SD 

1 (8) 1 56.4515 0.1405 0.3050 0.6310 0.0469 0.0566 0.1237 

2 (6) 6 38.1121 0.1076 0.2561 0.7192 0.0424 0.0530 0.1182 

3 (7) 5 46.4331 0.1181 0.2663 0.6891 0.0494 0.0536 0.1420 

4 (2) 2 33.1050 0.0952 0.2392 0.7491 0.0376 0.0491 0.1152 

5 (1) 2 30.9366 0.0922 0.2390 0.7546 0.0358 0.0498 0.1110 

6 (3) 26 - 0.0996 0.2564 0.7343 0.0331 0.0447 0.1179 

7A (4) 6 - 0.1047 0.2568 NA 0.0368 0.0482 NA 

7B (5) 5 - 0.1066 0.2603 NA 0.0368 0.0498 NA 

8  26 - 0.0563 0.1940 0.7694 NA NA NA 

 



 

Figure 3. Actual versus predicted plots comparing the wet body mass model (1) to the best 
likelihood (5), machine learning (7B), and neural network models (8). Each point is an individual 

tadpole. Val. MSE is the validation mean square error and Val. MPE is the validation mean percentage 

error. Test. MSE and Test. MPE are the mean square error and mean percentage error for the testing set 

of Model 8. The solid line is the 1:1 line. The theoretical best model has low errors (MSE, MPE). 

 

As a whole, the machine learning models provide flexible and similar alternatives 

to likelihood models (Fig. 2; Table 2). After automatic tuning of the number of variables 

per split (m = 2), the random forest model (6) yielded a mean percentage error of 

29.23%. Estimates of variable importance, or the average decrease in mean square 

error after splitting on each variable, are in Table S6. Briefly, lateral body area was the 

most important variable (importance = 1.231) and the lateral limb bud area was the least 

important (importance = 0.276). The adaptive lasso model (7) yielded a variety of 

sparse solutions, where some regression parameters are set to 0, depending on the 



regularization parameter λ. Two solutions include the optimal sparse prediction model 

(minimum λ; Model 7A) and the sparsest model within one standard error of the 

minimum λ (Model 7B). The mean percentage errors for Model 7A and B were 29.28% 

and 29.73% (Fig. 3), respectively. Table S7 shows the selected variables and coefficient 

estimates for Models 7A and B. Model 7A selected the wet body mass, dorsal body 

length, dorsal tail width, lateral body height, and lateral tail height as predictors. Model 

7B selected the same variable set as 7A, but excluded dorsal tail width. Finally, the 

hyperparameter search for the neural network model (8) showed 11 layers and 1900 

neurons per layer gave the lowest validation error among surveyed network structures 

(Fig. 4). The hyperparameter search results are found in the Supplementary Material 

(Table S8). We estimated network parameters using the latter hyperparameters and 

found a mean square error of 0.0563 (Fig. 2; Table 2) and mean percentage error of 

21.41% for the testing set (Fig. 3). 

 

Figure 4. Level plot of hyperparameter search results for neural network (Model 8). Layers is the 

number of neural layers, density is the number of neurons per layer, and MSE is the (validation) mean 

square error. Contour lines generally correspond to the discrete differences in MSE shown in the legend. 

The network with the lowest validation error had 11 layers and 1900 neurons.  



Discussion 
 Here we present a new method that allow future users to estimate the dry body 

mass of a vertebrate more than once through its lifetime and without lethality. In other 

words, researchers need only take photographs, measure tadpoles, and apply the 

regression equations of their choice (Models 1–8) to estimate dry body mass 

continuously through an animal’s life. Specifically, the results support our predictions 

that body volumes are good predictors of dry body mass. However, we did not predict 

surface areas would perform worse than lengths in predicting dry body mass. This is 

likely due to the fact that using surface areas as a predictor of dry body mass benefits 

neither from direct estimation of volumes nor benefits from using many independent 

predictors (lengths), leading to a relatively inaccurate geometric model connecting 

spatial dimensions with dry body mass. We also found wet body mass alone is a 

relatively poorer indicator of dry body mass in tadpoles when compared to morphology. 

