
 

 

1	

 

Hotspots,	refuges,	and	rising	risk:	mapping	tropical	1 

hunting	pressure	across	space	and	time	2 

Martin	Philippe-Lesaffre¹,*,	Iago	Ferreiro-Arias¹,²,	Jedediah	F.	Brodie³˒⁴˒⁵,	Dominik	Schüßler⁶,	3 
Laura	Maeso-Pueyo¹,	Ana	Benítez-López¹	4 

¹	 Department	 of	 Biogeography	 and	 Global	 Change,	Museo	Nacional	 de	 Ciencias	Naturales	 (MNCN-5 
CSIC),	Madrid,	Spain	6 

²	Department	of	Conservation	Biology	and	Global	Change,	Estación	Biológica	de	Doñana	(EBD-CSIC),	7 
Sevilla,	Spain	8 

³	Division	of	Biological	Sciences,	University	of	Montana,	Missoula,	MT	59812,	USA	9 

⁴	Wildlife	Biology	Program,	University	of	Montana,	Missoula,	MT	59812,	USA	10 

⁵	Institute	of	Biodiversity	and	Environmental	Conservation,	Universiti	Malaysia	Sarawak,	94300	Kota	11 
Samarahan,	Malaysia	12 

⁶	Institute	of	Biology	and	Chemistry,	University	of	Hildesheim,	Hildesheim,	Germany	13 

*Corresponding	author:	Martin	Philippe-Lesaffre	(martin.philippe@mncn.csic.es)	 	14 

mailto:martin-philippe@mncn.csic.es


 

 

2	

 

Abstract	15 

	16 

Hunting	 is	a	major	driver	of	global	extinctions,	yet	 the	spatial	 footprint	and	 temporal	 trend	of	 this	17 

pressure	is	lacking	at	global	scale,	limiting	our	ability	to	achieve	international	policy	targets.	Here,	we	18 

present	the	first	standardized	global	maps	of	hunting	pressure	across	the	tropics,	based	on	a	machine	19 

learning	algorithm	trained	on	2,463	hunted	and	non-hunted	tropical	sites,	spatially	and	temporally	20 

matched	to	ecological	and	socio-economic	predictors.	We	estimate	that	the	spatial	footprint	of	hunting	21 

pressure	extends	over	29	mill.	km2	of	tropical	forests,	with	distinct	hotspots	of	high	hunting	pressure	22 

in	the	Indomalayan	realm	(e.g.,	China,	Sri	Lanka,	Western	India),	the	Atlantic	Forest,	and	parts	of	West	23 

Africa.	Refuges	of	low	hunting	pressure	persist	in	remote	areas	of	interior	Borneo,	Papua	New	Guinea,	24 

Central	Africa,	and	the	western	Amazon.	Enhanced	human	accessibility	has	facilitated	the	spread	of	25 

hunting	pressure	between	2000-2015,	most	notably	in	traditionally	considered	undisturbed	remote	26 

regions	 like	 the	Amazon	basin,	 as	well	 as	 in	 areas	 already	 facing	high	pressure	 such	as	China	 and	27 

Indonesia.	 Spatio-temporal	 dynamics	 varied	 among	 realms:	 the	 Indomalayan	 region	 experienced	28 

marked	 increases	 in	 hunting	within	 existing	 hotspots,	 the	Neotropics	 exhibited	 no	 clear	 temporal	29 

trends,	 and	 the	 Afrotropical	 realm	 remained	 relatively	 stable.	 Our	 standardized	 spatio-temporal	30 

assessment	provides	a	blueprint	to	inform	conservation	priorities,	allowing	for	targeted	management	31 

actions	 and	 informed	 policy	 interventions	 to	 mitigate	 hunting	 impacts.	 Our	 pan-tropical	 maps	 of	32 

hunting	pressure	can	also	contribute	to	integrated	assessments	of	multiple	threats	to	biodiversity	at	33 

broad	scales,	facilitating	the	monitoring	of	progress	towards	international	policy	targets.	 	34 
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Main	Text	35 

	36 

Introduction	37 

	38 

From	 agoutis	 and	 songbirds	 to	 hornbills	 and	 rhinos,	 humans	 have	 hunted	 wildlife	 for	 millennia.	39 

Nowadays,	however,	unsustainable	hunting	for	consumption	and	trade	of	wild	animals	represents	a	40 

major	extinction	threat	to	terrestrial	vertebrates	(1–3).	Wild	vertebrates	are	harvested	for	a	variety	of	41 

reasons,	both	 legally	and	 illegally.	These	 include	direct	consumption	as	 food	(4),	 the	production	of	42 

traditional	medicine,	 tools,	 ornaments,	 as	 well	 as	 for	 the	 pet	 trade,	 particularly	with	 birds	 (5,	 6).	43 

Hunting	impacts	thousands	of	bird	and	mammal	species	globally,	especially	for	trading	purpose	(6),	44 

leading	to	significant	declines	for	some	species	(7)	and	acting	as	a	primary	driver	of	extinction	(6,	8).	45 

Additionally,	vertebrate	species	are	non-randomly	harvested,	with	specific	 traits	such	as	body	size,	46 

colorful	plumage,	or	body	parts	with	ornamental	uses,	making	them	more	likely	targeted	than	others	47 

(6,	9–12),	leading	to	increased	endangerment	of	phylogenetically	clustered	branches	of	the	tree	of	life	48 

(6).		49 

Data	on	the	extent,	patterns,	and	trends	of	hunting	pressure	are	crucial	for	guiding	global	and	national	50 

conservation	and	sustainable	development	priorities.	Unlike	most	other	anthropogenic	threats	such	51 

as	 logging,	 urbanization,	 agriculture,	 and	 fire	 events	 (13–15),	 which	 can	 be	 effectively	monitored	52 

through	remote	sensing	(16,	17),	hunting	remains	challenging	to	be	detected,	due	to	its	cryptic	and	53 

often	clandestine	nature.	Consequently,	hunting	represents	only	a	small	fraction	(approximately	5%)	54 

of	the	available	datasets	on	global	threats	(18).	Furthermore,	the	cryptic	impacts	of	hunting	contribute	55 

to	the	phenomenon	of	'empty	forests'	(19)	or	'half-empty	forests'	(20),	terms	that	describe	ecosystems	56 

that	appear	structurally	intact	but	have	experienced	significant	wildlife	declines	due	to	unsustainable	57 

harvesting	(21).	58 

Accurate	estimates	of	the	magnitude	and	spatial	extent	of	hunting	pressure	in	tropical	regions	at	fine	59 

spatial	resolutions	require	innovative	approaches	that	are	spatially	explicit	and	do	not	solely	rely	on	60 

remote	sensing.	To	address	this	need,	several	methods	have	been	developed,	including	mechanistic	61 

and	 correlative	 models	 to	 predict	 hunting	 pressure	 (3),	 biomass	 offtake	 (22),	 hunting-induced	62 

abundance	declines	(23,	24).	Alternative	approaches	map	the	probability	of	species	being	threatened	63 

by	hunting	within	grid	cells,	based	on	IUCN	species’	geographic	ranges	and	qualitative	data	from	threat	64 

assessments	 (25).	 Collectively,	 these	 methodologies	 have	 significantly	 advanced	 global	 mapping	65 

efforts,	enhancing	our	understanding	of	the	spatial	footprint	of	hunting	impacts	across	the	tropics.	Yet,	66 

the	 existing	 approaches	 have	 several	 shortcomings	 that	 hamper	 our	 ability	 to	 fully	 gauge	 the	67 

pervasiveness	and	 intensity	of	hunting	pressure	across	 the	globe,	 as	well	 as	 its	 implementation	 in	68 
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cumulative	threat	maps	or	to	inform	international	policy	processes.	For	example,	mechanistic	models	69 

produce	a	unitless	hunting	pressure	index	that	lacks	external	validation	and	calibration,	limiting	their	70 

practical	use.	In	turn,	correlative	models	are	limited	by	the	low	availability	of	abundance	data	and	the	71 

often-unbalanced	spatial	coverage	of	empirical	studies.	Additionally,	because	these	models	depend	on	72 

species	 distributions,	 their	 resulting	maps	 cannot	 be	 easily	 integrated	with	 other	 human	pressure	73 

layers	 (e.g.,	 Anthromes,	 Global	 Human	 Modification,	 Human	 Footprint,	 Low	 Impact	 Areas;	 (26)).	74 

