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Two Metschnikowia nectar yeast species have similar volatile profiles, but elicit differential foraging in bee
pollinators
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Abstract

1. Nectar yeasts are a highly specialized group of fungi that may play key roles in pollination ecology.
Nectar yeasts lack an independent dispersal mechanism to access new habitats with fresh resources.
Yeasts, bumble bee pollinators, and flowering plants likely take part in a series of diffuse mutualisms,
wherein yeast attract bees that provide phoretic travel between flowers. This interaction is thought to
provide bees with improved foraging efficiency and plants with increased pollinator visitation and
associated pollination services. However, the underlying mechanisms driving bee pollinator preferences
for nectar with yeast and differences among yeast species in eliciting pollinator behavior are relatively
unexplored.

2. We used an integrative approach to elucidate the underpinnings of bee pollinator preference for nectars
that contain yeasts. We conducted a survey of local flower nectar for presence and species diversity of
yeast. Using two prominent, local nectar yeast species (Metschnikowia reukaufii and Metschnikowia
koreensis), we conducted observational field trials to ascertain the effects of the presence and identity of
nectar yeast on bee visitation rates. We also analyzed the volatile profiles of both yeast species to
explore if olfactory cues were associated with differential foraging behavior.

3. We found that M. reukaufii was the most common nectar yeast in our study area in the Southeastern
USA, as did previously published global surveys. Intriguingly, we found co-occurrence of multiple yeast
species in 22% of nectar samples, all of which contained M. reukaufii and another yeast typically from
the Metschnikowia genus, such as M. koreensis. In a field trial we found that bee pollinators had higher
visitation to flowers supplemented with M. koreensis over sterile flowers, while no difference in bee
foraging behavior was evident in response to M. reukaufii. Despite this behavioral difference, the
volatile profiles of both yeast species were not significantly different from one another.

4. The ecology and species interactions of wild yeasts are poorly understood, yet may play vital roles in
many ecosystems. Our research highlights the importance of studying facultative mutualisms, and the
necessity of testing their underlying assumptions. Elucidating the mechanisms behind insect-microbe
symbioses will open new horizons in pollination ecology and conservation.

Keywords: insect-microbe symbioses, facultative mutualisms, pollination ecology, yeast, olfaction, volatile
organic compounds
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Introduction

Floral nectar is an important energy source and nutrients for many insects and some vertebrates, and
contributes to both plant and animal fitness (Baker & Baker, 1973). More recently, nectar has been recognized as
an important habitat for archaea, protists, viruses, bacteria, and yeast, and these microbial communities further
mediate plant-insect interactions (Vannette, 2020). Studies suggest that microbes rely on insect vectors to
colonize flower nectar; when flower buds are sequestered from pollinators, their microbial communities are
sparse and do not overlap with insect-associated nectar microbes (Lachance et al., 2001; Brysch-Herzberg, 2004;
Canto et al., 2008; Belisle et al., 2012; de Vega & Herrera, 2012; Aizenberg-Gershtein et al., 2013; Schaeffer &
Irwin, 2014). Insects and yeast, in particular, have an ancient and diverse co-evolutionary history, with yeast
volatiles often playing a vital role in insect attraction for symbiotic relationships (Blackwell, 2017; Madden et
al., 2018; Stefanini, 2018). Despite recent advances in the ecological study of nectar yeasts, open questions
remain on the biogeographical distribution of nectar yeasts, the degree to which they attract or repel insect
pollinators at flowers, and how flower-insect-yeast interactions are mediated (Klaps et al., 2020).