Additionally, machine learning models that combine morphological information with wet 

body mass provide some logistical benefits when estimating dry body mass which come 

with a small cost to prediction accuracy. While the neural network showed viable 

prediction metrics which were similar to other models, practical and conceptual issues 

may limit its use in future studies. Below, we discuss our findings in detail, offer some 

best practices for users of these methods, and discuss some future directions of this 

research, particularly within the field of physiological ecology. 

We found several viable modeling alternatives for predicting dry mass. Most 

models exhibited similar variances with small differences in mean validation metrics 

(Table 2). AICc showed a better fit for the volumes based model (5) compared to all 

other likelihood models, but some of these models may still be of practical use to many 

readers. For example, the wet body mass model (1) underperformed relative to model 5 

(ΔAICc = 25.51; ΔMSE = 0.0483). Despite this, wet body mass was still a significant 

predictor of dry body mass (Table S1), it is a quick measurement to obtain, and this 

approach may be suitable for many study designs if users are willing to accept an 

increase in the mean percentage error of 8.66% relative to model 5. However, we have 

found that removing (e.g., blotting) surface water from tadpole bodies is challenging and 

risks injuring the tadpole. Models 2–4 provide intermediate and viable alternatives for 



obtaining estimates of dry body mass and only require users to obtain four to six 

independent measurements. To obtain accurate estimates of dry body mass using 

likelihood models, we recommend using Model 5. The latter requires estimating the 

body and tail volume using six measurements that include: the lateral body height, 

dorsal body length, dorsal body width, lateral tail height, dorsal tail length, and the 

dorsal tail width. Below, we describe the surveyed machine learning models which may 

provide useful alternatives to Models 1–5.  

 The adaptive lasso should be used with caution but can provide logistical and/or 

quantitative advantages over Models 1–5. The adaptive lasso features variable 

selection through regularization, a greater rate of convergence relative to the regular 

lasso, and the oracle property: with enough data, the adaptive lasso can select the true 

model [24,72]. However, Models 7A and 7B come with the notable drawback that they 

require a bias-variance trade-off (proportional to λ) to give optimal predictions. This 

means that while Model 7 exhibited good validation metrics, it will necessarily output 

slightly biased estimates of dry body mass to optimize prediction accuracy. Therefore, 

Model 7 is appropriate for determining the magnitude of group effects and covariances 

but is not appropriate for accurately estimating or interpreting the dry body mass of 

individual tadpoles (without bias). With these considerations in mind, Model 7B provides 

the tractable benefit of requiring only four easy-to-measure traits to nearly reach the 

prediction accuracies of the most accurate models. The four traits required by Model 7B 

include wet body mass, dorsal body length, lateral body height, and lateral tail height 

(Table 9). As seen above, machine learning models can provide many advantages, 

given that we understand the properties of the implemented model.  

The neural network model (8) exhibited good quantitative performance, but it 

may not be ideal for many situations and comes with many drawbacks. First, we do not 

have an ideal way of performing model comparisons among neural networks and other 

model classes. While Model 8 had the lowest mean square error in Table 2, its 

validation metrics are not comparable to Models 1–7. This is because the validation 

metrics are based on a single testing set and not cross-validation. While methods such 

as stratified K-fold cross validation [85] are available for neural networks, this would still 

require performing a new hyperparameter search for each testing set of interest and 

https://paperpile.com/c/dTWv4a/rN94+xRbI
https://paperpile.com/c/dTWv4a/85pN


doing this N = 1000 times would be extremely time intensive and computationally 

expensive. An alternative that would enable direct comparisons to other models would 

be to define one or many testing sets for all models. However, this comes at the great 

expense of reducing the sample size of the testing and validation sets for other models. 

