
1 
 

 

Demographic causes of the pesticide crash in the peregrine falcon 

 

 

Marc Kéry1,3, René-Jean Monneret2, Jaume A. Badia-Boher1, & Michael Schaub1 

 

 

 

1 Population Biology Research Unit, Swiss Ornithological Institute, Seerose 1,  

6204 Sempach, Switzerland 

2 Moulin du Haut, 39140 Arlay, France 

3 contact & corresponding author: marc.kery@vogelwarte.ch 

 

 

Open Research 

Data and R and JAGS code used in this publication will be posted on Zenodo upon 

acceptance. They are currently here (see this LINK). 

 

 

 

Key-words: autoregressive smoothing; cyclodiene; DDT; demography; Dieldrin, 

ecotoxicology, integrated population model (IPM); pesticide crash; random effects, time-

series 

  

https://www.dropbox.com/scl/fo/ym8sl5xo0fkz0qhuyzpzm/AJFy8EHafIh8DaiA6EIzQxM?rlkey=fxjewuc806ambh47y6tg2brwb&st=ui08wjis&dl=0


2 
 

Abstract 

Population crashes in many avian predators during the 1950–70s, caused by organochlorine 

pesticides, belong to the most spectacular cases in the history of conservation and 

ecotoxicology. Negative effects of DDT on eggshell thickness, leading to egg breakage and 

declining productivity, are well-documented. In addition, cyclodiene pesticides such as 

Dieldrin were strongly suspected to contribute to crashes by increasing mortality, but the 

hypothesis of a contribution of survival to the crash could never be tested directly owing to a 

lack of early enough data and suitable analyses. We studied the demography of a large 

population of the peregrine falcon (Falco peregrinus) in the Jura mountains over 60 years 

(1964–2023), from crash to recovery. We combined in an integrated population model ring-

recovery, productivity and population count data, tested for a reduction in survival during 

crash years and used retrospective analysis to compare the relative importance of survival and 

productivity for population dynamics. Incidentally, we discovered that for data with unequal 

sample sizes over time, only an autoregressive time-series formulation properly captured 

annual trajectories of demographic parameters, while traditional models with unstructured 

temporal random effects, assuming stationarity, did not. The population crash continued until 

the early 1970s, and subsequent recovery was not complete until the early 2000s. 

Productivity was greatly reduced during the crash and increased afterwards. Between 1964 

and 1978, adult survival was strongly reduced, recovering from 0.62 (0.46–0.75) to 0.85 

(0.77–0.91), while juvenile survival showed a long-term decline. The variance of the 

population growth rate was primarily explained by adult survival (67%), followed by 

productivity and juvenile survival (16% each). Hence, our study reveals an overwhelming 

effect of adult survival rather than productivity in the pesticide crash and recovery in this 

peregrine population. This is arguably the first time that the hypothesis, that survival was the 

major cause of the pesticide crash, was tested and corroborated. The success of our detective 

story illustrates well the key role of intensive long-term monitoring schemes: in combination 

with modern analytics, they can generate critical demographic knowledge with wide 

conservation implications and thus serve as invaluable environmental early-warning systems. 
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Introduction 

Understanding the dynamics of natural populations lies at the heart of ecology. Sometimes, 

extreme events lead to extreme dynamics, such as population crashes or even extinction. Two 

of the most highly publicized cases of such crashes during the last 100 years involved 

vultures in South Asia during the 1990s (Oaks et al. 2004) and several raptor species feeding 

on birds and fish in most parts of the world in the 1950s–1970s (Hickey & Anderson 1968, 

Hickey 1969). Perhaps owing to the extraordinary magnitude of the declines, it soon became 

apparent that only a small number of causes could be involved. And indeed, the main 

mechanisms underlying both crashes were identified within about a decade. 

In both, chemical substances widely used in agriculture proved to be the culprits. In 

the former, the use of Diclofenac in cattle breeding caused renal failure in vultures who fed 

on carcasses contaminated by Diclofenac and led to catastrophic mortality (Oaks et al. 2004). 

In the latter, organochlorine pesticides such as DDT were shown to be responsible, leading to 

reductions in eggshell thickness, increases of egg breakage and declining productivity. This 

resulted in strong population declines in all affected species (Newton 1979, 1998, Ratcliffe 

1993), and produced what has since been dubbed the 'pesticide crash'. For instance, in the 

entire eastern half of the Unites States the iconic peregrine falcon (Falco peregrinus) became 

extinct during the 1960s, while this huge area had originally hosted several hundred pairs 

(Hickey 1969). Likewise, thousands of pairs in Fennoscandia were diminished to barely a 

few dozen right after the crash (Cade et al. 1988). 

In lab experiments and observational studies, DDT was shown to lead to egg-shell 

thinning in many bird species (Ratcliffe 1967, 1970, Hickey & Anderson 1968), causing egg 

breakage and greatly reduced productivity, and in addition may also be directly toxic 

(Wurster et al. 1965, Van Velzen et al. 1972). Indeed, reduced productivity was a hallmark of 

the crash in all species affected (Cade et al. 1988). However, especially in Europe, Newton 

(1979, 1998), Ratcliffe (1993) and Sibly et al. (2000) pointed out that crashes were too drastic 

to be caused by decreased productivity alone and suggested that reduced survival was a major 

factor in the crash. In Europe, cyclodiene organochlorine pesticides such as Dieldrin were 

widely used as seed-dressings just prior to the crash and were known in several cases to cause 

catastrophic mortality in birds, occurring at lethal levels in the bodies of birds found dead 

(Ratcliffe 1993, Newton 1979, 1998). But however well-founded the hypothesis of reduced 

survival as a driver of the crash was, it could never be tested directly. This was mostly due to 

the lack of demographic data that reach back far enough in time and perhaps also for a lack of 
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adequate modeling, as we will see. Hence, the relative roles of survival and productivity in 

the pesticide crash have remained unassessed until now (Greenwood 2021, Oli et al. 2023). 

Here, we fit a matrix population model to a combination of population counts and 

productivity data from two adjacent, long-term peregrine population studies in the Jura 

mountains of Switzerland and France over 60 years (1964–2023), starting in the years even 

before the nadir of the crash. We jointly analyse these data in an integrated population model 

(IPM; Besbeas et al. 2002; Schaub & Kéry 2022) alongside Swiss ring-recovery data. The 

early start of these studies with respect to the darkest years of the crash and the availability of 

ringing data from these years provide a unique opportunity to investigate temporal trends in 

survival and recovery in a population severely hit by the crash. In particular, it allows us to 

test whether survival was abnormally low during the crash years, as predicted by Newton 

(1979, 1998) and Ratcliffe (1993). 

Crucially, to infer trajectories of survival and productivity over time we did not adopt 

the usual unstructured temporal random effects that are so widely used for 'batches' of similar 

parameters (Gelman 2005). These assume a stationary process over time and the resulting 

'global smoothing' of annual estimates is likely to mask important time trends when 

stationarity does not hold and when sample sizes vary over time, as they naturally will in a 

population affected by catastrophic dynamics. To overcome these problems, time-series 

modeling for these parameters is required (Johnson & Hoeting 2003; Link & Barker 2010: 

chapter 10; Hefley et al. 2017). The resulting 'local smoothing' avoids problems due to 

unequal amounts of information over time produced by varying sample sizes. To highlight 

the risks of uncritical random-effects modeling assuming stationarity, we compare time-series 

inferences with those under the traditional model with unstructured random effects. 

Our main goal was to investigate the relative roles of survival vs productivity and 

therefore, by implication, primarily of cyclodiene pesticides such as Dieldrin vs DDT in the 

pesticide crash in a large population of the peregrine falcon. A reduction not only of 

productivity but also of survival during the crash years would corroborate the hypothesis that 

survival and cyclodienes had an important role in the pesticide crash, as predicted by 

Ratcliffe (1993) and Newton (1998). We take advantage of time-series modeling of 

demographic parameters, and of two extraordinarily long time-series of population data 

collected by dedicated citizen scientists. This and the combination in an IPM of all data from 

both studies maximizes our power to reveal temporal patterns in the demographic parameters 

over the full 60 years. 

 



5 
 

Study species, study area, and field methods 

Study species 

The peregrine falcon is a medium-sized raptor with a worldwide distribution (Cade 1982). In 

Western Europe, peregrines nest mostly on cliffs and sometimes on buildings and often use 

the same nesting site for decades (Ratcliffe 1993). In our study area, peregrines lay 3–4 eggs 

in March that hatch after about 30 days of incubation. Nestlings fledge in late May and early 

June around 42 days of age (Monneret 2017). The peregrine is arguably the most iconic of 

the victims of the pesticide crashes in many parts of the world during the 1950–70s, when it 

became regionally extinct or very rare in vast parts of North America and Europe (Hickey 

1969; Cade et al. 1988; Sielicki & Mizera 2009). Dramatic reductions in its productivity 

during the crash years are very well-documented (Newton et al. 1989, Ratcliffe 1993). In 

contrast, an important role of survival in the crash has been strongly hypothesized (Newton et 

al. 1989, Ratcliffe 1993), but could never be shown so far. 