While flower nectar is a hostile environment for microbes due to osmotic stress associated with high
sugar, low nitrogen availability, and competitive exclusion (Jacquemyn et al., 2020; Vannette, 2020), specialized
yeast (fungi) and bacteria are able to reach high densities in nectar: up to 10° for fungi and 10 for bacteria
cells/ul (Herrera et al., 2009b; Fridman et al., 2012). With regard to fungi, field surveys show that a single yeast
species often dominates the nectar community, and single yeast species often dominate individual flowers, likely
due to strong competitive and priority effects (Peay et al., 2011; Tucker & Fukami, 2014; Vannette & Fukami,
2014), dispersal limitation (Herrera et al., 2009a; Ushio et al., 2015), vector associations (Morris et al., 2020; de
Vega et al., 2021), and environmental filtering caused by the nectar environment (Herrera et al., 2009a; Vannette
& Fukami, 2016). The most frequently identified yeast species in nectar include the nectar specialists
Metschnikowia reukaufii and Metschnikowia gruessi, and the generalists Aureobasidium pullulans and
Cryptococcus and Candida species (Brysch-Herzberg, 2004; Belisle et al., 2012; Pozo et al., 2012; Schaeffer et
al., 2015). Based on studies to date, M. reukaufii is the most ubiquitous nectar yeast, at least in the temperate
regions where nectar has been most studied (Dhami et al., 2016; Alvarez-Pérez et al., 2021).

The roles of microbes in ecological interactions are poorly understood, but the recognition of their
impact and importance is increasing across systems (Rering et al., 2018b; Martin et al., 2022; Mueller et al.,
2023; Deng et al., 2024). Studies investigating the common nectar yeast M. reukaufii demonstrate mixed
pollinator responses to yeast-inoculated nectar, ranging from attraction to neutrality to aversion (Rering et al.,
2018a; Sobhy et al., 2018; Schaeffer et al., 2019). In contrast, bacteria in nectar usually elicits aversion,
especially in bumble bees (Rering et al., 2018a; Schaeffer et al., 2019). Metschnikowia species are also found in
and on pollinators (Stefanini, 2018; Madden et al., 2022), suggesting that those pollinators also disperse yeasts
(Belisle et al., 2012; Pozo et al., 2012; Schaeffer et al., 2015; Vannette & Fukami, 2016), as has been
hypothesized (Madden et al., 2022). The majority of studies investigating the effects of yeast on insect pollinator
foraging behavior have focused on the yeast M. reukaufii. The degree to which results from M. reukaufii can be
generalized to other nectar yeast taxa requires further investigation.
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The ability of yeast to alter insect foraging behavior appears to be an ancient and evolutionarily
conserved trait (Blackwell, 2017). Yeasts consume sugar from floral nectar and convert it into ethanol. The
metabolic products of this conversion, particularly the volatile organic compounds (VOCs), have been
hypothesized to provide an honest signal to insect pollinators of the presence of sugar sources (Madden et al.,
2018). There is a growing body of literature documenting the VOCs emitted from nectar inoculated with yeast
and their effects on insect behavior (Martin et al., 2022). M. reukaufii produces sweet-smelling esters/acetates
(Rering et al., 2018a, 2018b; Schaeffer et al., 2019; Sobhy et al., 2019). Electroantennographic assays that gauge
the response of antennae to M. reukaufii volatiles differ between Apis mellifera and Bombus impatiens, but both
bees respond to 2-ethyl-1-hexanol, 2-phenylethanol, and 3-methylbutyl acetate (Rering et al., 2018b; Schaeffer
etal., 2019). Of particular interest is 3-methylbutyl acetate, also known as isoamyl acetate, which has a strong
odor (banana, pear), and is also an important attractant for Drosophila melanogaster via Saccharomyces
cerevisiae (Christiaens et al., 2014). Work remains to document VOC profiles from yeast metabolic products
beyond M. reukaufii and their effects on insect behavior.

Our aim was to conduct an integrative and comparative study investigating how local nectar yeast
impact pollinator foraging behavior, and examine the potential chemical signals underlying these interactions.
To achieve this aim, we asked three questions: 1. What is the abundance of nectar yeast in local flora, and what
is the species composition of those yeast? 2. How does the presence of yeast in nectar impact pollinator foraging
choices in the field, and does behavior differ between the ubiquitous, well-studied M. reukaufii and the little
known, but abundant, M. koreensis? And 3. Do M. reukaufii and M. koreensis differ in their volatile profiles, and
could this be the mechanism behind behavioral differences? By answering these questions, we hope to expand
our understanding of bee pollinator and nectar yeast mutualisms, and begin to elucidate the role of microbe
identity in pollination ecology.