Finally,	pressure	maps	based	on	the	distribution	of	species	threatened	by	hunting	(e.g.,	(25,	27))	suffer	75 

from	known	limitations	inherent	to	the	IUCN	assessment	process	(28,	29).	These	include	inconsistent	76 

evaluation	criteria	among	species,	 low	spatial	 accuracy	at	 finer	 scales,	 and	 reliance	on	generalized	77 

range-wide	 assessments	 rather	 than	 spatially	 explicit	 threat	 quantification,	 thus	 inadequately	78 

capturing	local	variability	in	hunting	pressures	(e.g.,	(30)).	79 

To	address	 these	 limitations,	we	compiled	an	extensive	geo-referenced	dataset	 consisting	of	2,463	80 

hunted	and	non-hunted	sites	across	tropical	regions.	Each	site	was	precisely	matched,	both	spatially	81 

and	temporally,	with	a	set	of	socio-economic	and	ecological	predictors	commonly	recognized	as	major	82 

drivers	of	hunting	at	 large	spatial	 scales	 (Table	1).	Utilizing	 these	spatially	and	 temporally	aligned	83 

datasets,	we	trained	supervised	binary	classifiers	using	random	forests	to	predict	the	probability	of	84 

hunting	occurrence	across	different	time	periods.	The	resulting	hunting	pressure	(HP),	expressed	as	a	85 

standardized	probability	score	ranging	from	0	to	1,	facilitating	integration	with	other	human	pressure	86 

layers	while	being	able	to	capture	spatial	variation	in	HP	at	fine	resolution.	Specifically,	we	focused	our	87 

analyses	on	the	years	2000	and	2015,	periods	for	which	predictor	layers	were	available.	This	temporal	88 

framework,	 already	 applied	 for	 forest	 fragmentation	 (31),	 provides	 an	 important	 methodological	89 

advancement	by	enabling	the	identification	of	both	global,	regional	and	local	trends	in	HP.	Our	spatially	90 

and	temporally	explicit	maps	highlight	regions	experiencing	low	or	high	HP,	as	well	as	areas	where	91 

hunting	has	 increased	or	decreased	between	2000-2015.	This	provides	a	robust,	standardized,	and	92 

spatially	explicit	framework	to	effectively	target	conservation	interventions	at	regional,	national,	and	93 

subnational	scales.	94 

	95 

	96 

Results	97 

	98 

Hunting	pressure	model	99 

	The	random	forests	used	to	predict	hunting	pressure	(HP)	across	tropical	regions	for	the	years	2000	100 

and	2015	demonstrated	strong	predictive	performance,	with	an	area	under	 the	 receiver	operating	101 

curve	(AUC)	of	0.90	±	0.016,	a	Matthew	correlation	coefficient	(MCC)	of	0.58	±	0.031	and	an	accuracy	102 

of	0.81	±	0.016	(mean	±	standard	deviation;	see	SI	Appendix,	Fig.	S1	to	Fig.	S5).	Our	model	identified	103 
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distance	to	the	nearest	human	settlement	as	the	most	 important	predictor	(mean	absolute	Shapley	104 

additive	explanations	-	mean(|SHAP|)	=	0.085	±	0.064;	SI	Appendix,	Fig.	S6).	Marginal	effects	indicated	105 

that	HP	increased	notably	within	a	25	km	radius	around	settlements,	increasing	linearly	as	distance	106 

decreases	(SI	Appendix,	Fig.	S7).	The	proportion	of	forest	cover	within	a	20	km	buffer	was	the	second	107 

most	 important	predictor	(mean(|SHAP|)	=	0.057	±	0.035),	with	HP	peaking	at	 intermediate	 forest	108 

cover	(~75%)	and	decreasing	at	both	lower	and	higher	extremes	(SI	Appendix,	Fig.	S6	and	Fig.	S7).	The	109 

Human	Development	Index	(HDI)	ranked	third	in	importance	(mean(|SHAP|)	=	0.053	±	0.042),	with	110 

both	 low	 and	 high	 HDI	 values	 associated	 with	 elevated	 HP,	 suggesting	 a	 non-linear	 relationship.	111 

Livestock	 biomass	 and	 net	 primary	 productivity	 showed	moderate	 importance,	with	 higher	HP	 in	112 

areas	with	moderately	low	livestock	density	(but	not	the	lowest)	and	in	highly	productive	forests	(SI	113 

Appendix,	Fig.	S6	and	Fig.	S7).	All	other	predictors	had	comparatively	limited	contributions	to	model	114 

performance.	115 

	116 

Spatial	patterns	of	hunting	pressure	117 

HP	in	2015	exhibited	pronounced	spatial	heterogeneity	across	tropical	regions	(mean	HP	=	0.70	±	0.16;	118 

Fig.	1).	Most	of	the	pantropical	zone	displayed	an	HP	>	0.5	(∼88%	of	the	grid	cells),	with	few	remnants	119 

of	low	pressure	(HP	<	0.5,	∼11%	of	the	grid	cells),	and	distinct,	extensive	hotspots	of	high	pressure	120 

(HP	>	0.9,	∼9%	of	the	grid	cells).	The	Indomalayan	realm	contained	the	biggest	and	most	intensively	121 

hunted	 hotspots,	 especially	 in	 China,	 Sri	 Lanka,	 Western	 Ghats	 (India),	 Peninsular	 Malaysia,	 and	122 

Sumatra,	and	Java	(Indonesia).	Additional	hotspots	were	observed	in	West	Africa	(Afrotropical	realm)	123 

and	 in	 the	Atlantic	Forest,	Caribbean	 islands,	 southern	Mexico	and	Guatemala	 (Neotropical	 realm).	124 

Refuge	areas	were	primarily	located	in	interior	Borneo	and	Papua	New	Guinea	(Indomalayan	realm),	125 

Central	Africa	 (Afrotropical	 realm),	and	 the	western	Amazon	Basin	(Neotropical	 realm).	Outside	of	126 

these	hotspots	and	refuges,	HP	was	generally	moderate	but	highly	variable	at	local	scales.	Realm-level	127 

comparisons	showed	the	Indomalayan	region	had	the	highest	average	HP	(0.77	±	0.15),	followed	by	128 

the	Afrotropical	(0.71	±	0.13)	and	Neotropical	(0.65	±	0.13)	realms	(Bonferroni-corrected	p	<	0.001	129 

for	all	comparisons;	Fig.	2).	Additionally,	the	Indomalayan	realm	had	the	highest	proportion	of	hunting	130 

hotspots	covering	25%	of	grid	cells,	and	the	lowest	proportion	of	low	HP	areas	(∼6%).	In	contrast,	131 

both	the	Afrotropical	and	Neotropical	realms	had	only	∼4%	of	grid	cells	classified	as	hotspots,	but	low	132 

HP	was	more	widespread	in	the	Neotropics	(∼17%)	compared	to	the	Afrotropics	(∼8%).	133 

At	 the	 country	 level,	HP	varied	most	widely	 in	 the	Neotropical	 realm	 (0.50–0.88),	 followed	by	 the	134 

Afrotropical	(0.51–0.83),	and	Indomalayan	realms	(0.60–0.88)	(Fig.	2,	SI	Appendix,	Fig.	S8).	Countries	135 

with	the	highest	average	HP	included	Sri	Lanka	(0.88	±	0.093),	Jamaica	(0.88	±	0.093),	China	(0.85	±	136 

0.13),	 and	 Thailand	 (0.84	 ±	 0.11).	 In	 contrast,	 Guyana	 (0.50	 ±	 0.12),	 Namibia	 (0.51	 ±	 0.055),	 and	137 
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Somalia	(0.54	±	0.064)	had	the	lowest	values	but	also	a	very	small	area	of	tropical	forest	for	the	two	138 

African	countries	(SI	Appendix,	Fig.	S8).	139 

	At	 the	 ecoregion	 level,	 trends	 differed	 slightly.	 The	 Neotropical	 realm	 again	 showed	 the	 highest	140 

variability	 in	 HP	 (0.47–0.93),	 followed	 closely	 by	 the	 Indomalayan	 (0.50–0.93),	 and	 then	 the	141 

Afrotropical	realm	(0.52–0.86)	(SI	Appendix,	Fig.	S9).	Ecoregions	characterized	by	high	HP	included	142 

the	Northwestern	Ghats	montane	 forests	 and	Malabar	Coast	moist	 forests	 (Western	 India),	Puerto	143 

Rican	dry	and	moist	 forests,	and	 the	Chao	Phraya	 freshwater	swamp	forests	 (Central	Thailand).	 In	144 

contrast,	ecoregions	with	low	HP	were	found	in	remote	tropical	areas	such	as	the	Solimões-Japurá,	145 

Juruá-Purus,	and	Uatumã-Trombetas	moist	 forests	 in	 the	Amazon	Basin,	 the	Northern	New	Guinea	146 

montane	rainforests,	and	the	Northern	Triangle	temperate	forests	in	northern	Myanmar	(SI	Appendix,	147 

Fig.	S9).	148 

	149 

Temporal	changes	in	hunting	pressure		150 

Between	2000	and	2015,	HP	increased	significantly	across	the	tropics	(mean	change	=	0.031	±	0.083,	151 

p	<	0.001;	hereafter,	all	temporal	changes	refer	to	the	absolute	difference	in	HP	between	2015	and	152 

2000,	 i.e.,	 HP2015	 –	 HP2000).	Most	 grid	 cells	 showed	modest	 change,	 with	 only	 a	 few	 exhibiting	153 

substantial	increases	or	decreases	(minimum	=	–0.46;	20th	percentile	=	–0.031;	40th	=	0.0035;	60th	=	154 

0.040;	80th	=	0.093;	and	maximum	=	0.63,	Fig.	3).	Realm-level	analysis	indicated	the	greatest	increase	155 

in	the	Indomalayan	(0.046	±	0.085)	and	the	Neotropical	realms	(0.045	±	0.087),	while	the	Afrotropical	156 

realm	experienced	a	slight	but	significant	decrease	(-0.0054	±	0.058).	157 

When	analyzing	spatial	and	temporal	patterns	together,	the	Indomalayan	realm	exhibited	a	positive	158 

linear	relationship:	areas	with	high	HP	in	2015	also	experienced	the	largest	increases	since	2000,	while	159 

low-pressure	 areas	 tended	 to	 show	 declines.	 This	 trend	 was	 consistent	 across	 spatial	 scales	 —	160 

including	grid	cell,	country,	and	ecoregion	levels.	In	contrast,	the	Neotropical	and	Afrotropical	realms	161 

displayed	more	heterogeneous	temporal	dynamics,	without	a	clear	correlation	between	2015	pressure	162 

and	temporal	change	(Fig.	2;	SI	Appendix,	Fig.	S10,	Fig.	S11	and	Fig.	S12).	163 

At	the	national	level,	countries	in	the	Indomalayan	realm	with	the	highest	HP	in	2015,	such	as	China	164 

and	Thailand,	 showed	 the	most	pronounced	 increases	 (change	=	0.084	±	0.079	and	0.078	±	0.059,	165 

respectively).	Conversely,	Myanmar	(-0.024	±	0.061),	Cambodia	(-0.015	±	0.080),	Papua	New	Guinea	166 

