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Abstract: 19 

 20 

1. Accurately measuring biodiversity change remains a central challenge in ecology. 21 

Beyond the general idea of detection frameworks, which can help to estimate species 22 

trends under variable effort, other sampling-related biases in data collection remain a 23 

key challenge.   24 

 25 

2. Long-term standardized ecological data are rare, and most available datasets exhibit 26 

considerable spatial and temporal variation in sampling effort (i.e., unstructured data). 27 

To derive reliable, unbiased estimates of biodiversity trends and to better understand 28 

the drivers of change, modelling approaches are likely to be essential.  29 

 30 

3. Among the available methods, the local frequency scaling approach (Frescalo; Hill, 31 

2012) has proven particularly effective at addressing these biases. By applying 32 

successive spatial and temporal corrections, Frescalo leverages emergent patterns in 33 

species assemblages to correct for variation in survey effort. Compared to other similar 34 

approaches, Frescalo is particularly well suited to long-term datasets and those with a 35 

high number of species. It is also a versatile method, allowing simultaneous estimation 36 

of temporal and spatial changes, or even providing diagnostics for survey design or 37 

bias assessment.  38 

 39 

4. The method’s technical complexity, the level of ecological knowledge required, and the 40 

challenges of implementation raise a number of practical issues in the application of 41 

the method. In this paper, we present a clear and accessible explanation of the 42 

Frescalo methodology, offer a step-by-step roadmap to guide users, and highlight the 43 



wide range of applications it supports. To further facilitate its adoption, we also 44 

introduce an R package designed to simplify implementation. 45 

 46 

1. Introduction 47 

In recent years the importance of monitoring biodiversity and assessing long-term species 48 

trends has grown significantly (Dornelas et al., 2023), particularly in the context of the global 49 

IPBES assessments and the Kunming-Montreal Global Biodiversity Framework. Although 50 

frameworks for detecting and attributing biodiversity trends have recently emerged (Gonzalez 51 

et al., 2023), adapted statistical models become essential for estimating long-term biodiversity 52 

changes. These models are fundamental for providing reliable trend estimates, ideally 53 

accompanied by measures of uncertainty (Pescott et al., 2022). Such estimates are essential 54 

for making reliable diagnoses of biodiversity status and understanding the underlying causes 55 

of observed trends (attribution; Gonzalez et al., 2023; Grace, 2024). However, there is a 56 

growing need to expand the range of statistical models available to ecologists for estimating 57 

trends, especially given the diversity of monitoring data sources. 58 

Monitoring data vary widely in terms of design and coordination, which has significant 59 

implications for extracting reliable trend information. Structured monitoring schemes, such as 60 

Breeding Bird Surveys, which follow strict sampling protocols and are repeated regularly, 61 

provide the most robust data for trend estimation and allow for the use of relatively simple 62 

statistical modeling, assuming good coverage of the statistical population. However, these 63 

schemes are rare and typically limited to well-studied taxa such as birds and butterflies. In 64 

contrast, most available ecological data are unstructured or semi-structured (i.e., with 65 

associated metadata on survey methods), meaning they have been collected through diverse 66 

and often undocumented methods with varying sampling efforts across time and space. This 67 

heterogeneity introduces variability in species detection and identification (Geldmann et al., 68 

2016), statistical population coverage (Boyd et al., 2023; Boyd, Stewart, et al., 2024) and 69 

reporting, posing challenges for trend analysis. Despite these limitations, unstructured data 70 
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are increasingly used in ecological research to study species distributions, population changes, 71 

and broad-scale biodiversity patterns. Unstructured (and semi-structured) data, such as 72 

historical museum collections (e.g. herbaria; Rich, 2006), distribution atlases (Stroh et al., 73 

2023), and species occurrence records from citizen science platforms (e.g., GBIF) offer 74 

considerable potential for assessing biodiversity change. These datasets, often in the form of 75 

presence-only data, span long temporal periods, sometimes centuries, and cover a broad 76 

range of taxa beyond those monitored by structured schemes. Despite their value, these 77 

datasets are arguably underutilized for estimating biodiversity trends. 78 

A key challenge in using unstructured data is the variation in recording effort (e.g., the number 79 

of visits per site, time spent during each visit) and behavior (e.g., which sites are visited, what 80 

is reported). Additionally, unstructured data often lack metadata about survey method, effort, 81 

or target species, which makes it difficult to model this variation (Kelling et al., 2019; Pescott 82 

et al., 2015). Data availability patterns also reveal systematic taxonomic and geographic biases 83 

(Boakes et al., 2010; Troudet et al., 2017). Taken together, these issues mean that the true 84 

ecological patterns can be confounded by recorder strategies (Dobson et al., 2020) or related 85 

issues, such as historical data curation practices (Pescott et al., 2019). If no attempt is made 86 

to control for this, any trend estimates using simple statistical models of the data would be 87 

biased and could lead to poor conservation decisions. 88 

  89 

To address these challenges, several statistical methods have been developed to account for 90 

biases in unstructured data and provide reliable estimates of species trends. Isaac et al., 91 

(2014) identified two methods that may detect trends under different bias scenarios: the 92 

occupancy-detection model (MacKenzie et al., 2002) and Frescalo (“Frequency Scaling Local”; 93 

Hill, 2012). These methods use distinct approaches that vary in their assumptions, making 94 

them suitable for different contexts. Occupancy-detection models are based on a conceptual 95 

data generation process where observers record species occurrences at relatively small 96 

spatio-temporal scales (MacKenzie et al., 2002). To estimate and adjust for imperfect 97 
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detectability, this method assumes that the true occupancy state remains stable within a 98 

defined closure period (the "closure assumption") and assesses the frequency of detections 99 

over repeated visits within this period. This assumption becomes less reliable over larger areas 100 

or longer periods, where repeated visits may be insufficient to accurately estimate detectability. 101 

Additionally, occupancy models only correct for variation in detectability among separate 102 

survey visits and do not explicitly address spatial sampling biases (MacKenzie et al., 2002); 103 

that is, they attempt to adjust for measurement error in recording, but not for bias related to 104 

which sites were visited (i.e., sampling design). In contrast, Frescalo operates at larger spatio-105 

temporal scales (e.g., multi-year/100 km², Hill, 2012) and uses information on emergent 106 

patterns in observed species assemblages, rather than estimating parameters related to 107 

observation processes at the level of individual surveys. While the occupancy models exploit 108 

repeated observations through time, Frescalo uses observations across multiple spatial 109 

locations. By attempting to account for both spatial and temporal variation in sampling 110 

coverage at larger scales, Frescalo is particularly well-suited to handling biases inherent to 111 

unstructured datasets (Binley & Bennett, 2023; Geldmann et al., 2016).  112 

While Frescalo has primarily been applied to plant data (e.g. Auffret & Svenning, 2022; Bijlsma, 113 

2013; Blockeel et al., 2014; Eichenberg et al., 2021; Pescott et al., 2019; Suggitt et al., 2023; 114 

