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Abstract 
Large language models (LLMs) are rapidly transforming scientific workflows, including 
statistical analyses in ecological sciences. While these AI tools offer impressive 
capabilities for code generation and analytical guidance, evaluations reveal significant 
limitations in their reasoning for standard statistical tests. Ecological statistics typically 
require special consideration due to spatial and temporal structuring, so LLM performance 
on these tasks is likely to be worse than for other disciplines. This perspective addresses 
the need for effective prompting guidelines to ensure quality statistical analyses when 
using LLMs. Drawing on empirical evaluations and practical experience, we provide a 
framework for ecological scientists to leverage these powerful tools while maintaining 
statistical rigor. Key recommendations include: separating workflows into components 
that align with LLM strengths and limitations; providing context through domain 
knowledge, data summaries, and research questions; combining context with structured 
prompting techniques like Chain of Thought reasoning; and maintaining human oversight 
of statistical decisions. By understanding LLM capabilities and employing these prompting 
strategies, researchers can harness these technologies to improve rather than 
compromise statistical quality in ecological research. Future research should focus on 
evaluations of LLMs for ecological statistics, development of specialized prompting 
strategies, and integration of LLMs with traditional statistical approaches. 

Introduction 
Large language models (LLMs) are rapidly transforming scientific workflows, with profound 
implications for statistical analysis in environmental sciences. Most researchers now 
incorporate LLMs into their workflows (Liao et al. 2024), with many specifically using them 
for statistical advice and code generation (Jansen et al. 2025; Zhu et al. 2024). The appeal 
is clear: LLMs almost instantly generate statistical code and analyses that would 
traditionally require extensive training and time to develop. For example, researchers can 
now produce a complete bioinformatics analysis analysis—including code and 
visualizations (Jansen et al. 2025) in under 15 minutes. LLMs can also interpret statistics 
and figures to produce written results. 
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The efficiency of relying on LLMs for statistics comes with significant risks. Recent 
evaluations reveal concerning limitations in LLMs’ statistical reasoning abilities. One study 
found that accuracy of late 2024 LLMs for suggesting appropriate statistical tests was 
typically below 40% for anything beyond basic descriptive statistics (Zhu et al. 2024). 
Crucially, the quality of statistical advice from LLMs depends heavily on how questions are 
framed (Onan and Alhumyani 2024; Zhu et al. 2024; Jansen et al. 2025) — effective 
prompting strategies can almost double the accuracy of recommendations. Present 
evaluations of LLMs are focused on statistical analyses where samples are independent. It 
is likely that their performance is significantly poorer for the complex dependence 
structures and observation patterns that are common in ecology. 

This perspective article addresses the urgent need for guidelines on using LLMs for 
statistical analysis in ecological research. As LLM adoption outpaces formal evaluation, 
we cannot wait for comprehensive peer-reviewed assessments before establishing best 
practices. Drawing on empirical evaluations, practical experience, and broader AI 
literature, we provide a framework for leveraging these powerful tools while maintaining 
statistical rigor. By understanding LLM capabilities and limitations and employing 
structured prompting strategies, researchers can harness these technologies to enhance 
rather than compromise statistical quality in environmental research. The guidelines 
presented here aim to help environmental scientists navigate this rapidly evolving 
landscape responsibly and effectively. 

Challenges for statistical analysis quality in environmental sciences 
Statistical analysis in ecological sciences faces numerous challenges that predate the 
emergence of LLMs but may be exacerbated by their use. Modern data analysis requires 
two interrelated skills: computer programming and statistical reasoning. There exists a 
substantial gap between specialists at the forefront of statistical computing and experts in 
specific ecological disciplines who use statistics irregularly (Gilbert et al. 2024). 
Environmental data often violate standard statistical assumptions, requiring specialized 
analytical approaches (Gilbert et al. 2024) that may not be well-represented in the text that 
LLMs are trained on. Ecological analyses may also require advanced computer 
programming skills where it is easy to make mistakes (e.g. Kendall et al. 2019). 

Lack of statistical training among environmental scientists has long undermined research 
quality and application. Reproducibility is a wide-spread issue and ecology is no exception. 
P-hacking and other forms of bias caused by manipulating analyses after viewing results 
are already prevalent in ecology and evolution, often justified by researchers as necessary 
for career survival (Fraser 2018; Forstmeier, Wagenmakers, and Parker 2017). 