(-0.012	 ±	 0.057),	 and	 Malaysia	 (-0.009	 ±	 0.062)	 were	 the	 only	 countries	 in	 the	 region	 to	 exhibit	167 

declining	trends	(SI	Appendix,	Fig.	S10	and	Fig.	S13).	In	the	Neotropical	realm,	notable	increases	in	HP	168 

were	observed	even	in	countries	with	initially	low	pressure,	such	as	Venezuela	and	Colombia	(change	169 

=	0.099	±	0.086	and	0.084	±	0.069,	respectively).	Declines	were	observed	in	Trinidad	and	Tobago	(-170 

0.031	±	0.056),	Cuba	(-0.028	±	0.063),	and	to	a	lesser	extent,	Guyana	(-0.0061	±	0.070)	(SI	Appendix,	171 

Fig.	S10	and	Fig.	S13).	The	Afrotropical	 realm	remained	comparatively	stable	over	 time,	with	most	172 
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countries	 experiencing	 minimal	 changes.	 Sixteen	 countries	 showed	 decreasing	 trends,	 including	173 

Namibia	(-0.049	±	0.064)	and	Somalia	(-0.031	±	0.040),	both	of	which	had	low	HP	and	slight	declines	174 

(SI	Appendix,	Fig.	S10	and	Fig.	S13).	175 

Ecoregional	patterns	matched	national-level	results.	In	the	Indomalayan	realm,	temporal	variability	176 

was	 highest	 and	 positively	 correlated	 with	 2015	 pressure.	 Five	 ecoregions	 experienced	 increases	177 

greater	than	15%,	including	four	in	the	Neotropics:	Orinoco	wetlands	and	Orinoco	Delta	swamp	forests	178 

(eastern	Venezuela	and	northern	Guyana),	Cordillera	Central	páramo	(northern	Peru	and	southern	179 

Ecuador),	and	Llanos	(Colombia	and	Venezuela);	and	one	 in	 the	 Indomalayan	realm:	 the	Mentawai	180 

Islands	rainforests	(off	the	west	coast	of	Sumatra)	(SI	Appendix,	Fig.	S12	and	Fig.	S14).	Unlike	other	181 

ecoregions,	the	Mentawai	Islands	rainforests	experienced	a	significant	positive	change	but	a	relatively	182 

intermediate	value	of	HP	(0.65	±	0.15)	(SI	Appendix,	Fig.	S12	and	Fig.	S14).	Only	one	ecoregion	showed	183 

a	decrease	greater	than	10%:	the	Irrawaddy	freshwater	swamp	forests	(coastal	Myanmar,	near	the	184 

Bay	 of	 Bengal).	 No	 Neotropical	 or	 Afrotropical	 ecoregion	 exhibited	 increases	 above	 10%,	 though	185 

several	 experienced	 decreases	 over	 5%.	 These	 included	 the	 Central	 Andean	 dry	 puna	 (Andean	186 

Altiplano)	 and	 Tapajós–Xingu	 moist	 forests	 (eastern	 Amazon	 Basin)	 in	 the	 Neotropics,	 and	 the	187 

Highveld	grasslands	(South	African	inland	plateau)	in	the	Afrotropics	(SI	Appendix,	Fig.	S12	and	Fig.	188 

S14).	189 

	190 

	191 

Discussion		192 

	193 

A	spatio-temporal	index	of	hunting	pressure	194 

This	study	presents	the	first	global	assessment	of	hunting	pressure	(HP)	across	tropical	forests	using	195 

a	standardized,	non-species-specific	index	over	time.	Unlike	previous	approaches	focused	on	species-196 

level	defaunation	and	extinction	risk	(23,	24),	or	on	IUCN	Red	List	threat	assessments	as	spatial	proxies	197 

for	HP	(25),	our	method	directly	estimates	where	hunting	is	likely	to	occur	based	on	ecological	and	198 

socio-economic	drivers	(see	also	(3)).Our	approach	unifies	HP	across	motivations	(e.g.,	subsistence	199 

and	commercial),	providing	high-resolution	global	predictions	based	on	observed	hunted	and	non-200 

hunted	sites.	In	contrast	to	earlier	efforts	limited	to	specific	realms	(3)	or	regional	studies	(22,	32)	this	201 

method	provides	a	cohesive	global	perspective.		202 

Our	HP	maps	offer	a	major	advance	over	previous	proxy-based	methods	that	rely	on	species'	threat	203 

statuses	(25)	or	general	infrastructure	proximity	(17).	These	maps	provide	a	single,	intuitive	metric	of	204 

HP,	making	them	easily	integrable	into	cumulative	threat	assessments.	This	is	especially	valuable	for	205 

identifying	 conservation	 priority	 areas,	 particularly	 for	 mammals	 and	 birds,	 which	 remain	206 
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disproportionately	affected	by	hunting	(8,	10).	Furthermore,	because	our	index	is	temporally	explicit,	207 

it	supports	the	growing	need	to	integrate	time-varying	threats	into	conservation	planning	(31).	208 

	209 

Ecological	and	socio-economic	drivers	of	hunting	pressure	210 

Across	 all	 models,	 accessibility	 (i.e.,	 distance	 to	 the	 nearest	 human	 settlement)	 emerged	 as	 the	211 

strongest	and	most	consistent	predictor	of	HP,	confirming	prior	findings	(23,	24,	30).	This	relationship	212 

was	observed	globally	and	within	each	tropical	realm	independently	(SI	Appendix,	Fig.	S15	to	Fig.	S21).	213 

In	all	cases,	HP	increased	with	proximity	to	human	settlements,	with	increases	beginning	at	~25	km	214 

and	peaking	closest	to	settlements.	215 

Forest	characteristics	also	played	important	roles:	Large,	less-disturbed	forest	patches	near	protected	216 

area	boundaries	showed	higher	predicted	HP,	supporting	the	idea	that	these	zones	function	as	wildlife	217 

reservoirs	and	their	surrounding	are	prolific	hunting	grounds	(30,	33).This	aligns	with	recent	evidence	218 

that	 species	 survival	 often	 drops	 rapidly	 just	 outside	 protected	 areas	 (33).Other	 socio-economic	219 

predictors,	 such	 as	 population	 density,	 GDP,	 and	 livestock	 biomass	 availability	 were	 aligned	with	220 

theoretical	 expectations	 but	 contributed	 less	 to	model	 performance.	 These	 results	 underscore	 the	221 

opportunistic	nature	of	hunting,	which	tends	to	be	concentrated	in	accessible	forested	landscapes	that	222 

are	not	fully	disturbed	by	human	infrastructures	but	not	completely	remote	either.	223 

	224 

Spatial	patterns	225 

Our	 predicted	 spatial	 patterns	 of	 HP	 only	 partially	 resemble	what	 has	 been	 observed	 in	 previous	226 

studies	(Ziegler	et	al.,	2016;	Benítez-López	et	al.,	2019;	Bogoni	et	al.,	2022;	Ferreiro-Arias	et	al.,	2024).	227 

Clear	 hotspots	 emerged	 in	 the	 Indomalayan	 realm,	 especially	 in	 China,	 Sri	 Lanka,	 Western	 India,	228 

Peninsular	 Malaysia,	 Sumatra,	 and	 Java,	 consistent	 with	 documented	 patterns	 of	 hunting-induced	229 

defaunation	(23,	34).	China	has	been	historically	recognized	as	an	 important	destination	 for	 illegal	230 

wildlife	trade,	yet	recent	evidence	points	out	that	illegal	hunting	is	widespread	across	the	country,	and	231 

it	concentrates	towards	the	east	(35).	In	turn,	wildlife	in	Sri	Lanka	has	been	subjected	to	hunting	from	232 

ca.	45,000	years	ago	(36),	and	our	results	 indicate	 that	 this	pressure	 is	now	pervasive	and	 intense	233 

across	the	island.	Additional	hotspots	were	identified	in	West	Africa	and	across	the	Atlantic	Forest	and	234 

the	Caribbean	islands.	In	contrast,	areas	of	low	pressure	(putative	wildlife	refuges)	were	concentrated	235 

in	remote	zones	such	as	interior	Borneo,	Papua	New	Guinea,	parts	of	Central	Africa,	and	the	western	236 

Amazon,	reinforcing	the	role	of	remoteness	and	low	accessibility	in	mitigating	hunting	intensity	(2,	237 

37).	238 

	239 

Temporal	trends	240 
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Our	results	indicate	a	small	but	significant	global	increase	in	HP	from	2000	to	2015.	Though	the	global	241 

average	was	low	(∼3%),	spatial	heterogeneity	was	substantial,	with	some	regions	experiencing	large	242 

increases	 and	 others	 showing	 declines.	 Accessibility	 remained	 the	 dominant	 driver:	 areas	 where	243 

access	expanded,	especially	near	growing	village	networks,	tended	to	show	increased	HP.	This	pattern	244 

overlaps	with	regions	of	low	forest	integrity,	such	as	Java,	Sumatra,	or	southeastern	China	(17),	where	245 

anthropogenic	 impacts	 like	 fragmentation	 are	 already	 high,	 and	where	 synergistic	 effects	 of	 both	246 

pressures	 could	 be	 detrimental	 for	 terrestrial	 wildlife	 (38–40).	 Moreover,	 regions	 dominated	 by	247 

