
Democratizing 3D Ecology: Mobile Radiance1

Fields for Scalable Ecosystem Monitoring2

Henry Cerbone† ∗1, Sruthi M. Krishna Moorthy† †1, Roberto3
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Abstract6

High-resolution 3D monitoring is vital for understanding ecological7

dynamics, but methods like terrestrial laser scanning (TLS) are limited8

by cost and accessibility. We demonstrate that mobile neural radiance9

fields (NeRF), using consumer smartphones and open-source platforms,10

can produce vegetation reconstructions comparable to TLS in open en-11

vironments, though performance decreases under dense canopies. Mobile12

NeRF methods democratize ecological monitoring by reducing hardware13

barriers, excelling at capturing understory complexity, and potentially14

integrating hyperspectral and robotic data for scalable ecosystem surveil-15

lance.16

Monitoring ecological systems with high precision is foundational to ecologi-17

cal research, and never more urgent than now. As global awareness grows around18

our responsibility to steward forests, deserts, and other ecosystems [1], so too19

does the demand for tools and techniques that can monitor, understand, and20

forecast ecological accurately and at scale. The field has moved beyond manual21

surveys towards sophisticated 3D techniques like high-resolution photogram-22

metry and terrestrial laser scanning (TLS hereafter)[2]. These novel methods23

are vital for accurately evaluating conservation schemes such as REDD, where24

traditional metrics have often overestimated effectiveness [3]. Yet while these25

3D methods increase accuracy and ecological insight [4], they often come with26

steep costs: specialised, expensive equipment; technical know-how; and inten-27

sive post-processing. In short, the bottleneck has started to shift from data28

collection in the field to computation in the lab. Given the lack of off-the-shelf29

and inexpensive LiDAR solutions for ecological data collection, photogrammetry30
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has been used for the past decade to provide 3D capabilities in ecology. While31

low-cost Structure-from-Motion (SfM) pipelines can produce accurate sparse or32

moderately dense 3D reconstructions, they remain fundamentally limited by33

their discrete, point-matching basis. SfM can leave holes under heavy occlusion34

(e.g., understory vegetation), fail in challenging lighting, and only reconstruct35

surfaces actually seen in the input photos [5]. In contrast, neural radiance fields36

(NeRFs) learn a continuous volumetric function that jointly encodes scene ge-37

ometry (density) and appearance (radiance) at every 3D location and viewing38

direction. Because NeRF is trained to render photorealistic novel views from ar-39

bitrary camera poses, it can fill in previously unseen angles and thin structures,40

yielding seamless, gap-free reconstructions. Moreover, by sampling the learned41

volume at any desired resolution, NeRF automatically produces much denser42

point clouds than SfM, even in areas with minimal original overlap. This com-43

bination of continuous representation, high-fidelity rendering, and arbitrarily44

dense sampling makes NeRF particularly powerful for capturing fine-scale un-45

derstory or open-vegetation structure that discrete SfM often misses or cannot46

interpolate.47

A radiance field encodes a scene as a continuous function that maps every48

3D point (x, y, z) and viewing direction (θ, ϕ) to a volume density and an RGB49

radiance. Given a camera pose—i.e. its position and orientation in space—you50

cast a ray through each image-plane pixel, sample the field along that ray, and51

composite the density-weighted colours to determine exactly how the scene ap-52

pears from that viewpoint. The last decade has witnessed the proliferation of53

AI/ML based tools that leverage radiance fields for 3D reconstruction from 2D54

views. Among them are NeRFS [6] and Gaussian Splatting [7]. Regardless of55

reconstruction technique, radiance field methods begin with a sparse 3D point56

cloud that is created using Structure-from-Motion. NeRF reconstruction em-57

ploys a deep neural network to learn a continuous volumetric function that,58

given a 3D coordinate and viewing angle, outputs the corresponding colour and59

density. This reconstruction is carried out by taking in tens to hundreds of over-60