White et al., 2019), there is growing interest in extending its use to other taxa, such as moths 115 

(Fox et al., 2014), pollinators (Redhead et al., 2018), and multi-taxa analyses (Dyer et al., 2017; 116 

Montràs-Janer et al., 2024). This is supported by the fact that Frescalo only uses information 117 

within the biodiversity data, and does not rely on associated sampling effort metadata; this 118 

means that it has relatively low data requirements and can be used with presence-only 119 

occurrence records, such as Atlas or GBIF-type data, as well as historical museum data or 120 

similar (although see section 3.3 “Assumptions” below). Similarly, data that are relatively 121 

coarsely resolved in space and/or time are also suitable for use with Frescalo, a feature which 122 

can also intrinsically act to reduce bias (Boyd, Bowler, et al., 2024; Stroh et al., 2023). 123 
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The complexity of Frescalo, which involves the use of site neighbourhoods to predict species 124 

assemblage properties and a multi-step algorithm grounded in ecological theory, may explain 125 

its limited adoption among ecologists relative to other methods. For example, Hill's paper (Hill, 126 

2012) was cited 23 times less than Mackenzie's paper (Mackenzie et al., 2002) on occupancy 127 

models (142 citations since 2012 compared to 5872 citations since 2002). The approach 128 

requires knowledge of taxon group ecology, dataset properties, and an understanding of the 129 

underlying ecological theory. To make this method more accessible, we present a guide to 130 

Hill’s Frescalo method tailored to ecologists who may find the original presentation too 131 

mathematical (Hill, 2012). This article begins with an intuitive and concise explanation of the 132 

method’s key principles, accompanied by conceptual figures to aid understanding. We provide 133 

a step-by-step roadmap to help readers apply the method effectively, identify potential pitfalls 134 

and make informed decisions. We have also developed an R package to facilitate the use of 135 

Frescalo (https://github.com/colinharrower/frescalo) based on the efficient parallelised 136 

implementation of White et al. (2019); a direct (i.e., loop-based) R translation of the original 137 

fortran implementation is also provided by (Pescott, 2025a). Mathematical notation throughout 138 

the article follows Hill (2012) for easy cross-referencing, and a Glossary is provided for plain 139 

language descriptions of model parameters.  140 
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 141 

Figure 1. An overview of frequency scaling using local occupancy (Frescalo). The 142 

approach is based on two consecutive steps: (1) Spatial correction. This consists in first 143 

defining a neighbourhood per site and then standardising the local species frequency curves 144 

across neighbourhoods to make them comparable. (2) Temporal correction. This consists of 145 

equalising the sum of the observed species occurrences with the sum of the standardised 146 

(i.e., effort-corrected) neighbourhood frequencies across sites to obtain an average temporal 147 

deviation factor per species and time period (Hill’s “time factor”) across the study area. Taken 148 

together these time factors represent a species’ average temporal trend, conditional on 149 

modelling assumptions. 150 

2. Frescalo in a nutshell 151 

The frequency scaling using local occupancy approach of Hill (2012) can provide an unbiased 152 

estimate of temporal trends when there has been enough sampling to at least estimate species’ 153 

local relative frequencies fairly accurately. Spatial variation in ecology is addressed by dividing 154 



the study area into “neighbourhoods”, whereby each site in the analysis is assigned a number 155 

of other similar sites nearby that provide an ecologically coherent context within which to 156 

understand a target site’s assemblage. Within this context Frescalo consists of two main steps: 157 

the first step is to correct for variation in sampling effort across neighbourhoods for the overall 158 

time period being considered (“Spatial correction”, Fig. 1). A method of standardising species 159 

frequency curves across neighbourhoods is used to ensure their comparability for subsequent 160 

steps in the algorithm. The second step is to correct for time-period specific variations in 161 

recording effort within and across sites. This temporal variation in effort is accounted for using 162 

an index of local recording completeness: the proportion of a suite of locally common species, 163 

sometimes referred to as “benchmark species”, that have been recorded (“Temporal 164 

correction”, Fig. 1). While other methods have also used benchmarks for similar purposes 165 

(Pescott et al., 2019), Frescalo allows the identity and number of these taxa to vary regionally 166 

(i.e., by neighbourhood). This ensures that each area has its own species frequency curve and 167 

benchmarks, accounting for regional variation in ecology and sampling effort. The following 168 

section (3) provides more detail on each of these steps. 169 

3. Frequency scaling using local occupancy: A deeper dive 170 

3.1 Spatial correction 171 

Frescalo models the data in discrete space at two different scales: sites (these may be grid 172 

cells or any set of non-overlapping polygons of equal or roughly similar size) and 173 

neighbourhoods, which correspond to a number of sites, typically in the order of tens, grouped 174 

together (these sites need not all be contiguous, but neighbours will generally need to be 175 

somewhat local to the target site for the assumption that they provide information on a target 176 

site’s species assemblage to be reasonable). To predict the species frequency curve for each 177 

site Frescalo aggregates the data for the ecological ‘neighbourhood’ for each site, using data 178 

for all time points included in the analysis, based on a predefined set of neighbourhood site 179 

weights (section 3.1.1). The resulting species frequency curves for each site are therefore 180 
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constructed in the context of their associated neighbourhoods (section 3.1.2). Temporal 181 

information is not used at this stage. 182 

3.1.1  Neighbourhoods weights and frequency-weighted mean frequencies 183 

Neighbourhoods are a key part of local frequency scaling. As already noted, a neighbourhood 184 

is a cluster of sites that are "similar" to a target site. The simplest definition of "similar" is to use 185 

geographical distance, where only sites within a set distance from the target site are included 186 

in its neighbourhood. Ecological similarity can also be used, for example floristic similarity (Hill, 187 

2012), climatic similarity (e.g., Auffret & Svenning, 2022) and/or land cover similarity (e.g. 188 

Eichenberg et al., 2021, Stroh et al., 2023). Each site is assigned its own unique 189 

neighbourhood, although neighbourhoods for different target sites may overlap and typically 190 

do. The definition of site neighbourhoods is very important as it underpins the generation of 191 

the large-scale species frequency curves that constitute one of the key propositions of local 192 

frequency scaling. The more ecologically defensible the neighbourhoods, the more confident 193 

we may be that their species frequency curves will provide useful information about the target 194 

sites that they surround. 195 

The first step in the method, which we provide a worked example for below and in Figure 2, is 196 

to calculate the frequency of each species 𝑗 in the neighbourhood of each site 𝑖 (𝑓𝑖𝑗, see 197 

Glossary). This means that species that are more frequent and/or in neighbourhood locations 198 

with larger weights, i.e., those that are closer and/or more ecologically similar to the target site, 199 

are emphasised relative to those species that are rare and/or in more distant or less similar 200 

sites. Neighbourhoods in which all sites are equally weighted (i.e., effectively an unweighted 201 

neighbourhood) can also be used, and this can be seen simply as a special case of the 202 

weighted situation; Figure 2 uses such an unweighted neighbourhood for simplicity (but see 203 