'village'	anthromes	(41)	largely	overlap	with	areas	experiencing	increasing	HP	in	our	mapping,	while	248 

'wildland'	anthromes	are	mostly	located	in	refuge	zones.	These	patterns	highlight	the	importance	of	249 

understanding	how	accessibility	evolves	over	time	and	particularly	the	global	encroachment	of	the	last	250 

remote	areas	of	the	planet	that	hold	undisturbed	animal	communities	and	maintain	ecological	integrity	251 

(42).	252 

		253 

Integration	into	cumulative	threat	mapping	254 

The	first	target	of	the	Kunming-Montreal	Global	Biodiversity	Framework	(KMGBF)	calls	for	accurate	255 

global	mapping	of	multiple	threats	to	biodiversity.	While	metrics	like	the	STAR	score	rely	on	species-256 

specific	threat	information	from	IUCN	assessments	(43),	these	data	are	limited	by	taxonomic	biases,	257 

lack	 of	 spatial	 precision,	 and	 inconsistencies	 across	 species	 (28,	 29).	 By	 contrast,	 spatially	 explicit	258 

layers	such	as	the	Forest	Landscape	Integrity	Index	(FLII)	(17)	better	reflect	landscape-level	pressures	259 

but	do	not	accurately	capture	hunting,	relying	instead	on	indirect	proxies.	The	HP	maps	developed	in	260 

this	study	help	 fill	 this	gap.	As	a	standardized	and	non-species-specific	metric,	 they	can	be	directly	261 

integrated	into	cumulative	threat	assessments	advancing	Target	6	of	the	KMGBF	by	improving	hunting	262 

risk	coverage,	and	Target	1	by	supporting	comprehensive	spatial	prioritization	of	conservation	actions	263 

based	on	combined	anthropogenic	pressures.	264 

	265 

Limitations	and	Future	Directions	266 

Our	 use	 of	 a	 binary	 classification	 approach	 (i.e.,	 hunted	 or	 non-hunted)	 limits	 our	 ability	 to	267 

differentiate	between	varying	intensities	of	hunting.	This	simplification	means	that	areas	under	low	268 

but	persistent	pressure	are	treated	the	same	as	those	under	severe	exploitation.	Future	models	should	269 

explore	multi-class	or	continuous	approaches	to	quantify	hunting	pressure	levels,	which	would	require	270 

well-defined	 and	 spatially	 adaptable	 thresholds.	 Developing	 separate	models	 for	 different	 hunting	271 

purposes	(e.g.,	subsistence	or	commercial	hunting)	should	be	a	priority	for	future	research,	as	these	272 

types	of	hunting	impact	species	and	regions	differently	(e.g.,	see	the	case	of	pangolins	in	(44)).	273 

Importantly,	 our	 models	 estimate	 the	 likelihood	 of	 hunting	 occurrence	 without	 incorporating	274 

biodiversity	data	at	each	site.	This	was	intentional:	our	goal	was	to	isolate	potential	hunting	pressure	275 
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based	solely	on	ecological	and	socio-economic	conditions.	However,	to	better	infer	ecological	impacts,	276 

future	efforts	should	integrate	biodiversity	metrics,	such	as	species	richness	or	functional	composition.	277 

For	instance,	Greco	et	al.	(45)	demonstrate	that	community-level	traits	can	sometimes	better	explain	278 

biodiversity	 loss	 than	accessibility	alone.	Our	metric	 therefore	 identifies	where	hunting	 is	 likely	 to	279 

occur	but	assessing	true	hunting	impacts	will	require	combining	this	pressure	layer	with	biodiversity	280 

data.	 Future	 efforts	 should	 aim	 to	 couple	 spatially	 explicit	 hunting	models	with	 ecological	 data	 to	281 

prioritize	 conservation	 actions	 more	 effectively.	 Furthermore,	 as	 vulnerability	 assessments	 of	282 

biodiversity	expand,	our	maps	offer	a	standardized	and	robust	tool	for	quantifying	species'	exposure	283 

to	HP	across	 the	 tropics.	 This	 enables	 integration	 into	 single	 or	multi-threat	 vulnerability	metrics,	284 

enhancing	 the	 accuracy	 of	 biodiversity	 risk	 assessments.	 Similar	 to	 how	Boyce	 et	 al.	 (46)	 applied	285 

climate	change	vulnerability	metrics	to	marine	species,	our	approach	can	support	tropical	terrestrial	286 

species	assessments	by	incorporating	HP	as	a	key	driver	of	vulnerability	as	an	exposure	layer.	287 

	288 

Conclusions	289 

Hunting	remains	one	of	the	most	understudied	yet	significant	drivers	of	terrestrial	biodiversity	loss.	290 

Here,	 we	 address	 this	 critical	 knowledge	 gap	 by	 presenting	 the	 first	 global,	 high-resolution,	 and	291 

temporally	explicit	maps	of	hunting	pressure	across	the	tropics.	Unlike	previous	species-specific	or	292 

proxy-based	 assessments,	 our	 method	 uses	 solely	 ecological	 and	 socio-economic	 predictors	 to	293 

generate	 robust,	 spatially	 consistent	 predictions	 independent	 of	 biodiversity	 data,	 even	 in	 poorly	294 

studied	regions.	Our	findings	reveal	that	there	are	very	few	truly	undisturbed	refuges	left:	the	“last	of	295 

the	wild”	 areas.	 HP	 is	widespread,	 and	while	 overall	 global	 expansion	 is	moderate,	 some	 regions,	296 

notably	 Southeast	 Asia,	 West	 Africa,	 and	 the	 Atlantic	 Forest,	 have	 experienced	 sharp	 increases,	297 

threatening	 previously	 remote	 areas.	 By	 accurately	 identifying	 locations	 and	 temporal	 trends	 of	298 

hunting,	our	maps	represent	an	important	advance	for	conservation	and	biodiversity	research.	They	299 

provide	the	first	standardized	spatial	layer	explicitly	quantifying	hunting	threats,	enabling	integration	300 

into	cumulative	threat	maps	which	was	previously	limited	by	poor	spatial	data	on	overexploitation.	301 

This	 new	 resource	 directly	 supports	 global	 conservation	 initiatives,	 including	 extinction	 risk	302 

assessments,	 targeted	 interventions,	 and	 spatial	 prioritization	 aligned	 with	 the	 targets	 of	 the	303 

Kunming–Montreal	Global	Biodiversity	Framework	and	the	UN	Sustainable	Development	Goals.	304 

	305 

	306 

Materials	and	Methods	307 

	308 

Data	collection		309 



 

 

11	

 

We	extended	the	dataset	of	hunting	impacts	on	bird	and	mammal	populations	of	Benítez-López	et	al.	310 

(2)	and	incorporated	new	sites	from	local	hunting	studies	(23,	24),	which	were	coded	as	1	(hunted	311 

site)	 and	 0	 (non-hunted	 site).	 Additionally,	 we	 performed	 targeted	 searches	 for	 countries	 not	312 

represented	in	the	dataset	using	Web	of	Science	(detailed	in	SI	Appendix),	from	which	we	extracted,	313 

when	 available,	 relevant	 spatial	 information	 on	 hunting	 activities,	 and	 were	 thus	 included	 in	 our	314 

dataset.	Through	this	process,	we	obtained	2,463	hunted	and	non-hunted	sites	spread	across	the	three	315 

tropical	realms,	Afrotropical,	 Indomalayan	and	Neotropical	(SI	Appendix,	Fig.	S22).	We	observed	an	316 

imbalance	in	sites,	firstly	in	terms	of	hunted	(nXh=1,762)	vs.	non-hunted	(nXc=701)	sites,	and	secondly	317 

in	 terms	 of	 spatial	 distribution	 across	 biogeographical	 realms:	 331	 in	 the	 Afrotropics,	 412	 in	 the	318 

Indomalayan	realm,	and	1,720	in	the	Neotropics	(see	below).	319 

	We	selected	several	socio-economic	and	ecological	predictors	known	to	influence	hunting	practices	in	320 

tropical	 forests	 (3,	 23,	 24),	 including:	 distance	 to	 the	 nearest	 human	 settlement	 (km),	 distance	 to	321 

nearest	water	 bodies	 (km),	 distance	 to	 protected	 area	 boundaries	 (km;	 for	 I-IV	 PAs,	 (47)),	 urban	322 

market	 accessibility	 (travel	 time	 to	 towns	 with	 ≥50,000	 inhabitants,	 in	 minutes),	 availability	 of	323 

domestic	meat	as	an	alternative	food	source	within	1	and	20	km²	(kg/km²),	gross	domestic	product	324 

within	1	and	20	km²	(million	USD),	“Human	Development	Index”	(HDI),	and	human	population	density	325 

(individuals/km²).	 Ecological	 predictors	 comprised	 forest	 cover	 (%)	within	 1	 and	 20	 km²	 buffers	326 

around	the	site,	net	primary	productivity	(gC/m2/year),	and	mean	slope	(degrees)	(see	Table	1	for	327 

rationale	for	predictor	inclusion).	All	predictors	were	masked	for	the	pantropical	forest	zone,	which	328 

includes	 areas	 with	 at	 least	 20%	 forest	 cover	 (13).	 Except	 for	 distances	 to	 the	 nearest	 human	329 

settlement,	 we	 extracted	 predictor	 values	 for	 each	 study	 site	 from	 the	 raster	 layer	 at	 the	 highest	330 

available	spatial	 resolution	and	by	 temporally	matching	 the	year	of	data	collection	reported	 in	 the	331 

study,	 with	 the	 year	 of	 the	 raster	 layer.	 The	 distances	 to	 the	 nearest	 settlement	 were	 extracted	332 

manually	from	each	study	using	information	provided	by	the	authors	(e.g.,	direct	measure,	maps)	or	333 

by	georeferencing	hunted	and	non-hunted	sites	over	satellite	images.	The	data	collected	is	provided	334 

with	the	manuscript,	except	for	certain	sites	due	to	non-disclosure	agreement	for	illegal	hunting	sites	335 