lapping photographs (views) around a target object, whether a tree crown, root61

ball, or other natural artifact. The network optimizes a mapping to produce62

a continuous, consistent 3D volume. The end product thus goes far beyond a63

typical SfM point cloud, as the learned mapping encodes the nonlinear, high64

dimensional scene better than a vanilla SfM interpolation. A key advantage of65

the application of radiance field methods in Ecology is the possibility to monitor66

volumetric change of complex structures through time. Once trained, radiance67

field methods allow virtual flythroughs of, for instance, canopy architecture,68

precise cross-sectional slicing, and accurate computation of volumes and surface69

areas.70

Whereas NeRF represents scene geometry as a continuous field, Gaussian71

Splatting decomposes surfaces into many small, overlapping “splats”, each de-72

fined by a 3D Gaussian with its own position, orientation, colour, and size.73

Radiance field methods’ ease of use in ecology has increased thanks to freely74

available, phone-based applications such as Luma AI (lumalabs.ai), Polycam75

(poly.cam), and RealityScan (realityscan.com). These applications allow for76
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real-time or post-hoc uploading of photos or videos to be processed in a stan-77

dard AI-based reconstruction pipeline. Given that 53% of people worldwide78

have access to a camera-capable smartphone [8], we are entering an era where a79

large proportion of mankind is now capable of capturing scientific quality data80

of natural artifacts. This workflow can help democratize volumetric data collec-81

tion, enabling ecologists and citizen scientists to replace days of manual labour82

or expensive equipment for a brief scan with a device they already carry.83

Calls to leverage mobile devices for ecological monitoring are not new. Pre-84

vious methodologies have demonstrated that the photographic and LiDAR ca-85

pabilities of most recently released phones and tablets can serve as viable al-86

ternatives to specialized equipment [9, 10, 11, 12, 13, 14]. However, radi-87

ance field methods have expanded these possibilities further, enabling detailed88

three-dimensional reconstructions that offer significant advantages over tradi-89

tional photogrammetry. Although these AI based models do not yet match90

the accuracy of TLS, they consistently outperform classical photogrammetric91

methods in reconstructing detailed objects, such as individual trees and for-92

est canopies, while often requiring fewer input images [15]. Beyond forests,93

NeRF-based methods have demonstrated reliable three-dimensional morphome-94

tric measurements for crop structures [16] and have even been integrated into95

mobile robotic platforms, such as quadrupedal robots, to automate forest in-96

ventories [17]. These advances collectively highlight that radiance field methods97

not only extend existing mobile-based ecological monitoring approaches, but98

also open entirely new avenues for research, facilitating high-resolution, acces-99

sible, and flexible ecological data collection.100

While NeRFs produce point clouds that are equivalent (or in some cases101

less than) to those yielded by TLS and/or classical structure-from-motion ap-102

proaches [15], the major advancement of these methods lie in their photorealism103

and small scale accuracy. As we seek to bring monitoring of the environment104

closer to the current state of citizen science in other fields such as ornithology105

[18] and aim to understand change on shorter time scales, accessible, high resolu-106

tion data capture is essential. Much as bioacoustics has transformed ornithology107

[19], we argue that reliable radiance field reconstruction is poised to do the same108

for the study of a wide range of ecological systems, bringing current efforts [20]109

into a much needed, realistic third dimension. The ease of use of these meth-110

ods also helps to bridge the spatial mismatch of ecosystem monitoring: many111

of the ecosystems we wish to monitor (in remote areas) are far removed from112

most of the (sometimes expensive) infrastructure that exists to monitor them113

(R1 universities) [21]. The additional strength of radiance field methods is the114

universality of the data input. A set of as few as 20 overlapping photos can115

be reprocessed and revisited over time and with new, improved methods. If116

the set point reference images typically recorded of forests, for example, had117

been taken in this manner, radiance field reconstruction methods could be ap-118

plied interchangeably. In our field validation trials of an off-the-shelf radiance119

field reconstruction mobile application, vertical point-density profiles revealed120

a systematic downward bias, with NeRF concentrating the majority of points121

in the lower bole even where TLS showed that most vegetation mass resides in122
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the canopy. For the open-grown (urban) tree, all structural metrics (diameter123