Fig. S1 for a weighted example). In what follows we refer to species’ weighted frequencies in 204 

neighbourhoods simply as “frequencies” (𝑓𝑖𝑗) to avoid confusion with the statistic later used to 205 

summarise a neighbourhoods’ species frequency curve, the frequency-weighted mean species 206 
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frequency (see below). Whether weighted or unweighted, the amount of neighbourhood 207 

“space” occupied by any species is simply a proportion or frequency, and it is this point that is 208 

key for understanding the Frescalo method. We therefore relegate the additional complication 209 

of defining species’ frequencies relative to weighted neighbourhoods to Figure S1. 210 

Once all species’ frequencies have been calculated for a neighbourhood, a type of mean 211 

frequency can be defined: this is the (self-)weighted mean frequency, where the weights are 212 

the species frequencies themselves. Rather than treating all species equally, as would the 213 

simple arithmetic average of all species’ frequencies in a neighbourhood, the frequency-214 

weighted mean frequency treats site/species occurrences equally, meaning that the average 215 

is pulled towards higher frequencies representing commoner species. A key insight of Hill 216 

(2012) was that this frequency-weighted mean frequency could be rearranged into the ratio of 217 

the average species richness of the neighbourhood to the reciprocal of Simpson’s index (i.e., 218 

Hill number 2 or 𝑁2). Given that Hill numbers are metrics that only depend on relative 219 

abundances, not absolute numbers (Jost, 2006), this provides a clever way of allowing the 220 

“structure” of species assemblages to be compared on a common scale. 221 

To illustrate this, consider two neighbourhoods, A, which is relatively under-sampled (30 222 

records), and B, which is well-sampled (60 records, Fig. 2A). In this example, neighbourhood 223 

A is also equivalent (in expectation) to randomly deleting half of the records in neighbourhood 224 

B. The inverse Simpson index (i.e., 𝑁2) is the same between neighbourhoods A and B, which 225 

means that the species in each neighbourhood have the same relative frequency distribution. 226 

However, the sum of the species’ observed frequencies (equivalent to the average species 227 

richness of the neighbourhood) of A is half of B, but as 𝑁2 is unchanged the ratio 𝜑𝐴 is half of 228 

𝜑𝐵 (Fig. 2A, B). Therefore, based on the 𝜑𝑖  values, we can say that the sampling intensity in 229 

neighbourhood A is half of the sampling intensity in neighbourhood B. However, we note that 230 

this interpretation only works if 𝑁2 is the same in the neighbourhoods compared. The question 231 

now is, how can we ensure that observations from different large-scale neighbourhoods 232 
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sampled at different intensities are comparable in this way? The method used to achieve this 233 

is described in the next section. 234 

3.1.2 Standardising local species frequencies 235 

The standardisation of local species frequencies across neighbourhoods is required to make 236 

them comparable, i.e., to align all neighbourhood species frequency curves towards that 237 

indicated by a specific value of 𝜑 (Fig. 2F). This target 𝜑 value (hereafter referred to as 𝛷 as 238 

per Hill 2012) can be informally thought of as the 𝜑 value of the “best sampled” neighbourhood 239 

(Fig. 2C), although in fact any value could be used (as Hill 2012 states “the precise value of 𝛷 240 

is not critical, but it should correspond to a thorough search of the neighbourhood”). In other 241 

words, 𝛷 is generally set so that it is close to the largest observed value of φ across 242 

neighbourhoods. 243 

Another way of understanding this process is to understand that 𝛼𝑘 (Figure 2D) can be seen 244 

as a multiplier that “fattens” the pattern of each species frequency within a multivariate Poisson 245 

point process. If the value of 𝛼 is high, the neighbourhood correction is strong and species 246 

weighted frequencies are all scaled up. However, this step does not artificially create “new” 247 

species, but rather can be understood as increasing existing species’ relative frequencies 248 

proportionally. 𝑁2 is unchanged given that it is invariant to multiplication applied equally across 249 

species’ frequencies, and the 𝛼 multiplier only affects the numerator of the ratio formula for 𝜑; 250 

𝛼 then effectively acts as an index of how much “fattening” of species’ neighbourhood 251 

frequencies was required to achieve the specified frequency-weighted mean frequency 𝛷. This 252 

could also be interpreted as harmonising the expected frequency of species across all 253 

neighbourhoods (Fig. 2F). Returning to our example in Figure 2, if we set 𝛷 to 0.70 and find 254 

that 𝜑𝐴 is 0.31, we want 𝜑𝐴 to be adjusted towards 0.70. Therefore, through an iterative 255 

algorithm, each species frequency (𝑓𝑖𝑗) for neighbourhood A can be interpreted as having been 256 

multiplied by some value 𝛼 via its log-link, which is updated at each algorithm step 𝑘 (note that 257 

this iterative process is not the only way of solving for 𝛼, but it is the approach implemented by 258 



Hill 2012). Once all (transformed) species frequencies have been multiplied by 𝛼𝑘, 𝜑𝐴 is 259 

recalculated according to the formula described in words above, i.e., 𝛴𝑗  𝑓
𝑖𝑗

/𝑁2. Since 𝑁2 is 260 

constant, and where 𝛼𝑘 is greater than one for under-sampled neighbourhoods, the value of 261 

𝜑𝐴 will increase at each step until reaching 𝛷 (although, in reality, depending on the successive 262 

approximation algorithm used, 𝜑𝑖 may also overshoot and be subsequently reduced towards 263 

𝛷). 264 

This spatial correction is applied over all time periods in the analysis taken together, i.e., the 265 

species frequency curve thus adjusted is time-independent and is assumed to represent a 266 

hypothetical “true” all-time species frequency curve for a neighbourhood. This does not directly 267 

correct for temporal sampling bias, but it provides a neat way of subsequently decomposing 268 

this curve into two elements: one relating to the “true” ecological state of a species within a 269 

neighbourhood at a given point in time and one relating to sampling effort. 270 

 271 



 272 



Figure 2. Spatial correction. The neighbourhood calculations are illustrated by showing two 273 

different unweighted neighbourhoods represented in red and blue, divided into different sites 274 

delimited by black grid lines (A). The target site is represented by a grey shaded square. 275 

Each small coloured symbol is a different species. For each neighbourhood A and B, the 276 

patterns of local species frequencies are plotted as rank-frequency curves, with their 277 

frequency-weighted mean local frequencies (𝝋𝒊) given in text (B); C expands this to a larger 278 

number of imaginary neighbourhoods, and depicts the local frequency curve for the well-279 

sampled neighbourhood that acts as the adjustment target 𝜱 in black. The local frequency 280 

standardisation is illustrated by the iterative estimation of an intensity multiplier 𝜶 via its log-281 

link for a given neighbourhood (D, E), corresponding to the steps required to make 282 

neighbourhoods comparable (F). Note that whilst the x-axis maximum is given as 1 in panel 283 

