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Abstract 

Context: Addressing global environmental challenges requires an integrative conservation 
approach that spans multiple taxonomic groups and trophic levels. The "Conserving Nature’s 
Stage" (CNS) strategy promotes the protection of geodiversity -abiotic heterogeneity of the 
Earth’s surface and subsurface- as an holistic metric for biodiversity and ecosystems 
conservation, yet its relationship with biodiversity across multiple taxa and trophic levels 
remains underexplored. 

Objectives: This study investigates the links between geodiversity and biodiversity at the 
regional scale in Occitanie (southern France) across three taxonomic groups representing 
distinct trophic levels: vascular plants (producers), butterflies (primary consumers), and birds 
(ranging from primary consumers to apex predators). 

Methods: Species richness for each group, along with geodiversity components, climate, 
topography, and human footprint metrics, were aggregated within spatial meshes of 5 km, 7.5 
km, and 10 km resolution. We applied spatially explicit models to quantify the effects of overall 
and component-specific geodiversity, alongside classical environmental variables, on species 
richness across scales. 

Results: Geodiversity showed a significant and consistent positive association with species 
richness for all taxa and spatial resolutions, more robust than climatic, topographic, or 
naturalness variables. Pedological diversity is the component of geodiversity that shows the 
most consistent effect across taxa. At local scales, spatial non-stationarity was observed, though 
biodiversity–geodiversity relationships remained more stable across taxa than those involving 
other environmental predictors. 

Conclusion: Our findings highlight geodiversity—particularly pedodiversity—as a key, 
underutilized predictor of multi-taxa diversity. We thus advocate its integration into 
conservation and landscape planning strategies aimed at systemic biodiversity protection and 
restoration. 
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1. Introduction  

 
Over the past century, human population growth and rising global living standards have 
increased pressure on ecosystems (Steffen et al., 2015). One of the main visible consequences 
of increasing human activity is a global decline of biodiversity (Ripple et al., 2015; Wagner, 
2020) associated with a general decline of ecosystem functions (Oliver et al 2015) including 
services that are essential for humanity (IPBES, 2019). Developing effective conservation 
strategies for terrestrial biodiversity across multiple trophic levels to restore ecosystem 
functionality remains one major environmental challenge for the years ahead. 
Geodiversity -the abiotic variability of the Earth's surface and subsurface- theoretically creates 
a wide array of ecological niches, offering potential refuges for biodiversity as a whole (e.g. 
creation of diverse ecological niches for multiple species; Gray, 2013; Maliniemi et al., 2024). 
The "Conserving Nature's Stage" (CNS) framework builds on this concept by incorporating 
geodiversity—including geological, geomorphological, soil, and hydrological features—into 
conservation planning (Beier et al., 2015; Gray, 2013), making it a promising strategy for 
holistic biodiversity protection and restoration. In addition to providing heterogeneous abiotic 
conditions that facilitate the coexistence of multiple species, the Conserving Nature’s Stage 
(CNS) framework also suggests that geodiversity can buffer the impacts of global change on 
biodiversity, as the abiotic "stage" is generally more resilient to above ground global change 
than the biotic communities it supports (Beier et al., 2015). Empirical studies have 
demonstrated positive associations between geodiversity and species richness in plants 
(Tukiainen et al., 2017a) from local (Salminen et al., 2023) to national levels (Bailey et al., 
2017; Tukiainen et al., 2017b; Toivanen et al., 2024), but also among stream 
macroinvertebrates (Kärnä et al., 2018) and birds (Read et al., 2020), highlighting its broader 
ecological relevance. 
 
While the positive link between geodiversity and biodiversity has been repeatedly confirmed 
several limitations and four key research gaps need to be explored. 

 
1. Single-taxa studies:  While the relationship between geodiversity and biodiversity is 

generally positive, evidence remains limited regarding its generality (Tukiainen et al., 
2023). Most research focuses on vegetation, particularly vascular plants, which often 
show strong relationships with climatic variables and topographic heterogeneity (Field 
et al., 2009). However, the effects of geodiversity on other taxonomic groups remains 
underexplored (Tukiainen et al., 2017a), and studies on geodiversity and animal 
communities are rare, restricting our understanding of these complex interactions. 
Including multiple taxonomic groups within the same region is crucial for fully 
capturing these complexities, assessing the generalizability of biodiversity-geodiversity 
relationships, and ensuring that conservation programs based on geodiversity do not 
inadvertently prioritize certain groups over others. 

2. Aggregated geodiversity: Hydrology, as an element of geodiversity, plays an essential 
role through its structures (presence of water) and processes (water flow), contributing 



to ecological connectivity, water storage, and habitat diversity (Bailey et al., 2017). 
Geology, often defined by the diversity of rock types (i.e., lithodiversity), directly 
influences biodiversity through its substrate properties, which regulate hydrology and 
mineral resources (Miguez-Macho and Fan, 2012). Soil diversity, a key driver of plant 
biodiversity patterns, depends on properties such as fertility, chemical composition, and 
soil types, which shape species distribution (Pellissier et al., 2013). Geomorphology, 
on the other hand, acts through its landforms and processes (e.g., mass movements, 
glaciations), providing both diverse habitats and ecological disturbances (Tukiainen et 
al., 2023). Finally, topographic variations, like elevation and slope, influence 
biodiversity by interacting with other components of geodiversity, but they remain 
partial indicators (Gray, 2021). 
While these broad patterns are known, it is still unclear which specific components of 
geodiversity are most beneficial for different taxonomic groups and which promotes 
biodiversity as a whole across trophic level. Further research is needed to untangle the 
precise mechanisms involved. 

3. Spatial non-stationarity: The effects of geodiversity on biodiversity may vary across 
regions, reflecting spatial non-stationarity. This means that the strength and direction 
of relationships between variables can differ depending on spatial context. A positive 
relationship in one region may be absent or reversed elsewhere. Ignoring this variation 
can result in oversimplified and potentially misleading conclusions (Ren et al., 2021). 

