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Abstract 15 

Dissolved organic carbon (DOC) is a critical parameter for assessing metal bioavailability 16 

and toxicity in aquatic systems, but data from routine measurements in Japan are limited 17 

to specific sites. The goal of this study was to develop a statistical model to estimate DOC 18 

concentrations in Japanese rivers using biochemical oxygen demand (BOD) as a proxy. 19 

Because the relationship between BOD and DOC was expected to be highly variable, we 20 

focused on obtaining conservative (i.e., lower bound) rather than central tendency 21 

estimates of DOC concentrations to support “safe-side” screening-level ecological risk 22 

assessments. Based on BOD and DOC measurements from 30 river sites across Japan, 23 

we developed a quantile regression model at the 0.1 quantile to provide conservative 24 

estimates of DOC. Validation with additional monitoring datasets, including original field 25 

surveys in Kanagawa and Osaka Prefectures, demonstrated that the developed model 26 

provided reasonably conservative estimates of DOC and hence supported its use for “safe-27 

side” screening-level ecological risk assessment. Because of the variability of the BOD-28 

DOC relationship across sites, direct DOC measurements may be appropriate where 29 

screening-level assessments indicate potential ecological risks. 30 

Keywords: bioavailability, dissolved organic matter, freshwater, biotic ligand model, 31 

quantile regression  32 
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INTRODUCTION 33 

Knowledge of chemical speciation is essential for understanding and accurately 34 

predicting the bioavailability and toxicity of trace metals and cationic polymers in aquatic 35 

systems (Adams et al. 2020; Connors et al. 2023; Paquin et al. 2002). Dissolved organic 36 

matter (DOM) plays an important role in this speciation process because binding of trace 37 

metals and cationic polymers to DOM can reduce their toxicity. Dissolved organic carbon 38 

(DOC) is often used as a metric of DOM to predict metal bioavailability and toxicity 39 

(Farley et al. 2015; Tipping et al. 2008). In the case of Cu, for example, DOC has been 40 

the most influential parameter among several input parameters, including Ca, Mg, and 41 

alkalinity, in the derivation of predicted no-effect concentrations using a biotic ligand 42 

model (Peters et al. 2011). Despite its importance, routine monitoring of DOC is not done 43 

in many countries, including Japan (Iwasaki &Naito 2024; Peters et al. 2013). This lack 44 

of monitoring data has complicated efforts to assess the bioavailability and ecological 45 

risks of trace metals or cationic polymers in aquatic environments on a broader scale (e.g., 46 

at a country level). For example, Peters et al. (2013) have developed a statistical model 47 

to predict DOC from concentrations of dissolved iron to assess the ecological risks of 48 

nickel in the UK. 49 

 In Japan, 5-day biochemical oxygen demand (hereafter referred to as BOD) has 50 
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been measured as an indicator of organic pollution in nationwide water quality monitoring 51 

programs, but there are no comprehensive data on DOC concentrations in rivers across 52 

the country, nor is there a model available to predict DOC concentrations. Our goal was 53 

thus to develop a statistical model based on 5-day BOD values to predict concentrations 54 

of DOC in Japanese rivers. Because the relationship between BOD and DOC was 55 

expected to be highly variable (see below), we focused on obtaining conservative 56 

estimates (i.e., very unlikely to be overestimates) of DOC concentrations to support a 57 

“safe-side” screening-level ecological risk assessment rather than central tendency 58 

estimates such as the arithmetic mean. 59 

 60 

MATERIALS AND METHODS 61 

Model development 62 

To develop a statistical model for DOC prediction, we used two different types of DOC 63 

and BOD monitoring data: a nationwide water quality dataset for model development and 64 

three monitoring datasets for model validation. For the model development, we collected 65 

the relevant monitoring data from the Water Information System managed by the Ministry 66 

of Land, Infrastructure, Transport and Tourism (http://www1.river.go.jp/). By extracting 67 

measurement records where DOC and BOD were measured simultaneously at the same 68 
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sites between 2011 and 2020, we obtained a total of 1583 records from 30 river sites 69 

across Japan (Fig. S1; Table S1 for the raw data). When selecting these sites, we excluded 70 

three sites that were likely located in brackish water based on their locations on a map 71 

and the fact that their measured electrical conductivities exceeded 100 mS/m. For a 72 

measurement below the reporting limit of quantification (BOD: 0.5 mg/L; DOC: 1 mg/L), 73 

we used half the limit of quantification in the later analysis. 74 

 Using the extracted data, we developed a quantile regression model at the 0.1 75 

quantile to obtain conservative estimates of DOC from BOD. We modeled the BOD-DOC 76 

relationship using the following simple linear function: 77 

log(𝐷𝑂𝐶) = 𝑎 × log(𝐵𝑂𝐷) + 𝑏         (1) 78 

As a supplementary analysis, we also developed a quantile regression model at the 0.5 79 

quantile to capture the median relationship. All the statistical analyses were performed 80 

using R version 4.4.0 (R Core Team 2024). The quantile regression models (Cade &Noon 81 

2003; Koenker &Hallock 2001) were fitted using the function “rq” in the R package 82 

“quantreg” (version 5.97). 83 

 84 

Model validation 85 

To assess whether the developed quantile regression model (i.e., 0.1 quantile) could 86 
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provide conservative estimates of DOC, we used a monitoring dataset obtained from 87 