F, scaled ranks beyond 1 are possible when the number of observed species exceeds the 284 

number predicted. 285 

3.2 Temporal correction 286 

The temporal correction estimates a metric (hereafter “time factor”) for each species across 287 

time periods after the spatial corrections have been applied to all neighbourhoods, taken 288 

together, these time factors constitute a species’ temporal trend. Once all neighbourhoods 289 

have been rescaled to have the frequency-weighted local mean frequency of the best sampled 290 

neighbourhood 𝛷, the adjusted frequency of each species (i.e., 𝑓′𝑖𝑗, see Glossary) can be 291 

extracted. These values are independent of time, and can be considered to refer to an idealised 292 

and standardised species frequency curve from which period-specific deviations can be 293 

estimated. 294 

The standardisation of local species frequency curves also serves another purpose within 295 

Frescalo: it provides the analyst with a simple and objective way of selecting benchmark 296 

species. Recall that benchmarks are locally common species, the recording of which is 297 

assumed to be a useful index of effort (Latour & van Swaay, 1992; Pescott et al., 2019). 298 
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Mathematically the benchmark species are defined for each neighbourhood as some specified 299 

proportion of the standardised species frequency curve. Whilst benchmarks could in theory be 300 

chosen outside of the Frescalo algorithm, the ordered lists of species rank in neighbourhoods, 301 

𝑅𝑖𝑗, arising from the neighbourhood frequency curves can be made comparable across 302 

neighbourhoods by dividing by the expected number of species in that neighbourhood 𝛴𝑗𝑓′𝑖𝑗. 303 

This means that 𝑅′𝑖𝑗 always runs from 0 up to (and sometimes just above) 1 regardless of 304 

neighbourhood richness. This extra normalisation step means that we can define benchmarks 305 

simply as the species with 𝑅′𝑖𝑗 < 𝑅∗ using a single value of 𝑅∗ across neighbourhoods. (Note 306 

that the rank-normalised adjusted species frequencies are not used directly elsewhere in the 307 

Frescalo algorithm.) The effort index arising from this benchmark definition is the proportion of 308 

benchmarks found in a given site in a given time period (𝑠𝑖𝑡), which corresponds to the number 309 

of the benchmark species found in site 𝑖 at time 𝑡 divided by the total number of benchmark 310 

species found in this site over all time periods. The selected benchmark species are assumed 311 

to not show substantial temporal trends on average. 312 

Once this index of sampling effort is in place, we have a way of estimating how much of the 313 

deviation between our time-independent standardised species frequencies and our observed 314 

data can be accounted for by sampling effort: any remaining deviation is assumed to represent 315 

true ecological pattern. This is done by estimating the model-based species frequencies by 316 

combining neighbourhood level sampling intensity (𝑓′𝑖𝑗) and site level sampling effort (𝑠𝑖𝑡); 317 

these are then summed across sites for each species and time period (𝛴𝑖𝑄𝑖𝑗𝑡). The time factor 318 

(𝑥𝑗𝑡) is therefore the value that adjusts the sum of modelled estimates of a species frequency 319 

to match the empirical observations (i.e., the sum of the detected occurrences by species and 320 

time period across sites, 𝛴𝑖𝑃𝑖𝑗𝑡). This represents a temporal deviation for a species from its 321 

modelled frequency.  Because our benchmark species have been chosen to be (on average) 322 

temporally stable, deviations of 𝑥𝑗𝑡 away from 1 quantify how much each species’ frequency 323 

has changed relative to the benchmarks. 324 



 325 

Figure 3. The temporal correction is an adjustment of the observed occurrences (A) by the 326 

modelled frequency (B) per time period. Observed occurrences (A) correspond to the sum of 327 

the presences per species in the raw dataset. The modelled frequency per species (B) is 328 

obtained from the corrected frequency (see Fig. 2) and the proportion of benchmark species 329 

recorded (see Fig. 2) per site/time period combination. The time factor (C) corresponds to the 330 

temporal values that adjusts the sum of the observed occurrences to the sum of the 331 

modelled frequencies. 332 

3.3 Assumptions 333 

3.3.1 “The recorder effort problem” 334 

The frequent lack of information about the effort that has gone into collecting biodiversity data 335 

has often hampered research. This problem was identified early on in the modern literature as 336 

the “recorder effort problem” (Prendergast et al., 1993). A first assumption of Frescalo is that 337 

the probability of finding a species at a site can be estimated from its frequency in the 338 

neighbourhood, conditional on a thorough search of the area having been conducted. This 339 
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assumption distinguishes Frescalo from some other modelling approaches such as 340 

occupancy-detection models (Mackenzie et al., 2002) by modelling species abundance at a 341 

coarser scale, but it is closely related to the closure hypothesis of occupancy detection models 342 

(see Pescott, 2025b). Occupancy models typically adjust for imperfect detection using repeat 343 

visits (and often by adjusting for covariates thought to index effort expended, e.g. list length; 344 

van Strien et al., 2013) at small spatial scales, whereas Frescalo uses information (almost 345 

always arising from numerous separate visits) across neighbourhoods at large scales to 346 

estimate the true local species frequency curve (Pescott et al., 2019). This could be framed as 347 

the difference between modelling the actual data-generating process and modelling emergent 348 

patterns in aggregated data (Frank, 2009). 349 

3.3.2 Neighbourhood frequencies and species discovery  350 

A key aspect of the Frescalo algorithm is transitioning from site-specific occurrences to 351 

estimated neighbourhood frequencies, relying on three key assumptions. First, the target site 352 

must be similar to those in its neighbourhood, requiring well-defined variables to describe site 353 

similarity among a neighbourhood (see section 3.1.1). Additionally, neighbourhoods are 354 

assumed to remain constant over time, without accounting for temporal changes (e.g. land use 355 

modifications). The second assumption is that species discovery can be modelled by a Poisson 356 

process. This requires that the average rank of a species in a local frequency curve over time 357 

is not biased. That is, ranks should ideally index the truth, regardless of changes in sampling 358 

intensity. According to Hill, (2012), “[t]he chance of a given species being discovered is the 359 

outcome of a two-stage stochastic process. The first stage concerns the type and duration of 360 

the visit, while the second concerns the frequency with which a given species is encountered 361 

during a visit of a certain type. When these processes are combined, each species will have a 362 

standard probability of being recorded on a visit. Under most assumptions about the nature of 363 

this two-stage process, the discovery of less common species will be a rare event”, i.e., species 364 

counts in the neighbourhood behave like a Poisson process. To rephrase this assumption, we 365 

could say that the discovery process is stationary across space and time. Common species 366 
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remain proportionally common even if you tweak the benchmark proportion. Indeed, Hill’s 367 