Accidental statistical mistakes caused by inappropraite training or misguided conventions 
are also an issue. Common misapplications include inappropriate transformations of 
response variables (O’Hara and Kotze 2010), applying methods that assume independent 
samples to time-series analysis (Brown et al. 2011), using linear regression for zero-



inflated data (Warton et al. 2016), conflating prediction with causality (Arif and MacNeil 
2022), and inappropriate use of multi-model averages (Bolker 2024). 

Problems can also arise from flawed implementation of ecological analysis (e.g. Kendall et 
al. 2019). These errors are not merely academic concerns—they can lead to misinformed 
policy actions with real consequences for conservation outcomes (Shoemaker and Loope 
2025). 

Applications and Risks of LLMs in Environmental Statistics 
Large language models present both significant opportunities and challenges for statistical 
practice in environmental sciences. When used with appropriate guidance and oversight, 
these AI tools can enhance research workflows, but they also introduce risks that require 
careful consideration. 

Risks and Limitations 

LLMs present several specific risks for statistical practice that require careful mitigation 
strategies (Table 1). 

LLMs may amplify existing problems with statistical quality. By dramatically accelerating 
the ability to try multiple analytical approaches, LLMs could enable unprecedented levels 
of p-hacking and selective reporting. Researchers can now explore tens or hundreds of 
alternatives for solving a statistical issue in minutes, creating far more opportunities to 
cherry-pick favorable results. Strong research reporting standards and ethics are 
ultimately needed to combat this issue. 

Many of the statistical methods suggesting by current LLMs are plausible, syntactically 
correct, but logically flawed (Zhou et al. 2024; Jansen et al. 2025). They almost always 
provide an answer, typically with high apparent certainty, even when their suggestions are 
inappropriate or incorrect. When asked to self evaluated their answers, LLMs exhibit 
overconfidence in their statistical recommendations, and this trend is worsening as 
models are scaled-up to large parameter sets (Zhou et al. 2024). For example, they 
perpetuate common misunderstandings of confidence intervals and p-values (Ellis and 
Slade 2023) (as of Claude 4.0 this was still true). This characteristic is particularly 
problematic in environmental sciences, where data often have complex structures 
requiring specialized approaches. Current LLMs may not adequately recognize or account 
for these nuances of environmental data. Notably their conversation patterns differ 
remarkably from a human statistical consultant - the human will tend to ask more 
questions early on in a conversation than an AI assistant would, giving the human better 
understanding of study design and research context (Figure 1). 



 

Figure 1 Comparison of how an experienced human statistical consultant would structure 
a conversation compared to a typical prompt chain with an AI assistant (figure 1). The 
human consultant will usually ask more questions than provide answers at the start of a 
conversation, then switch to providing more answers once they understand the context of 
the study. An AI assistant will tend to be constant in the number of questions it asks, 
unless explictly prompted to ask questions rather than provide answers. This means it 
provides answers without first gathering appropriate context. 

The propensity to give believable answers with high confidence creates an illusion that 
LLMs true have statistical understanding (Messeri and Crockett 2024). Unlike traditional 
statistical software that implements specific algorithms, LLMs generate responses based 
on patterns learned from training data, they do not “understand” statistics and cannot 
reason in the way human experts do. They work by predicting statistically likely responses 
to text - therefore the challenge is to use prompts that shift the distribution of likely 
response to better overlap with accurate responses. This fundamental limitation means 
they may confidently suggest inappropriate methods (Zhou et al. 2024), apply internally 
consistent logic to the wrong question, fail to recognize violations of statistical 
assumptions, or generate plausible-sounding but incorrect interpretations. 

Inexperienced users may be particularly vulnerable to the risk false statistical suggestions 
(Ellis and Slade 2023). Without sufficient statistical background to critically evaluate LLM 



suggestions, researchers might implement inappropriate analyses or misinterpret results. 
The apparent authority and confidence of LLM responses can create a false sense of 
security (Messeri and Crockett 2024), potentially leading to erroneous conclusions that 
influence scientific understanding and policy decisions. 

Beyond creating errors in individual research projects, over-reliance on LLMs creates a risk 
of statistical deskilling in the research community. If researchers increasingly rely on LLMs 
for statistical decisions without developing their own understanding, the collective 
statistical literacy of the field could decline over time. This would create a dangerous 
dependency on tools that lack true statistical reasoning capabilities. 