 

Study area 

Our study area comprised most parts of the Jura mountains (46°45'N, 5°54'E) in France and 

Switzerland and adjacent areas in southwest Switzerland (Appendix S1). The Jura is a 

limestone range with elevations up to 1718 m and extends over more than 300 km from 

southwest to northeast, being about 100 km at its widest. It is sparsely populated by humans 

and forest cover amounts to almost 50%. Suitable limestone cliffs for nesting abound and 

host a large and fairly dense peregrine population that currently numbers more than 250 

breeding pairs in about 420 known territories (Kéry et al. 2022). 

 

Field methods 

Peregrines in the Jura mountains have been the subject of two long-term population studies 

since the early 1960s. Here, we combined in a single analysis their demographic data over 60 

years (1964–2023). The study on the Swiss side comprised about 5,000 km2 in the 

southwestern tip of Switzerland, most of it in the Jura, but also including some adjacent 

regions on the Plateau and along the northern fringe of the Alps (Appendix S1). This study 

was led by the late Gabriel Banderet until 2016, and afterwards by members of the Swiss 

Ornithological Institute (Jérémy Savioz, Jérémy Gremion). The study on the French side 

comprised the three departments Ain, Jura and Doubs, for a total of about 11,460 km2, and 

has been led by René-Jean Monneret and the Groupe Pèlerin Jura (Monneret et al. 2019). 
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Field methods were similar in both studies. Each spring, the teams tried to visit as 

many previously known territories as possible and to check a large number of other, potential 

nesting cliffs in search of new pairs, typically conducting multiple visits per site each spring. 

The number of pairs counted per year was taken as the usual measure of population size. 

During the nestling stage, cliffs with pairs were visited and brood size was assessed by 

counting young during the mid to late nestling stage (i.e., at 21 days or older) with 20–60x 

telescopes, sometimes during ringing (see below), and occasionally also after fledging at sites 

where it was impossible to view the eyries. In the French study, unsuccessful broods were not 

consistently recorded. Hence, we ignored the French broods with recorded size of zero and 

treated French brood size as zero-truncated in our analysis. In the Swiss study, about 2,200 

chicks were ringed during 1964 and 2014 (Appendix S2). This included the efforts of another 

team led by Michel Juillard in the northern parts of the Swiss Jura during the 1980s and 

1990s. Some 160 (7%) individuals ringed as nestlings were later recovered dead, providing 

data that directly inform our models about survival probability. 

 

Population modeling 

For inference about peregrine demography, we used an integrated population model (Besbeas 

et al. 2002; Schaub & Kéry 2022). That is, we formed the joint likelihood for all data sets 

which, under the usual assumption of independence, is given by the product of a state-space 

likelihood for the population counts, a hurdle Poisson regression for productivity, and a ring-

recovery model for the dead-recovery data. Note that our analysis is an improved version, for 

a much longer time-series of data, of that in Schaub & Kéry (2022: Chapter 12). 

We structured our population model according to a pre-breeding "census", where the 

population is observed in March, and where four age/stage classes are distinguished: first-

year birds that do not breed, second-year birds that do not yet breed, second-year birds that do 

breed, and birds aged three years and older that are all assumed to breed at rate  , which 

denotes the productivity rate, i.e., the number of young produced per breeding pair (Appendix 

S3). Population dynamics is represented by a first-order Markov process where the number of 

individuals in each stage class at time t+1 is a function of their number at time t, and of a 

transition matrix containing demographic parameters for survival and productivity. We 

assumed two age classes for survival: juvenile or first-year survival 1s , i.e., from fledging in 

May of year t to March of year t+1, and adult survival ( 2s ) from March in year t to March in 

year t+1. We further assumed that only a fraction   of second-year birds reproduced. 
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For each country, our stage-classified population model is thus given by the following 

four equations, in which Poisson and binomial distributions are used to accommodate 

demographic stochasticity: 

1,t 1 t 1,t 3,t 4,t~ Poisson(0.5 s ( ))+     +  

2,t 1 2,t 1,t~ Binomial(s (1 ), )+  −   

3,t 1 2,t 1,t~ Binomial(s , )+    

4,t 1 2,t 2,t 3,t 4,t~ Binomial(s , )+  + +  

The number of breeders (i.e., 
3,t 4,t + ) in year t was linked to the observed counts 

yt with a Poisson log-normal distribution, where Gaussian noise terms account for extra-

Poisson temporal variability in the counts, i.e., as t 3,t 4,t ty ~ Poisson(( ) exp( )) +   , with 

2

t ~ Normal(0, )  . We allowed 
2  to vary by study area to account for possibly different 

precision of the counts. 

We decomposed productivity rate   into two parts, brood success ( ) and 

conditional brood size ( ). The former is the probability that a pair successfully raises a 

brood, i.e., that it produces at least one young, while the latter is the mean brood size given 

that a brood is raised, i.e., mean size of broods excluding zeroes. The result is a Poisson 

hurdle model (Dorazio et al. 2013), which can be represented hierarchically as a combination 

of a Bernoulli random variable for brood success and a truncated Poisson random variable for 

conditional brood size, and where mean annual productivity is given by t
t t

t1 exp( )


 = 

− 
. 

We chose the hurdle formulation for biological and practical reasons. First, different 

processes may govern whether a brood is raised at all, and the number of young produced if a 

brood is raised. This will often lead to brood size data that are zero-inflated relative to a 

Poisson. The hurdle model represents two such processes and therefore naturally 

accommodates zero-inflated brood size. Second, our French brood size data were zero-

truncated, and a hurdle model allowed their seamless integration in the analysis under the 

assumption that brood success was identical in both study areas. 

We formulated the ring-recovery part of the IPM for an m-array summary of the data, 

where cell probabilities are functions of juvenile and adult survival and of a recovery 

probability that is assumed to be identical for both ages (Brownie et al. 1985). We expressed 

recovery probability as a logistic function of the year to allow for a possible decline, as has 

been widely observed (Robinson et al. 2009). 
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In summary, we described peregrine population dynamics by five demographic 

parameters: juvenile and adult survival ( 1s  and 2s ), recruitment probability of second-year 

birds ( ), brood success probability ( ) and conditional brood size ( ). We assumed   to 

be constant over time, since experimentation with time variation in this parameter yielded 

extremely imprecise estimates, suggesting that our data did not permit estimation of such a 

pattern. At the same time, we noted a remarkable robustness of all other parameter estimates 

to different specifications of recruitment probability,  . Hence, we think that our results are 

not affected by the somewhat artificial modeling choice of a constant  . 

All other demographic parameters were allowed to vary by year. As a result, our 

models contain 59 survival and 60 productivity parameters. The most widespread approach to 

estimation of such 'batches' of parameters is to treat them as exchangeable, or as temporally 

unstructured random effects (Gelman 2005). After applying a suitable link function, they are 

treated as draws from a normal distribution with a shared mean and variance, and these 

hyperparameters are estimated from the data. One consequence in the context of a time-series 

of parameters is that each year's estimate borrows strength from the ensemble of all years. 

This leads to shrinkage as a sort of global smoothing, where each year's estimate is pulled 

towards the constant shared mean of the time-series (Burnham & White 2002). The degree of 

shrinkage is determined in part by the amount of information about each year's parameters: 

parameters for which there is little information in the data are pulled in more towards the 

shared mean. Shrinkage in random-effects estimation can be beneficial in reducing estimation 

error (Kéry & Royle, 2021: Section 3.3). 

However, the adoption of unstructured temporal random effects critically requires the 

exchangeability assumption for the entire time-series of parameters, also called stationarity. 

Hence, the validity of such traditional random-effects estimates rests on the assumption that 

they all share a common mean and variance. For long parameter time-series and for large 

changes in the population dynamics of a species, this assumption may easily be violated. In 

this case, we need alternative formulations of temporal random effects, which allow for a 

smoothly varying mean over time. These lead to local rather than global smoothing of the 

series, where the amount of shrinkage for the estimate in year t is governed primarily by the 

years surrounding t, and not by all years in the series. In other words, we need a proper time-

series formulation for time-varying parameters (Johnson & Hoeting 2003, Link & Barker 

2010, Hefley et al. 2017). We used a random-walk formulation of temporal autocorrelation in 

the demographic parameters (Link & Barker 2010: chapter 10), where the value of a time-
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series of parameter  , at a suitable link scale g , is expressed as 2

t 1 tg( ) ~ Normal(g( ), )+     

and the initial parameter 1  of the series is estimated by placing a prior on it. Below, we 

compare the inferences under the random-walk model with those under a traditional model 

with unstructured temporal random effects, which assumes stationarity of parameter time-

series. BUGS code for the random-walk model is given in Appendix S4. 

Based on the parameter estimates from the random-walk model for Swiss and French 

data combined, we then conducted a retrospective analysis (transient life-table response 

experiment, or tLTRE; Koons et al. 2016, 2017). We decomposed the temporal variance of 

the observed annual population growth rate into contributions from time-varying 

demographic rates and population structure. We thus assessed the degree to which temporal 

variability of demographic rates and population structure, and their temporal covariation, 

contributed to the variation in the observed population growth rate during our study period. 