(2012) sensitivity analysis shows that varying 𝑅∗ over a wide range only has negligible effects 368 

on the estimated trends. Finally, in a well-sampled neighbourhood, there is a characteristic 369 

weighted mean species frequency which is the same for all neighbourhoods. This assumption 370 

is taken into account in the choice of the parameter 𝛷 (section 3.1.2), which specifies that a 371 

well-sampled neighbourhood corresponds to a certain weighted mean species frequency value 372 

(i.e., 𝛷). According to Hill, (2012), "in most applications, the exact choice of 𝛷 is not critical" 373 

(see Hill, 2012 for a sensitivity analysis). Note that the 𝜑𝑖 values across neighbourhoods can 374 

be standardised without explicitly modelling areas of different richnesses. Although 𝜑𝑖  depends 375 

on the average species richness of the neighbourhood (i.e., 𝛴𝑗 𝑓𝑖𝑗) and the 'effective species 376 

number' (𝑁2), their ratio is independent of local species richness and evenness, and instead 377 

indexes sampling intensity in a standardised way (see Fig. 2A). This implies that, at a given 378 

level of sampling effort (i.e., 𝛷), the adjusted species frequencies in each neighbourhood (𝑓′𝑖𝑗) 379 

are expected to be comparable (see Fig. 2F). 380 

3.3.3 Trend estimation 381 

As mentioned in section 3.2, the time factor represents the relative frequency of each species 382 

within its rescaled neighbourhood. Since this is a relative estimation, benchmark species 383 

should ideally remain stable over time on average. If all benchmark species increase at the 384 

same rate as the target species, the time factor would yield a flat trend, obscuring actual 385 

changes. Therefore, it is essential that reference species exhibit a (flat) constant trend on 386 

average over time, otherwise the observed trend of the target species may become unreliable. 387 

4. Frescalo: A road map 388 

4.1 Deciding on the spatio-temporal units of the analysis 389 

To run Frescalo, the dataset must be collapsed to presence-only data at the scale of the 390 

analysis, where each row represents a species observation linked to a geographic location and 391 



a defined time period. Applying the model therefore requires two key decisions. First, a spatial 392 

unit (which we refer to as sites) must be chosen, assigning each observation to a specific site. 393 

These units can vary, including grid-based resolutions (e.g., hectads, tetrads) or administrative 394 

boundaries (e.g., municipalities, departments). Alternatively, custom spatial units could be 395 

defined based on biogeographical knowledge for specific taxa or environments. In atlas-type 396 

datasets, the spatial unit often corresponds to the sampling grid. Second, appropriate time 397 

periods must be selected (both overall and divisions for trend calculations). Typical options 398 

range from years to broader intervals. Spatial and temporal decisions are interconnected, as 399 

spatial units should be selected to ensure sufficient data coverage across all time periods. 400 

These choices should be made in collaboration with experts familiar with the dataset. 401 

Additionally, approaches to quantifying the potential “risk-of-bias”, such as those in Boyd et al., 402 

(2022), can help assess dataset structure and inform the optimal selection of spatial and 403 

temporal units. In particular, unstructured and semi-structured data inherently involve uneven 404 

sampling across spatial units and years, leading to irregular spatial and temporal distributions 405 

of records. Datasets with high temporal resolution often lack consistent sampling effort over 406 

time. Older records, for instance, may be limited by digitization gaps or accuracy issues, 407 

reducing their usability and the number of available observations. Additionally, external factors 408 

such as funding fluctuations or targeted surveys for specific taxa or habitats can create 409 

temporary, systematic shifts in sampling effort. Beyond temporal inconsistencies, spatial 410 

distribution can also be affected by these variations, resulting in uneven sampling across both 411 

space and time—patterns that are highly dataset-dependent. While Frescalo is designed to 412 

correct for such biases, prior knowledge of dataset-specific sampling discrepancies is crucial 413 

for refining these corrections. For example, if a dataset exhibits strong temporal unevenness 414 

due to older records, extending the length of the initial time periods can help aggregate more 415 

data and reduce estimation uncertainty. Defining time periods incorrectly can introduce 416 

significant uncertainties in estimating the time factor, ultimately biasing the overall temporal 417 

trend. Thoughtful selection of spatial and temporal units is therefore essential to ensure robust 418 

trend analysis. 419 
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4.2 Defining neighbourhoods 420 

The purpose of defining neighbourhoods is to define the rank abundance curves (i.e., the rank-421 

frequency curves) at the species pool level. Each site has its own neighbourhood of other sites 422 

for which the rank abundance curve is derived. As we emphasised in section 3.1, 423 

neighbourhoods are at the heart of the Frescalo method, so it is necessary to characterise 424 

them as well as possible. Neighbourhood selection involves two main steps, such as (i) 425 

selecting the closest sites to the target, and then (ii) filtering these sites by those that are most 426 

ecologically similar to the target. To first select the closest sites to the target, geographical 427 

distance is a key variable to consider, as environmental variables are often structured by 428 

autocorrelation. This may allow us to capture a set of variables that we often don't have. Once 429 

we have selected a set of sites close to the target, we filter these sites to retain the top N most 430 

similar sites (e.g., Hill uses 200 → 100 as default, i.e., 50%). This second step is based on the 431 

values of covariates that are considered to influence the similarity of species assemblages. 432 

The typical covariates used to define neighbourhoods are e.g., edaphic similarity, temperature, 433 

geology, land cover, elevation. However, the choice of covariates depends on the study. For 434 

example, geology is only of interest if there is a contrast between calcareous and acidic rocks 435 

throughout the study area. Therefore, a wide range of variables including plant similarity, 436 

climatic or topographic variables could also be used. We note that neighbourhoods are not 437 

defined according to covariates that are thought to only affect sampling intensity, such as 438 

accessibility. In Figure 2, we present a simplified scenario in which the number of species 439 

observed (i.e., recording intensity) varies within the neighbourhood of a given site to show how 440 

the rank-frequency curves are affected. In reality, sites are weighted by their similarity to the 441 

focus based on the selection of covariates (i.e., in Fig. 2 the weights are binary cells included 442 

in a neighbourhood have a weight of 1 and other cells have a weight of 0, whereas in typical 443 

applications the weights are allowed to be continuous between 0 and 1). Each location can 444 

have any possible weight value between 0 and 1, reflecting how much it contributes to the 445 

neighbourhood for each location. This feature is intended to optimise the relevance of the 446 



derived rank abundance curve for each site, so that it can later be used to calculate survey 447 

effort and adjust for undersampling. However, no sensitivity analysis provides us with 448 

information on the optimal neighbourhood size (i.e., number of sites to consider), nor the 449 

optimal variables to consider when defining a neighbourhood, which is highly dependent on 450 

the analysis (i.e., grain, richness, disturbance, recording effort, etc.; see Auffret & Svenning, 451 

2022; Eichenberg et al., 2021 or Hill, 2012 for different neighbourhood definitions). While Hill, 452 