(see	data	availability	statement).	336 

	337 

Model	building	338 

After	 compiling	 the	dataset	 containing	 site-level	 information,	hunting	 status	 (i.e.,	 hunted	=	1;	non-339 

hunted	=	0),	and	associated	ecological	and	socio-economic	predictors,	we	built	supervised	learning	340 

models	to	classify	the	hunting	status	of	each	site.	We	chose	random	forests	for	this	task	—	a	tree-based	341 

algorithm	 well	 suited	 for	 handling	 non-linear	 relationships	 and	 complex	 interactions	 among	342 

predictors,	which	we	expected	a	priori.	No	spatial	autocorrelation	was	detected	in	the	final	dataset.	343 
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To	address	both	spatial	heterogeneity	and	the	imbalance	between	hunted	and	non-hunted	sites,	we	344 

implemented	six	different	training-validation	and	testing	strategies.	Because	we	lacked	a	true	out-of-345 

sample	dataset	for	independent	validation,	we	used	two	cross-validation	splitting	schemes:	random	346 

splitting	 (80%	 training-validation,	 20%	 testing)	 and	 spatial	 blocking	 (block	 size	 =	 5),	 using	 the	347 

cv_spatial()	 function	 from	 the	 blockCV	 R	 package	 (48).	 To	 deal	 with	 class	 imbalance	 within	 the	348 

training-validation	datasets,	we	applied	three	approaches:	SMOTE	(Synthetic	Minority	Oversampling	349 

Technique),	implemented	via	smote()	in	the	smotefamily	R	package	(49),	class	weighting	to	increase	350 

the	importance	of	under-represented	non-hunted	sites	and	downsampling	of	the	majority	(hunted)	351 

class.	Additionally,	each	model	was	fine-tuned	using	Monte	Carlo	cross-validation	(MCCV),	which	is	352 

appropriate	for	binary	classification	with	small	sample	sizes	(50)	(detailed	in	SI	Appendix).		353 

To	further	limit	overfitting	and	increase	robustness,	we	repeated	this	entire	process	10	times	using	10	354 

different	 training-validation	 testing	 splits	 for	 each	 strategy.	 This	 generated	 ten	 final	 models	 per	355 

strategy.	Using	multiple	models,	rather	than	a	single	final	one,	allowed	us	to	account	for	variability	in	356 

model	 outcomes	 due	 to	 regional	 heterogeneity	 in	 hunting	 patterns,	 ensuring	 more	 generalizable	357 

predictions	across	the	full	tropical	domain.	358 

	359 

Model	performance	360 

We	evaluated	the	goodness-of-fit	of	the	fine-tuned	models	by	comparing	the	observed	and	predicted	361 

hunting	status	in	the	testing	datasets.	For	this,	we	used	the	predict()	function	of	the	randomForest	R	362 

package	 (51)	 and	 assessed	 random	 forests	 performance	 using	 5	 standard	 metrics:	 Matthew	363 

correlation	coefficient	(MCC),	F1-score,	area	under	the	Receiver	Operating	Curve	(AUC),	true	positive	364 

rate	(TPR)	and	true	negative	rate	(TNR).	These	metrics	were	computed	for	each	of	the	10	training-365 

validation	testing	splits	across	all	six	modelling	strategies.	We	also	assessed	whether	calibration	of	366 

model	 predictions	 was	 necessary,	 following	 recommendations	 by	 Dormann	 (52)	 (detailed	 in	 SI	367 

Appendix).	368 

Additionally,	we	investigated	the	relationships	between	dependent	and	independent	predictors	using	369 

two	primary	methods.	First,	we	calculated	the	mean	absolute	SHAP	(Shapley	Additive	exPlanations)	370 

values	 to	 assess	 the	 importance	 of	 each	 predictor.	 This	 calculation	 was	 conducted	 using	 the	371 

sv_importance()	function	from	the	shapviz	R	package	(53).	We	examined	the	marginal	effects	of	each	372 

predictor	by	plotting	the	covariate	against	its	corresponding	SHAP	value	for	each	observation	from	the	373 

fine-tuned	models.	This	method	allows	for	a	clear	interpretation	of	how	each	feature	influences	the	374 

model's	predictions.	 Independent	predictors	were	 transformed	when	necessary	but	only	 for	visual	375 

purposes.	376 

	377 

Predictions	378 
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The	strategy	selected	to	predict	hunting	pressure	(HP)	across	the	entire	pantropical	forest	zone	at	a	1	379 

km	×	1	km	resolution	was	the	one	that	achieved	the	best	performance	across	the	five	goodness-of-fit	380 

metrics	(see	SI	Appendix).	As	each	modeling	strategy	was	evaluated	using	multiple	training-validation	381 

vs.	 testing	 splits,	 resulting	 in	 one	 fine-tuned	 random	 forest	 per	 split,	 we	 adopted	 an	 ensemble	382 

prediction	strategy.	For	each	grid	cell,	we	computed	the	median	hunting	probability	across	all	models	383 

from	the	best-performing	approach	to	produce	a	robust,	spatially	explicit	estimate	of	HP.	The	predictor	384 

values	used	for	generating	predictions	were	consistent	with	those	previously	described,	except	for	the	385 

distance	to	the	nearest	settlement.	For	this	predictor,	we	used	the	World	Settlement	Footprint	dataset	386 

(54)	to	create	distance-to-settlement	layers	for	both	2000	and	2015,	as	detailed	in	the	SI	Appendix.	387 

To	assess	temporal	changes	in	HP,	we	compared	model	outputs	between	the	years	2000	and	2015.	388 

This	 time	window	was	 chosen	due	 to	 the	availability	of	 consistent	 and	 comprehensive	data	 layers	389 

(Table	1).	We	quantified	both	the	2015	HP	and	the	absolute	difference	between	2015	and	2000	values	390 

(hereafter	referred	to	as	'change').	We	identified	hotspots	(HP	>	0.9)	and	refuge	(HP	<	0.5)	of	pressure	391 

and	 reported	 their	 extent	 across	 the	 tropics.	 We	 used	 0.5	 as	 the	 threshold	 to	 convert	 predicted	392 

probabilities	 into	 binary	 outputs,	 assigning	 0	 for	 values	 <	 0.5	 (no	 hunting)	 and	 1	 for	 values	 ≥	 0.5	393 

(hunting),	 during	model	 selection,	 as	 this	 was	 the	 threshold	 that	 provided	 the	 highest	 predictive	394 

performance	across	the	multiple	training-validation	vs.	testing	splits	sets.	395 

We	assessed	the	statistical	significance	of	changes	and	realm-level	differences	using	Student’s	t-tests,	396 

implemented	 with	 the	 t.test()	 function	 in	 R.	 Both	 one-sample	 and	 two-sample	 t-tests	 were	 used,	397 

applying	Bonferroni	corrections	 for	multiple	comparisons.	Additionally,	we	 investigated	 finer-scale	398 

spatial	 variation	by	 aggregating	 values	 of	 both	 2015	HP	 and	 change	 in	HP	 to	 compute	means	 and	399 

standard	deviations	at	country	and	ecoregion	levels	(55).	400 

	401 
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Figures	and	Tables	567 
	568 

	569 

Figure	1.	Spatial	variation	in	predicted	hunting	pressure	across	tropical	forests	in	2015.	Hunting	570 
pressure	corresponds	to	probability	of	a	site	of	being	hunted	and	was	predicted	for	each	1	km	×	1	km	571 
grid	 cell	 using	 spatially	 explicit	 environmental	 and	 socio-economic	 predictors	 from	 ca.	 2015.	572 
Predictions	represent	the	median	values	from	10	independently	trained	and	fine-tuned	random	forest	573 
models,	each	calibrated	using	random	cross-validation	and	downsampling	to	address	class	imbalance	574 
(hunted	vs.	non-hunted	sites).	Hunting	pressure	is	displayed	on	a	continuous	scale	from	0	to	1,	with	575 
color	 breaks	 at	 0.1	 intervals.	 The	 inset	 highlights	 the	 same	map	 but	 displays	 only	 grid	 cells	 with	576 
pressure	 above	 0.9	 (in	 red),	 representing	 hotspots,	 and	 those	 below	 0.5	 (in	 green),	 representing	577 
potential	refuges.	 	578 
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	579 

Figure	 2.	 Spatio-temporal	 variation	 in	 predicted	 hunting	 pressure	 across	 tropical	 forests	580 
between	 2000	 and	 2015,	 by	 biogeographic	 realm.	Each	 box	 shows	 the	 density	 distribution	 of	581 
predicted	hunting	pressure	in	2015	(pressure)	and	the	change	in	pressure	between	2000	and	2015	582 
(change)	across	1	km	×	1	km	grid	cells	within	each	biogeographic	realm.	Change	is	calculated	as	the	583 
difference	between	predicted	pressure	in	2015	and	2000,	where	negative	values	indicate	a	decrease	584 
and	positive	values	an	increase	in	pressure.	Color	intensity	represents	the	relative	probability	density,	585 
ranging	from	darker	shades	(values	around	the	median,	with	~50%	of	cells)	to	lighter	shades	(covering	586 
up	to	99%	of	the	observed	values).	587 

	 	588 



 

 

22	

 