4. Single-scale studies: Many studies had been conducted at only one spatial scale 
(Tukiainen et al., 2017b; Read et al., 2020), leading to partial conclusions due to the 
Modifiable Areal Unit Problem (MAUP) (Openshaw & Taylor, 1979). This statistical 
bias occurred when spatial phenomena were aggregated by areas, with results 
influenced by the chosen area boundaries. While often overlooked in spatial modeling 
(Jelinski & Wu, 1996), MAUP could significantly impact statistical results or even lead 
to contradictory results, as exemplified by the Simpson’s paradox, where aggregated 
data may have obscured or inverted trends observed at finer scales (Simpson, 1951). 

 
Here, we investigate the link between geodiversity and biodiversity at the regional scale of 
Occitanie (South of France) across three trophic levels (plants, butterflies and birds). By 
focusing on vascular plants, butterflies, and birds, our objective is to spatially compare this 
potential relationship across three taxa with different life traits and ecological needs. These 
three particular taxa have been selected due to the high number of observations available within 
our study area. These taxonomic groups were among the most well-documented in France 
(Touroult et al., 2015). The choice of butterflies also reflects the aim of addressing existing 
knowledge gaps regarding insects within the framework of the CNS. In so doing we will test 
the following hypotheses: (a) Geodiversity is positively, consistently and significantly 
correlated with biodiversity across all taxa, with a stronger link for vascular plants, followed 
by butterflies and, finally, birds due to their respective dependency to belowground resources. 
(b) The different components of geodiversity do not influence the various taxa uniformly. (c) 
Geodiversity-biodiversity relationship can show spatial non-stationarity at the local scale. (d) 
MAUP (scale of spatial data aggregation) has a significant effect on the relationship between 
geodiversity and biodiversity. 



 

2. Materials and methods 

2.1. Study area 

Occitanie is a region in the south of France, covering an area of 72,724 km², making it the 
second-largest region in the country (Fig. 1). Surrounded by the Pyrenees mountains in the 
south and the Massif Central in the north, Occitanie has a very diverse landscape. In the west, 
the Aquitaine Basin has flat plains and rolling hills. In the center and east, the region has 
limestone plateaus like the Causses and dramatic gorges, such as those of the Tarn or Hérault 
rivers. The Pyrenees rise with peaks over 3,000 meters, such as Aneto or Pic du Midi d’Ossau, 
while the Massif Central has volcanic plateaus like Aubrac and old eroded mountains like the 
Cévennes. 

From a geological point of view, Occitanie is like a mosaic. The Massif Central has volcanic 
and granite formations, showing evidence of ancient tectonic activity. The Pyrenees were 
formed by the collision of the Iberian and Eurasian tectonic plates, creating folded mountain 
chains. The Languedoc coastline is shaped by lagoons, saltwater ponds, and sandy beaches, 
which result from coastal erosion and sediment deposition. 

Three main types of climate coexist in the region. The Languedoc coastline has a 
Mediterranean climate, with hot, dry summers and mild, wet winters. The Aquitaine Basin has 
an oceanic (Atlantic) temperate climate, with mild, wet winters and cooler summers compared 
to the Mediterranean climate. Finally, the Pyrenees and Massif Central are influenced by 
mountain climates, with cold winters and cool, wet summers. 



This great variety of landscapes and climates creates many transition zones, allowing a rich 
and diverse range of plants and animals to thrive. 

 

 

Fig. 1: Location of the Occitanie region, and its different biogeographic regions, in the south of france.  

2.2 Biodiversity data 

All occurrence data were sourced from the OpenObs database (INPN), the French national 
biodiversity data portal managed by PatriNat (OFB-CNRS-MNHN-IRD; Norvez et al., 2023). 
Three datasets were constructed: vascular plants (Tracheophyta, n = 4,279,291), birds (Aves, 
n = 4,765,000), and butterflies (Papilionidae, Hesperiidae, Pieridae, Riodinidae, Lycaenidae, 
Nymphalidae, n = 1,106,770). The full list of used datasets is available in Table S1-S3. These 
data are characterized by significant heterogeneity in terms of sources and protocols. They 
mainly came from scientific studies, collection records, opportunistic citizen observations, and 
participatory science initiatives conducted as part of public policies (e.g., the national natural 
heritage inventory, INPN). Identifying and correcting as many potential biases as possible 
associated with using such a large and heterogeneous volume of data was essential before any 
interpretation (Kissling et al., 2018; Jetz et al., 2019; Wüest et al., 2020).  

The first filtering operations, such as ensuring compliance with standards and harmonizing 
scientific names using the TaxRef taxonomic reference was performed by the PatriNat team 
(Gargominy et al., 2022). For the taxonomic dimension, only observations identified to the 
species or subspecies level were retained. To limit biases related to the temporal dimension, 
our research focused on the period from 1990 to the present, excluding older observational 
data, which were unevenly represented. 



The spatial dimension was undoubtedly the one that required the most attention, given our 
research questions and hypotheses. We retained only observations geolocated at specific 
geographic points, excluding aggregated occurrences at municipal or national grid scales. The 
second major issue was the uneven sampling of the territory, with certain areas being under- or 
over-sampled (e.g., a higher density of observations near urban areas). To address this 
significant bias, we focused solely on calculating species richness per grid cell, as we deemed 
diversity indices that account for abundance (e.g., Shannon index) inappropriate for describing 
diversity at this scale (Kissling et al., 2018). 

In addition, to compensate for false absences of species and to identify potentially under-
sampled grid cells relative to others, we decided to use non-parametric estimators of species 
richness (Brose et al., 2003). These estimators are widely recognized as better predictors of 
true richness compared to observed richness in most cases (Brose et al., 2003; Vallet et al., 
2012; Walther et al., 2015). 