We conducted a posterior predictive check to test the goodness of fit (GoF) of the 

model with random walk, using the Freeman-Tukey statistic as a discrepancy measure (Kéry 

& Royle, 2016: Chapter 2). This suggested adequate fit for the Swiss data, but moderate lack 

of fit of the French data, especially for the French fecundity data (Appendix S5). However, 

this lack of fit went into the opposite direction of what is usually seen for a model that fails a 

GoF test: data simulated under the model were more variable than the actual data. That is, we 

found a case of underdispersion, which is perhaps not surprising for brood size. In addition, 

refitting the model without the French productivity data (unpub. analysis) led to no relevant 

change in the posteriors of our key estimands, juvenile and adult survival. For these reasons, 

we assumed that the lack of fit of the model for the French data was innocuous. 

We used Bayesian inference and fitted the IPMs using MCMC techniques in program 

JAGS (Plummer 2003), run from R (R Core Team 2019) via the 'jagsUI' package (Kellner 

2024). We ran four chains to convergence, as judged by visual inspection of trace plots and 

by values of the Brooks-Gelman-Rubin statistic Rhat < 1.1 (Kéry & Royle, 2021: Chapter 2). 

 

 

Results 

Evolution of population size during the 60-year study period 

Peregrine population levels were different in the Swiss and French study areas, but the shape 

of the population trajectory was similar: the minimum population size was reached around 

1970 and full recovery 30 years later, by the early 2000s (Fig. 1). In the Swiss subpopulation, 
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only six pairs were left in 1964 and further decline led to local extinction in several years 

between 1971 and 1976. This was followed by recovery to about 50 pairs during 2000–2011, 

with another decline to around 40 pairs towards the end of the study period. In the much 

larger French subpopulation, numbers declined from 58 pairs in 1964 to a minimum of ~20 in 

1969–1972. and then recovered to about 200 pairs during 2002–2023. 

 

Comparison of two models with random time effects for the Swiss data 

We first explored two IPM formulations for the more complete Swiss data. We fitted one 

traditional IPM with unstructured random time effects for all vital rates around a constant 

mean, i.a., assuming stationarity, and another IPM with a random walk for the vital rates (Fig. 

2). The estimated logistic regression of recovery probability was very similar, showing a 

decline over time (Appendix S6), but the temporal patterns inferred for all four demographic 

parameters were very different. The IPM with unstructured temporal random effects 

suggested mere fluctuations without any long-term trend during the entire 60 years. In sharp 

contrast, the random-walk model suggested recovery of adult survival, brood success, and 

conditional brood size over the initial 10–30 years, and a long-term decline in juvenile 

survival over the entire study period. So, which model should we now use for inference about 

peregrine demography during the crash? 

 

Different smoothing behaviour elucidated by a simple case study with Swiss productivity 

To better understand the behaviour of the two models with global and local smoothing, we 

first investigated Swiss productivity alone, since here we can compare estimates under both 

models with the observed data. It is very well known that peregrine productivity was strongly 

depressed during the crash (Hickey 1969, Cade et al. 1988, Ratcliffe 1993), and this provides 

a strong expectation to gauge the inferences from an adequate model. We fitted two IPMs to 

the Swiss data that had either unstructured random or random-walk random effects of time in 

juvenile and adult survival and productivity and did not decompose the latter. 

Figure 3 shows the observed time-series of mean productivity, with symbol size 

proportional to sample size, i.e., the number of broods. Information on brood size before 

1980 is scarce, but by this time productivity had already fully recovered. Due to the 

imbalance in the data, the estimates under the traditional random-effects IPM with 

unstructured random time effects (red polygon) are largely informed by the post-crash years. 

Therefore, the estimates during the crash years are strongly shrunk towards the post-crash 

mean and this completely masks the strong reduction of productivity during the crash. In 
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contrast, the IPM-based estimate with a random-walk (blue polygon in Fig. 3) closely reflects 

the observed time-series of the demographic parameter. 

Analogous behavior is apparent when fitting two simple regression models to the 

productivity data alone, one with a constant mean and the other with a spline of year, i.e., 

another local smoothing technique. The model with constant mean (red line in Fig. 3) 

completely misses the extraordinariness of the crash years, while the spline model (blue line 

in Fig. 3) correctly identifies this crucial demographic pattern. Indeed, the estimates of the 

latter are very similar to those from the random-walk IPM. Therefore, we assumed that only 

the random-walk model adequately captured the temporal patterns in the parameters driving 

peregrine falcon demography. As a result, we used the random-walk model for inferences 

about demography for the combined data from the Swiss and the French studies. 

 

Inferences about demographic rates under the random-walk model 

From estimates for both studies combined, juvenile survival declined from a maximum of 

0.62 (95% CRI 0.37–0.87) in 1974 to a minimum of 0.43 (0.25–0.59) in 2015 (Fig. 4a). 

During the crash years, adult survival was strongly depressed, and during the initial 14 years, 

i.e., from 1964 to 1978, it greatly increased from 0.62 (0.49–0.75) to 0.85 (0.77–0.91) and 

fluctuated afterwards (Fig. 4b). Brood success probability increased from 0.53 (0.33–0.68) in 

1964 to 0.64 (0.54–0.77) over the initial 13 years and likewise fluctuated afterwards (Fig. 4c). 

Conditional brood size increased from 1.31 (1.05–1.59) in 1964 to 2.39 (2.23–2.57) in 1997 

and declined somewhat later (Fig. 4d). Thus, three of four demographic parameters showed a 

strong increase during the 1960s and 1970s or even later. Comparing the estimated adult 

survival at its maximum in 1978 with that in 1964 yields a probability of >0.999 for a 

reduction of adult survival during the pesticide crash (Fig. 5). See Appendix S7 for posterior 

summaries of all parameters under the random-walk model. 

To check for the robustness of the key result on the drop of adult survival during the 

crash, we conducted a prior sensitivity analysis where we re-fitted the model with four 

different informative priors for the two initial survival probabilities in the 1964–1965 interval 

(Appendix S8). This revealed moderate prior sensitivity for juvenile survival during the 

initial 10–20 years, but almost no sensitivity to prior choice of adult survival or juvenile 

survival later on. Thus, in spite of the small sample size of the ring-recovery data during the 

crash years, our findings about adult survival appear to be remarkably robust. 

Predictions of population size under our IPM agreed well with the observed trajectory 

of population sizes in both study areas (Appendix S9). Estimated state structure distributions 
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for both study areas separately are shown in Appendices S10 and S11. They show how the 

estimated proportion of nonbreeders, or floaters, declined in Switzerland from about 0.5 

during the mid-1970s to about 0.3 during the recent decade, but remained approximately 

constant near 0.4 in France. 

 

Relative effects on population dynamics of vital rates and population structure 

Retrospective analysis by tLTRE revealed that adult survival explained a full two third (67%) 

of the observed variance in the population growth rate, while juvenile survival and the two 

productivity components combined explained 16% each. The contribution of changes in the 

population stage structure to population growth was negligible (Fig. 6). 

 

 

Discussion 

Demographic process and patterns of the pesticide crash 

Population crashes in many raptors during the 1950s–1970s, caused by organochlorine 

pesticides, are among the most dramatic declines known of any vertebrate population. 

However, the demographic mechanisms underlying this 'pesticide crash' were only implied 

(Ratcliffe 1993, Newton 1998, Sibly et al. 2000), but until now have not been tested directly. 

Specifically, the relative roles of DDT, leading primarily to reproductive failure, and of 

cyclodienes such as Dieldrin, leading to increased mortality, have never been assessed in any 

wild population, due to the lack of long-enough ringing data and adequate analytical 

methodology. All previously published survival analyses on affected species, such as Mearns 

& Newton (1984), Smith et al. (2015) or Robinson & Wilson (2021), used data from the 

1970s or later, missing most or all of the crash years in their study region. Sibly et al. (2000) 

is a theoretical study showing how a reduction in survival causes decreased population 

growth in the sparrowhawk Accipiter nisus. 

Here, in a 60-year study of a large population of the peregrine, one of the species most 

affected by the crash, we found greatly reduced adult survival during the crash years and a 

dominant influence of adult survival on the observed population dynamics. This is the first 

time that the role of survival in the pesticide crash could be directly demonstrated for any 

species in the wild. Our study thus confirms the prediction that reduced survival had a crucial 

role in the crash (Newton et al. 1989, Ratcliffe 1993, Newton 1998, Sibly et al. 2000, 

Greenwood 2021, Oli et al. 2023). 
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In the Jura peregrine population, recovery slowed over time as one expects for any 

population regulated by density-dependence and was complete after about 30 years. From our 

demographic estimates (Appendix S7), generation time can be estimated at 5.5 years 

(Caswell 2001). Thus, it took about five generations for the population to reach a new more 

or less stable level, showing how exceptional of a catastrophe the pesticide crash was. 