MATERIALS AND METHODS

Nectar Yeast Survey

Nectar Sampling: We opportunistically sampled 103 funnelform flowers of various species in Raleigh, NC and
Chapel Hill, NC, USA over a period of three seasons: September 2021 (fall), April 2022 (spring), and June 2022
(summer) (Table S1). We selectively sampled funnelform flowers because bees, especially bumble bees, often
visit flowers with this shape, and because the flower structure allowed for nectar sampling with minimal
contamination from floral tissues. We bagged open flowers using mesh bags to prevent pollinator access and
allow for nectar accumulation. We collected nectar from bagged flowers approximately 24 hours later. We
collected nectar by removing the flower from the calyx and gently squeezing the tapered end, collecting nectar
with sterile 5 pl glass microcapillary tubes. If at least 2.5 pl of nectar could not be collected from a single flower,
nectar from multiple flowers on the same plant were combined in a sample. Microcapillary tubes were stored in
individual sterile 1.5 mL centrifuge tubes and maintained in a cooler until returned to the lab.
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Nectar samples were expressed from the microcapillary tubes into 100 ul sterile water, vortexed, and
then plated on yeast peptone dextrose (YPD) media (1% yeast extract, 2% peptone, 2% glucose, 2% agar), a
standard rich media that does not enrich for any particular species. Plates were cultured for 48-72 hours at room
temperature (24-26°C) until colonies developed distinct morphology to differentiate yeast from bacteria. We
sampled individual yeast colonies that differed in color, size, and texture from each plate. The diversity of
growth on the plates was preserved by conducting total plate washes with YPD media that were stored at -80°C
in 15% glycerol. We inoculated individual unique colonies in 2 mL YPD media and let the samples grow for 24-
48 hours on a spinner at room temperature (24-26°C) until cultures reached high density (assessed visually).
Each sample was then archived in a cryotube at -80°C in 15% glycerol.

Yeast Isolation and Identification: We screened colonies for yeast species using polymerase chain reaction
(PCR) with primers Pn3 (5> CCGTTGGTGAACCAGCGGAGGGATC 3’) and Pn34 (5
TTGCCGCTTCACTCGCCGTT 3’) that target the internal transcribed spacer (ITS) region, a commonly used
locus for species identification in fungi, including fungal species found in nectar (Golonka & Vilgalys, 2013;
Madden et al., 2022; Gardein et al., 2025). Cells were inoculated in 10 pL 0.2 M NaOH, incubated for 20
minutes, frozen at -80°C for 15 minutes, and spun down in 90 uL nuclease-free water for 1 minute. PCR was
performed at a total volume of 20 uL using 10 pL Taq 2X master mix (New England Biolabs), 7 uL nuclease-
free water, 1 pL of each primer, and 2 uL of the colony sample. We used 1% gel electrophoresis to confirm the
success of the PCR and identify those that were “positive” for yeast. Each sample was screened at least 2 times.
Positive samples were Sanger sequenced using forward (Pn3) and reverse (Pn34) primers. We analyzed the
resulting sequences using NCBI BLAST to determine the genus and species of each sample (percent identity >
97%). Samples with less than 97% identity or more than one species greater than 97% identity were reevaluated
using D1/D2 primers (ITS1 - TCCGTAGGTGAACCTGCGG; NL4 - GGTCCGTGTTTCAAGACGG) (Spurley
etal., 2022). Finalized sequences were uploaded to GenBank (Table S2).

Data summary: We calculated numbers and proportions of nectar samples that contained yeast, the distribution
of yeast species across plant families, and the number of instances of co-occurrence of yeast species within the
same flower sample. Calculations were conducted in the statistical program R (v. 4.4.1) via RStudio (v.
2024.04.2+764) (RStudio Team, 2020; R Core Team, 2021).