Given the structure of our data and the method proposed by Brose et al. (2003), which 
recommends selecting the non-parametric estimator based on the average completeness rate of 
the grid cells (Sobs / Sest), we chose to use the first-order Jackknife estimator (1) to simulate 
species richness. 
 
 
 
(1) 
 
 
 
 
 
 
 
 
Non-parametric estimators can be biased by under-sampled grid cells (Vallet et al., 2012), so 
we decided to exclude undersampled grid cells from further analysis. To do this, the number 
of singletons (species observed only once in each grid cell) was calculated for each cell, and 
any cell with more than 50% singletons was removed from the analysis. In our view, this 
threshold represents the best compromise given the structure of our data and the 
recommendations in the literature (Brose et al., 2003; Marcon, 2015). 
 

2.3. Geodiversity data 

All the geodiversity data used are listed in Table 1. For the compilation of geological and 
pedological indices, each type of formation was aggregated within each grid cell, and the 
Shannon index (2) was then calculated (Manosso et al., 2021; Atkinson et al., 2022): 



(2) 

 

 

 

 

Table 1: Summary of geodiversity, topographic, climatic and anthropic variables used for modeling and the main 
calculated indices. 

Predictors Variables Metrics (per grid) Resolutions References 

Geodiversity 
 
 
 
 

Geology Shannon index of 
lithological types 1/50,000 BD Charm-50, BRGM, 

2019 

Pedology Shannon index of soil types 1/250,000 

Référentiel Régional 
Pédologique 
harmonisé de la région 
Occitanie, 2022 

Hydrology 
Shannon index of rivers 
(Strahler Orders) and water 
bodies 

1/25,000 BD Topage, IGN, 2022 

Geomorphology Shannon index of 
Geomorphon types 25 m BD Alti DTM, IGN 

Topography Elevation range Max elevation - min 
elevation (m) 25 m BD Alti DTM, IGN 

Climate 

Temperature Annual average (°C) 1 km WorldClim, 1970-2000 

Precipitation Annual average (mm) 1 km WorldClim, 1970-2000 

Human footprint Naturalness 

Average of a composed 
index of hemerobia, building 
density and spatial 
continuity 

20 m Guetté et al., Projet CartNat 
UICN, 2018 

 
Regarding geomorphology, we used the r.geomorphon algorithm, developed by Jasiewicz and 
Stepinski (2013) within GRASS GIS 7.1 (GRASS Development Team 2018). The 
r.geomorphon algorithm enables the automatic classification of landforms (such as ridges, 
valleys, and slopes) by analyzing the local configuration of terrain within a defined 
neighborhood. Given the highly rugged terrain of our study area in Occitanie, we set the 
Threshold Angle parameter to 3° in order to limit the excessive detection of microforms and 



use the default "radial limit" value of 1000. This threshold angle helps ignore very gentle 
slopes, thus reducing "noise" in areas with significant elevation changes. It provides a good 
balance between sensitivity and clarity of geomorphological features. Subsequently, the 
Shannon index was calculated (2). 
 
The hydrological index was constructed based on the work of Bétard & Peulvast (2019). The 
first step involves calculating the Strahler index for each watercourse using our digital terrain 
model (BD Alti 25 m DTM) and the “Strahler order SAGA” tool available in QGIS software. 
This index captures the complexity of the tributary network of a watercourse (Strahler, 1952). 
Next, the richness of each watercourse order and the richness of water bodies were quantified 
per grid cell. A common Shannon index was then calculated based on the length of each type 
of watercourse and the surface of water bodies.  
 
To ensure our work was comparable to most other studies, we decided to create a global 
geodiversity index by summing the Shannon scores of our four sub-indices (geology, pedology, 
hydrology and geomorphology). This method for constructing the geodiversity index appears 
to be the most commonly used in the literature, according to Crisp et al. (2021). 

 

2.4 Topographic, climatic and human footprint covariates 

We used elevation range within each grid cell as a global topographic covariate, selected for 
its lack of correlation with climatic variables. Climatic covariates included annual mean 
temperature and annual mean precipitation, both averaged per grid cell from the WorldClim 
database (1970 - 2000). To account for anthropogenic influence, we used the mean naturalness 
index per grid cell as a proxy for human footprint. 
The naturalness index is a nationally developed metric in France, created as part of the CartNat 
project (UICN, https://uicn.fr/aires-protegees/wilderness-2/; Guetté et al., 2018). It 
quantitatively assesses the level of disturbance in natural landscapes, with higher values 
indicating minimal or no human impact. The index integrates three components: hemeroby 
(i.e., the degree to which vegetation deviates from its potential natural state), building and road 
density, and ecological continuity. For detailed methodology, see Guetté et al. (2022). 

2.5. Statistical analyses 

To address our various research questions, we first aggregated biodiversity, geodiversity and 
covariates into grid cells and then used two statistical modeling approaches: a regional model 
to study the average relationship between species richness and geodiversity variables and 
covariates (to test hypothesis (a) and (b)), and a local model to explore the potential spatial 
heterogeneity of the relationships between geodiversity variables and species richness (to test 
hypothesis (c)). All models were repeated for each grid resolution to detect potential spatial 
aggregation issues (to test hypothesis (d)). 



2.5.1. Data aggregation 

Regular grid cells with sizes of 5 km, 7.5 km, and 10 km were selected as a compromise 
between analyzing the phenomenon at the finest possible resolution and the resolution of our 
initial data (the pedology layer being the limiting factor with a resolution of 1/250,000). We 
used different grid resolutions to consider the modifiable areal unit problem (MAUP) in spatial 
modeling. For the 5 and 10 km grids, we used spatial referential provided by the French 
National Inventory of Natural Heritage (INPN) to optimize biodiversity data pooling. Grid cells 
in contact with the boundaries of our regional study area were excluded from the analysis to 
account for edge effects, which could also bias our results (Zarnetske et al., 2019). The number 
of grid cells was n=2,721 for the 5 km resolution, n=1,172 for 7.5 km, and n=641 for 10 km. 