Takeshita et al. (2019) and two additional datasets from original field surveys that we 88 

conducted in Kanagawa and Osaka Prefectures (Fig. S2). Takeshita et al. (2019) selected 89 

50 sampling sites in Japanese rivers receiving nickel discharge, including reference sites 90 

(see Fig. S2 and Takeshita et al. (2019) for more details).  91 

For our original surveys in Kanagawa and Osaka Prefectures, a total of 10 and 92 

16 sampling sites, respectively, were selected from nationwide water quality monitoring 93 

sites in order to include both sites with relatively low BOD (≤ 1 mg/L) and those with 94 

relatively high BOD (> 2–3 mg/L) based on previously reported values (Iwasaki et al. 95 

2022). The sampling was conducted in January and June 2024, respectively. For the 96 

Kanagawa Prefecture survey, we selected nine sampling sites from the Tsurumi River and 97 

one site from the Tama River; 16 sampling sites were set up in various rivers for the Osaka 98 

Prefecture survey (see Fig. S2 and Table S2 for more details, including latitudes and 99 

longitudes). The analyses of DOC and 5-day BOD were conducted in accordance with 100 

Japanese Industrial Standard (JIS) K0102 testing methods for industrial wastewater. 101 

Dissolved organic carbon was measured in water samples filtered through a 0.45-μm 102 

membrane filter using a total organic carbon analyzer (TOC-L CPH, Shimadzu). 103 

 104 
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RESULTS AND DISCUSSION 105 

Values of BOD at the 30 monitoring sites across Japan ranged from 0.1 to 14 mg/L. The 106 

DOC concentrations were highly variable at a given BOD (Fig. 1). The relationships 107 

between BOD and DOC were generally unclear, even when examined at individual sites 108 

(Fig. S1; Pearson’s r = −0.21 to 0.71; median = 0.37). The magnitudes of ~90% of the 109 

correlation coefficients were less than 0.6. 110 

 Using these monitoring data for model development, the quantile regression 111 

model at the 0.1 quantile was estimated as follows (Fig. 1): 112 

log(𝐷𝑂𝐶) = 0.5558 × log(𝐵𝑂𝐷) − 0.2306       (2) 113 

Both the intercept (b) and slope (a) of the model were statistically significant (p < 0.001). 114 

This regression line was estimated so that 10% of the measured DOC values fell below 115 

the line. Compared with the model validation data, all but a few of the data points were 116 

above the 0.1 quantile regression line (Fig. 2). This result suggests that this quantile 117 

regression model provides conservative estimates of DOC from BOD. 118 

 We also estimated the quantile regression model at the 0.5 quantile: 119 

log(𝐷𝑂𝐶) = 0.3155 × log(𝐵𝑂𝐷) + 0.1364        (3). 120 

Both the intercept (0.1364) and slope (0.3155) of the model were statistically significant 121 
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(p < 0.001). This 0.5-quantile model could facilitate obtaining moderate (i.e., median) 122 

estimates of DOC concentrations for environmental risk assessment or for examining how 123 

the results of a risk assessment depend on DOC values. However, note that given the 124 

variations in the BOD-DOC relationship among sites (and likely among seasons; Figs. 2 125 

and S1), caution is required when using DOC values predicted from the 0.5 quantile 126 

regression model. Indeed, the observed BOD-DOC relationship from the Osaka 127 

Prefecture survey clearly differed from the relationships apparent in the other two datasets 128 

(Takeshita et al. (2019) and the Kanagawa Prefecture survey; see Fig. 2), although the 129 

underlying reasons for these differences are unclear. 130 

In this study, largely due to limited data availability, we analyzed the relationship 131 

between BOD and DOC by pooling monitoring data from 30 sites in rivers across Japan 132 

and developed a quantile regression model that provided conservative estimates of DOC 133 

from BOD. However, the BOD-DOC relationships likely depended on site-specific 134 

characteristics, such as catchment land use, vegetative cover, and resident 135 

microorganisms. Further data accumulation might enable evaluations that take account of 136 

these characteristics. However, it is important to note an essential difference: BOD is an 137 

indicator of biodegradable organic matter, whereas DOC is the amount of dissolved 138 

organic carbon and includes both refractory and biodegradable organic matter. This 139 
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important difference suggests that there may be inherent limitations to accurately 140 

estimating DOC from BOD. Direct measurements of DOC may be appropriate at sites 141 

where screening-level assessments based on the conservative estimates of DOC indicate 142 

ecological risks of concern. 143 
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Figure legends 210 

Fig. 1. Relationship between biochemical oxygen demand (BOD) and dissolved organic 211 

carbon (DOC) in Japanese rivers. Different colors indicate 30 water-quality-monitoring 212 

sites selected from the Water Information System (see Fig. S1 for more details). The solid 213 

and dashed lines represent the results of quantile regression models at the 0.1 and 0.5 214 

quantiles, respectively. 215 

 216 

Fig. 2. Relationship between biochemical oxygen demand (BOD) and dissolved organic 217 

carbon (DOC) in three monitoring datasets (Takeshita et al., 2019 and original field 218 

surveys in Kanagawa and Osaka Prefectures). The solid and dashed lines represent the 219 

results of quantile regression models at the 0.1 and 0.5 quantiles, respectively, fitted to 220 

data from the Water Information System. 221 

 222 
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