Not all demographic rates exhibited the same temporal trajectory: adult survival was 

essentially back to normal by the late 1970s, while conditional brood size reached a plateau 

only by the early 2000s. This is probably due to different persistence rates of the pesticides 

involved (Ian Newton, pers. comm.). In soils, the half-life of DDE (the chemical derivative of 

DDT) is 12–57 years and that of dieldrin only 2.5 years, while in live pigeons the 

corresponding values are 240 days and 47 days, respectively (Newton 1998: p. 418, 420). 

Incidentally, this pattern suggests a dominant effect of DDT on productivity rather than 

survival in the Jura peregrine population (Pierre Bize, pers. comm). 

Juvenile survival was apparently not affected by the pesticide crash but rather declined 

over the entire study period. Density-dependence may be causing this effect on what 

presumably are the weakest individuals in the population. This may have been exacerbated 

during the most recent years by the recovery in the Jura of the main predator of the peregrine, 

the Eurasian eagle owl (own unpublished data). Its predation may again disproportionally 

affect the most naïve individuals in the population, especially after fledging. In addition, 

organochlorine pesticides bioaccumulate with age and it may take some years before they 

reach high, toxic levels. Thus, negative effects of pesticides may be detected primarily on 

adult rather than juvenile survival.  

The relative roles of DDT, causing reproductive failure for the most part, and of 

cyclodienes, causing survival failure, in North America as opposed to Europe have been 

debated (Newton et al. 1989, Ratcliffe 1993, Greenwood 2021). In North America, temporal 

patterns and the relative magnitude of the use of the two types of organochlorine pesticides 

and of the pesticide crash suggested a dominant role of DDT rather than of cyclodienes. In 

contrast, in Europe, analogous evidence pointed to a major role of cyclodienes. This latter 

hypothesis thus finds corroboration by our study. 

 

The importance of the "right" random effects modeling in demographic studies 

One key to our success in unraveling the role of adult survival in the pesticide crash and 

subsequent recovery was the use of a random-walk that accommodates nonstationarity in the 

series of annual parameters and accounts for temporal autocorrelation. Traditional 
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unstructured temporal random effects for the demographic parameters smooth a time-series 

globally. As a consequence, years with large samples will dominate the estimates. If sample 

sizes vary greatly over time and the modelled process is not stationary, very wrong inferences 

about a time-series of parameters may result. This was evident for Swiss productivity, where 

traditional random-effects modeling completely missed the substantial reduction of this 

demographic rate during the crash. Presumably, the same also happened with the estimates of 

the other demographic rates in this model. In contrast, the random-walk model with its local 

series smoothing correctly identified strong reductions in three of the four modelled 

demographic rates during the crash years. 

Our results thus highlight the importance of the stationarity assumption in the 

random-effects modeling of time-series of parameters. Arguably, this assumption becomes 

less tenable with longer time-series. Given that more and more demographic analyses are 

conducted for long-term population studies, we believe that this is an important 

methodological take-home message. In addition, local smoothing allows detecting time 

variation with considerably lower and uneven sample sizes. Many population studies may be 

constrained by limited sample sizes, especially when using "expensive" methods such as 

capture-recapture, and when dealing with rare or low-density species, where sample sizes will 

inherently be low. In these situations, analysts should probably consider random effects with 

local rather than global smoothing. 

 

Importance of long-term population studies … and of the citizen-scientists conducting them 

We were privileged to have access to data from two very long-term population studies that 

started in 1964 and thus well before the lowest point of the crash in our study area. The 

availability of such very long time-series of population data was decisive for our ability to 

uncover the role of adult survival in the crash and the recovery. In particular, the very early 

ringing data were instrumental for our ability to estimate survival during the crash years. 

Our study emphasizes the huge value of long-term ecological research. Importantly, long-

term population studies have frequently been conducted by amateurs. Often unnoticed in the 

professional literature, these people render a tremendous service to science. There is a sense 

in which these original citizen scientists are the unsung heroes of population ecology; may 

they be warmly thanked. 

The data produced by such long-term population studies enable much deeper mechanistic 

insights into observed population trends. Thus, long-term population studies, especially of 

environmentally sensitive species such as the peregrine (Castagna et al. 2024), serve not only 
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as early-warning systems when "something is wrong" (Oli et al. 2023). But, when paired with 

sound demographic modeling, they can also identify the causes behind the change in terms of 

the underlying demographic mechanisms. This is not only a big advantage in terms of 

scientific understanding, but may also be a key for attempts to "right the wrong". 
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Figure legends 

Fig. 1: Population size trajectories (number of pairs) of the peregrine falcon over 60 years 

(1964–2023) in the Swiss (left) and the French Jura study area (right). Note different scaling 

of the y axis. 

Fig. 2: Estimates of demographic parameters under two IPMs with different formulations of 

random time effects in the demographic rates fit to the Swiss data only (posterior means and 

95% CRIs): unstructured temporal random effects around a constant mean, leading to global 

smoothing (red), and random walk in time, leading to local smoothing; see text for more 

details. 

Fig. 3: A closer look, for productivity, at the behavior of the two types of random-effects 

models in Fig. 2. Black symbols show the observed mean annual brood size, with size 

proportional to sample size in terms of the number of broods. Red and blue polygons show 

95% CRIs from two simplified versions of the two models in Fig. 2c with a single 

productivity parameter. Red and blue lines show predictions from a linear model fit to 

productivity data alone, with either a constant or with a smoothing spline of year. 

Fig. 4: Estimates of demographic parameters under the IPMs with random walk in time for 

demographic parameters, fit to the Swiss and French data combined (posterior means and 

95% CRIs). 

Fig. 5: Posterior distribution of the difference in adult survival probability between the start 

of the study (1964) and the year with highest estimated adult survival (1978). 

Fig. 6: Relative contributions of different demographic parameters and of population 

structure to the realized population growth rate from a retrospective analysis (tLTRE). 
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Supporting Information 

Marc Kéry, René-Jean Monneret, Jaume A. Badia-Boher, Michael Schaub: Demographic 

causes of the pesticide crash in the peregrine falcon. 

 

Appendix S1: Map of the study area, showing the French Jura in blue and the Southern 

Swiss Jura with adjacent areas in red. 

Appendix S2: Frequency distribution of the annual number of ringed peregrines in the Swiss 

study area. 

Appendix S3: Life cycle graph of the Markovian model of population dynamics of 

peregrines in the Jura mountains. Parameter   is the unconditional brood size, i.e., the 

number of young regardless of whether a brood was successful or not. We expressed it 

according to a hurdle model as a function of brood success ( ) and conditional brood size (

 ); see main text for more details. 

Appendix S4: Overview of the data, and representation of the population model fitted as an 

IPM in the BUGS language as implemented in software JAGS. 

Appendix S5: Posterior predictive check of the goodness of fit of the model to the observed 

data, conducted within a single model run but separately for each response variable. 

Appendix S6: Comparison of the estimates of the logistic regression on year of recovery 

probability under the traditional random effects model with unstructured time effects around 

a constant mean, and under a random walk model, respectively, in the demographic rates fit 

to the Swiss data only (posterior means and 95% CRIs shown): red: unstructured temporal 

random effects; blue: random walk in time. 

Appendix S7: Posterior summary of the parameters of the IPM with autoregressive random 

effects of time fit to the peregrine data sets from both the French and the Swiss study areas 

(i.e., the model shown in Appendix S3). 

Appendix S8: Prior sensitivity analysis of the main result of our study, the increase in adult 

survival during the early years of the study, i.e., during the pesticide crash, under multiple 

assumed priors for survival probability during the first interval (1964–1965) 

Appendix S9: Estimated trajectories of the number of breeding pairs in the Swiss and the 

French long-term study (posterior means with 95% CRIs). Red symbols show the observed 

counts of territorial pairs. Note different scaling of the y-axis. 

Appendix S10: Stage distributions of the population, and proportion of floaters, in the Swiss 

study area under the random-walk model fit to the data from both study areas. 

Appendix S11: Stage distributions of the population, and proportion of floaters, in the 

French study area under the random-walk model fit to the data from both study areas. 
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Appendix S1: Map of the study area, showing the French Jura in blue and the Southern 

Swiss Jura with adjacent areas in red. 
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Appendix S2: Frequency distribution of the annual number of ringed peregrines in the Swiss 

study area. 
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Appendix S3: Life cycle graph of the Markovian model of population dynamics of 

peregrines in the Jura mountains, where pure survival transitions are depicted in blue and 

transitions involving reproduction in red. Parameter   is the unconditional brood size, i.e., 

the number of young regardless of whether a brood was successful or not. We used a hurdle 

model to decompose   into brood success probability ( ) and conditional brood size ( ); 

see text for more details. Conditional brood size was stratified by study area (i.e., French and 

Swiss Jura), while all other models in the graph were shared among the two studies. 
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Appendix S4: Overview of the data, and representation of the population model fitted as an 

IPM in the BUGS language as implemented in software JAGS. 

 

Overview of the data: 

 
List of 15 

 $ nyears   : int 60 

 $ marr     : num [1:59, 1:60] 0 0 0 0 0 0 0 0 0 0 ... 