Table 1: Risks and opportunities when using LLMs for ecological statistics. 

Risks Action Opportunities 
AI accelerated p-
hacking 

Improving 
reporting 
standards, 
honest reporting 

Use LLMs to improve reporting; 
understand sensitivity of results to 
different ecological model formulations 

AI suggests logically 
flawed statistical or 
coding approaches 

Verification with 
humans and/or 
literature 

More efficient statistical computing 
workflows with lower risk of errors 

AI overconfidence in its 
suggestions misleads 
users 

Verification with 
humans and/or 
literature 

Improve accessibility of statistical 
analyses to novice users 

Deskilling of research 
community 

Use LLMs as 
learning tool 

Bespoke AI tutors; Improved access and 
relevance of learning resources 

 

Opportunities for Enhanced Statistical Practice 

All of the above risks can be turned into strengths with appropriate use and community 
standards for LLM use in statistics (Table 1). 

AI accelerated p-hacking can become AI accelerated sensitivity analysis if different model 
options are appropriately reported. Using LLMs to rapidly explore alternative analytical 
approaches is appropriate if the alternatives are reported. This capability could support 
more robust sensitivity analyses, as researchers can efficiently implement various models 
to assess how analytical choices influence results. For instance, an ecologist studying 
species distributions could use an LLM to implement both frequentist and machine 
learning approaches to the same question, comparing outcomes without investing 
extensive time in coding each approach from scratch. This could then enable the 
researcher to report on how ecological model complexity relates to predictive power and 
overfitting (e.g. Fordham et al. 2018). 



An ongoing challenge for statistical ecology is promoting the documentation and reporting 
of data and code (Culina 2020; Popovic et al. 2024; Jenkins et al. 2023). Better reporting 
standards are neccessary for transparency and replication of studies, as well as allowing 
combatting the bias towards publishing only significant results. LLMs can assist here by 
making the mundane task of documenting code more efficient, as well as refactoring 
bespoke code to meet disciplinary conventions. In our experience, confidence in how their 
code looks to experts is one of the main reasons researchers with lower levels of 
experience in statistical coding do not share their code publically (though we know of no 
specific surveys quantifying this effect). LLMs can help to clean up code and give 
researcher confidence about sharing their code. This advantage addresses a persistent 
challenge in the field, where code is typically not shared (Culina 2020; Popovic et al. 2024). 

Ecological analysis, and data science more generally, is best done in multi-disciplinary 
teams (Gibert et al. 2018). LLMs can democratize access to statistical expertise, providing 
researchers who lack ready access to statistical collaborators with guidance on 
appropriate methods and implementation strategies. Likewise, they can assist with 
scientific coding (Jansen et al. 2025). This democratization is particularly valuable in 
resource-constrained settings or for early-career researchers still developing their 
statistical abilities. For example, researchers from institutions without dedicated 
statistical support can leverage LLMs to explore analytical options that might otherwise be 
inaccessible. There is still the risk that inexperienced researchers are misled by LLM 
overconfidence, and this needs to be addressed by treating all suggestions with skepticism 
and validating statistical logic with experts and/or the literature. 

Thoughtful use of LLMs as tutors can address the risk of deskilling (Ellis and Slade 2023). 
For example, they can turn a tutorial on a statistical approach into a tutorial that is 
bespoke to a researcher’s data. When used as interactive tutors rather than black-box 
solution providers, these models can enhance researchers’ statistical understanding by 
explaining concepts, suggesting relevant literature, and demonstrating proper 
implementation techniques. Human-led coursework on ecological statistics is still 
essential (Touchon and McCoy 2016), as suggestions of AI tutors need still human 
validation. 

Toward Effective Human-AI Statistical Partnerships 

The challenge is to develop workflows that maximize LLMs’ strengths while compensating 
for their weaknesses. This requires providing sufficient context about research questions, 
data characteristics, and analytical constraints to guide the model toward appropriate 
statistical recommendations. It also involves maintaining oversight of model outputs, 
particularly for decisions requiring deeper statistical understanding such as model 
formulation, assumption checking, and result interpretation. 