at breast height [DBH], height, and crown projection area) from NeRF agreed124

with TLS to within 4%. In the closed-canopy temperate stand, the results from125

four standing trees showed a mean DBH relative error of 4%, while height and126

crown area from NeRFs were systematically underestimated by 29% and 75%127

respectively, closely echoing the errors reported in earlier NeRF–SfM forestry128

evaluations [15]. Thus, NeRF reconstructions deliver research-grade accuracy129

for isolated trees, but occlusion in dense forest can still limit absolute crown130

and height estimates. While terrestrial laser scanning (TLS) can capture under-131

story and open-vegetation structures, it is time-consuming and labor-intensive,132

especially when deployed over large savannas, grasslands, or tundra. Moreover,133

understory saplings often suffer from low signal-to-noise ratios in TLS or mobile-134

laser scans (MLS), a problem that only worsens when using lower-cost sensors135

[2].136

In addition to new avenues for capturing small-scale features in ecosystems,137

parameterization of a scene into radiance fields can be extended to hyperspectral138

cases, where each point in the scene not only captures RGB colour information139

but also continuous spectral reflectance data across many narrow spectral bands.140

Hyperspectral radiance fields offer significant potential opportunities for ecology141

by enabling detailed 3D analyses of plant biochemistry, early warning signals of142

ecophysiological stress, species identification, biodiversity mapping, and habi-143

tat characterization. Hyperspectral radiance fields can extend the capabilities144

of hyperspectral imaging in non-invasively monitoring plant health by detecting145

subtle spectral changes related to biochemical traits like chlorophyll content and146

water stress [22] and providing fine-resolution insights into ecosystem produc-147

tivity and responses to environmental change [23]. Additionally, the capacity of148

hyperspectral radiance fields for detailed 3D habitat reconstructions integrating149

spectral data supports precise species discrimination and biodiversity mapping150

in complex ecosystems such as tropical forests [24] and coral reefs [25]. By cap-151

turing radiance as a function of viewpoint and wavelength, radiance fields can152

also enable advanced modelling of ecosystem interactions with solar radiation,153

informing studies of canopy structure, light penetration, and photosynthesis154

under varying conditions.155

Radiance field methods offer scalable, better democratised, and flexible ap-156

proaches for ecological monitoring and forecasting. By leveraging widely avail-157

able mobile technologies, these methods provide a practical means to rapidly158

capture and reconstruct high-resolution ecological data in remote and under-159

studied areas. Since NeRF reconstructions rely solely on photographic data,160

existing archived image datasets [26] can be revisited and reprocessed using161

future advances in reconstruction algorithms, creating rich temporal archives162

of ecosystem dynamics. The accuracy at small scales, improved accessibility,163

aligning technological capabilities with ecological needs, and avenues for future164

integration situate radiance field methods as a paradigm shifting methodology in165

ecosystem monitoring. While current implementations excel at detailed, small-166

scale measurements—such as individual tree structure, continuous advancement167

in AI-driven techniques promises to bridge remaining accuracy gaps at larger168
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scales and in denser vegetation. The democratic nature of these tools allow for169

widespread adoption which will increase the community’s ability to benchmark170

methodologies across ecosystems and use cases. Further integration with emerg-171

ing hyperspectral and mobile drone and robotic platforms presents an exciting172

frontier, enabling increasingly sophisticated ecosystem analyses. Ultimately, the173

continued convergence of ecological research and cutting-edge computational174

methods will significantly enhance our capacity to monitor and protect Earth’s175

ecosystems.176
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Methods249

Benchmarking Data Collection250

For all areas, terrestrial laser scanning was performed using a Leica RTC360 3D251

laser scanner and six registration spheres per site. Registration was performed in252

Leica Cyclone Register 360. Point clouds were then exported for segmentation.253

Mobile-based Data Collection254

Phone-based 3D capture was performed using the Luma Labs 3D Capture appli-255

cation with an iPhone 12 Pro. The application’s user instructions were followed256

in collecting novel views while walking around trees of interest in each site. Mod-257

els were then uploaded and processed in Luma and exported as point clouds for258

evaluation.259

Tree segmentation and analysis260

NeRF point clouds were exported, aligned and metric-scaled to the terrestrial-261

laser-scanning (TLS) references in CloudCompare using three manually selected262

tie-points per tree. Vertical point-density profiles were subsequently derived in263