589 
Figure	3.	Spatio-temporal	variation	in	predicted	hunting	pressure	across	tropical	forests	between	2000	and	2015.	Hunting	pressure	corresponds	590 
to	probability	of	a	site	of	being	hunted	and	was	predicted	at	a	1	km	×	1	km	resolution	using	spatially	explicit	environmental	and	socio-economic	predictors	591 
from	2000	and	2015	(or	the	closest	available	years).	Predictions	correspond	to	the	median	values	from	10	independently	trained	and	fine-tuned	random	592 
forest	models,	calibrated	using	random	cross-validation	and	downsampling	to	correct	for	class	imbalance	(hunted	vs.	non-hunted	sites).	The	pressure	593 
values	represent	predicted	hunting	pressure	in	2015,	while	change	values	indicate	the	difference	between	2015	and	2000	predictions,	where	negative	594 
values	reflect	a	decrease	and	positive	values	an	increase	in	pressure	over	time.	Both	metrics	are	categorized	by	percentiles	(0–20%,	20–40%,	40–60%,	595 
60–80%,	80–100%).	Combinations	of	pressure	and	change	quantiles	are	color-coded	as	grey:	low	pressure	and	decreasing	pressure,	yellow:	high	pressure	596 
and	decreasing	pressure,	blue:	low	pressure	and	increasing	pressure	or	purple:	high	pressure	and	increasing	pressure.	 	597 
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Table	1.	Predictors	used	in	the	models,	with	data	sources,	temporal	and	spatial	resolution,	and	its	expected	relationship	with	hunting	598 
pressure		599 

Predictor	 Expected	relationships	 Reference	
Approximate	

spatial	
resolution	

Collecting	years	

Distance	to	the	
nearest	human	
settlement	 According	to	the	central	place	foraging	hypothesis,	decaying	hunting	pressure	is	usually	related	to	the	

distance	to	small	towns	and	villages.	Hence,	we	expect	that	hunting	pressure	would	decrease	with	
distance	to	human	settlements.	

(54)	
30	m	x	30	m	

10	m	x	10	m	
2000,	2015	

Distance	to	the	
nearest	water	body	 (56)	 distance	 2024	

Minimum	distance	
to	protected	area	
(PA)	boundaries	

PAs	may	attract	hunters	due	to	higher	wildlife	abundance	but	also	benefit	from	enforcement.	We	
therefore	expected	hunting	pressure	to	peak	at	PA	edges	and	decline	beyond.	 (57)	 distance	 2000	-	2024	

Accessibility	to	
urban	markets	

Travel	time	to	major	towns	is	commonly	used	as	a	proxy	for	accessibility	to	urban	markets,	where	
wildlife	products	such	as	bushmeat,	animal	parts,	or	live	animals	can	be	sold.	Shorter	travel	times	
reduce	the	costs	and	effort	required	to	transport	hunted	goods,	thereby	increasing	the	incentive	for	
hunters	to	operate	in	those	areas.	As	a	result,	areas	closer	to	major	towns	are	generally	associated	with	
higher	hunting	pressure	driven	by	commercial	trade.	

(58,	59)	 1	km	x	1	km	 2000,	2015	

Availability	to	
domestic	meat	

Greater	availability	of	domestic	meat	is	expected	to	reduce	reliance	on	wild	meat	for	subsistence,	as	it	
provides	an	accessible	and	reliable	alternative	protein	source.	This	shift	in	dietary	dependence	may	
lead	communities	to	hunt	less,	particularly	in	areas	where	hunting	is	primarily	driven	by	the	need	for	
food	rather	than	commercial	trade,	thereby	reducing	overall	hunting	pressure.	

(60)	
1	km	x	1	km	

20	km	x	20	km	
2010	

Gross	domestic	
product	

The	relationship	between	hunting	and	wealth	is	complex	and	context-dependent,	often	varying	
between	rural	and	urban	settings	(61).	In	rural	areas,	wildlife	meat	consumption	tends	to	decline	with	
increasing	wealth,	while	in	urban	areas,	it	may	increase	due	to	demand	for	exotic	or	luxury	products.	
Additionally,	wildlife	trade	can	serve	as	a	significant	income	source	for	rural	communities,	especially	in	

(62)	
1	km	x	1	km	

20	km	x	20	km	
2000	-	2020	
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Human	
development	index	

remote	areas	where	rare	species	can	fetch	high	market	prices.	Considering	these	factors,	we	expected	
higher	hunting	pressure	in	poorer	regions	due	to	subsistence	needs,	but	also	some	positive	association	
with	wealthier	areas	where	wildlife	products	are	valued	as	luxury	commodities.	 (63)	 regional	scale	 1990	-	2015	

Human	population	
density	

Hunting	pressure	is	typically	higher	in	healthier,	less-degraded	forests,	where	wildlife	is	more	
abundant	and	easier	to	encounter.	These	areas	also	tend	to	support	rarer,	specialist	species	that	can	be	
specifically	targeted	due	to	their	high	market	value,	further	increasing	hunting	activity.	

(64)	 1kmx1km	 2000,	2005,	2010,	
2015,	2020	

Forest	cover	 (65)	 30	m	x	30	m	 2000,	2005,	2010,	
2015,	2020	

Net	primary	
productivity	 (66)	 1	km	x	1	km	 2001	-	2021	

Elevation	and	
ground	slope	

Hunting	pressure	is	generally	lower	in	steep,	less	accessible	areas	due	to	the	physical	difficulty	of	
reaching	these	sites	and	the	typically	lower	abundance	of	wildlife,	making	hunting	less	efficient	and	
less	rewarding.	

(67)	 1	km	x	1	km	 2024	

 600 



Supplementary	Information	

Supplementary	Methods	

Data	collection		

To	improve	data	coverage	and	reduce	spatial	biases,	we	conducted	additional	data	mining	focused	on	these	

regions.	For	this,	we	used	the	following	search	string	in	Web	of	Science:	“(road*	OR	settlement*	OR	village	OR	

access*	OR	distance	OR	proximity	OR	impact	OR	effect)	AND	(hunt	OR	bushmeat	OR	wild	meat	OR	poach*	OR	

trade	 	 OR	 snare*)	 AND	 (wildlife	 OR	 vertebr*	 OR	 mammal*	 OR	 bird*	 OR	 avian)	 AND	 (tropic*	 forest	 OR	

ecosystem*)	AND	(Vietnam	OR	China	OR	Laos	OR	Taiwan	OR	Philippines	OR	Cambodia	OR	India	OR	Papua	New	

Guinea	OR	Borneo	OR	Java	OR	Sri	Lanka	OR	Myanmar	OR	Mozambique	OR	Madagascar	OR	Nigeria	OR	Cuba	OR	

Puerto	 Rico	 OR	 Dominican	 Republic	 OR	 Trinidad	 and	 Tobago	 OR	 Sao	 Tome	 OR	 Mauritius)”.	 This	 search	

returned	1,509	hits,	from	which	we	extracted	relevant	spatial	information	on	hunting	activities	and	were	thus	

included	 in	 our	 dataset.	 Additionally,	 sites	 with	missing	 values	 for	 some	 predictors	 (detailed	 in	 the	main	

manuscript)	were	removed	and	the	remaining	sites	were	manually	checked	to	ensure	that	forest	cover	was	

reliable	for	the	site.	

Model	building	

Monte	Carlo	Cross-Validation	(MCCV)	involved	100	iterations	of	randomly	splitting	the	training-validation	data	

into	70%	training	and	30%	validation.	For	each	iteration,	we	assessed	model	performance	using	the	mean	log	

loss	between	observed	and	predicted	hunting	status.	The	best	model	was	 then	trained	on	the	 full	 training-

validation	dataset	using	the	hyperparameters	that	minimized	the	average	log	loss	across	all	100	splits	using	

the	 randomForest()	 function	 of	 the	 randomForest	 R	 package	 (Liaw	 &	Wiener,	 2002).	 Model	 training	 and	

prediction	for	the	MCCV	were	performed	using	the	ranger()	and	predict()	functions	from	the	ranger	R	package	

(Wright	et	al.,	2015).	We	chose	randomForest()	to	train	the	fine-tuned	model	because	the	predict()	function	of	

the	randomForest	R	package	outperformed	the	one	of	the	ranger	R	package	in	terms	of	computation	times.	

Model	performance	

Prior	to	predicting	hunting	pressure	across	the	pantropical	forest	zone,	we	checked	if	calibration	was	needed	

for	 each	 model's	 predictions,	 i.e.,	 prediction	 obtained	 from	 the	 fine-tuned	 models	 for	 the	 test	 dataset,	 to	

facilitate	probabilistic	interpretation	and	mitigate	overfitting	—	a	crucial	step	to	prevent	a	complete	dichotomy	

between	hunted	and	non-hunted	sites.	We	used	generalized	linear	models	with	a	binomial	distribution,	fitting	

them	 to	 the	 observed	 site	 type	 (hunted	 or	 non-hunted)	 using	 the	 glm()	 function.	 Once	 the	 models	 were	

appropriately	 fitted,	we	used	 them	to	re-predict	hunting	pressure,	using	 the	same	predictive	values.	These	

recalibrated	predictions	were	then	compared	against	observed	hunting	status	to	check	calibration.	



Predictions	

To	compute	the	raster	layer	measuring	the	distance	to	the	nearest	protected	area	at	a	1	km	×	1	km	resolution,	

we	calculated	distances	based	on	the	centroid	of	each	grid	cell.	Specifically,	 for	every	1	km	×	1	km	grid	cell	

across	the	tropics,	we	determined	the	absolute	distance	from	its	centroid	to	the	nearest	boundary	of	a	protected	

area.	 This	 calculation	 was	 performed	 sequentially	 using	 the	sf_join()	function	 (with	 the	 parameter	“join	 =	

st_nearest_feature”)	and	the	st_distance()	function	from	the	sf	R	package	(Pebesma,	2018).	