Effects of Nectar Yeasts on Insect Pollinator Behavior

Yeast cultures: We selected clones of the two most abundant yeast species, M. reukaufii (s2_1) and M. koreensis
(s3_1) (Table S2), from the flower nectar survey to assess effects on pollinator behavior. Yeast were initially
cultured on YPD agar for 48 hours, then inoculated into 5 mL of autoclaved artificial nectar media (21.25%
sucrose (212.5 g/L), 1.875% fructose (18.75 g/L), 1.875% glucose (18.75g/L), 0.1 mM amino acid mixture of
alanine, asparagine, aspartic acid, glutamic acid, glycine, proline, serine), modified from (Rering et al., 2018a),
and placed in a culture tube rotator at 30°C. Sterility of the media was tested by leaving 5 mL of artificial nectar
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un-inoculated in the same rearing conditions. After 24-72 hours, the optical density of the yeast and control
cultures was measured using a spectrophotometer (Biowave Cell Density Meter CO8000). Yeast cultures were
then diluted with sterile artificial nectar to 1x10* cells/uL, using a reference optical density determined by
counting cells at a known optical density on a hemocytometer. This was done separately for each strain to
account for differential relationships between cell concentration and optical density. This cell density was chosen
to align with reported yeast cell concentrations in sampled flower nectar ranging from 102 to 10° cells/uL
(Herrera et al., 2009b, 2011, 2014; Vannette et al., 2013; Schaeffer & Irwin, 2014; Schaeffer et al., 2014, 2015;
Vannette & Fukami, 2016, 2017; Alvarez-Pérez et al., 2021). Diluted yeast cultures were kept at 4°C until 12
hours before use in the field, at which point they were returned to room temperature. Storage at 4°C prevents
yeast cultures from overgrowing before use, and does not impact yeast growth after returning to room
temperature (Fig. S1) Diluted yeast cultures were used within 5 days of dilution (kept at 4°C) or discarded and
new diluted cultures established.

Plants and field plot: We conducted the field behavioral assay in July 2022. We used the plant Pentas
lanceolata (var. Glitterati Red Star and var. Graffiti Mix) (Rubiaceae) which had consistent flower presence that
were highly attractive to bees. Plants were potted into 1 gallon (3.78L) plastic pots (Seed Kingdom, FL, US)
with standard mix commercial potting soil and fertilized with Espoma Organic Flower-Tone (Espoma Organic,
NJ, US) following manufacturer instructions. Plants were kept ina 3.05 m x 3.05 m x 2.13 m mesh shade tent
(CAMPMORE, Amazon, US) when not being used for experimental trials to prevent heat stress, pollinator
visitation, and herbivory. Prevention of pollinator access to experimental plants reduced the likelihood of
introduction of field microbes to flowers in between trials. Plants were watered daily or as necessary, and
senesced flower heads removed regularly to promote continual flowering. We randomly assigned plants to one
of two nectar treatments: sterile nectar or yeast-inoculated nectar. Nectar treatment assignments remained
consistent across trials. For each trial, plants were arranged in an interdigitated array of 4 rows with 5 plants
each, with plants spaced 1 m apart. The location of plants within the array was randomly assigned, and this
assignment was changed between yeast species.

Behavioral assays: Prior to each behavioral assay, we counted and recorded the number of flowers on each
plant; plants with <10 flowers open were replaced with spare plants, and plants with >100 flowers had mesh
bags placed over some flower clusters to prevent pollinator access and reduce effective flower number. Using a
Fisherbrand repeater pipette, 4L of either sterile artificial nectar or yeast-inoculated artificial nectar was placed
into each flower based on treatment assignment. Because we did not remove nectar from flowers, our treatments
represent dilution or augmentation of yeast that were present in flowers, respectively. After flowers were
counted and treated, plants were placed into the interdigitated field array and trial observations began. Two
researchers were present at each trial; one recorded pollinator observations, and one refilled flowers with
artificial nectar to prevent pollinators associating one treatment as “no reward." The researchers and their roles
were the same across all trials. Pollinators were observed individually from the time they entered the plot, to
when they left the plot or were lost. Nectaring was defined as the insertion of the proboscis fully into the flower.
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For each nectaring event, we recorded the plant ID, the number of flowers visited, and the duration of nectaring
on each flower using a hand-held voice recorder (EVISTR 64GB Digital Voice Recorder). Flowers were refilled
with 4 uL of the appropriate nectar treatment as needed, and trials were ended daily when replacement nectar
was exhausted (approx. 2 hrs).