  ..- attr(*, "dimnames")=List of 2 

  .. ..$ released : chr [1:59] "Y1" "Y2" "Y3" "Y4" ... 

  .. ..$ recovered: chr [1:60] "Y2" "Y3" "Y4" "Y5" ... 

 $ rel      : Named num [1:59] 0 2 2 3 3 3 1 0 0 0 ... 

  ..- attr(*, "names")= chr [1:59] "Y1" "Y2" "Y3" "Y4" ... 

 $ yCH      : Named int [1:60] 6 5 4 3 3 2 1 0 1 0 ... 

  ..- attr(*, "names")= chr [1:60] "1964" "1965" "1966" "1967" ... 

 $ nBroodsCH: int 1663 

 $ goodCH   : num [1:1663] 0 0 0 1 1 1 0 0 0 1 ... 

 $ nYoungCH : num [1:1663] 0 0 0 1 2 2 0 0 0 1 ... 

 $ YrCH     : int [1:1663] 1 1 1 1 1 1 2 2 2 2 ... 

 $ zeroes   : num [1:1663] 0 0 0 0 0 0 0 0 0 0 ... 

 $ pNinitCH : num [1:10] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 $ yF       : Named num [1:60] 58 53 44 40 29 20 24 23 21 23 ... 

  ..- attr(*, "names")= chr [1:60] "1964" "1965" "1966" "1967" ... 

 $ nBroodsF : int 4124 

 $ nYoungF  : num [1:4124] 1 1 1 1 1 1 1 2 2 1 ... 

 $ YrF      : int [1:4124] 1 1 1 1 1 1 1 1 1 2 ... 

 $ pNinitF  : num [1:50] 0.02 0.02 0.02 0.02 0.02  ... 

 

 

BUGS language representation of the model with temporal autocorrelation in demographic 

rates: 

 

cat(file = "model11D.txt", " 

model { 

 

  # Priors and linear models 

 

  # Parameter model in year/interval 1 

  # Survival (shared among data sets) 

  for (a in 1:2){                 # Loop over 2 age classes 

    s[a,1] ~ dunif(0, 1)          # Prior of survival in year 1 

    logit.s[a,1] <- logit(s[a,1]) 

  } 

  # Productivity rate (separate between data sets) 

  rhoCH[1] ~ dnorm(0, 1)T(0,)  # Prior of productivity in year 1 CH 

  log.rhoCH[1] <- log(rhoCH[1]) 

# curve(dnorm(x, 0, 1), 0, 3) 

  rhoF[1] ~ dnorm(0, 1)T(0,)   # Prior of productivity in year 1 F 
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  log.rhoF[1] <- log(rhoF[1]) 

 

  # Autoregressive parameter model in later years/intervals 

  # Autoregressive models for survival (shared) 

  for (a in 1:2){                 # Loop over 2 age classes 

    for (t in 2:(nyears-1)){ 

      logit.s[a,t] ~ dnorm(logit.s[a,t-1], tau.s[a]) 

      s[a,t] <- ilogit(logit.s[a,t]) 

    } 

    sigma.s[a] ~ dnorm(0, 1)T(0,) 

    # curve(dnorm(x, 0, sqrt(1/10)), 0, 1) 

    tau.s[a] <- pow(sigma.s[a], -2) 

  } 

 

  # Autoregressive model for rhoCH and rhoF (separate) 

  for (t in 2:nyears){ 

    log.rhoCH[t] ~ dnorm(log.rhoCH[t-1], tau.rhoCH) 

    rhoCH[t] <- exp(log.rhoCH[t]) 

    log.rhoF[t] ~ dnorm(log.rhoF[t-1], tau.rhoF) 

    rhoF[t] <- exp(log.rhoF[t]) 

  } 

  sigma.rhoCH ~ dnorm(0, 1)T(0,) 

  tau.rhoCH <- pow(sigma.rhoCH, -2) 

  sigma.rhoF ~ dnorm(0, 1)T(0,) 

  tau.rhoF <- pow(sigma.rhoF, -2) 

 

 

  # Modell for brood success (for variable 'goodCH'; shared) 

  psi[1] ~ dunif(0, 1)      # Prior of success in year 1 

  logit.psi[1] <- logit(psi[1]) 

  for (t in 2:nyears){      # Autoregressive model for psi 

    logit.psi[t] ~ dnorm(logit.psi[t-1], tau.psi) 

    psi[t] <- ilogit(logit.psi[t]) 

  } 

  sigma.psi ~ dnorm(0, 1)T(0,) 

  tau.psi <- pow(sigma.psi, -2) 

 

 

  # Model for alpha (shared) 

  alpha ~ dbeta(1, 1)  # Prior for prob. start repro. at age 2y 

 

  # Model for r 

  for (t in 1:(nyears-1)){ 

    logit(r[t]) <- beta[1]+beta[2]*((t-30)/29) # Trend in recovery 

  } 

  for (i in 1:2){              # Priors for betas (recovery 

regression) 

    beta[i] ~ dnorm(0, 0.1) 

  } 

 

 

  # Prior for observation model (separate among data sets) 

  tau.epsCH <- pow(sigma.epsCH, -2) 

  sigma.epsCH ~ dnorm(0, 1)T(0.001,) 

  tau.epsF <- pow(sigma.epsF, -2) 

  sigma.epsF ~ dnorm(0, 1)T(0.001,) 
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  # Population count data:  

  #   State-space model with matrix population state model 

 

  # Population model (state): separate among data sets 

  # Model for the initial population size: discrete uniform priors 

  for (a in 1:4){ 

    NCH[a,1] ~ dcat(pNinitCH) 

    NF[a,1] ~ dcat(pNinitF) 

  } 

 

  # Process model over time: our model of population dynamics 

(state): 

  #   Separate among data sets 

  for (t in 1:(nyears-1)){ 

    # 1-year-old birds (non-breeding): note psi is shared 

    rhoHurdleCH[t] <- (psi[t] / (1-exp(-rhoCH[t]))) * rhoCH[t] 

    rhoHurdleF[t] <- (psi[t] / (1-exp(-rhoF[t]))) * rhoF[t] 

    NCH[1,t+1] ~ dpois(rhoHurdleCH[t]/2 * s[1,t] * 

(NCH[3,t]+NCH[4,t])) 

    NF[1,t+1] ~ dpois(rhoHurdleF[t]/2* s[1,t] * (NF[3,t]+NF[4,t])) 

 

    # 2-year-old birds (non-breeding) 

    NCH[2,t+1] ~ dbin(s[2,t] * (1-alpha), NCH[1,t]) 

    NF[2,t+1] ~ dbin(s[2,t] * (1-alpha), NF[1,t]) 

 

    # 2-year-old birds (first-time breeders) 

    NCH[3,t+1] ~ dbin(s[2,t] * alpha, NCH[1,t]) 

    NF[3,t+1] ~ dbin(s[2,t] * alpha, NF[1,t]) 

 

    # 3-year-old and older birds (breeding) 

    NCH[4,t+1] ~ dbin(s[2,t], (NCH[2,t] + NCH[3,t] + NCH[4,t])) 

    NF[4,t+1] ~ dbin(s[2,t], (NF[2,t] + NF[3,t] + NF[4,t])) 

  } 

 

  # Observation model for 1964-2023: Poisson log-normal 

  #   Separate among data sets 

  for (t in 1:nyears){ 

    NBCH[t] <- NCH[3,t] + NCH[4,t] # Calculate number of breeding 

pairs 

    yCH[t] ~ dpois(NBCH[t] * exp(epsCH[t])) # PLN error Switzerland 

    NBF[t] <- NF[3,t] + NF[4,t] 

    yF[t] ~ dpois(NBF[t] * exp(epsF[t]))    # PLN error France 

 

    # Define random effects for PLN Switzerland and France 

    epsCH[t] ~ dnorm(0, tau.epsCH) 

    epsF[t] ~ dnorm(0, tau.epsF) 

 

    # Compute expected value for counts 

    E_NBCH[t] <- NBCH[t] * exp(pow(sigma.epsCH,2)/2) 

    E_NBF[t] <- NBF[t] * exp(pow(sigma.epsF,2)/2) 

  } 

 

  # Dead-recovery data: multinomial ring-recovery model 

  #   Shared among the two regions 

  # Define the multinomial likelihood 
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  for (t in 1:(nyears-1)){ 

    marr[t,1:nyears] ~ dmulti(pr[t,], rel[t]) 

  } 

  # Define the cell probabilities of the m-array 

  for (t in 1:(nyears-1)){ 

    # Main diagonal 

    pr[t,t] <- (1-s[1,t]) * r[t] 

    # Above main diagonal 

    for (j in (t+2):(nyears-1)){ 

      pr[t,j] <- s[1,t] * prod(s[2,(t+1):(j-1)]) * (1-s[2,j]) * r[j] 

    } #j 

    # Below main diagonal 

    for (j in 1:(t-1)){ 

      pr[t,j] <- 0 

    } #j 

  } #t 

  # One above main diagonal 

  for (t in 1:(nyears-2)){ 

    pr[t,t+1] <- s[1,t] * (1-s[2,t+1]) * r[t+1] 