The opportunity lies in developing a statistical workflow that combines human expertise 
with LLM capabilities. In this workflow, researchers maintain responsibility for statistical 
decisions while using LLMs to implement analyses efficiently, explore options, and 



enhance documentation. This human-AI partnership is a middle path between complete 
automation and traditional manual implementation—leveraging the efficiency and 
consistency of LLMs while preserving the critical judgment and domain expertise of human 
researchers. The key to this partnership is effective prompting—providing LLMs with the 
context, constraints, and guidance needed to generate high-quality statistical advice and 
code that advances rather than compromises statistical rigor in environmental research. 

LLM Overview 
To develop effective prompting strategies, it’s essential to understand how LLMs function. 
At their core, LLMs are prediction engines that generate text one token at a time based on 
patterns learned during training. A token is roughly equivalent to part of a word, a word, or a 
common phrase. 

Several key parameters influence LLM behavior (Boonstra 2024): 

1. Temperature: Controls randomness in token prediction. Lower temperatures 
(closer to 0) make responses more deterministic and conservative, while higher 
temperatures (greater than 1.0) increase creativity but potentially reduce reliability. 
For statistical applications, lower temperatures typically produce more consistent 
and conventional recommendations. 

2. Context window: The amount of text an LLM can consider when generating a 
response. Current LLMs have context windows typically in the range from 100,000 
to 2,000,000 tokens. Larger context windows allow for including more detailed 
information about data, research questions, and statistical requirements. 

3. Model complexity: Different models have varying capabilities based on their size, 
training data, and architecture. More complex models (e.g., Claude-4.0-Opus 
vs. Claude-4.0-Sonnet) generally provide more nuanced statistical guidance but at 
higher computational and financial cost. 

4. System prompt: Sets the overall context and constraints for the LLM. This “behind-
the-scenes” instruction shapes how the model responds to user queries and can 
significantly impact statistical advice quality. 

5. AI assistant, AI programmer pair: Software that assists a user to interact with an 
LLM. Examples include Github Copilot and Claude Code. This software manages 
user interactions, including setting the system message (which may be proprietary 
information) and managing the context window. 

6. Tools and MCP: Tools allow LLMs to perform tasks. Examples include running R 
scripts, searching the internet and downloading online data. A common standard 
for tool definition is the Model Context Protocol (MCP). 

7. Agents: Agents are software systems that allow LLMs to iteratively develop their 
own task, with or without human supervision. For instance, an agent can have a tool 



allowing it to run and read terminal commands. This lets the agent write R scripts, 
run them, check for errors, and correct iteratively. Agents are most commonly used 
within AI assistant software like Github Copilot, though there is some development 
of agents for bespoke statistical problems (Jansen et al. 2025). 

Prompting Guidelines Best Practices 
There are now many formal evaluations of LLMs for statistical advice. However, many of 
these studies are not replicable and do not follow statistical best practice. For instance, 
they do not provide the prompts they used, do not replicate prompts (LLM responses differ 
ever time) or use statistics that inflate estimates of effect size (Gallo et al. 2024). Here we 
summarize the handful of evaluations that provide sufficient information to assess the 
scientific credibility of their claims. 

The key findings of these studies are that more accurate responses are obtained when: 

• Role prompting is used, e.g. You are an expert in the statistical analysis 
of ecological data (Jansen et al. 2025) 

• Examples and reference material are included (also called one-shot or few-shot 
prompting) (Zhu et al. 2024) 

• Context about the data collection process is included (Zhu et al. 2024) 
• The data are attached as part of the prompt (Jansen et al. 2025; Zhu et al. 2024) 

Providing examples that pair types of statistical questions with appropriate solutions one 
of the most effective approaches to improve the precision of responses (Sivarajkumar et 
al. 2024; Zhu et al. 2024). This approach should be used wherever possible, however, 
accurate examples may not be readily available to the novice statistician. Reference 
material can also be provided in place of examples. For example, a user could attach a 
blog or package vignette that illustrates the application of an analysis to answering a 
research question. 

A further tactic, ‘chain of thought’ reasoning, has mixed success. Chain of thought 
reasoning encourages the model to structure its prompt as in a step-by-step way and 
tends to improve the quality of reasoning (Wei et al. 2022). It can be as sample as adding to 
a prompt Use chain of thought reasoning. Its utility has mixed performance for 
statistical analyses (Jansen et al. 2025; Zhu et al. 2024). Chain of thought prompting is best 
combined with prompts that include the data and measurement context. 

Prompts that say what to do, rather than what not to do, are generally also considered to 
be more effective (Boonstra 2024). 