2.5.2. Regional model 

The first step involved creating an initial non-spatial model between the estimated biodiversity 
richness Sest (Jack1) and the predictors (geodiversity Shannon index, and covariates: 
naturalness, annual mean temperature, annual mean precipitation and elevation range) for each 
of the three biodiversity categories (vascular plants, birds, butterflies) and for each resolution 
(5, 7.5 and 10 km). A linear model (3) was selected following a preliminary analysis of the 
distribution of the dependent variable.   

 

 

(3) 

 

 

 

The explanatory variables were standardized to enable comparison of the coefficient values. 
The assumptions of the linear model were checked graphically and through the Shapiro-Wilk 
test (normality of residuals) and the Breusch-Pagan test (homoscedasticity). Variance Inflation 
Factors (VIF) were also calculated for each explanatory variable to identify potential 
multicollinearity, with an exclusion threshold set at VIF=4.  

To detect potential spatial dependence in the residuals that could bias the coefficient estimation, 
Moran’s Index (Moran, 1950) was calculated using the R package spdep, and a spatial analysis 
of residuals was conducted. A first-order queen contiguity neighborhood matrix was used for 
this analysis. In the case of positive autocorrelation in the model’s residuals, a bottom-up 
approach was used to select the appropriate spatial model (Le Gallo, 2002; Florax et al., 2003). 
First, Lagrange Multiplier tests (Anselin et al., 1996) were applied to choose between SAR 
(Simultaneous AutoRegressive model) and SEM (Spatial Error Model) using AIC values. The 



optimal choice was based on selecting the spatial model with the smallest AIC for the robust 
Lagrange Multiplier. 

In the SAR model (4), the value of the dependent variable (here, Sest) depends on the value of 
the dependent variable in the neighboring areas. This variable is thus responsible for the spatial 
effect. To interpret the coefficient values, the total average impact of the independent variables 
is subsequently calculated. 

 
(4) 
 

 

In the SEM model (5), the dependent variable (here Sest) is influenced by an unobserved spatial 
factor that simultaneously affects the observation and its neighborhood. 

 
(5) 
 
 

 

For the SAR and SEM models, the neighborhood matrices (W) were calculated based on a first-
order queen contiguity matrix. This type of matrix assigns equal weight to all adjacent cells 
(maximum neighbors = 8). The two spatial models were computed using the R package 
Spatialreg. To validate the relevance of our spatial models, we calculated the adjusted R²  and 
the AIC (Akaike Information Criterion) for each model to compare them with the linear model 
without correction. 

To evaluate the relative influence of each component of geodiversity, the initial linear model 
was reconstructed by replacing the global Shannon geodiversity variable by Shannon geology, 
Shannon hydrology, Shannon geomorphon and Shannon pedology variables. All subsequent 
steps were then reproduced. 

2.5.3. Local Model 

The objective of this modeling was to explore the spatial non-stationarity of the relationships 
between the explanatory variables and the variable of interest. To address this question, we 
performed a Geographically Weighted Regression (GWR) using the R package GWmodel  
(Brunsdon et al., 1996). The GWR evaluates local regression model (3) for each grid cell based 
on the characteristics of its neighborhood only. To account for the neighborhood effect, two 
parameterization steps were required: the choice of the neighborhood size and the spatial 
weighting function associated with these neighbors, typically inversely proportional to the 
distance (Feuillet et al., 2019). The neighborhood radius (in km) was optimally estimated by 



minimizing the AIC. A Gaussian function was used as the spatial weighting function, assigning 
weights that approach 0 as the distance from the observation increases. All these 
parameterization steps were illustrated in the supplemented information (Fig. S1). 

 
3. Results  

 
3.1. Geodiversity Maps 

 
The maps of geological, hydrological, geomorphological, and pedological diversity, along with 
the overall geodiversity index, are shown in Fig. 2 for the 5 km grid resolution, and in Fig. S2 
for all grid resolutions (5, 7.5, and 10 km). A spatial heterogeneity in our geodiversity index is 
evident, with highly geodiverse areas located in the southwestern part of the territory—
particularly in the Haute-Pyrénées and the western part of the Gers (including the Pyrenees and 
their piedmont)—and much less diverse areas around Toulouse and in the Northern part of 
Lozère, in the northeastern section of the study area. 

 
 
Fig. 2: Compilation of the four geodiversity components (geology, pedology, hydrology, geomorphology) into a 
global geodiversity index (grid = 5 km) 
 

3.2. Regional Analysis 
In our initial modeling approach, which used overall geodiversity, naturalness, annual mean 
temperature, annual mean precipitation, and altitude range as linear predictors of species 
richness, no evidence of problematic multicollinearity (all VIFs < 4), heteroscedasticity, or 
non-normality was detected in any of the models, regardless of the taxonomic group or spatial 
resolution considered. But in all our models, Moran’s I index was positive and significant (p-
value < 0.05), indicating positive autocorrelation and therefore spatial dependence in the 
residuals (Fig. 3, Table S4). This spatial dependence can be observed using the Moran 



scatterplot (Fig. 3a), which showed the positive linear relationship between the model's 
residuals and the spatially lagged residuals (mean of neighboring residuals). Another way to 
check this condition was through a spatial analysis of the residuals on a map (Fig. 3b), allowing 
us to visualize the structure of the spatial autocorrelation. For example, for birds at a resolution 
of 5 km, the model seems to underestimate their richness along the Mediterranean coastline. 
All residual maps and Moran’s I values are presented in Fig.S3 and Table S4. 
 