  } #t 

  # Last column: probability of non-recovery 

  for (t in 1:(nyears-1)){ 

    pr[t,nyears] <- 1-sum(pr[t,1:(nyears-1)]) 

  } #t 

 

  # Productivity data: Poisson regression 

  # Switzerland: Hurdle Poisson 

  for (i in 1:nBroodsCH){ 

    zeroes[i] ~ dpois(-ll[i] + 10000) 

    tPois[i] <- log(exp(-rhoCH[YrCH[i]]) * pow(rhoCH[YrCH[i]], 

nYoungCH[i]) / exp(logfact(nYoungCH[i])) / (1-exp(-rhoCH[YrCH[i]]))) 

    l1[i] <- (1-goodCH[i]) * log(1-psi[YrCH[i]]) 

    l2[i] <- goodCH[i] * (log(psi[YrCH[i]]) + tPois[i]) 

    ll[i] <- l1[i] + l2[i] 

  } 

  # France: zero-truncated Poisson 

  for (i in 1:nBroodsF){ 

    nYoungF[i] ~ dpois(rhoF[YrF[i]])T(1,) 

  } 

} 

") 
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Appendix S5: Posterior predictive check of the goodness of fit of the model to the observed 

data, conducted within a single model run but separately for each response variable. Graphs 

show the summed values of a Freeman-Tukey discrepancy measure for data simulated under 

the model on the y-axis against those when computed for the actual data in the analysis on the 

x-axis. The value of the Bayesian p-value (bpv) is shown in each panel and corresponds to 

the proportion of MCMC draws that lie above the red 1:1 line. 
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Appendix S6: Comparison of the estimates of the logistic regression on year of recovery 

probability under the traditional random effects model with unstructured time effects around 

a constant mean, and under a random walk model, respectively, in the demographic rates fit 

to the Swiss data only (posterior means and 95% CRIs shown): red: global smoothing by 

unstructured temporal random effects around a constant mean; blue: local smoothing by a 

random walk in time. 
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Appendix S7: Posterior summary of the parameters of the IPM with autoregressive random 

effects of time fit to the peregrine data sets from both the French and the Swiss study areas 

(i.e., the model shown in Appendix S3). The four columns give the posterior mean and 

posterior standard deviation and the 2.5 and 97.5 percentiles of the posterior distribution. 

 

                    mean      sd          2.5%        97.5% 

alpha              0.373  0.2284        0.0294        0.862 

beta[1]           -2.453  0.0929       -2.6391       -2.279 

beta[2]           -0.510  0.2383       -0.9782       -0.035 

sigma.s[1]         0.139  0.0861        0.0192        0.357 

sigma.s[2]         0.159  0.0477        0.0801        0.262 

sigma.psi          0.127  0.0745        0.0083        0.287 

sigma.rhoCH        0.030  0.0186        0.0025        0.073 

sigma.epsCH        0.028  0.0213        0.0020        0.081 

sigma.rhoF         0.051  0.0132        0.0298        0.081 

sigma.epsF         0.014  0.0104        0.0013        0.041 

s[1,1]             0.617  0.1249        0.3600        0.867 

s[2,1]             0.624  0.0675        0.4891        0.750 

s[1,2]             0.619  0.1220        0.3834        0.870 

s[2,2]             0.635  0.0588        0.5195        0.748 

s[1,3]             0.623  0.1198        0.3853        0.869 

s[2,3]             0.649  0.0561        0.5356        0.755 

s[1,4]             0.630  0.1164        0.4076        0.861 

s[2,4]             0.662  0.0545        0.5523        0.765 

s[1,5]             0.636  0.1119        0.4367        0.862 

s[2,5]             0.685  0.0521        0.5732        0.780 

s[1,6]             0.643  0.1095        0.4505        0.871 

s[2,6]             0.713  0.0486        0.6134        0.802 

s[1,7]             0.648  0.1072        0.4625        0.870 

s[2,7]             0.743  0.0464        0.6433        0.829 

s[1,8]             0.652  0.1040        0.4698        0.867 

s[2,8]             0.769  0.0440        0.6812        0.853 

s[1,9]             0.655  0.1023        0.4757        0.869 

s[2,9]             0.793  0.0435        0.7047        0.876 

s[1,10]            0.657  0.1002        0.4843        0.867 

s[2,10]            0.813  0.0423        0.7293        0.892 

s[1,11]            0.657  0.0972        0.4833        0.859 

s[2,11]            0.828  0.0404        0.7481        0.903 

s[1,12]            0.655  0.0950        0.4844        0.844 

s[2,12]            0.838  0.0390        0.7594        0.907 

s[1,13]            0.649  0.0921        0.4848        0.842 

s[2,13]            0.844  0.0378        0.7667        0.914 

s[1,14]            0.642  0.0891        0.4884        0.830 

s[2,14]            0.847  0.0364        0.7723        0.913 

s[1,15]            0.631  0.0823        0.4857        0.805 

s[2,15]            0.846  0.0357        0.7740        0.914 

s[1,16]            0.627  0.0803        0.4857        0.789 

s[2,16]            0.845  0.0352        0.7695        0.910 

s[1,17]            0.624  0.0784        0.4872        0.789 

s[2,17]            0.844  0.0333        0.7756        0.905 

s[1,18]            0.616  0.0753        0.4844        0.777 

s[2,18]            0.844  0.0331        0.7764        0.905 

s[1,19]            0.610  0.0713        0.4832        0.761 
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s[2,19]            0.842  0.0324        0.7769        0.901 

s[1,20]            0.590  0.0646        0.4692        0.724 

s[2,20]            0.838  0.0305        0.7777        0.896 

s[1,21]            0.574  0.0653        0.4418        0.702 

s[2,21]            0.828  0.0299        0.7694        0.881 

s[1,22]            0.564  0.0645        0.4310        0.690 

s[2,22]            0.828  0.0289        0.7693        0.883 

s[1,23]            0.560  0.0634        0.4380        0.685 

s[2,23]            0.826  0.0286        0.7679        0.879 

s[1,24]            0.563  0.0621        0.4498        0.690 

s[2,24]            0.820  0.0287        0.7600        0.871 

s[1,25]            0.559  0.0602        0.4504        0.686 

s[2,25]            0.814  0.0294        0.7534        0.868 

s[1,26]            0.552  0.0582        0.4411        0.674 

s[2,26]            0.804  0.0290        0.7433        0.858 

s[1,27]            0.547  0.0581        0.4386        0.669 

s[2,27]            0.797  0.0281        0.7394        0.851 

s[1,28]            0.536  0.0576        0.4262        0.659 

s[2,28]            0.787  0.0287        0.7262        0.840 

s[1,29]            0.532  0.0589        0.4165        0.650 

s[2,29]            0.781  0.0287        0.7214        0.835 

s[1,30]            0.519  0.0604        0.3934        0.636 

s[2,30]            0.780  0.0288        0.7210        0.834 

s[1,31]            0.512  0.0619        0.3740        0.629 

s[2,31]            0.774  0.0290        0.7194        0.830 

s[1,32]            0.510  0.0606        0.3826        0.623 

s[2,32]            0.758  0.0299        0.6974        0.815 

s[1,33]            0.509  0.0585        0.3828        0.623 

s[2,33]            0.749  0.0310        0.6835        0.807 

s[1,34]            0.506  0.0588        0.3855        0.614 

s[2,34]            0.744  0.0309        0.6781        0.800 

s[1,35]            0.510  0.0578        0.3935        0.622 

s[2,35]            0.745  0.0309        0.6829        0.800 

s[1,36]            0.518  0.0587        0.3996        0.637 

s[2,36]            0.752  0.0296        0.6889        0.807 

s[1,37]            0.524  0.0611        0.4067        0.656 

s[2,37]            0.751  0.0295        0.6897        0.808 

s[1,38]            0.511  0.0610        0.3899        0.631 

s[2,38]            0.759  0.0293        0.7004        0.817 

s[1,39]            0.502  0.0603        0.3788        0.616 

s[2,39]            0.749  0.0303        0.6837        0.804 

s[1,40]            0.495  0.0593        0.3753        0.607 

s[2,40]            0.747  0.0302        0.6812        0.804 

s[1,41]            0.494  0.0603        0.3740        0.608 

s[2,41]            0.761  0.0292        0.7023        0.818 

s[1,42]            0.495  0.0619        0.3734        0.613 

s[2,42]            0.765  0.0306        0.7043        0.824 

s[1,43]            0.499  0.0645        0.3763        0.627 

s[2,43]            0.759  0.0300        0.6971        0.815 

s[1,44]            0.493  0.0676        0.3609        0.632 

s[2,44]            0.756  0.0299        0.6974        0.815 

s[1,45]            0.476  0.0705        0.3307        0.609 

s[2,45]            0.753  0.0313        0.6894        0.813 

s[1,46]            0.466  0.0743        0.3102        0.601 

s[2,46]            0.749  0.0321        0.6859        0.811 

s[1,47]            0.460  0.0780        0.2993        0.606 
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s[2,47]            0.743  0.0335        0.6772        0.807 