Recognize different steps in workflows 

It is helpful to separate statistical workflows into distinct components that align with LLM 
strengths and limitations: 



1. Select statistical approach: Determining appropriate statistical methods for 
research questions 

2. Plan implementation: Designing the analytical workflow and code structure 
3. Write code: Writing the actual code to implement analyses 
4. Guidance on Interpretation: Understanding and reporting results 

We deal with steps 1-3 here (Figure 2). The credibility of statistical interpretation needs 
further empirical evaluation, so we leave that for future studies. 

LLMs perform differently across these components. They excel at code generation and 
implementation planning but are less reliable for selecting appropriate statistical 
approaches or interpreting complex results. 

LLMs can be used across all of these steps, but we recommend that each step is treated 
separately. This encourages informed decision making and avoids making decisions on the 
fly. For instance, it is better to design the statistical analysis prior to setting an agent up to 
automate the implementation of that analysis. 

The separation of workflow steps also helps prevent overreliance on LLMs for statistical 
decisions. 

Below we will work through three examples that align to each of the steps above. 

 

Figure 2 Recommended workflow for using LLMs in statistical analysis, showing the four 
key steps alongside specific recommendations for effectively leveraging LLMs at each 
stage while maintaining scientific rigor. 



Example Step 1. Statistical approach selection 

Selecting the appropriate statistical approach is a critical first step in any analysis 
workflow. Our example prompt demonstrates several key strategies that significantly 
improve LLM performance for this task: 

You are an expert in ecological statistics with the R program. 
I want to statistically test the dependence of fish abundance on coral cover. 
I have observations of coral cover (continuous percentage) and fish abundance 
(count of number of fish). Observations were made at 49 different locations. 
Observations were made with standardized surveys, so the area surveyed at eac
h site was the same. 
Sites are spatially clustered into different regions. Provide me with several 
options for statistical approaches would be appropriate for answering my rese
arch question. Also include suggestions for verification of statistical assum
ptions and suggestions for visualizations.  Use chain of thought to reason ab
out each approach before providing a final summary. 
I've attached the data [data] and a reference on analysis of count data with 
ecology [reference]. 

This example prompt integrates multiple evidence-based strategies for obtaining quality 
statistical advice from LLMs: 

1. Clear hypothesis and domain knowledge specification 

The prompt clearly states the research question (testing dependence of fish abundance on 
coral cover) and provides context about the variables (coral cover as continuous 
percentage, fish abundance as count data). It also requests verification steps and 
visualizations. This specificity helps the LLM recognize that count-appropriate methods 
like Poisson GLM would be suitable. Without this context, LLMs often default to 
inappropriate methods like linear regression for count data. 

2. Detailed experimental/observational design context 

The prompt includes critical information about the sampling methodology (standardized 
surveys with equal area across sites) and spatial structure (sites clustered into regions). By 
explicitly stating that there is spatial structure the LLM is more likely to recommend 
methods that account for spatial structure in the data, such as mixed-effects models or 
spatial autocorrelation analyses. This contextual information is crucial for ecological data 
where spatial and temporal dependencies are common but often overlooked in standard 
statistical approaches. 

3. Attaching data and references 

A consistent finding across formal evaluations of LLMs for statistical advice (Jansen et al. 
2025; Zhu et al. 2024) is that attaching your data dramatically improves response quality. 
In our example, we reference attached data and a relevant ecological statistics reference. 

4. Chain of Thought reasoning with authoritative sources 



The prompt explicitly requests Chain of Thought (CoT) reasoning (Wei et al. 2022): “Use 
chain of thought to reason about each approach before providing a final summary.” This 
prompting strategy encourages step-by-step analytical thinking, which is most effective 
when combined with authoritative references (Zhu et al. 2024). 

5. Iterative refinement through follow-up prompts 

The initial prompt can be enhanced through follow-up prompts. For instance, you could 
use a web search tool to gain further reference information: 

Search the web to find robust recommendations for ecologists to analyze count 
data before proceeding with your recommendations. 

You can also request self-evaluation: 

Evaluate the robustness of each suggestion on a 1-10 scale and explain 
the strengths and limitations of each approach. Use chain of thought to caref
ully think about the appropriateness of each suggestion. 

Similarly to chain of thought reasoning, self evaluation is most effective if it is paired a 
reputable reference, because it encourages the LLM to compare its suggestions against 
established statistical best practices. 