Distances	 to	 human	 settlements	were	 calculated	 for	 each	 1	 km	 ×	 1	 km	 grid	 cell	 using	 the	World	

Settlement	Footprint	(WSF®)	dataset	(Marconcini	et	al.,	2021),	which	provides	high-resolution	(30	m	×	30	m)	

annual	settlement	data	from	1985	to	2015.	We	aggregated	these	settlement	pixels	to	the	1	km	grid	scale	by	

classifying	grid	cells	as	'1'	if	they	contained	any	settlement	pixel,	or	'0'	otherwise.	Grid	cells	containing	at	least	

one	settlement	pixel,	classified	as	‘1’,	were	assigned	zero.	For	grid	cells	classified	as	'0'	(no	settlements),	we	

computed	 the	 distance	 to	 the	 nearest	 settlement	 cell.	 Before	 distance	 calculations,	 urban	 settlements	 and	

settlements	 located	close	 to	cities	 (travel	 time	<	5	min	 to	major	 towns,	 following	Weiss	et	al.,	2015)	or	on	

artificial	land-use	types	(Copernicus	Land	Cover	maps)	were	excluded.	Distance	computations	were	performed	

using	an	equal-area	Mollweide	projection.	

Other	data	layers	were	directly	utilized	without	modification,	except	for	certain	regional	predictors	

that	 required	 aggregation.	 Specifically,	 gross	 domestic	 product	 (GDP),	 population	 density,	 and	 livestock	

biomass	were	aggregated	accordingly,	as	was	the	forest	cover	percentage,	which	were	aggregated	over	areas	

equivalent	to	buffer	zones	of	1	km	and	20	km	radius,	respectively.	

Realm-specific	models	

In	addition	to	the	global	models,	we	also	fine-tuned	and	trained	separate	random	forest	models	for	each	tropical	

realm	by	 filtering	 the	 dataset	 accordingly.	 These	 realm-specific	models	 followed	 the	 same	 framework	 and	

procedures	 as	 the	 global	 model.	 In	 this	 SI	 Appendix,	 we	 provide	 the	 corresponding	 results	 for	 model	

performance	(goodness-of-fit	metrics)	and	the	relationships	between	predictors	and	the	probability	of	hunting	

(Fig.	S15-S21)	

	

Supplementary	Results	

Model	performance	

The	model	presented	in	the	main	article	was	selected	based	on	superior	performance	across	several	goodness-

of-fit	metrics:	Matthew	correlation	coefficient	(MCC),	F1-score,	accuracy,	area	under	the	receiving	operating	

curve	(AUC),	true	positive	rate	(TPR),	and	true	negative	rate	(TNR);	and	its	capacity	to	effectively	represent	

spatial	variations	in	hunting	pressure.	Among	the	various	tested	strategies,	random	splitting	combined	with	



either	 downsampling	 or	 class	 weighting	 methods	 to	 address	 class	 imbalance	 yielded	 the	 best	 predictive	

performance,	demonstrating	consistently	high	and	stable	results	across	the	10	random	forests	(Fig.	S1).	

However,	the	distribution	of	predicted	values	before	and	after	calibration	differed	notably	between	

downsampling	and	 class-weighting.	Downsampling	exhibited	greater	variance	and	 less	 skewed	predictions	

compared	to	class	weighting	(Fig.	S2	and	S3).	Calibration	did	not	negatively	affect	goodness-of-fit	metrics	and	

improved	the	correlation	between	observed	and	predicted	hunting	pressure	values	(Fig.	S4	and	S5).	Based	on	

these	findings,	we	presented,	in	the	result	section,	the	results	obtained	with	calibrated	random	forests	trained	

with	random	splitting	and	combined	with	downsampling.	For	transparency,	additional	maps	from	uncalibrated	

models	are	also	provided.	

	

Supplementary	Figures	

Figure	S1.	Goodness-of-fit	metrics	for	six	supervised	learning	approaches	during	the	testing	phase.	We	

evaluated	the	performance	of	six	modeling	strategies,	combining	two	data-splitting	methods,	random	k-fold	

cross-validation	 and	 spatial	 blocking,	with	 three	 approaches	 for	handling	 class	 imbalance:	 class	weighting,	

downsampling,	and	SMOTE.	For	each	strategy,	10	random	forest	models	were	trained,	with	training-validation	

and	testing	datasets	generated	either	randomly	or	using	spatial	blocking.	Model	performance	was	assessed	

using	 six	 key	metrics:	Matthew	 correlation	 coefficient	 (MCC),	 F1-score,	 accuracy,	 area	 under	 the	 receiving	

operating	curve	(AUC),	true	positive	rate	(TPR),	and	true	negative	rate	(TNR).	These	metrics	were	calculated	



by	 comparing	 observed	 and	 predicted	 site	 classifications	 (hunted	 vs	 non-hunted)	 in	 the	 testing	 datasets,	

following	model	 fine-tuning	 on	 the	 training-validation	 sets	 using	Monte	 Carlo	 cross-validation	 to	 optimize	

hyperparameters.	 	



	

Figure	 S2.	 Distribution	 of	 predicted	 hunting	 pressure	 values	 (without	 calibration)	 under	 two	

approaches	for	handling	class	imbalance:	downsampling	and	class	weighting.	Both	models	were	trained	

using	random	k-fold	cross-validation.	 	
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Figure	S3.	Distribution	of	predicted	hunting	pressure	values	(with	calibration)	under	two	approaches	

for	handling	class	imbalance:	downsampling	and	class	weighting.	Both	models	were	trained	using	random	

k-fold	cross-validation.	 	
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Figure	 S4.	 Comparison	 of	 goodness-of-fit	 metrics	 between	 uncalibrated	 and	 calibrated	 supervised	

learning	models.	Both	approaches	use	random	k-fold	cross-validation	and	downsampling	 to	address	class	

imbalance.	 	
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Figure	 S5.	 Comparison	 between	 observed	 and	 predicted	 values	 for	 uncalibrated	 and	 calibrated	

supervised	 learning	models.	Both	 approaches	 use	 random	 k-fold	 cross-validation	 and	 downsampling	 to	

address	class	imbalance.	 	
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Figure	S6.	Global	importance	of	ecological	and	socio-economic	predictors	in	10	random	forest	models.	

Mean	 absolute	 SHAP	 (SHapley	 Additive	 exPlanations)	 values	 are	 displayed	 to	 summarize	 the	 overall	

importance	of	each	predictor	across	models.	The	brackets	represent	the	standard	deviation	and	the	white	dot	

the	mean.	 	



	

Figure	S7.	Marginal	effects	of	ecological	and	socio-economic	predictors	 in	10	random	forest	models	

using	downsampling.	SHAP	values	were	used	to	assess	the	importance	of	each	predictor	on	the	predicted	

probability	of	a	site	being	classified	as	hunted	(i.e.,	hunting	pressure).	Each	point	represents	a	prediction	for	an	

individual	site,	based	on	ecological	and	socio-economic	predictors,	using	the	previously	trained	random	forest	

classifiers.	Positive	SHAP	values	indicate	that	a	given	predictor	increases	the	likelihood	of	a	site	being	classified	

as	hunted,	while	negative	SHAP	values	suggest	an	association	with	non-hunted	status.	A	non-linear	regression	

line	is	included	to	visualize	the	shape	of	each	predictor’s	importance.	Additionally,	mean	absolute	SHAP	values	

are	displayed	to	summarize	the	overall	importance	of	each	predictor	across	models.	 	



	
Figure	S8.	Spatial	variation	in	predicted	hunting	pressure	in	tropical	forests	across	countries	in	2015.	

Hunting	pressure	was	predicted	for	each	1	km	×	1	km	grid	cell	using	spatially	explicit	environmental	and	socio-

economic	predictors	from	2015	(or	the	closest	available	year)	and	aggregated	by	country	to	provide	a	mean	

value	of	pressure	per	country.	Predictions	represent	the	median	values	from	10	independently	trained	and	

fine-tuned	random	forest	models,	each	calibrated	using	random	k-fold	cross-validation	and	downsampling	to	

address	class	imbalance	(hunted	vs.	non-hunted	sites).	Hunting	pressure	is	displayed	on	a	continuous	scale	

from	0	to	1,	with	color	breaks	at	0.1	intervals.	 	



	
Figure	S9.	Spatial	variation	in	predicted	hunting	pressure	in	tropical	forests	across	ecoregion	in	2015.	

Hunting	pressure	was	predicted	for	each	1	km	×	1	km	grid	cell	using	spatially	explicit	environmental	and	socio-

economic	predictors	from	2015	(or	the	closest	available	year)	and	aggregated	by	ecoregion	to	provide	a	mean	

value	of	pressure	per	ecoregion.	Predictions	represent	the	median	values	from	10	independently	trained	and	

fine-tuned	random	forest	models,	each	calibrated	using	random	k-fold	cross-validation	and	downsampling	to	

address	class	imbalance	(hunted	vs.	non-hunted	sites).	Hunting	pressure	is	displayed	on	a	continuous	scale	

from	0	to	1,	with	color	breaks	at	0.1	intervals.	 	