Pollinator observation data were transcribed from the audio recordings, and each pollinator was assigned
a unique ID. Pollinators were identified to genus or species on the wing for carpenter, bumble and honey bees, or
given a descriptive class for solitary bee species (see Fig. S2). The transcribed data included plant ID, plant
location within the plot, plant nectar treatment, yeast species, pollinator taxon, number of flowers visited per
plant, and nectaring duration for each flower. We conducted 4 days of observation for each yeast species,
ranging from July 7-11, 2022 (M. reukaufii) and July 18-22, 2022 (M. koreensis) from approx. 9:30-11:30 in the
mornings.

Statistical Analyses: Four metrics of bee pollinator visitation were calculated and analyzed by nectar treatment
on a per visitor basis: the number of plants visited, proportion of flowers visited per plant, visitation rate (number
of plant visits times the proportion of flowers visited), and visit duration per flower (in seconds). The effects of
sterile or yeast-inoculated artificial nectar on these metrics of bee pollinator visitation were analyzed with linear
mixed effects models using the function 'Ime' from the 'nlme' package using maximum likelihood. Plant nectar
treatment was included as a fixed effect (factorial), and the date of each observational trial was included as a
random intercept. For the analysis of time spent per flower, we also included plant ID as a random effect.
Because M. reukaufii and M. koreensis were manipulated in separate trials, their effects on bee pollinator
visitation relative to sterile nectar were analyzed separately. All data analyses, here and below, were conducted
in the statistical program R (v. 4.5.1) via RStudio (v. 2025.09.0+387).

Volatile Organic Compound Profiles

Volatile collection and analysis: The volatiles for the strains of M. reukaufii and M. koreensis collected from the
nectar survey and used in the pollinator behavioral assays were collected via solid phase microextraction
(SPME) and analyzed using gas chromatography and mass spectrometry (GC-MS). Yeast cultures were grown
and diluted following the methods described in Yeast cultures above, with the modification that cultures were
diluted in sterile artificial nectar to a total volume of 10 mL with a concentration of 1x10* cells/ul to increase
volatile production for SPME. Diluted cultures were stored at 4°C until use. Before volatile collection, cultures
were transferred to sterile glass collection vials and incubated at 30°C for 12 hours in glass beads on a hot plate.
Volatile collections were replicated 5 times for each nectar yeast species, and the cultures of both species were
diluted on the same day. Sterile artificial nectar controls were analyzed in the same manner as the yeast
inoculates for each replicate. Replicates of each yeast species were run on the same day using the same SPME
fiber.

Yeast volatiles were collected using a DVB/CAR/PDMS 50/30um SPME fiber, conditioned at 270°C
per manufacturer instructions before each collection. The fiber was exposed to volatiles for 90 minutes at 37°C.
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Collected volatiles were analyzed on a GC-MS (6890 GC and 5975 MS, Agilent Technologies, Palo Alto, CA,
USA) which was equipped with a DB-WAXetr column (30 m x 0.25 mm, df = 0.25 um, Agilent Technologies)
and helium was used as the carrier gas at an average velocity of 32 cm/s. Oven program was set to 31°C for 2
min, increased at 5°C/min to 50°C, 10°C/min to 90°C, 5°C/min to 150°C, 20°C/min to 250°C and held for 2
min. The injector was set to splitless mode (4 psi) at 250°C, transfer line was also at 250°C, MS source was set
to 230°C and the quadrupole was set to 150°C. Compounds were tentatively identified based on Kovats indices
and electron ionization mass spectra.

Statistical Analyses: We excluded 11 compounds that were found in only one replicate, which were likely
contamination from an unknown source, or were below the 50% confidence threshold (Table S3), leaving 18
compounds. Total peak area of each sample was calculated by adding the area of the 18 compounds (if a
compound was not present in a sample, peak area = 0). For each compound in a sample, the proportion of total
area was calculated (peak area / total sample area), and used in subsequent analyses and visualizations.

