1	Biochemical oxygen demand as a proxy for dissolved organic carbon in Japanese
2	rivers: Conservative estimates for ecological risk assessment
3	
4	Yuichi Iwasaki and Wataru Naito
5	Research Institute of Science for Safety and Sustainability, National Institute of
6	Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki
7	305-8569, Japan
8	
9	Corresponding author: Yuichi Iwasaki, E-mail: yuichiwsk@gmail.com, yuichi-
10	iwasaki@aist.go.jp
11	
12	Number of words: 1271
13	Number of figures: 2
14	Number of tables: 0

15 Abstract

Dissolved organic carbon (DOC) is a critical parameter for assessing metal bioavailability 16 and toxicity in aquatic systems, but data from routine measurements in Japan are limited 17 to specific sites. The goal of this study was to develop a statistical model to estimate DOC 18 concentrations in Japanese rivers using biochemical oxygen demand (BOD) as a proxy. 19 Because the relationship between BOD and DOC was expected to be highly variable, we 20 focused on obtaining conservative (i.e., lower bound) rather than central tendency 21 estimates of DOC concentrations to support "safe-side" screening-level ecological risk 22 assessments. Based on BOD and DOC measurements from 30 river sites across Japan, 23 24 we developed a quantile regression model at the 0.1 quantile to provide conservative estimates of DOC. Validation with additional monitoring datasets, including original field 25 surveys in Kanagawa and Osaka Prefectures, demonstrated that the developed model 26 provided reasonably conservative estimates of DOC and hence supported its use for "safe-27 side" screening-level ecological risk assessment. Because of the variability of the BOD-28 DOC relationship across sites, direct DOC measurements may be appropriate where 29 screening-level assessments indicate potential ecological risks. 30

31 Keywords: bioavailability, dissolved organic matter, freshwater, biotic ligand model,
32 quantile regression

33 INTRODUCTION

Knowledge of chemical speciation is essential for understanding and accurately 34 predicting the bioavailability and toxicity of trace metals and cationic polymers in aquatic 35 systems (Adams et al. 2020; Connors et al. 2023; Paquin et al. 2002). Dissolved organic 36 37 matter (DOM) plays an important role in this speciation process because binding of trace metals and cationic polymers to DOM can reduce their toxicity. Dissolved organic carbon 38 (DOC) is often used as a metric of DOM to predict metal bioavailability and toxicity 39 (Farley et al. 2015; Tipping et al. 2008). In the case of Cu, for example, DOC has been 40 the most influential parameter among several input parameters, including Ca, Mg, and 41 42 alkalinity, in the derivation of predicted no-effect concentrations using a biotic ligand model (Peters et al. 2011). Despite its importance, routine monitoring of DOC is not done 43 in many countries, including Japan (Iwasaki &Naito 2024; Peters et al. 2013). This lack 44 of monitoring data has complicated efforts to assess the bioavailability and ecological 45 risks of trace metals or cationic polymers in aquatic environments on a broader scale (e.g., 46 at a country level). For example, Peters et al. (2013) have developed a statistical model 47 to predict DOC from concentrations of dissolved iron to assess the ecological risks of 48 nickel in the UK. 49

50

In Japan, 5-day biochemical oxygen demand (hereafter referred to as BOD) has

51 been measured as an indicator of organic pollution in nationwide water quality monitoring 52 programs, but there are no comprehensive data on DOC concentrations in rivers across the country, nor is there a model available to predict DOC concentrations. Our goal was 53 thus to develop a statistical model based on 5-day BOD values to predict concentrations 54 of DOC in Japanese rivers. Because the relationship between BOD and DOC was 55 expected to be highly variable (see below), we focused on obtaining conservative 56 estimates (i.e., very unlikely to be overestimates) of DOC concentrations to support a 57 "safe-side" screening-level ecological risk assessment rather than central tendency 58 estimates such as the arithmetic mean. 59

60

61 MATERIALS AND METHODS

62 Model development

To develop a statistical model for DOC prediction, we used two different types of DOC and BOD monitoring data: a nationwide water quality dataset for model development and three monitoring datasets for model validation. For the model development, we collected the relevant monitoring data from the Water Information System managed by the Ministry of Land, Infrastructure, Transport and Tourism (http://www1.river.go.jp/). By extracting measurement records where DOC and BOD were measured simultaneously at the same

69	sites between 2011 and 2020, we obtained a total of 1583 records from 30 river sites
70	across Japan (Fig. S1; Table S1 for the raw data). When selecting these sites, we excluded
71	three sites that were likely located in brackish water based on their locations on a map
72	and the fact that their measured electrical conductivities exceeded 100 mS/m. For a
73	measurement below the reporting limit of quantification (BOD: 0.5 mg/L; DOC: 1 mg/L),
74	we used half the limit of quantification in the later analysis.
75	Using the extracted data, we developed a quantile regression model at the 0.1
76	quantile to obtain conservative estimates of DOC from BOD. We modeled the BOD-DOC
77	relationship using the following simple linear function:
78	$\log(DOC) = a \times \log(BOD) + b \tag{1}$
79	As a supplementary analysis, we also developed a quantile regression model at the 0.5
80	quantile to capture the median relationship. All the statistical analyses were performed
81	using R version 4.4.0 (R Core Team 2024). The quantile regression models (Cade & Noon
82	2003; Koenker & Hallock 2001) were fitted using the function "rq" in the R package
83	"quantreg" (version 5.97).