Python using kernel-density estimators, while stem diameter at breast height264

(DBH), total height and crown-projection area were extracted with the ITSMe265

package in R [27].266

Controlling for Scaling267

Given the scaleless nature of the reconstructions exported from Luma, a scaling268

object is needed. We utilized a size 5 football to act as a consistent, widely-269

accessible 3D scale parameter in scans.270
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B. Mapping and tracking 
individual plant growth in 3D

A. Monitoring ecosystems 
through time

C. Measuring plant architecture 
and microhabitats

2D Image 3D Mesh

3

4
1

2

0 m

21 m

T1 T2

T1

T2

Cavities

Figure 1: This multi-panel figure showcases NeRF-enabled 3D mapping across
scales and through time. (A) Monitoring ecosystems through time: Dense point
clouds of the same tree reconstructed at two dates (T1 in red vs. T2 in green)
reveal canopy development, with an overlaid vertical distribution of plant com-
ponents, and a change-detection map highlighting loss (red), gain (blue), or un-
changed (gray) points, emphasizing shifts in understory structure. (B)Mapping
and tracking plant growth in 3D: the top row presents a ground-level photograph
of forest-floor saplings alongside its 3D mesh with individuals mapped in red
circles, enabling precise tracking of each seedling’s height and form; the bottom
row shows a full-tree reconstruction coloured by height (blue at the base to red
at the crown), illustrating whole-plant structure. (C) Measuring plant architec-
ture and microhabitats: this composite illustrates how NeRF-based 3D recon-
struction can capture plant form and function from the micro- to macro-scale.
On the left, microhabitat and tree-architecture modelling uses high-resolution
photographs of trunk cavities and buttress surfaces converted into dense point
clouds, with cavities outlined in yellow. On the right, small-plant architecture
in both controlled-lab (top) and in-field (bottom) settings is reconstructed into
full-plant point clouds, demonstrating the method’s applicability across plant
sizes and environments.
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(b) Training NeRF from captured imagesa) Capture photos from multiple 
angles

Urban - Open-grown 
tree

Forest - Fallen tree Forest - Standing tree

20.7 m

21.0 m 27.5 m

23.1 m

18.2 m

15.9 m

DBH: 1.18 m DBH: 1.14 m

Crown area 79.6 m2

82.1 m2

27.5 m

Input: Position and orientation 
of several points along the ray 

for each pixel

Output: RGB color and volume 
density of points along the ray

Virtual camera views with known position and orientation

NeRF Pipeline

Evaluating off-the-shelf NeRF scans

Sparse 3D point cloud to get 
camera position (x, y, z) and 

orientation – pitch, 𝜃 and yaw, 
∅ (Standard SfM output)

(c) Rendering novel views from 
the trained NeRF

(d) Sample novel views

NeRF (Luma AI)
TLS (Leica 

RTC 360

Figure 2: NeRF Pipeline and Evaluation of Off-the-Shelf Scans. Top
row illustrates the end-to-end NeRF workflow: (a) Multiple overlapping pho-
tographs are captured around a target tree. (b) A standard Structure-from-
Motion (SfM) step recovers a sparse 3D point cloud and camera extrinsics
(x, y, z, θ, ϕ), which are used to train the neural radiance field FΘ to predict
colour and density (r, g, b, σ) at any 5D query. (c) Once trained, FΘ renders
novel views by sampling rays through the learned volume. (d) These rendered
viewpoints are then re-sampled to produce a dense, coloured 3D point cloud.
Bottom row compares NeRF-derived reconstructions (orange) against terres-
trial laser scanner (TLS) data (purple) for three exemplar trees. To the right
of each tree are the vertical point density distributions of the two point clouds.
Footprint and cross-section plots at breast height (1.3m) demonstrate match-
ing stem diameters (DBH: 1.18m vs. 1.14m) and near-identical crown area
estimates (79.6m2 vs. 82.1m2).
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