s[1,48]            0.455  0.0789        0.2923        0.599 

s[2,48]            0.745  0.0340        0.6763        0.811 

s[1,49]            0.445  0.0814        0.2800        0.593 

s[2,49]            0.747  0.0348        0.6745        0.814 

s[1,50]            0.441  0.0832        0.2729        0.593 

s[2,50]            0.760  0.0340        0.6957        0.826 

s[1,51]            0.438  0.0853        0.2613        0.595 

s[2,51]            0.766  0.0359        0.6928        0.836 

s[1,52]            0.431  0.0908        0.2437        0.597 

s[2,52]            0.775  0.0361        0.7017        0.845 

s[1,53]            0.428  0.0914        0.2444        0.592 

s[2,53]            0.787  0.0365        0.7183        0.859 

s[1,54]            0.430  0.0945        0.2357        0.603 

s[2,54]            0.798  0.0381        0.7270        0.874 

s[1,55]            0.431  0.0989        0.2284        0.618 

s[2,55]            0.807  0.0390        0.7351        0.888 

s[1,56]            0.429  0.1033        0.2152        0.618 

s[2,56]            0.813  0.0404        0.7357        0.897 

s[1,57]            0.428  0.1077        0.1961        0.631 

s[2,57]            0.813  0.0416        0.7310        0.896 

s[1,58]            0.427  0.1129        0.1889        0.635 

s[2,58]            0.809  0.0445        0.7251        0.902 

s[1,59]            0.427  0.1180        0.1777        0.652 

s[2,59]            0.803  0.0487        0.7078        0.899 

psi[1]             0.526  0.0959        0.3132        0.679 

psi[2]             0.525  0.0952        0.3157        0.672 

psi[3]             0.529  0.0926        0.3281        0.680 

psi[4]             0.541  0.0872        0.3541        0.684 

psi[5]             0.553  0.0814        0.3784        0.685 

psi[6]             0.563  0.0784        0.3919        0.688 

psi[7]             0.578  0.0756        0.4101        0.703 

psi[8]             0.591  0.0731        0.4384        0.722 

psi[9]             0.603  0.0710        0.4531        0.741 

psi[10]            0.616  0.0689        0.4684        0.756 

psi[11]            0.626  0.0686        0.4855        0.774 

psi[12]            0.634  0.0666        0.5029        0.782 

psi[13]            0.641  0.0656        0.5140        0.784 

psi[14]            0.646  0.0634        0.5291        0.786 

psi[15]            0.647  0.0585        0.5369        0.778 

psi[16]            0.647  0.0552        0.5418        0.766 

psi[17]            0.647  0.0519        0.5518        0.761 

psi[18]            0.639  0.0484        0.5464        0.740 

psi[19]            0.630  0.0453        0.5369        0.721 

psi[20]            0.622  0.0419        0.5354        0.704 

psi[21]            0.614  0.0416        0.5277        0.693 

psi[22]            0.596  0.0464        0.4873        0.670 

psi[23]            0.591  0.0484        0.4784        0.666 

psi[24]            0.604  0.0417        0.5116        0.677 

psi[25]            0.609  0.0411        0.5118        0.681 

psi[26]            0.610  0.0396        0.5232        0.678 

psi[27]            0.616  0.0368        0.5367        0.682 

psi[28]            0.626  0.0344        0.5539        0.689 

psi[29]            0.627  0.0337        0.5525        0.687 

psi[30]            0.630  0.0343        0.5561        0.691 

psi[31]            0.653  0.0312        0.5903        0.719 



38 
 

psi[32]            0.674  0.0347        0.6170        0.748 

psi[33]            0.693  0.0418        0.6268        0.782 

psi[34]            0.693  0.0401        0.6283        0.778 

psi[35]            0.681  0.0350        0.6209        0.753 

psi[36]            0.664  0.0313        0.6065        0.729 

psi[37]            0.659  0.0304        0.6025        0.720 

psi[38]            0.625  0.0403        0.5299        0.689 

psi[39]            0.644  0.0318        0.5736        0.704 

psi[40]            0.653  0.0307        0.5895        0.713 

psi[41]            0.655  0.0311        0.5914        0.713 

psi[42]            0.661  0.0314        0.6009        0.725 

psi[43]            0.674  0.0339        0.6171        0.746 

psi[44]            0.672  0.0330        0.6158        0.743 

psi[45]            0.664  0.0315        0.6087        0.731 

psi[46]            0.649  0.0300        0.5878        0.710 

psi[47]            0.650  0.0315        0.5903        0.719 

psi[48]            0.639  0.0300        0.5768        0.697 

psi[49]            0.627  0.0323        0.5567        0.687 

psi[50]            0.613  0.0362        0.5308        0.672 

psi[51]            0.616  0.0354        0.5365        0.678 

psi[52]            0.623  0.0339        0.5502        0.686 

psi[53]            0.637  0.0362        0.5672        0.716 

psi[54]            0.644  0.0401        0.5722        0.732 

psi[55]            0.638  0.0388        0.5638        0.722 

psi[56]            0.624  0.0365        0.5473        0.698 

psi[57]            0.617  0.0351        0.5453        0.683 

psi[58]            0.614  0.0366        0.5383        0.683 

psi[59]            0.619  0.0374        0.5398        0.689 

psi[60]            0.611  0.0429        0.5141        0.686 

rhoCH[1]           1.938  0.3027        1.2703        2.413 

rhoCH[2]           1.944  0.2992        1.3033        2.409 

rhoCH[3]           1.955  0.2917        1.3271        2.411 

rhoCH[4]           1.965  0.2847        1.3445        2.414 

rhoCH[5]           1.978  0.2752        1.4042        2.416 

rhoCH[6]           1.989  0.2672        1.4379        2.414 

rhoCH[7]           2.003  0.2602        1.4550        2.421 

rhoCH[8]           2.018  0.2548        1.4782        2.423 

rhoCH[9]           2.035  0.2462        1.5084        2.429 

rhoCH[10]          2.051  0.2388        1.5454        2.438 

rhoCH[11]          2.065  0.2257        1.5823        2.429 

rhoCH[12]          2.080  0.2182        1.6132        2.436 

rhoCH[13]          2.094  0.2069        1.6351        2.430 

rhoCH[14]          2.107  0.1996        1.6690        2.439 

rhoCH[15]          2.121  0.1873        1.7156        2.430 

rhoCH[16]          2.131  0.1808        1.7426        2.437 

rhoCH[17]          2.144  0.1688        1.7918        2.433 

rhoCH[18]          2.163  0.1567        1.8315        2.432 

rhoCH[19]          2.187  0.1485        1.8687        2.438 

rhoCH[20]          2.204  0.1405        1.9044        2.466 

rhoCH[21]          2.222  0.1387        1.9473        2.486 

rhoCH[22]          2.227  0.1349        1.9483        2.489 

rhoCH[23]          2.246  0.1334        1.9813        2.507 

rhoCH[24]          2.256  0.1303        1.9878        2.517 

rhoCH[25]          2.260  0.1270        1.9990        2.514 

rhoCH[26]          2.270  0.1235        2.0228        2.525 

rhoCH[27]          2.277  0.1174        2.0395        2.507 
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rhoCH[28]          2.290  0.1158        2.0671        2.526 