85 Model validation

86 To assess whether the developed quantile regression model (i.e., 0.1 quantile) could

provide conservative estimates of DOC, we used a monitoring dataset obtained from Takeshita et al. (2019) and two additional datasets from original field surveys that we conducted in Kanagawa and Osaka Prefectures (Fig. S2). Takeshita et al. (2019) selected 50 sampling sites in Japanese rivers receiving nickel discharge, including reference sites (see Fig. S2 and Takeshita et al. (2019) for more details).

For our original surveys in Kanagawa and Osaka Prefectures, a total of 10 and 92 16 sampling sites, respectively, were selected from nationwide water quality monitoring 93 sites in order to include both sites with relatively low BOD ($\leq 1 \text{ mg/L}$) and those with 94 relatively high BOD (> 2-3 mg/L) based on previously reported values (Iwasaki et al. 95 96 2022). The sampling was conducted in January and June 2024, respectively. For the Kanagawa Prefecture survey, we selected nine sampling sites from the Tsurumi River and 97 98 one site from the Tama River; 16 sampling sites were set up in various rivers for the Osaka 99 Prefecture survey (see Fig. S2 and Table S2 for more details, including latitudes and longitudes). The analyses of DOC and 5-day BOD were conducted in accordance with 100 Japanese Industrial Standard (JIS) K0102 testing methods for industrial wastewater. 101 102 Dissolved organic carbon was measured in water samples filtered through a 0.45-µm membrane filter using a total organic carbon analyzer (TOC-L CPH, Shimadzu). 103

105 **RESULTS AND DISCUSSION**

Values of BOD at the 30 monitoring sites across Japan ranged from 0.1 to 14 mg/L. The DOC concentrations were highly variable at a given BOD (Fig. 1). The relationships between BOD and DOC were generally unclear, even when examined at individual sites (Fig. S1; Pearson's r = -0.21 to 0.71; median = 0.37). The magnitudes of ~90% of the correlation coefficients were less than 0.6. Using these monitoring data for model development, the quantile regression

112 model at the 0.1 quantile was estimated as follows (Fig. 1):

113
$$\log(DOC) = 0.5558 \times \log(BOD) - 0.2306$$
 (2)

Both the intercept (*b*) and slope (*a*) of the model were statistically significant (p < 0.001). This regression line was estimated so that 10% of the measured DOC values fell below the line. Compared with the model validation data, all but a few of the data points were above the 0.1 quantile regression line (Fig. 2). This result suggests that this quantile regression model provides conservative estimates of DOC from BOD.

119 We also estimated the quantile regression model at the 0.5 quantile:

120
$$\log(DOC) = 0.3155 \times \log(BOD) + 0.1364$$
 (3).

Both the intercept (0.1364) and slope (0.3155) of the model were statistically significant

122	(p < 0.001). This 0.5-quantile model could facilitate obtaining moderate (i.e., median)
123	estimates of DOC concentrations for environmental risk assessment or for examining how
124	the results of a risk assessment depend on DOC values. However, note that given the
125	variations in the BOD-DOC relationship among sites (and likely among seasons; Figs. 2
126	and S1), caution is required when using DOC values predicted from the 0.5 quantile
127	regression model. Indeed, the observed BOD-DOC relationship from the Osaka
128	Prefecture survey clearly differed from the relationships apparent in the other two datasets
129	(Takeshita et al. (2019) and the Kanagawa Prefecture survey; see Fig. 2), although the
130	underlying reasons for these differences are unclear.
131	In this study, largely due to limited data availability, we analyzed the relationship
132	between BOD and DOC by pooling monitoring data from 30 sites in rivers across Japan
133	and developed a quantile regression model that provided conservative estimates of DOC
134	from BOD. However, the BOD-DOC relationships likely depended on site-specific
135	characteristics, such as catchment land use, vegetative cover, and resident
136	microorganisms. Further data accumulation might enable evaluations that take account of
137	these characteristics. However, it is important to note an essential difference: BOD is an
137 138	these characteristics. However, it is important to note an essential difference: BOD is an indicator of biodegradable organic matter, whereas DOC is the amount of dissolved