 
 

 
Fig. 3: Analysis of the spatial autocorrelation of the residuals of the linear bird model. (a) Moran diagram. (b) 
Mapping of linear model residuals (mesh = 5 km) 
 
The violation of spatial independence led us to reject the use of the linear model and to select 
the appropriate spatial model using Lagrange Multiplier tests. Based on these tests, the SAR 
model was selected (lowest AIC) for all spatial resolutions in the case of butterflies, whereas 
the SEM model was preferred for vascular plants and birds (Table S4). This suggests that 
butterfly species richness in a given cell is directly influenced by species richness in 
neighboring cells, while for plants and birds, the observed spatial autocorrelation in the 
residuals is more likely due to spatially structured factors not accounted for in our modeling 
framework. To ensure that the issue of spatial dependence was resolved by our spatial models, 
an analysis of the residual distribution from the new models was conducted again (Fig. S3). 
Following the construction of the SAR and SEM models, no residual autocorrelation was 
detected (p-value Moran’s I > 0.05), and the spatial structures of the residuals previously 
observed in Fig. 3 also disappeared (e.g., Fig. 4 for birds at 5 km resolution; and Fig. S4 for all 
taxa and spatial scales). 
 
 
 



 
Fig. 4: Analysis of the autocorrelation of the residuals of the bird SEM model. (a) Moran diagram (b) Mapping of 
residuals from the SEM model (mesh = 5 km) 
 
The coefficients and significance assigned to the different explanatory variables for the best 
spatial models are then presented in Fig. 5. First, we observed that for all taxa and resolutions, 
our geodiversity index had a significant positive impact on species richness, consistent across 
spatial scales considered. Regarding the covariate predictors, their influence and significance 
were highly taxon-dependent. For vascular plants, species richness was positively correlated 
with the annual mean temperature and the elevation range of the grid cell. Mean naturalness 
and annual mean precipitation negatively influenced diversity of plants only at two grid scales 
(10 km for naturalness and 5 km for precipitation). For butterflies, on the top of geodiversity, 
naturalness appeared to have an significant positive effect on their diversity as well as elevation 
range but only at the 7.5km scale. 
 

 

 



Fig. 5: Standardized coefficients (± 95% CI) from the best-fitting spatial models (SAR and SEM), showing the 
effects of overall geodiversity and environmental covariates on regional species richness. Tracheophyta: vascular 
plants; Rhopalocera: butterflies; Aves: birds; Nat: naturalness; Temp: annual mean temperature; Prec: annual 
mean precipitation; ΔElev: altitude range; Shgeo: Shannon geodiversity. 

For birds, naturalness has a significant negative effect for all scales. A scale effect is again 
observed regarding the significance of temperature which is only significant and positive at the 
5 km grid level. Regarding the fit quality of our spatial models, all adjusted R² values were 
higher than those of the classic linear model (Table 3). Similarly, all AIC values of the spatial 
models were notably lower than those of the classic model.  

 
Table 3: Comparisons of the quality of fit of the best spatial models (SAR, SEM) and the linear model for 
Tracheophyta (vascular plants), Rhopalocera (butterflies) and Aves (birds) 
 

Taxon Scale (km) Test 

 
Autoregression 
coefficient p-value 

Adjusted 
R²  

Adjusted
R²  (lm) AIC AIC (lm) 

Tracheophyta 5 SEM 0.765 <0.001 0.663 0.202 18113.31 18993.567 

7.5 0.869 <0.001 0.774 0.342 12168.681 12938.577 

10 0.898 <0.001 0.824 0.414 7703.892 8267.067 

Rhopalocera 5 SAR 0.527 <0.001 0.478 0.284 14906.629 15322.039 

7.5 0.668 <0.001 0.660 0.442 8323.634 8716.122 

10 0.714 <0.001 0.743 0.522 4943.765 5251.588 

Aves 5 SEM 0.807 <0.001 0.580 0.119 23196.513 24708.656 



7.5 0.851 <0.001 0.626 0.127 10369.967 11136.696 

10 0.857 <0.001 0.646 0.150 5714.785 6138.182 

 

For our second modeling approach, which includes the geodiversity components separately 
(i.e., geology, pedology, geomorphology and hydrology), the same steps were repeated. Once 
again, problematic spatial autocorrelation of residuals was detected using the Moran’s I and 
residual map analysis. The Lagrange multiplier tests again led us to select the SAR model for 
butterflies and the SEM model for vascular plants and birds (Table S5). 

The analysis of the coefficients from the second model yields broadly similar results for the 
abiotic variables excluding geodiversity (Fig. 6). Different patterns are observed for each 
component of geodiversity. As overall geodiversity, pedological diversity is consistently 
significantly positively correlated with taxonomic richness for each group and spatial scales. 
On the contrary, the three other components of geodiversity do not have the same effect 
depending on the taxonomic group studied. Geological diversity appears to have a positive 
effect only for vascular plants (at all scales) and for birds (only at the 5 km scale). Hydrological 
diversity does not significantly influence butterflies' richness, but has a significant positive 
effect on the diversity of vascular plants and birds. Finally, geomorphological diversity does 
not significantly influence vascular plants or butterflies at the largest scales (7.5km and 10km) 
but has a positive significant effect on butterflies at 5 km and a significant negative effect on 

bird diversity whatever the scale.  

Fig. 6: Standardized coefficients (± 95% CI) from the best-fitting spatial models (SAR and SEM), showing the 
effects of the four geodiversity components and environmental covariates on regional species richness. 



Tracheophyta: terrestrial plants; Rhopalocera: butterflies; Aves: birds; Nat: naturalness; Temp: annual mean 
temperature; Prec: annual mean precipitation; ΔElev: altitude range; Shgeol: Shannon geology; Shhyd: Shannon 
hydrology; Shpedo: Shannon pedology, Shgeom: Shannon geomorphology 
 
 
Finally, all adjusted R² values and AIC seem to indicate that the spatial models were better 
fitted to our data than a classic linear model (Table S6). 