(2012) showed that the results are robust to neighbourhood size and weighting exponents, 453 

sensitivity analysis checks (e.g., K=50,100,150) are required for each specific data. 454 

 4.3 Choose parameter values that reflect a well-recorded neighbourhood 455 

To correct the local frequency of each neighbourhood (Fig. 2E), the target value 𝛷 456 

corresponding to a well-recorded neighbourhood must be chosen a priori. This value is defined 457 

as 0.74 by default (see Hill, 2012); 𝛷 must lie between 1/n and 1 (with n being the number of 458 

species in the neighbourhood), and Hill’s default 0.74 sits near the upper end of typical plant‐459 

data values. However, the definition of the 𝛷 value can strongly influence the results, especially 460 

when focusing on under-recorded taxa (e.g., bryophytes). In such cases, using the default 461 

value of 𝛷 will not sufficiently correct the predicted number of species in each neighbourhood, 462 

resulting in an underestimation of the species standardised probabilities (see Fig. 3B), which 463 

will then be reflected in the estimate of the time factor, which will also be underestimated, thus 464 

biasing the trends. Increasing the 𝛷 value in such cases will correct the underestimation of the 465 

predicted number of species (Hill, 2012; Auffret & Svenning, 2022). However, if the focus is on 466 

species that are not too rare, small variations of 𝛷 around the default value (i.e., 0.74) will not 467 

affect the trend estimates (see sensitivity analysis in Hill, 2012). Another possibility is to take 468 

the same approach as Hill (2012), calculating the corresponding 𝜑 value for each species (see 469 

section 3.1.1) and then taking the 98.5th percentile to determine 𝛷. However, as noted by Hill, 470 

(2012), very little is known about the behaviour of 𝛷 and further work is required. 471 

 472 

In addition, to estimate the proportion of common species (see 𝑠𝑖𝑡, Fig. 3), it is necessary to 473 



define the threshold for benchmark species (𝑅∗). By default, this threshold is set at 0.27 (Hill, 474 

2012), meaning the top 27% of species, based on their normalised rank 𝑅′𝑖𝑗, are considered 475 

benchmarks. Benchmark species are determined within each neighbourhood, rather than 476 

being fixed across all neighbourhoods. Sensitivity analyses (Hill, 2012; Auffret & Svenning, 477 

2022) have shown that while 𝑅∗ influences the absolute values of the time factor, it may often 478 

have relatively little impact on the overall temporal trend patterns. However, when working at 479 

finer spatial scales or when the most ubiquitous species are excluded, a lower 𝑅∗ value may 480 

be necessary (Auffret & Svenning, 2022). Decreasing 𝑅∗ ensures that only the most locally 481 

abundant species are included as benchmarks (see Fig. 2F), but at the cost of reducing the 482 

number of benchmark species available. While our goal is to select stable species, lowering 483 

𝑅∗ also decreases the precision of time factor estimation. On the other hand, increasing 𝑅∗ 484 

and admitting more benchmarks can undermine the modelling assumptions if the added 485 

species display more systematic bias in how they have been recorded over time: this is a 486 

particular risk if analysts are assessing groups of species that are not typically recorded 487 

together in the field (Pescott, pers. obs.; cf. Coomber et al., 2021) Ultimately the analyst must 488 

be reasonably confident that an optimal balance has been found between ensuring benchmark 489 

stability and maintaining model plausibility. 490 

 491 

5. Potential pitfalls 492 

Above we explained the core of the Frescalo method, highlighting the key assumptions and 493 

explaining the main steps to follow to run Frescalo. Here, we highlight the different key points 494 

that can cause estimation errors when using Frescalo. In most semi- or unstructured datasets, 495 

the data are gathered from different sources, which can lead to a number of additional biases.  496 

5.1 Taxonomic variability 497 

Taxonomy plays a crucial role when analyzing long-term data. The taxonomic conception of 498 

field botanists and global referees can vary widely, which can cause several issues. For 499 
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instance, whether a plant is identified as a subspecies may depend on the botanist's expertise, 500 

the reference flora consulted, or the observation period. This inconsistency can have 501 

significant consequences, as a subspecies may suddenly be divided into multiple species, 502 

directly affecting species trend analyses (cf. Jansen & Dengler, 2010; Pescott et al., 2018). 503 

One way to address this challenge is to conduct analyses at the species level or even higher 504 

taxonomic levels, such as genera, although this may not always be suitable for certain taxa. 505 

Engaging in clear discussions with experts on this matter is essential. Another important 506 

concern involves rare or attractive species. These species are often surveyed more 507 

extensively. In contrast, common species may be under-recorded because recorders become 508 

accustomed to them. This can result in "average" sampling intensity corrections being less 509 

accurate: targeted surveys for rare species mean that survey efforts for common species may 510 

not reflect efforts for rare ones. To tackle this issue, it can be helpful to analyze the correlation 511 

between spatial distribution (the number of grid cells occupied) and the total number of 512 

occurrences per species. 513 

5.2 Sampling bias and data correction 514 

Sampling effort often fluctuates over time when using semi-structured or unstructured data. 515 

While Frescalo is designed to correct for this bias, certain precautions can help optimize the 516 

accuracy of the algorithm. First, it's essential to check the phenology of surveys across years. 517 

In some years, sampling may have been more intensive and spread across multiple seasons, 518 

which can significantly impact trend estimates for species detectable only during specific 519 

seasons, such as vernal species. If some of the earlier data collection was focused on spring 520 

species and the more recent data was not, then the apparent decline observed would be a 521 

mere artefact of changing sampling effort. To prevent this, it may be crucial to monitor the 522 

distribution of occurrences throughout the year and ensure it remains consistent between the 523 

time periods analysed. If certain seasons are disproportionately represented within some time 524 

periods, it may be necessary to exclude the affected species from the analysis or to combine 525 

the different seasons to avoid such bias. Another important issue arises from nested datasets. 526 
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Semi-structured or unstructured datasets often aggregate smaller datasets from different 527 

regions. Some of these may focus exclusively on specific taxa, such as orchids, ferns, or 528 

macrophytes, which can skew the dataset (Stroh et al., 2023). This violates the assumption 529 

that species are sampled in proportion to their true frequencies. Sudden changes in species 530 

occurrence could merely reflect shifts in survey methodology. Since Frescalo pools data 531 

across years, it will struggle to handle such inconsistencies when they are strongly correlated 532 

with the chosen time periods in the analysis. Understanding the objective of each survey (i.e., 533 

each sub-dataset, if disaggregation is possible) is therefore essential. One solution is to 534 

remove imbalanced datasets or exclude taxa that are over-sampled during certain periods 535 

(e.g., see chapter 5 of Blockeel et al., 2014), or to stratify the analysis by survey type if 536 

metadata allow. 537 

5.3 Handling absences  538 

When a species is not recorded during a specific time period across all neighbourhoods, 539 