The latter would increase prediction error for models 1–7 and limit estimates of 

generalizability. A second drawback to using Model 8 for predicting dry mass is that it 

exhibits the undesirable behavior of predicting the same value for some of the largest 

tadpoles and this can be seen as a vertical ridge in Fig. 3. This can create major 

statistical issues for many types of downstream analyses due to the introduction of 

biases which artificially generate sample homogeneity. Moreover, the latter may result in 

difficulties meeting the residual homoscedasticity assumptions of linear models. Third, 

the neural network requires all of the variables in Table 1 to make predictions so users 

must weigh the time it takes to obtain all measurements against the quality and 

reliability of the predictions. Fourth, it is very difficult to learn why neural networks exhibit 

particular behaviors and a deeper understanding of how neural networks make 

predictions is needed before we are able to use them to predict dry body mass. While 

obtaining estimates of dry body mass without sacrificing the focal animals can present 

challenges, next we offer some practical advice for obtaining the morphological data 

and analyzing the resulting predictions. 

There are many practical solutions for flexibly implementing and advancing the 

models being proposed here. For example, in this study we used agarose media to 

embed tadpoles in chambered coverglasses but a viable alternative is taking 

morphological measurements using optical micrometers and measuring tadpoles in 

chilled water to minimize movement but allow respiration and minimize stress. If users 

wish to implement end-point euthanasia, measurements may also be taken using 

photogrammetry [86,87]. In fact, photogrammetry may allow for more accurate 

estimation of body volume. Future improvements to our models include increasing the 

sample sizes to allow for larger training, validation, and testing sets. New 

pseudosamples may also be generated by introducing random noise to the raw data, 

using growth models to simulate data of intermediate growth stages, or using 

parametric bootstrapping to draw pseudo samples from a multivariate normal 

https://paperpile.com/c/dTWv4a/NfxJ+VGIZ


distribution [88,89]. While each neural network (Fig. 4, Table S8) took 10 seconds to 10 

minutes to complete, analyses might be sped up by co-optimizing the learning rate and 

the optimizer or by limiting the number of input variables. Robust linear models [90,91] 

might offer solutions for potential heteroscedasticity issues with predictions made from 

Model 8. We also encourage empirically validating predictions or even comparing 

predictions among Models 1–8 to determine whether the data qualities suit the needs of 

downstream analyses. Furthermore, in downstream analyses where dry body mass is 

used as an independent variable, users may set weights or use measurement error 

models [92,93] where the weights or errors are proportional to the mean absolute error 

(log scale) or the mean percentage error (raw scale) reported for each model. For 

instance, a mean percentage error of 27% (Model 5) applied to the smallest and largest 

tadpoles in this study gives dry mass errors of ∓ 0.00054 and 0.005g for each, 

respectively. Other future directions include improving our knowledge of tissue densities 

and we discuss these next.  

Detailed knowledge of tissue densities and how they change over time would 

greatly improve predictions of dry body mass. Our approach in this study was to 

assume constant tissue density throughout the body but we relaxed this assumption by 

modeling some body parts independently of each other. However, the body is made of 

tissues of varying densities including muscle, cartilage, bone and fat. Knowledge of 

tissue densities and tissue proportions within body regions would allow us to distinguish 

the effects of density and dehydration which are inseparable when modeling dry body 

mass as a simple natural log-linear function of body volumes. Interestingly, the adaptive 

lasso model (7) included both wet body mass and morphology as predictors, suggesting 

at least some separation of the effects of density and dehydration. Future research 

using micro-CT or similar methods might allow us to estimate the volumes of various 

tissues with distinct densities. However, the density of distinct body regions may vary 

among individuals or fluctuate as an animal grows and this has presented challenges 

when modeling dry mass in plants [42]. In amphibians, the skull, limbs, and pelvic 

region undergo substantial modifications of cartilage and bone through development 

and particularly during metamorphosis into terrestrial adults [64]. The latter might create 

non-linearities and interactions in the data space, particularly with the emergence of 

https://paperpile.com/c/dTWv4a/wzOH+oDPO
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adult traits during development. Additionally, the vertebral column in tadpoles may be a 

great estimator of overall body size or dry body mass in tadpoles and this prediction 

matches our observation that dorsal tail width was an important predictor of dry body 

mass found in all models. Specifically, vertebral anatomy is a significant indicator of 

body size and differences in vertebral anatomy are related to differences in swimming 

behaviors in other aquatic vertebrates [94–96]. In summary, understanding the density 

of structures throughout the body and how they change through time is an important 

area of future research. 