6. Prompt bootstrapping 

Users can employ “prompt bootstrapping” by starting with simpler prompts and then 
asking the LLM to help draft more complete prompts: 

I'm trying to improve a prompt asking an assistant for statistical advice. He
re is the prompt [prompt]. What other information can I provide to improve th
e accuracy of the assistant's response? 

This meta-prompting approach leverages the LLM’s own capabilities to identify what 
additional information would be helpful. The user can then edit and refine the suggested 
prompt to include all relevant context about their research question, data characteristics, 
and analytical constraints. 

Step 2. Plan implementation 

LLMs are most effectively if used via an AI assistant like GitHub Copilot. These assistants 
have access to context from your project files and can edit directly into documents and 
scripts. 

We recommend users carefully organize their workflow and then create a project directory 
structure that facilitates workflow management. Being organized makes it easier for 
humans and AI assistants to understand the project. 

Our recommendation is to start a new folder on your computer and insert a readme.md file 
into this folder. (we prefer markdown format for this file, see supplemental material). The 
readme file can be developed iteratively with an LLM’s help. In our readme file we include: 



• Research context 
• Research aims 
• Analysis methodology 
• Technology context including R package preferences 
• Analysis steps 
• Directory structure 
• Data file locations and meta-data 

The readme can be attached to every prompt to provide project context, as well as give the 
LLM a memory across different chat sessions. 

Information from the first step (Plan analysis) can be entered into this readme file. Then we 
would use the LLM to assist in filling out the other sections. An initial prompt could look 
like: 

Help me plan the steps to complete this analysis. This should include a serie
s of scripts that we will need to make for each step of the analysis. It shou
ld also include a plan for how to structure the project directory. Create mod
ular scripts for this analysis with separate files for data preparation, mode
l fitting, diagnostics, and visualization. Save data files for intermediate s
teps. Use chain of thought reasoning to think carefully abotu each step.  

Scripts should be kept short and modular. When helping ecologists with code with often 
find that they write long scripts that span data wrangling to plotting and may not even 
evaluate in a top to bottom order! Keeping your project modular organized allows for 
agents to easily navigate your project and for you to more easily manage the size of prompt 
attachments to fit within the context window. It also lets you point precisely to files that 
may need attention. This structure not only improves immediate code quality but also 
enhances long-term project sustainability and knowledge transfer. 

  



You can then create the project directory, or have an AI agent do this for you (Create the 
directory structure in readme.md). 

For example, a typical project directory may look like this: 

my-project/ 
├── README.md  
├── .gitignore 
├── Scripts/ # R code 
│   ├── 01_data-prep.R 
│   ├── 02_data-analysis.R 
│   └── 03_plots.R 
├── Shared/        
│   ├── Outputs/ 
│   │   ├── Figures/ 
│   │   ├── data-prep/ 
│   │   └── model-objects/ 
│   ├── Data/ 
│   └── Manuscripts/    

Step 3. Write code 

If the data, methodology and plan are carefully documented in a readme file, starting the 
analysis is as simple as: 

Start on the first step of this analysis [readme.md]. Review and update the r
eadme when you complete this step.  

Starting a new chat for each discrete task will reduce syntax errors (Jansen et al. 2025) (but 
note that web platforms may retain a memory across prompts). Keep the readme.md as a 
memory across chat sessions. 

Further precision can be gained by adding additional context to the prompt or readme.md 
file. For example, you can provide implementation constraints in the Technology context 
section: 

Implement this analysis using the tidyverse ecosystem and INLA for Bayesian  
modeling. Follow tidyverse style guidelines and prioritize code readability. 

It is better to say what to do, rather than what not to do (Boonstra 2024). 

The rate of syntax errors can also be reduced by more than three times by allowing an 
agent to iterate through running and debugging (Jansen et al. 2025). Code should be 
carefully reviewed by a human to ensure logical correctness, agents often produce code 
that is syntactically correct, but logically flawed (Jansen et al. 2025). The LLM can assist 
(but not replace) the user with a prompt such as: 

Review my choice of analysis from the perspective of a peer-reviewer in an ec
ological journal.  



Writing the code may not be the final step. Often when we analyse data new issues 
emerge, or the process of analysis helps us identify logical inconsistencies in a method. 
The steps above can be iterated, just be clear which step you are operating in. 