Frescalo’s time factor solver pulls 𝑥𝑗𝑡 towards zero, predicting complete absence. This 540 

approach differs somewhat from other modeling frameworks, like occupancy-detection 541 

models, which can account for the possibility that a species was present but missed during 542 

surveys (conditional on information richness in the data, as always). The assumption of definite 543 

absence can potentially introduce bias in trend analyses. However, if the time period is well-544 

chosen (spanning several years) and there are no occurrences in the entire surrounding large-545 

scale area, it may be reasonable to assume that the species was truly absent. Nonetheless, 546 

conducting a sensitivity analysis is a useful way to assess how these time periods might affect 547 

trend predictions. 548 



6. Opportunities to use Frescalo to answer ecological questions about 549 

biodiversity changes 550 

6.1 Detecting long-term changes in species’ distributions 551 

The Frescalo method provides a correction that generates time series for each species, 552 

tracking changes in species frequency over time relative to common species. These time 553 

series are assumed to reveal true ecological patterns, as they reflect relative changes in 554 

frequency once effort adjustments have been made. The time factor for each species can also 555 

be compared across time periods. A time factor of 1 indicates that a species' frequency 556 

matches that of the average benchmark species within a given time period. Time factors also 557 

enable comparisons between species: for instance, if species A has a time factor of 1 and 558 

species B has 0.5, species B’s relative frequency is half that of the benchmarks (and half that 559 

of species A). These properties make the time factor useful for analysing temporal species 560 

trends and identifying species that are either increasing or decreasing in frequency. However, 561 

each time factor estimation is surrounded by uncertainty, which must be accounted for to 562 

accurately assess species abundance changes (Pescott et al., 2022). Some models, such as 563 

multilevel models (Gelman & Hill, 2007), explicitly handle uncertainty around each observation, 564 

allowing for lower error estimation of temporal dynamics. This approach helps to assess both 565 

relative and absolute uncertainty, leading to better categorisation of species according to their 566 

temporal trend. Alternative approaches for identifying long-term changes using Frescalo have 567 

been proposed. These include bootstrapping and a posteriori classification (Pescott et al., 568 

2022), as well as the estimation of species-specific occurrence changes over time (Eichenberg 569 

et al., 2021). 570 

6.2 Describing the spatial patterns of distribution change 571 

Beyond temporal analysis, the Frescalo method can also be applied to examine spatial 572 

patterns of species. Following the approach suggested by Bijlsma (2013) and applied by 573 

Eichenberg et al., (2021), Frescalo outputs can be used to map species occurrence 574 
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probabilities at the site level across different time periods. These maps help identify areas 575 

where significant changes in species frequency have occurred. Additionally, they can serve as 576 

valuable tools for communicating species distributions to stakeholders, highlighting knowledge 577 

gaps, and informing conservation efforts. 578 

Another interesting point is that the probabilistic species distributions generated by Frescalo 579 

are somewhat similar to those that could be obtained from species distribution models (SDM; 580 

Guisan & Thuiller, 2005; Thuiller, 2024) applied to the different time periods. In one case, the 581 

probabilistic estimates are derived given the benchmark species and neighbourhoods, while 582 

in the other, they are given by the environmental variables measured and extrapolated at the 583 

sites 𝑖 for a given time period. It will be interesting to investigate whether they give comparable 584 

estimates. However, Frescalo corrects for temporal and spatial bias, which would also need to 585 

be integrated in the SDM applications (Chauvier et al., 2021). Something interesting could then 586 

be to produce species probability distributions from the SDMs, for the different time periods, 587 

correcting for simple spatial bias (distance to road, cities), and see if the SDMs still manage to 588 

capture the species niche and reproduce distribution shifts over time. If sampling bias does not 589 

have much effect on how the species occupies its environmental niche geographically, then it 590 

should not be too problematic for the SDM. The challenge for such a comparison may be 591 

finding the appropriate and relevant environmental variables over time.  592 

6.3 Untapped opportunities: Investigating the spatio-temporal biases of biodiversity 593 

monitoring schemes 594 

Frescalo can also be a valuable tool for enhancing biodiversity monitoring schemes. As 595 

previously mentioned, the method is particularly effective in correcting unstructured or semi-596 

structured datasets, such as atlas-type datasets. However, these datasets often carry inherent 597 

historical biases—whether practical (e.g., challenging areas to sample), financial (e.g., 598 

insufficient funding for sampling), or historical (e.g., intensive sampling by private recorders in 599 

specific areas)—all of which contribute to variability in sampling effort. Consequently, 600 
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stakeholders, such as field naturalists, need tools to identify areas that are under- or over-601 

sampled in order to refine future sampling plans. While modifying ongoing sampling strategies 602 

may be challenging due to limited funding and time constraints, Frescalo can provide valuable 603 

insights. As discussed in section 3.1.2, the Poisson point process used in Frescalo fits each 604 

neighbourhood's rank-frequency curve to the 'best sampled' neighbourhood, with an α value 605 

reflecting the intensity of this process. A higher 𝛼 indicates that a neighbourhood is farther from 606 

the "best sampled" neighbourhood (defined by 𝛷), meaning it was under-sampled. Therefore, 607 

the α values for each neighbourhood throughout the study period serve as a proxy for sampling 608 

intensity, with high α values indicating under-sampled neighbourhoods and low α values 609 

indicating well-sampled ones. Once these α values are mapped, stakeholders can visually 610 

assess discrepancies in sampling intensity across sites and adjust their sampling strategies 611 

accordingly to ensure more uniform coverage across the area. 612 

7. Conclusion 613 

Hill’s Frescalo method fills a critical gap by enabling robust estimation of species‐frequency 614 

trends from unstructured occurrence data, correcting both spatial and temporal sampling 615 

biases through a two‐step neighbourhood‐based algorithm. Yet its uptake has arguably been 616 

limited by perceived mathematical complexity and a lack of accessible implementations. In this 617 

paper, we have: 618 

1. Demystified the algorithm, clearly explaining (i) spatial standardisation via 619 

frequency scaling to a common benchmark 𝛷, and (ii) temporal correction and trend 620 

estimation using benchmark‐derived effort indices 𝑠𝑖𝑡 and time factors 𝑥𝑗𝑡 621 

respectively. 622 

 623 

2. Provided a practical roadmap, highlighting key decisions—site and period 624 

definitions, neighbourhood construction, parameter choices (𝛷, 𝑅∗)—and drawing 625 

attention to common pitfalls around taxonomy, seasonality, nested datasets and 626 

absences. 627 

 628 

3. Pointed to an open‐source R package, which streamlines and speeds up algorithm 629 

execution and visualization, lowering the barrier for ecologists to apply Frescalo to 630 

their own datasets. 631 

Beyond trend estimation, Frescalo’s outputs—spatial multipliers 𝛼𝑖, per‐period effort indices 632 