The application and future directions of this research should help to advance our 

understanding of biological processes. We recognize three key areas including 

identifying the sources of natural variation, the mechanisms underlying growth, and the 

mechanisms linking populations with macroecological and macroevolutionary patterns. 

In the context of physiological ecology, learning how body mass channels physiological 

rates is a question of rich history and open inquiry, with metabolic rates perhaps among 

the most studied type of physiological rate across taxa [5,15,16,19,34,97,98]. We are 

still learning how rates might scale up to whole organisms and empirical research often 

struggles with high degrees of intraspecific variability [16,31,34,99]. Understanding how 

mass indices, including dry mass, vary within and among tissue types, individuals, and 

species is necessary for deeper knowledge of physiological rates and recently 

developed methods allow the integration of intraspecific and interspecific data in a 

phylogenetic context [100]. In addition, the integration of intraspecific and interspecific 

data in combination with different body mass indices seems crucial in elucidating the 

mechanisms underlying metabolic scaling: each body mass index makes different 

assumptions about how body size and different tissues relate to metabolism through 

mass, density, and metabolic activity. For example, use of dry body mass in such 

models measures body size independently of water which does not metabolize. 

Furthermore, with continued development of the described methods and sampling of 

adult amphibians and other vertebrates, we expect knowledge of dry body mass in 

combination with physiological rates and longitudinal models to yield new insights into 

biogeography, ecogeographical gradients, and evolutionary trade-offs [15,31,101,102]. 

Finally, this research has applications for understanding the biology of aging, gestation, 
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obesity, or sleep and how body mass and metabolic rate are related to various disorders 

and health outcomes in other vertebrates, including humans [25,33,103,104]. 

 

Conclusion 
Here we presented new models (regression equations) for estimating dry body 

mass throughout an organism’s lifetime using only photographs and morphological 

measurements. The proposed methods are flexible and provide users with an array of 

options to suit their particular logistical and analytical needs without harming the X. 

laevis tadpoles. We predict similar future studies will show how morphological 

measurements will yield accurate estimates of dry body mass in other developmental 

stages for X. laevis and in other vertebrate species. We also proposed many extensions 

of the developed methods including discussion of obtaining more accurate estimates of 

dry body mass and using better modelling strategies. Finally, we argue that learning 

more about dry body mass and density across levels of biological organization and 

taxonomy has great capacity for advancing our understanding of physiological ecology 

and even human health.   
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Tables and Figures 
Table 1. Initial input variables used in all models. M is model (see Data analysis in Methods). View is 

the 3-dimensional origin of each trait. NA is not available, L is lateral, D is dorsal, F is frontal, and 

Composite is traits obtained from two views. T is tail, Tm is tail muscle, B is body, A is area, L is length, W 

is width, and H is height. 1 and 2 indicate traits included in the initial and final fits for each model (M1–8), 

respectively.  