Discussion and Conclusion 
Large language models represent both opportunity and challenge for statistical practice in 
environmental sciences. When used thoughtfully with effective prompting strategies, they 
can enhance analytical workflows, improve code quality, and potentially address 
longstanding issues in statistical implementation. However, uncritical reliance on LLMs 
risks perpetuating or even amplifying existing problems in statistical practice. 

The prompting guidelines presented in this perspective provide a framework for leveraging 
LLMs while maintaining statistical rigor. By separating workflows into components that 
align with LLM strengths and limitations, providing appropriate context and constraints, 
and maintaining human oversight of critical decisions, researchers can harness these 
tools while mitigating their risks. Our recommendations are common sense and align 
closely with best-practices for ecological statistics and open data in general (Jenkins et al. 
2023; Popovic et al. 2024) - what is better for human reproducibility is also good for LLMs 
efficiency. 

Several principles emerge from our perspective that can guide effective LLM use in 
ecological statistics. First and foremost, researchers must maintain critical thinking when 
using these tools. LLMs should complement rather than replace research expertise 
(Messeri and Crockett 2024). Statistical suggestions from LLMs require careful evaluation 
against domain knowledge and established statistical principles. This critical evaluation 
becomes particularly important when analyzing ecological data with complex 
dependencies that may not be adequately captured in standard statistical approaches. 

Providing rich context dramatically improves LLM performance for statistical tasks. Our 
experience suggests that most researchers are under-utilizing the potential for detailed 
prompts (Boonstra 2024). Modern LLMs have context windows that allow hundreds of 
thousands of tokens—equivalent to several theses worth of text. This capacity enables 
researchers to include comprehensive information about research questions, data 
characteristics, and analytical constraints. Studies have consistently shown that LLM 
statistical guidance improves when provided with this detailed contextual information (Zhu 
et al. 2024; Jansen et al. 2025). Researchers should leverage this capability by developing 
more comprehensive prompts that include relevant background information, data 
summaries, and specific analytical requirements. 

As LLMs become increasingly integrated into research practices, developing “LLM literacy” 
becomes an essential skill for environmental scientists. This literacy encompasses 
understanding how these models work, recognizing their limitations, and mastering 
effective interaction strategies (Messeri and Crockett 2024). Researchers need to develop 
the ability to craft effective prompts, critically evaluate model outputs, and understand 
when human expertise should take precedence over model suggestions. Educational 



institutions and professional organizations should consider incorporating LLM literacy into 
statistical training programs for environmental scientists. 

The rapid evolution of LLM capabilities suggests that their role in statistical workflows will 
only increase. Current models already show impressive performance in code generation 
and implementation planning, and future models may address some of the limitations 
identified in statistical reasoning. However, the fundamental nature of LLMs as prediction 
engines rather than reasoning systems means that human oversight will remain essential 
for ensuring statistical quality. 

Research Needs 

Research is needed to inform the appropriate use of LLMs in ecological statistics. We 
identify several priorities. First, we need more formal evaluations of LLM statistical 
performance for ecological datasets and problems. Ecological data presents unique 
problems for statistical analysis (Gilbert et al. 2024) and it is not yet clear how reliable 
LLMs advice on these problems. Ensuring that researchers report use of generative AI is 
important both for transparency, but to enable evaluation of how the tools are influencing 
our field. 

Second, we need to develop prompting templates that novice analysts and statistical 
coders can use to reliably develop their analyses (Jansen et al. 2025). These could include 
the recommendations above, as well as reference material that is attuned to specific types 
of ecological data. 

Finally, LLMs have certain biases (Messeri and Crockett 2024; Ji et al. 2025), but it is not yet 
clear if there are important implications for ecological statistics. One bias of LLMs is 
towards overconfidence in their own answers being correct (Zhou et al. 2024). Researchers 
should therefore independently validate all analyses against reputable sources. Further 
research is needed to understand how LLM use may bias analyses in harmful ways. 

We have argued that LLMs present both risks and opportunities to the quality of ecological 
statitisics. By addressing these research needs and adopting thoughtful prompting 
strategies, environmental scientists can apply large language models to enhance rather 
than compromise statistical quality. The future of environmental statistics likely lies not in 
choosing between human expertise and artificial intelligence, but in developing effective 
partnerships that leverage the unique strengths of each. 
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