140	important difference suggests that there may be inherent limitations to accurately
141	estimating DOC from BOD. Direct measurements of DOC may be appropriate at sites
142	where screening-level assessments based on the conservative estimates of DOC indicate
143	ecological risks of concern.
144	
145	Author contributions
146	Conceptualization: YI and WN; Data curation: YI; Formal analysis: YI; Funding
147	acquisition: YI and WN; Methodology: YI; Writing-original draft preparation: YI;
148	writing—review and editing: YI and WN.
149	Funding
150	This study was partly funded by the Environment Research and Technology Development
151	Fund (JPMEERF20225005) of the Environmental Restoration and Conservation Agency
152	of Japan provided by the Ministry of the Environment of Japan.
153	Data and code availability
154	All data are available in the Supplementary Materials.
155	Acknowledgements
156	This paper does not necessarily reflect the policies or views of any government agency.
157	This study was performed in compliance with the current laws of Japan. During the

158	preparation of this paper, the authors used ChatGPT to improve readability and language.
159	After using this tool, the authors reviewed and edited the content as needed and take full
160	responsibility for the content of the publication.
161	
162	Conflict of interest
163	The authors declare no conflicts of interest.
164	
165	REFERENCES
166	Adams W, Blust R, Dwyer R, Mount D, Nordheim E, Rodriguez PH, Spry D (2020)
167	Bioavailability assessment of metals in freshwater environments: A historical
168	review. Environ Toxicol Chem 39:48–59. doi:10.1002/etc.4558
169	Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists.
170	Front Ecol Environ 1:412–420. doi:10.1890/1540-
171	9295(2003)001[0412:AGITQR]2.0.CO;2
172	Connors KA, Arndt D, Rawlings JM, Brun Hansen AM, Lam MW, Sanderson H,
173	Belanger SE (2023) Environmental hazard of cationic polymers relevant in
174	personal and consumer care products: A critical review. Integr Environ Assess
175	Manag 19:312-325. doi:10.1002/ieam.4642

176	Farley KJ, Balistrieri LS, De Schamphelaere KAC, Iwasaki Y, Janssen CR, Kamo M,
177	Lofts S, Mebane CA, Naito W, Ryan A, Santore R, Tipping E, Meyer JS
178	(2015) Metal Mixture Modeling Evaluation: 2. Comparative evaluation of
179	four modeling approaches. Environ Toxicol Chem 34:741-753.
180	doi:10.1002/etc.4560
181	Iwasaki Y, Kobayashi Y, Suemori T, Takeshita K, Ryo M (2022) Compiling
182	physicochemical characteristics of water quality monitoring sites
183	(environmental reference points) in Japanese rivers and site grouping. J Japan
184	Soc Water Environ 45:231–237. doi:10.2965/jswe.45.231
185	Iwasaki Y, Naito W (2024) Metal exposure profiles at metal-contaminated sites in rivers
186	across Japan. ChemRxiv10.26434/chemrxiv-2024-tdzt3
187	Koenker R, Hallock KF (2001) Quantile Regression. J Econ Perspect 15:143-156.
188	doi:10.1257/jep.15.4.143
189	Paquin PR et al. (2002) The biotic ligand model: a historical overview. Comp Biochem
190	Physiol C Toxicol Pharmacol 133:3-35. doi:10.1016/S1532-0456(02)00112-
191	6
192	Peters A, Merrington G, de Schamphelaere K, Delbeke K (2011) Regulatory
193	consideration of bioavailability for metals: Simplification of input parameters

194	for the chronic copper biotic ligand model. Integr Environ Assess Manag
195	7:437-444. doi:10.1002/ieam.159
196	Peters A, Simpson P, Merrington G, Schlekat C, Rogevich-Garman E (2013) Assessment
197	of the effects of nickel on benthic macroinvertebrates in the field. Environ Sci
198	Poll Res10.1007/s11356-013-1851-2
199	R Core Team (2024): R: A language and environment for statistical computing. R
200	Foundation for Statistical Computing, Vienna, Austria.
201	Takeshita KM, Misaki T, Hayashi TI, Yokomizo H (2019) Associations of community
202	structure and functions of benthic invertebrates with nickel concentrations:
203	Analyses from field surveys. Environ Toxicol Chem 38:1728-1737.
204	doi:10.1002/etc.4462
205	Tipping E, Vincent CD, Lawlor AJ, Lofts S (2008) Metal accumulation by stream
206	bryophytes, related to chemical speciation. Environ Pollut 156:936-943.
207	doi:10.1016/j.envpol.2008.05.010
208	[in Japanese with English abstract]
209	

210 Figure legends

211	Fig. 1. Relationship between biochemical oxygen demand (BOD) and dissolved organic
212	carbon (DOC) in Japanese rivers. Different colors indicate 30 water-quality-monitoring
213	sites selected from the Water Information System (see Fig. S1 for more details). The solid
214	and dashed lines represent the results of quantile regression models at the 0.1 and 0.5
215	quantiles, respectively.
216	
217	Fig. 2. Relationship between biochemical oxygen demand (BOD) and dissolved organic
218	carbon (DOC) in three monitoring datasets (Takeshita et al., 2019 and original field
219	surveys in Kanagawa and Osaka Prefectures). The solid and dashed lines represent the
220	results of quantile regression models at the 0.1 and 0.5 quantiles, respectively, fitted to
221	data from the Water Information System.
222	