View Units Trait Description M1 M2 M3 M4 M5 M6–8 

NA g wet mass  1, 2     1, 2 

Dorsal mm body length snout-vent  1    1, 2 

 mm body width postorbital width  1    1, 2 

 mm tail length vent to end of tail  1    1, 2 

 mm tail width width at vent  1, 2    1, 2 

 mm2 body area    1   1, 2 

 mm2 tail area    1, 2   1, 2 

Lateral mm body height postorbital height  1, 2    1, 2 

 mm tail length   1, 2    1, 2 

 mm tail height height at vent  1, 2    1, 2 

 mm2 body area    1   1, 2 

 mm2 tail area    1   1, 2 

 mm2 

tail muscle 

area    1   1, 2 

 mm2 fin area LTA-LTmA   1, 2   1, 2 

 mm2 limb bud area   1, 2 1, 2   1, 2 

Frontal mm body width eye to eye  1, 2    1, 2 

 mm2 body area    1, 2   1, 2 

Composite mm3 body volume 1 LBA*DBW    1  1, 2 

 mm3 body volume 2 LBA*FBW    1  1, 2 

 mm3 body volume 3 LBH*DBA    1, 2  1, 2 

 mm3 body volume 4 DBL*FBA    1  1, 2 

 mm3 tail volume 1 LTA*DTW    1  1, 2 

 mm3 tail volume 2 LTH*DTA    1  1, 2 

 mm3 

tail muscle 

volume LTmA*DTW    1, 2  1, 2 

 mm3 body volume 5 LBH*DBL*DBW     1, 2 1, 2 

 mm3 tail volume 3 LTH*DTL*DTW     1, 2 1, 2 



Table 2. Performance metrics for surveyed models. Rank is the model rank based on MSE and shown 

only for validation metrics obtained using repeated K-fold cross validation. # Var is the number of final 

predictor variables. AICc is the Akaike Information Criterion corrected for small sample size for likelihood 

models. MSE is the mean square error. MAE is the mean absolute error. r2 is the coefficient of 

determination. SD is the standard deviation. r2 is not implemented for Model 7. Model 8 lacks standard 

deviation estimates because metrics are based on a single testing set of N = 12. The theoretical best 

model has a high r2, low errors (MAE or MSE), and a low AICc. 

Model 
(Rank) 

# Var AICc MSE MAE r2 MSE 
SD 

MAE 
SD 

r2 SD 

1 (8) 1 56.4515 0.1405 0.3050 0.6310 0.0469 0.0566 0.1237 

2 (6) 6 38.1121 0.1076 0.2561 0.7192 0.0424 0.0530 0.1182 

3 (7) 5 46.4331 0.1181 0.2663 0.6891 0.0494 0.0536 0.1420 

4 (2) 2 33.1050 0.0952 0.2392 0.7491 0.0376 0.0491 0.1152 

5 (1) 2 30.9366 0.0922 0.2390 0.7546 0.0358 0.0498 0.1110 

6 (3) 26 - 0.0996 0.2564 0.7343 0.0331 0.0447 0.1179 

7A (4) 6 - 0.1047 0.2568 NA 0.0368 0.0482 NA 

7B (5) 5 - 0.1066 0.2603 NA 0.0368 0.0498 NA 

8  26 - 0.0563 0.1940 0.7694 NA NA NA 

 



 
Figure 1. Tadpoles embedded in agarose media and anatomical traits measured. A. Image showing 

agarose-embedded tadpole in chambered coverglass from dorsal view. B. Image showing 

agarose-embedded tadpole in chambered coverglass from lateral view. C.Dorsal measurements obtained 

in this study (see Table 1). D. Lateral measurements obtained in this study (see Table 1). BL is body 

length, BW is body width, BL is body height, BA is body area, TL is tail length, TW is tail width, TH is tail 

height, TA is tail area, TmA is tail muscle area, and LBA is limb bud area. 



 
Figure 2. Plot of performance metrics for surveyed models. Models are as in Table 1 and the main 

text. Models 1–6 are likelihood models and models 6–8 are machine learning models. MAE is the mean 

absolute error and MSE is the mean square error. Error bars indicate ∓ 1 standard deviation of the mean. 

r2 is not implemented for Model 7. Model 8 lacks error bars because metrics are based on a single testing 

set of N = 12. The theoretical best model has a high r2 and low errors (MAE or MSE). 



 

Figure 3. Actual versus predicted plots comparing the wet body mass model (1) to the best 
likelihood (5), machine learning (7B), and neural network models (8). Each point is an individual 

tadpole. Val. MSE is the validation mean square error and Val. MPE is the validation mean percentage 

error. Test. MSE and Test. MPE are the mean square error and mean percentage error for the testing set 

of Model 8. The solid line is the 1:1 line. The theoretical best model has low errors (MSE, MPE). 



 

Figure 4. Level plot of hyperparameter search results for neural network (Model 8). Layers is the 

number of neural layers, density is the number of neurons per layer, and MSE is the (validation) mean 

square error. Contour lines correspond to the discrete differences in MSE shown in the legend. The 

network with the lowest validation error had 11 layers and 1900 neurons.  
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