 
3.3. Local analysis 

 
The fit quality of the GWR model, along with the neighborhood radius values selected by AIC 
minimization, are presented in Table 3.  

 
Table 3: Comparison of the fit quality of Geographically Weighted Regressions (GWR) and neighborhood radius 
values for Tracheophyta (vascular plants), Rhopalocera (butterflies), and Aves (birds). 

Taxon 
Scale 
 (km) 

Adjusted 
 R² (GWR) 

Adjusted  
R²  (lm) 

AIC 
(GWR) AIC (lm) 

Radius of 
neighborhood 
(km) 

Tracheophyta 5 0.662 1.97 17671.335 19001.875 23 

7.5 0.748 0.338 11926.453 12942.386 20 

10 0.779 0.412 7615.592 8267.187 20 

Rhopalocera 5 0.529 0.282 14485.713 15324.256 32 

7.5 0.657 0.440 8140.136 8716.358 25 

10 0.741 0.520 4799.290 5251.481 20 

Aves 5 0.587 0.122 22532.134 24698.681 16 

7.5 0.602 0.133 10120.136 11126.472 21 

10 0.595 0.149 5611.471 6136.907 19 

 
Based on the comparison of adjusted R² values and AIC, the GWR model appeared to better 
capture the structure of our data than the simple linear model. Spatial distribution of the GWR 
coefficients revealed spatial non-stationarity between overall geodiversity and all predictive 
environmental variables for all taxa and all scales (Fig .S5). The relationship between species 
richness and geodiversity (Fig. 7) also shows local spatial variation across the region for all 
taxa. While some areas, such as the center-west (Gers, Toulouse area), exhibit no significant 
association or even significant negative correlations, extensive zones of significant positive 
relationships are consistently observed across taxa, particularly in the northeast (Massif 
Central) and the south (Pyrenees).  



Overall, the local relationship between geodiversity and species richness appears more 
consistent across taxa (i.e. more significant positive local correlation in common between the 
three taxa, Fig. S6), with spatial non-stationarity being generally less pronounced than that 
observed for climatic, global topographic, or human footprint variables (Fig. S5). 

 
Fig 7: Spatial distribution of geodiversity coefficients following Geographically Weighted Regression (GWR) for 
a 5 km grid. The meshes whose contours are in bold are those where the local coefficients were significant for 
Tracheophyta: vascular plants (a); Rhopalocera: butterflies (b); Aves: birds (c). Red meshes indicate a positive 
relationship while blue indicates a negative relationship between biodiversity and geodiversity and grey no 
relationship. Grey area with no mesh occurs because the cell does not meet inclusion criteria for biodiversity 
exhaustivity (>50% singletons, see methods 2.2). 
 

4. Discussion 
 

This study aimed to evaluate the spatial relationships between geodiversity components (e.g. 
geology, pedology, geomorphology and hydrology) and biodiversity (i.e. species richness) 
across vascular plants, butterflies, and birds. In so doing, we provided, for the first time, a 
detailed assessment of how geodiversity factors influence biodiversity patterns across multiple 
spatial scales and multiple taxa for one of the biggest and most geodiverse regions of France.  
  
At a regional level, we show that geodiversity was positively, significantly correlated with 
species richness in a consistent way across the three studied taxa. This result is in line with 
different previous studies which reported a positive relationship between geodiversity and, (1) 
the richness of vascular plants (Bailey et al., 2017; Toivanen et al., 2024), (2) butterflies 
(Tukiainen et al., 2017a), and (3) birds (Read et al., 2020). The positive relationship between 
our geodiversity index and species richness was consistent across all taxa and spatial 
resolutions (5, 7.5 and 10 km) and was not higher for taxa at the base of the trophic chain. 
These results suggest that a CNS program based on geodiversity would be efficient to protect 
taxonomic groups with very different biological and ecological needs whatever their position 
in the trophic chain. 



Other explanatory variables also had an impact on species richness. For instance, elevation 
range and annual mean temperature were positively, significantly linked to vascular plant 
richness, a finding consistent with several studies conducted at various scales on this taxon 
(Tukiainen et al., 2017b; Zarnetske et al., 2019). This result was expected given the nature of 
habitats in Occitanie, where the Mediterranean region is considered a hotspot of floral diversity 
due to its specific climatic conditions, and the mountainous landscapes characterized by a high 
rate of endemism.  
For butterflies and birds, naturalness appeared to play an important role in explaining species 
richness, but not for plants. The effect of naturalness differed between the two animal taxa. On 
the one hand, it was positively correlated with butterfly species richness, a result consistent 
with previous studies highlighting the negative impact of anthropogenic pressures on the 
taxonomic diversity of this group (Bobo et al., 2006; Gallou et al., 2017). On the other hand, 
naturalness was negatively correlated with bird species richness. Several explanations might 
account for this phenomenon, such as the presence of maximum bird diversity in moderately 
anthropized environments (Blair, 2011; Meynard et al., 2011), an overestimation of species 
richness near cities, or differences in the influence of the various components of naturalness, 
making a general interpretation challenging. In addition, naturalness is generally low in the 
littoral area (high building density) and high in mountain areas. Bird diversity shows the 
opposite pattern, with higher species richness in coastal areas—likely driven by the coexistence 
of terrestrial and marine species (Graells et al., 2022)—while high-elevation zones typically 
support fewer species (Quintero & Jetz, 2018). 
We therefore considered that interpreting the effects of naturalness in our study was premature 
for the time being. Nevertheless, given that it had been one of our most explanatory variables, 
this phenomenon should be further explored by studying the effect of its three components (i.e., 
hemeroby, building density, and ecological continuity) on taxonomic diversity at both regional 
and local scales.  
 