	

Figure	S10.	Spatio-temporal	variation	in	predicted	hunting	pressure	in	tropical	forests	across	countries	

between	2000	and	2015.	The	labels	represent	the	ISO	country	codes,	the	position	of	each	label	or	the	grey	

stick	pointing	to	its	estimated	hunting	pressure	and	change.	A	positive	change	indicates	an	increase	in	hunting	

pressure	between	2000	and	2015.	 	
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Figure	S11.	Spatio-temporal	variation	in	predicted	hunting	pressure	in	tropical	forests	across	countries	

between	2000	and	2015.	 Each	 country	 is	 represented	as	 a	point,	where	point	 size	 is	proportional	 to	 the	

proportion	of	 the	 country	where	hunting	 could	occur.	The	x-axis	 represents	predicted	hunting	pressure	 in	

2015,	 and	 the	 y-axis	 represents	 change	 in	 pressure	 between	 2000	 and	 2015.	 Red	 dashed	 lines	 indicate	

reference	thresholds:	a	pressure	value	of	0.5	and	no	change	(i.e.,	change	=	0).	A	positive	change	indicates	an	

increase	in	hunting	pressure	between	2000	and	2015.	 	
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Figure	 S12.	 Spatio-temporal	 variation	 in	 predicted	 hunting	 pressure	 in	 tropical	 forests	 across	

ecoregions	 between	 2000	 and	 2015.	 Each	 ecoregion	 is	 represented	 by	 a	 point	 where	 point	 size	 is	

proportional	 to	 the	proportion	 of	 the	 country	where	hunting	 could	 occur.	 The	 x-axis	 represents	 predicted	

hunting	pressure	in	2015,	and	the	y-axis	represents	change	in	pressure	between	2000	and	2015.	Red	dashed	

lines	indicate	reference	thresholds:	a	pressure	value	of	0.5	and	no	change	(i.e.,	change	=	0).	A	positive	change	

indicates	an	increase	in	hunting	pressure	between	2000	and	2015.	 	
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Figure	S13.	Spatio-temporal	variation	in	predicted	hunting	pressure	in	tropical	forests	across	countries	

between	2000	and	2015.	Hunting	pressure	was	predicted	at	a	1	km	×	1	km	resolution	using	spatially	explicit	

environmental	and	socio-economic	predictors	from	2000	and	2015	(or	the	closest	available	years).	Predictions	

correspond	 to	 the	 median	 values	 from	 10	 independently	 trained	 and	 fine-tuned	 random	 forest	 models,	

calibrated	using	random	k-fold	cross-validation	and	downsampling	to	correct	for	class	imbalance	(hunted	vs.	

non-hunted	sites).	The	pressure	values	represent	predicted	hunting	pressure	 in	2015,	while	change	values	

indicate	 the	 difference	 between	 2015	 and	 2000	 predictions,	where	 negative	 values	 reflect	 a	 decrease	 and	

positive	values	an	increase	in	pressure	over	time.	Both	metrics	are	categorized	by	percentiles	(0–20%,	20–

40%,	40–60%,	60–80%,	80–100%).	Pressure	and	change	were	then	aggregated	by	country	to	provide	a	mean	

value	of	pressure	and	change	per	country.	Combinations	of	pressure	and	change	percentiles	are	color-coded	as	

grey:	low	pressure	and	decreasing	pressure,	yellow:	high	pressure	and	decreasing	pressure,	blue:	low	pressure	

and	increasing	pressure	or	purple:	high	pressure	and	increasing	pressure.	 	



Figure	 S14.	 Spatio-temporal	 variation	 in	 predicted	 hunting	 pressure	 in	 tropical	 forests	 across	

ecoregions	between	2000	and	2015.	Hunting	pressure	was	predicted	at	a	1	km	×	1	km	resolution	using	

spatially	explicit	environmental	and	socio-economic	predictors	from	2000	and	2015	(or	the	closest	available	

years).	Predictions	correspond	to	the	median	values	from	10	independently	trained	and	fine-tuned	random	

forest	 models,	 calibrated	 using	 random	 k-fold	 cross-validation	 and	 downsampling	 to	 correct	 for	 class	

imbalance	(hunted	vs.	non-hunted	sites).	The	pressure	values	represent	predicted	hunting	pressure	in	2015,	

while	change	values	indicate	the	difference	between	2015	and	2000	predictions,	where	negative	values	reflect	

a	decrease	and	positive	values	an	increase	in	pressure	over	time.	Both	metrics	are	categorized	by	percentiles	

(0–20%,	20–40%,	40–60%,	60–80%,	80–100%).	Pressure	and	change	were	then	aggregated	by	ecoregion	to	

provide	a	mean	value	of	pressure	and	change	per	ecoregion.	Combinations	of	pressure	and	change	percentiles	

are	color-coded	as	grey:	low	pressure	and	decreasing	pressure,	yellow:	high	pressure	and	decreasing	pressure,	

blue:	low	pressure	and	increasing	pressure	or	purple:	high	pressure	and	increasing	pressure.	 	



Figure	S15.	Comparison	of	goodness-of-fit	metrics	between	supervised	learning	models	fine-tuned	and	

trained	 independently	 for	 each	 realm.	 All	 approaches	 use	 random	 k-fold	 cross-validation	 and	

downsampling	to	address	class	imbalance.	 	



	

Figure	S16.	Global	importance	of	ecological	and	socio-economic	predictors	in	10	random	forest	models	

for	the	Neotropics.	Mean	absolute	SHAP	values	are	displayed	to	summarize	the	overall	importance	of	each	

predictor	across	models.	The	brackets	represent	the	standard	deviation	and	the	white	dot	the	mean.	 	



	
Figure	S17.	Global	importance	of	ecological	and	socio-economic	predictors	in	10	random	forest	models	

for	the	Afrotropics.	Mean	absolute	SHAP	values	are	displayed	to	summarize	the	overall	importance	of	each	

predictor	across	models.	The	brackets	represent	the	standard	deviation	and	the	white	dot	the	mean.	 	



Figure	S18.	Global	importance	of	ecological	and	socio-economic	predictors	in	10	random	forest	models	

for	the	Indomalayan	realm.	Mean	absolute	SHAP	values	are	displayed	to	summarize	the	overall	importance	

of	each	predictor	across	models.	The	brackets	represent	the	standard	deviation	and	the	white	dot	the	mean.	 	



Figure	S19.	Marginal	effects	of	ecological	and	socio-economic	predictors	in	10	random	forest	models	

using	downsampling	for	the	Neotropics.	SHAP	values	were	used	to	assess	the	importance	of	each	predictor	

on	the	predicted	probability	of	a	site	being	classified	as	hunted	(i.e.,	hunting	pressure).	Each	point	represents	

a	prediction	for	an	individual	site	in	the	Neotropics,	based	on	ecological	and	socio-economic	predictors,	using	

the	previously	trained	random	forest	classifiers.	Positive	SHAP	values	indicate	that	a	given	predictor	increases	

the	likelihood	of	a	site	being	classified	as	hunted,	while	negative	SHAP	values	suggest	an	association	with	non-

hunted	 status.	A	non-linear	 regression	 line	 is	 included	 to	 visualize	 the	 shape	of	 each	predictor’s	 influence.	

Additionally,	mean	absolute	SHAP	values	are	displayed	to	summarize	the	overall	importance	of	each	predictor	

across	models.	 	



	

Figure	S20.	Marginal	effects	of	ecological	and	socio-economic	predictors	in	10	random	forest	models	

using	downsampling	for	the	Afrotropics.	SHAP	values	were	used	to	assess	the	importance	of	each	predictor	

on	the	predicted	probability	of	a	site	being	classified	as	hunted	(i.e.,	hunting	pressure).	Each	point	represents	

a	prediction	for	an	individual	site	in	the	Afrotropics,	based	on	ecological	and	socio-economic	predictors,	using	

the	previously	trained	random	forest	classifiers.	Positive	SHAP	values	indicate	that	a	given	predictor	increases	

the	likelihood	of	a	site	being	classified	as	hunted,	while	negative	SHAP	values	suggest	an	association	with	non-

hunted	 status.	A	non-linear	 regression	 line	 is	 included	 to	 visualize	 the	 shape	of	 each	predictor’s	 influence.	

Additionally,	mean	absolute	SHAP	values	are	displayed	to	summarize	the	overall	importance	of	each	predictor	

across	models.	 	



	
Figure	S21.	Marginal	effects	of	ecological	and	socio-economic	predictors	in	10	random	forest	models	

using	downsampling	for	the	Indomalayan	realm.	SHAP	values	were	used	to	assess	the	importance	of	each	

predictor	on	the	predicted	probability	of	a	site	being	classified	as	hunted	(i.e.,	hunting	pressure).	Each	point	

represents	a	prediction	for	an	individual	site	in	the	Indomalayan	realm,	based	on	ecological	and	socio-economic	

predictors,	using	the	previously	trained	random	forest	classifiers.	Positive	SHAP	values	indicate	that	a	given	

predictor	increases	the	likelihood	of	a	site	being	classified	as	hunted,	while	negative	SHAP	values	suggest	an	

association	with	non-hunted	 status.	A	non-linear	 regression	 line	 is	 included	 to	 visualize	 the	 shape	of	 each	

predictor’s	 influence.	 Additionally,	 mean	 absolute	 SHAP	 values	 are	 displayed	 to	 summarize	 the	 overall	

importance	of	each	predictor	across	models	

	 	



	

	
Figure	S22.	Geographic	distribution	of	study	sites	and	their	hunting	status	across	tropical	forests.	Map	

showing	the	spatial	distribution	of	all	study	sites	used	in	the	analysis	across	the	tropical	biome,	color-coded	by	

hunting	 status.	 Each	 point	 represents	 a	 site	 classified	 as	 either	 hunted	 or	 non-hunted.	 This	 distribution	

highlights	spatial	coverage	across	the	Neotropical,	Afrotropical	and	Indomalayan	realms	and	the	imbalance	in	

sample	representation	between	hunted	and	non-hunted	sites.	 	
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