rhoCH[29]          2.302  0.1136        2.0750        2.544 

rhoCH[30]          2.321  0.1113        2.1175        2.564 

rhoCH[31]          2.346  0.1131        2.1578        2.600 

rhoCH[32]          2.354  0.1145        2.1701        2.614 

rhoCH[33]          2.347  0.1085        2.1591        2.593 

rhoCH[34]          2.348  0.1077        2.1684        2.577 

rhoCH[35]          2.331  0.1015        2.1399        2.549 

rhoCH[36]          2.311  0.1012        2.1111        2.514 

rhoCH[37]          2.315  0.1030        2.1146        2.529 

rhoCH[38]          2.312  0.1071        2.1054        2.530 

rhoCH[39]          2.324  0.1048        2.1234        2.547 

rhoCH[40]          2.352  0.1116        2.1607        2.604 

rhoCH[41]          2.350  0.1068        2.1644        2.594 

rhoCH[42]          2.327  0.1008        2.1390        2.535 

rhoCH[43]          2.314  0.1009        2.1027        2.514 

rhoCH[44]          2.339  0.1021        2.1436        2.562 

rhoCH[45]          2.353  0.1045        2.1675        2.578 

rhoCH[46]          2.366  0.1113        2.1743        2.611 

rhoCH[47]          2.371  0.1151        2.1679        2.629 

rhoCH[48]          2.368  0.1206        2.1731        2.643 

rhoCH[49]          2.351  0.1155        2.1564        2.628 

rhoCH[50]          2.316  0.1116        2.1127        2.570 

rhoCH[51]          2.288  0.1091        2.0753        2.522 

rhoCH[52]          2.263  0.1100        2.0362        2.490 

rhoCH[53]          2.227  0.1186        1.9762        2.447 

rhoCH[54]          2.191  0.1288        1.9061        2.408 

rhoCH[55]          2.179  0.1320        1.8908        2.415 

rhoCH[56]          2.175  0.1305        1.9034        2.412 

rhoCH[57]          2.162  0.1348        1.8822        2.399 

rhoCH[58]          2.150  0.1398        1.8616        2.401 

rhoCH[59]          2.151  0.1454        1.8435        2.403 

rhoCH[60]          2.148  0.1568        1.8090        2.410 

rhoF[1]            1.313  0.1473        1.0412        1.625 

rhoF[2]            1.338  0.1378        1.0760        1.633 

rhoF[3]            1.367  0.1293        1.1324        1.644 

rhoF[4]            1.393  0.1264        1.1533        1.650 

rhoF[5]            1.412  0.1298        1.1683        1.672 

rhoF[6]            1.413  0.1321        1.1611        1.673 

rhoF[7]            1.424  0.1330        1.1704        1.689 

rhoF[8]            1.457  0.1313        1.1934        1.709 

rhoF[9]            1.504  0.1277        1.2583        1.755 

rhoF[10]           1.558  0.1245        1.3149        1.810 

rhoF[11]           1.615  0.1247        1.3905        1.871 

rhoF[12]           1.655  0.1204        1.4283        1.904 

rhoF[13]           1.686  0.1177        1.4549        1.930 

rhoF[14]           1.711  0.1128        1.4913        1.936 

rhoF[15]           1.747  0.1100        1.5339        1.974 

rhoF[16]           1.801  0.1088        1.5963        2.015 

rhoF[17]           1.843  0.1089        1.6448        2.065 

rhoF[18]           1.870  0.1087        1.6658        2.100 

rhoF[19]           1.863  0.1024        1.6633        2.075 

rhoF[20]           1.841  0.1023        1.6323        2.038 

rhoF[21]           1.875  0.1027        1.6737        2.069 

rhoF[22]           1.924  0.1015        1.7271        2.124 

rhoF[23]           1.994  0.0977        1.8088        2.194 
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rhoF[24]           2.038  0.0988        1.8574        2.230 

rhoF[25]           2.090  0.0980        1.9084        2.291 

rhoF[26]           2.202  0.1038        2.0165        2.411 

rhoF[27]           2.292  0.1056        2.1026        2.515 

rhoF[28]           2.326  0.1038        2.1372        2.545 

rhoF[29]           2.268  0.0947        2.0808        2.462 

rhoF[30]           2.288  0.0990        2.1087        2.487 

rhoF[31]           2.247  0.0994        2.0483        2.446 

rhoF[32]           2.270  0.1008        2.0704        2.480 

rhoF[33]           2.344  0.1033        2.1426        2.553 

rhoF[34]           2.372  0.1015        2.1852        2.581 

rhoF[35]           2.362  0.1045        2.1675        2.574 

rhoF[36]           2.310  0.1055        2.1029        2.515 

rhoF[37]           2.328  0.0999        2.1394        2.533 

rhoF[38]           2.317  0.1049        2.1114        2.522 

rhoF[39]           2.334  0.1012        2.1500        2.544 

rhoF[40]           2.336  0.1079        2.1368        2.557 

rhoF[41]           2.285  0.1035        2.0987        2.503 

rhoF[42]           2.217  0.0987        2.0114        2.410 

rhoF[43]           2.166  0.0949        1.9836        2.353 

rhoF[44]           2.162  0.0928        1.9810        2.347 

rhoF[45]           2.164  0.0915        1.9884        2.343 

rhoF[46]           2.171  0.0910        2.0032        2.362 

rhoF[47]           2.156  0.0904        1.9866        2.350 

rhoF[48]           2.110  0.0881        1.9444        2.290 

rhoF[49]           1.987  0.0835        1.8282        2.151 

rhoF[50]           1.895  0.0918        1.7092        2.065 

rhoF[51]           1.919  0.0832        1.7479        2.078 

rhoF[52]           1.959  0.0850        1.7958        2.128 

rhoF[53]           1.947  0.0894        1.7755        2.128 

rhoF[54]           1.962  0.0870        1.7911        2.139 

rhoF[55]           1.973  0.0880        1.8015        2.146 

rhoF[56]           2.064  0.0938        1.8872        2.252 

rhoF[57]           2.078  0.0870        1.9163        2.263 

rhoF[58]           2.056  0.0837        1.8998        2.221 

rhoF[59]           2.037  0.0879        1.8749        2.211 

rhoF[60]           1.957  0.1016        1.7664        2.156 

r[1]               0.129  0.0326        0.0743        0.201 

r[2]               0.127  0.0313        0.0743        0.195 

r[3]               0.125  0.0300        0.0741        0.190 

r[4]               0.123  0.0287        0.0738        0.185 

r[5]               0.121  0.0275        0.0736        0.180 

r[6]               0.119  0.0263        0.0733        0.176 

r[7]               0.117  0.0251        0.0730        0.171 

r[8]               0.115  0.0240        0.0727        0.167 

r[9]               0.113  0.0229        0.0725        0.163 

r[10]              0.111  0.0218        0.0724        0.157 

r[11]              0.109  0.0208        0.0723        0.154 

r[12]              0.107  0.0198        0.0722        0.150 

r[13]              0.105  0.0188        0.0721        0.146 

r[14]              0.104  0.0178        0.0717        0.141 

r[15]              0.102  0.0169        0.0715        0.137 

r[16]              0.100  0.0160        0.0714        0.134 

r[17]              0.099  0.0151        0.0713        0.130 

r[18]              0.097  0.0142        0.0712        0.126 

r[19]              0.095  0.0134        0.0707        0.123 
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r[20]              0.094  0.0127        0.0705        0.120 

r[21]              0.092  0.0119        0.0702        0.117 

r[22]              0.091  0.0112        0.0699        0.114 

r[23]              0.089  0.0105        0.0696        0.111 

r[24]              0.088  0.0098        0.0692        0.108 

r[25]              0.086  0.0092        0.0689        0.105 

r[26]              0.085  0.0087        0.0686        0.102 

r[27]              0.084  0.0081        0.0682        0.100 

r[28]              0.082  0.0076        0.0679        0.098 

r[29]              0.081  0.0072        0.0673        0.095 

r[30]              0.080  0.0068        0.0667        0.093 

r[31]              0.078  0.0064        0.0659        0.091 

r[32]              0.077  0.0061        0.0653        0.089 

r[33]              0.076  0.0059        0.0645        0.087 

r[34]              0.074  0.0057        0.0638        0.086 

r[35]              0.073  0.0056        0.0631        0.084 

r[36]              0.072  0.0055        0.0619        0.083 

r[37]              0.071  0.0055        0.0609        0.082 

r[38]              0.070  0.0055        0.0597        0.081 

r[39]              0.069  0.0056        0.0584        0.080 

r[40]              0.068  0.0057        0.0572        0.079 

r[41]              0.066  0.0059        0.0559        0.078 

r[42]              0.065  0.0061        0.0543        0.078 

r[43]              0.064  0.0063        0.0526        0.077 

r[44]              0.063  0.0065        0.0511        0.077 

r[45]              0.062  0.0067        0.0497        0.076 

r[46]              0.061  0.0070        0.0485        0.076 

r[47]              0.060  0.0072        0.0472        0.076 

r[48]              0.059  0.0075        0.0458        0.076 

r[49]              0.059  0.0077        0.0445        0.075 

r[50]              0.058  0.0080        0.0433        0.075 

r[51]              0.057  0.0082        0.0419        0.075 

r[52]              0.056  0.0085        0.0408        0.075 

r[53]              0.055  0.0087        0.0395        0.074 

r[54]              0.054  0.0090        0.0384        0.074 

r[55]              0.053  0.0092        0.0372        0.074 

r[56]              0.052  0.0095        0.0359        0.074 

r[57]              0.052  0.0097        0.0349        0.074 

r[58]              0.051  0.0099        0.0338        0.073 

r[59]              0.050  0.0101        0.0327        0.073 
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Appendix S8: Prior sensitivity analysis of the main result of our study: the increase in adult 

survival during the early years of the study, i.e., during the pesticide crash. 

 

We re-fitted the main random-walk model four times, with the following four different 

informative priors on the survival probability during the initial survival interval, 1964–1965. 

 

 

 

This resulted in the following estimated trajectories for juvenile and adult survival (posterior 

means and 95% CRIs are shown), and where the color coding matches that in the above 

figure showing the priors adopted in each. 
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Appendix S9: Estimated trajectories of the number of breeding pairs in the Swiss and the 

French long-term study (posterior means with 95% CRIs). Red symbols show the observed 

counts of territorial pairs. Note different scaling of the y-axis. 
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Appendix S10: Stage distributions of the population, and proportion of floaters, in the Swiss 

study area under the random-walk model fit to the data from both study areas. 
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Appendix S11: Stage distributions of the population, and proportion of floaters, in the 

French study area under the random-walk model fit to the data from both study areas. 

 

 