We also found that components of geodiversity do not have the same impact on the diversity 
of our three taxa. Pedology significantly supports the diversity of all taxa and therefore is of 
great importance in combating biodiversity collapse, a finding already noted in previous studies 
(Ibáñez & Feoli 2013; Stein et al., 2014; Molina-Venegas et al., 2016). Hydrological diversity 
has a positive influence on the diversity of vascular plants and birds, but not on butterflies. One 
possible explanation is that many bird or plant species are closely tied to aquatic environments. 
An increase in the diversity of wetlands or water bodies within a grid cell would thus have 
allowed new specialist species of this habitat to establish themselves, increasing overall species 
richness. On the contrary, few butterfly species are directly dependent on this type of habitat 
explaining why this variable did not significantly influence the diversity of this taxon. 
Compared to the other two components, the effect of geological diversity appears to be weaker, 
with a positive correlation only for vascular plants. These observations aligned with the results 
of a previous multi-taxa study (Tukiainen et al., 2017a), which found similar dominance 
patterns for vascular plants and butterflies. However, that study showed that geological 
diversity had a strong impact on the richness of bryophytes, lichens, or beetles. Finally, 
geomorphological diversity - as calculated from the Geomorphon algorithm - was considered 
by Bailey et al. (2017) as a powerful explanatory variable of biodiversity patterns. However in 



our study, this variable had no significant impact on vascular plants or butterflies, and was 
negatively correlated with bird diversity at all spatial resolutions. The spatial scale used in our 
analysis (≥5 km grid cells) may have hidden the previously observed relationship between 
vascular plant richness and landform diversity, which has been shown to be stronger at finer 
spatial grains (e.g., 1 × 1 km cells; Bailey et al., 2017). The negative relationship observed 
between geomorphological diversity and bird richness may be explained by similar 
mechanisms to those described above for the negative relationship with naturalness. In 
particular, an overestimation of species richness near urban areas—typically located on flat 
terrain—and the high bird diversity in coastal regions, which often exhibit limited landform 
variety, are likely contributing factors. 
 
Our local analysis (GWR) showed that the relationship between biodiversity and geodiversity 
is not spatially stationary: the geodiversity of some localities seemed more likely to promote 
biological diversity than others (Fig. 7). This finding aligns with the work of Ren et al. (2021), 
who also observed spatial non-stationarity in the effect of geodiversity on biodiversity using 
GWR. Interestingly, the areas where biodiversity and geodiversity are positively correlated 
tend to overlap more consistently across the three taxa than do areas of positive correlation 
between biodiversity and our other environmental variables (Figs. S5 and S6). This further 
supports the use of geodiversity as a holistic indicator for informing multi-taxa conservation 
planning at a fine scale (Tukiainen et al., 2017a).    
One factor that could best explain this non-stationarity is anthropization, a factor often 
overlooked in this type of study (Tukiainen et al., 2017b) with currently contradictory results 
(Rasanen et al., 2016; Ren et al., 2021). For all taxa, the areas where geodiversity has the 
greatest positive influence on species richness are primarily found in less anthropized spaces 
(e.g., the Pyrenees, Lozère, Aveyron). Conversely, areas near major urban centers negatively 
affect the influence of geodiversity on species diversity (e.g., Toulouse and Montpellier 
metropolitan areas). However, one unexpected result was a locality in the west, near the border 
between Gers and Tarn-et-Garonne départements, which is associated with a negative link 
between geodiversity and biodiversity (Fig. 7). This environment is highly rural, reinforcing 
the complex relationship between geodiversity and biodiversity given the interference of 
various agricultural practices (e.g., intensive vs. extensive) and related landscape mosaics (e.g., 
openfields, bocage landscape) with possibly very different effects on biodiversity patterns. 
Future studies in Occitanie should seek to better understand what drives the result in this zone 
dominated by agricultural lands, despite its high geodiversity (Fig. 2). Overall, these findings 
highlight the need to better integrate anthropogenic drivers into geodiversity–biodiversity 
analyses. Despite the scarcity of focused studies, available results remain inconclusive, with 
some reporting positive (Ren et al., 2021) and others negative (Rasanen et al., 2016; Tukiainen 
et al., 2017b) effects of anthropization. We therefore encourage further investigation into how 
human activity interacts with geodiversity to shape biodiversity patterns, especially in the 
context of conservation planning. 
 
In our regional analysis, we found that overall geodiversity (Fig. 5) and pedological diversity 
(Fig. 6) significance is not affected by the modifiable areal unit problem (MAUP). On the 
contrary, the MAUP plays a role on the significance of other components of geodiversity and  



on most of our other explanatory variables (Fig. 5 and 6). For instance, mean annual 
precipitation significantly affects vascular plants at a 5 km grid resolution but has no effect at 
7.5 km or 10 km resolutions. MAUP also significantly affects the effects of naturalness on 
vascular plants and the effects of mean annual temperature and elevation range on bird 
diversity. We therefore consider it essential to systematically include multiple spatial 
resolutions in biodiversity-geodiversity studies: either to evaluate the robustness of the 
relationship across spatial scales, or to identify the most appropriate scale for implementing 
effective conservation actions. 
The impact of MAUP could not be fully addressed in our local modeling through GWR. While 
the neighborhood radii had been optimally selected for each taxon and resolution (Table 4), 
this approach might have overlooked the spatial heterogeneity of the underlying processes 
driving non-stationarity. Recent advancements, such as multiscale geographically weighted 
regression (MGWR), proposed varying the radii by variable or even by observation to better 
capture these spatially heterogeneous processes. We recommend that future studies explore the 
use of MGWR or similar approaches to provide a more nuanced understanding of the effects 
of MAUP and to account for the complex spatial dependencies in biodiversity-geodiversity 
relationships. 
We also believe that more attention should be paid to the landscape scale when analyzing the 
geodiversity-biodiversity link. Such studies could particularly benefit from the significant 
advancements in remote sensing made in recent years (Rhodes et al., 2022), enabling 
increasingly fine-resolution environmental descriptions. For example, LiDAR (Light Detection 
and Ranging) allowed detailed topographic analysis and modeling of microclimatic indices 
derived from topography, such as daily solar radiation (Bergen et al., 2009; Anderson & 
Gaston, 2013). Exploring geodiversity–biodiversity relationships at even finer spatial scales 
(e.g., plot level) also represents a promising avenue, particularly for studies focusing on how 
geodiversity influences community composition of plants, fungi, and arthropods (Hjort et al., 
2022). 
 