𝑠𝑖𝑡, and species time factors 𝑥𝑗𝑡—also offer powerful diagnostics for: 633 

● Survey design, by mapping under‐ and over‐sampled regions; 634 



● Bias assessment, by comparing Frescalo maps with SDM or occupancy‐model 635 

outputs; 636 

● Spatial change detection, by producing maps of local frequency shifts. 637 

Looking forward, we see several promising extensions: 638 

● Bayesian or hierarchical occupancy hybrids, e.g., to jointly estimate 𝛼𝑖, 𝑥𝑗𝑡 and 639 

their uncertainties; 640 

● Integration with SDMs, e.g., using 𝛼𝑖 as bias‐correction grids to test concordance 641 

with environmental‐driven predictions; and, 642 

● Real‐time monitoring, by updating 𝛼𝑖 and 𝑥𝑗𝑡 with “live streaming” citizen‐science 643 

data. 644 

By clarifying the methodology, offering concrete guidance, and providing ready‐to‐use 645 

software, we aim to spark broader adoption of Frescalo. This will enable more accurate, 646 

transparent, and reproducible assessments of biodiversity change in an era of increasingly 647 

large but frequently unstructured biological datasets. 648 

  649 



Glossary 650 

Parameter Definition Biological meaning  

𝑆𝑖 Number of searches made in a site.  - 

𝜆𝑖𝑗 Discovery rate of a species 𝑗 in a site 𝑖 through a 

Poisson-process model. 

 - 

𝑓𝑖𝑗  The observed frequency of species 𝑗 in the 

(weighted) neighbourhood of site 𝑖. 

Observed frequency of the species in 

the neighbourhood of site 𝑖.  

𝑁2 Correspond to the inverse of Simpson index 

(see Hill, 1973). 

Relative abundances of common 

species (Roswell et al., 2021). 

𝜑𝑖 A weighted mean of the observed frequencies of 

species j in neighbourhood I (i.e., 𝑓𝑖𝑗), for all 

time, for a standardized level of sampling (i.e., 

𝑁2). 

Expected species frequency within a 

neighbourhood, also mentioned as “a 

measure of the sampling intensity”. In 

other words, this is the ratio of 

the mean species richness to the 

‘effective number of common species’ 

(i.e, 𝑁2). 

𝛷 Correspond to the 𝜑𝑖 for the well-sampled 

neighbourhood. 

This value is used as the target 𝜑 (i.e., 

𝛷)  for all neighbourhoods if no 𝜑 value 

is set as default. 

𝑓′𝑖𝑗 Expected frequency of species 𝑗 in 

neighbourhood 𝑖, for all time, for a standardized 

level of sampling. 

Frequency of the species in the 

neighbourhood of site 𝑖 after correction 

(simulating a thorough search). This a   

proxy for the “true” discoverability- or  

effort-standardised neighbourhood 

species rank-frequency curve (Pescott, 

2025b). 

𝛼𝑖 A scaling factor applied to the intensity of the 

discovery-related Poisson process (see Fig.2); it 

is iteratively estimated to move 𝜑𝑖 towards 𝛷. 

This is the conversion of all species’ 𝑓𝑖𝑗 to 𝑓′𝑖𝑗 

(and so by definition 𝜑𝑖 to 𝛷) for a site’s 

neighbourhood.  

Proxy of a sampling-intensity multiplier, 

which means that if the α is high, the 

neighbourhood correction is strong and 

species weighted frequencies are 

increased. 

𝑅∗  Correspond to the proportion of the species 

defined as benchmarks (i.e., species above a 

defined rank) specific to a given neighbourhood. 

Corresponds to the most common 

species within a neighbourhood.   

https://www.zotero.org/google-docs/?XOhVMp
https://www.zotero.org/google-docs/?25OXpP
https://www.zotero.org/google-docs/?Jc1WOJ
https://www.zotero.org/google-docs/?Jc1WOJ


𝑆𝑖𝑡 Proportion of locally frequent species (𝑅∗), used 

to index sampling effort in particular sites and 

time periods.  

Proxy of local sampling effort. 

𝑃𝑖𝑗𝑡 The true underlying probability that a species 𝑗 

is recorded in a site 𝑖 at a given time 𝑡. 

Empirically, this is represented by the 

observed occurrence data (i.e., 

presence/absence of a species 𝑗 in 

sites 𝑖 at time 𝑡), which are assumed to 

incorporate both effort-related and true 

ecological signals. 

𝛴𝑖  𝑃𝑖𝑗𝑡 The sum of the observed occurrences which is 

equivalent to the sum of true underlying 

occurrence probabilities across all sites 𝑖 at a 

given time period 𝑡.   

The sum of the observed occurrence 

data across all sites 𝑖 for a species 𝑗  at 

a given time period 𝑡 

𝑄𝑖𝑗𝑡 Modelled estimate of a species frequency after 

adjusting neighbourhood level sampling intensity 

(i.e., 𝑓′𝑖𝑗) and site level sampling effort (i.e., 𝑆𝑖𝑡).  

Corrected modelled species frequency 

by the sampling effort for a given time 

period. 

𝛴𝑖 𝑄𝑖𝑗𝑡  The sum of the modelled estimate of a species 

frequency after adjusting neighbourhood level 

sampling intensity and site level sampling effort 

across all sites 𝑖 at a given time period 𝑡. 

 

The sum of the corrected modelled 

frequency across all sites 𝑖 for a 

species 𝑗  at a given time period 𝑡 

𝑥𝑗𝑡= time factor  Correspond to the multiplier which requires 

adjusting the 𝛴𝑖  𝑄𝑖𝑗𝑡 to equal the 𝛴𝑖 𝑃𝑖𝑗𝑡. This is 

assumed to represent a true ecological pattern.  

Corresponds to the temporal deviation 

at a given time of a species compared 

to the most common species and its 

modelled frequency (i.e., 𝑄𝑖𝑗𝑡). A value 

of 1 means that the species is as much 

recorded as the average of the 

benchmark species.  
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Figure S1. Neighbourhood weighting. The neighbourhood calculations are illustrated by 819 
showing two different unweighted neighbourhoods represented in red and blue, divided into 820 
different sites delimited by black grid lines similar to the neighbourhood present in the Fig. 2A 821 
(A), with B explicitly illustrating the similar weighting of each grid cell of the “under-sampled” 822 
neighbourhood (w = 1). The target site is represented by the darker grey square. Each small 823 
coloured symbol is a different species. The influence of weights on the neighbourhood 824 
calculation is shown by introducing different weights within each grid cell (C) and the patterns 825 
of local species frequencies are illustrated as rank-frequency curves with their frequency-826 
weighted mean local frequencies (D). Note that even within a non-uniformly weighted 827 
neighbourhood, species’ frequencies 𝒇𝒊𝒋 retain the same meaning, the only difference being 828 

that the denominator of the frequency calculation represents the “expanded” space of the 829 
weighted neighbourhood, rather than the one site/one unit equality of an unweighted (or 830 
uniformly weighted) neighbourhood. 831 
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