To compute our biodiversity metric, we used data characterized by heterogeneity in terms of 
sources, validation processes, and spatial-temporal coverage (see 2.2. Biodiversity data, Tables 
S1-S3). However, we believed that our approach was relevant for detecting general trends. 
Using species richness allowed us to bypass species abundance data, which are heavily 
influenced by the number of observations. Moreover, species richness is the most commonly 
used metric in the literature on this subject (Field et al., 2009; Tukiainen et al., 2023), enabling 
us to build on previous studies and compare the relevance of our results. 
In our statistical models we used a non-parametric species richness estimator which has been 
shown to be less biased by sampling intensity than species accumulation curves or observed 
species richness (Brose et al. 2003). To exclude under-sampled grid cells from our modeling, 
we decided, based on a review of the literature, to remove any grid cell with more than 50% 
singletons (Brose et al., 2003; Marcon, 2015). Yet, other innovative approaches could be tested 
in the future. For instance, one could develop a new completeness index that incorporated 
additional variables, such as the number of observations, the singleton rate, the difference 
between estimated and observed richness, and more. 



Given the rapid increase in freely accessible species occurrence data (e.g., GBIF, OpenObs), it 
is crucial that more studies adopt standardized protocols for utilizing such data in 
macroecological research (Wüest et al., 2020). Advancing analytical methods to account for 
heterogeneous sampling effort will significantly enhance our understanding of biodiversity–
geodiversity relationships (Soroye et al., 2018; Botella et al., 2021). More research should also 
focus on identifying and correcting major knowledge gaps within our territory, particularly in 
terms of taxonomy and spatial coverage.  

 
The creation of our geodiversity index was largely inspired by previous work related on the 
CNS strategy as well as studies which focused on geodiversity (e.g., Tukiainen et al., 2017a; 
Bétard & Peulvast, 2019; Alberico et al., 2023). The high spatial variation in the overall 
Shannon geodiversity index, and its alignment with known patterns of lower (e.g., seashores, 
lowlands) and higher (e.g., mountainous regions) geodiversity, suggests that our index 
effectively captures the spatial heterogeneity of the study area. However, we observed lower 
geomorphological diversity in the Pyrenees compared to some hilly landscapes. This reduced 
diversity, as detected by the Geomorphon method, may be due to the dominance of a few broad 
landform classes in mountainous areas, as well as limitations of the algorithm in capturing fine-
scale topographic complexity. Since this method is widely used in global geodiversity 
assessments, and given that including or excluding geomorphology in our composite index did 
not significantly alter our results, we chose to retain it. Nevertheless, further research is needed 
to identify morphological indicators better suited to capturing landform diversity in 
mountainous regions at the spatial scales considered in our study. 
It would also be interesting to optimize our hydrological diversity index by, for example, 
adding a component on water dynamics in soils (e.g., edaphic humidity). The low resolution of 
the pedological layer remains a limitation, which restricts our ability to extend our study to a 
more localized scale. These gaps in the availability of high-resolution data could, however, be 
addressed in the coming years. The national CarHab project, currently under development, 
could, for example, provide information on soil parameters such as moisture and pH at a 
1:25,000 scale (IGN, PatriNat). The development of new GIS tools and data thus offers 
promising prospects for conservation strategies based on geodiversity characterization. 
 
 

5. Conclusion 
 

Our study highlights a consistent positive correlation between overall geodiversity and species 
richness across all taxa, supporting the relevance of geodiversity as a key factor in biodiversity 
conservation. However, the influence of different components of geodiversity (except 
pedological diversity) varied depending on taxonomic group, spatial scale, and environmental 
context, underscoring the complexity of this relationship.  

Our analysis revealed the spatial non-stationarity of geodiversity’s effects on biodiversity and 
highlighted the importance of localized and context-specific studies. Indeed, various spatial 
modeling tools (SAR, SEM, GWR) allowed us to better understand the complex relationship 



between geodiversity and biodiversity. Using tools like GWR within the framework of the 
Conserving Nature’s Stage (CNS) strategy and not focusing solely on large-scale global models 
is warranted if we wanted to consider the fact that the effect of geodiversity on biodiversity is 
spatially dependent (Bailey et al., 2017; Ren et al., 2021). Conservation measures based on 
geodiversity might have proven ineffective if not nuanced locally, according to the 
characteristics of the local context. 

Future studies should also focus on this link at multiple levels of diversity (e.g., beta, gamma) 
and on functional and genetic diversity. Indeed, we believed the success of the CNS strategy 
relied primarily on a solid local understanding of the structures that truly supported biodiversity 
in all its forms. Such a strategy could be highly effective in a geodiverse territory  for 
identifying priority areas for establishing new conservation spaces. 
 
Finally, we believed that the CNS strategy should not be used as a substitute for traditional 
conservation methods but rather as a complement. The systematic use of coarse filters might 
lead to the neglect of many rare or endemic species that could play crucial roles in specific 
ecosystems. It is also important to recognize that every species should have benefited from 
protection, regardless of its utility to humans, highlighting the importance of biodiversity 
beyond utilitarian perspectives. Therefore, we believed that the most effective strategy to 
address the urgency of biodiversity collapse would be to multiply conservation strategies to 
ensure comprehensive protection of all aspects of biodiversity. 
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