The composition of volatile compounds collected from M. reukaufii and M. koreensis were visualized using
Principal Component Analysis using the prcomp function in the stats package (4.5.1). Differences in the VOC
profiles of the two yeast species were examined using PERMANOVA with Bray-Curtis dissimilarities using the
adonis2 function from the vegan package (v. 2.7-1). Homogeneity of variance was tested with the betadisper
function in the vegan package; our samples were homoscedastic, and since PERMANOVA analyses have no
assumption of normal distribution, we did not transform our data.

RESULTS

Nectar Yeast Survey

Out of 103 unique flower samples, 33.98% (35/103) of nectar samples contained yeast in Raleigh and
Chapel Hill, NC USA (Table S1). We found that Metschnikowia yeast dominated local nectar communities
surveyed, with 90.7% of all identified yeasts in our survey being in the Metschnikowia genus. Of these, we
identified the nectar specialist Metschnikowia reukaufii as the most commonly occurring yeast species present
(68.57% of all yeast-positive samples, Fig 1). M. koreensis, M. gruessi, and M. rancensis, however, were also
common (37.14% of all yeast-positive samples across all 3 species). One isolate (1/103) was only able to be
identified to the genus Metschnikowia, and the species identification remains uncertain. Generalist and plant-
associated fungi Aureobasidium pullulans, Meira argovae, Papiliotrema flavescens, and Vishniacozyma
melezitolytica were each identified in one sample. While most nectar samples contained only a single distinct
lineage, we identified 8 cases (22.9% of samples) of co-occurrence between yeasts, typically between M.
reukaufii and another Metschnikowia species (Fig 2). The most common co-occurrence was M. reukaufii and M.
gruessi, followed by M. reukaufii and M. koreensis.
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Effects of Nectar Yeasts on Insect Pollinator Behavior

Bee pollinators exhibited similar numbers of plant visits (LMM, F1,102=0.93, p=0.3383), flowers
probed (LMM, F1,73=1.67, p=0.2006), and visitation rates (LMM, F1,75=2.69, p=0.1052; Table 1, Fig. 3) when
presented with plants treated with M. reukaufii or sterile nectar. In contrast, bee pollinators increased their
visitation rates to flowers and plants supplemented with M. koreensis-inoculated nectar over those treated with
sterile nectar (LMM, F1,73=15.15, p=0.0002; Table 1A, Fig. 3). Bees visited 1.3 times more plants with M.
koreensis treated nectar than sterile (LMM, F1,73=15.15, p=0.0002; Table 1A, Fig. 3), and foraged on 2.64-
times more flowers on yeast treated plants. Treatment with M. koreensis resulted in bees repeatedly foraging on
flowers, with 128% of flowers visited (indicating repeat visits to the same flowers) versus only 54% flowers
probed with sterile nectar (LMM, F1,73=14.69, p=0.0003; Table 1C, Fig. 3). Nectar inoculation with either yeast
species had no effect on the duration of flower visits over sterile nectar (LMM, M. koreensis: F1,19=0.97,
p=0.3381; M. reukaufii: F1,19=0.95, p=0.3427; Table 1D, Fig. S3). During the observation days for M.
koreensis, the majority of visitors to experimental flowers were carpenter bees (71.3%), with additional visits by
bumble bees (23.8%) and solitary bees (5.0%) (Fig. S2). During observation of flowers inoculated with M.
reukaufii, the make up of bee visitors was more diverse, consisting of carpenter bees (40.0%), bumble bees
(40.0%), solitary bees (7.1%), honey bees (4.3%), and other bees (8.6%).

Volatile Organic Compound Chemical Profiles

Despite the differences in observed pollinator behavior, the volatile profiles of M. reukaufii and M.
koreensis were largely overlapping (Fig. 4) and the proportion of peak areas were not statistically different based
on PERMANOVA (F1,8 =0.73, p-value = 0.5933). Of the 18 volatile compounds produced across M. reukaufii
and M. koreensis, 16 were shared by both species and only two compounds (phenethyl acetate (2-phenylethyl
acetate) and phenylethyl butyrate (2-phenylethyl butanoate)) were produced by a single species (M. koreensis;
Table S4). For the two compounds unique to M. koreensis, neither was a dominant component of the odor
bouquet; phenethyl acetate was only detected in three of the five replicates, and phenylethyl butyrate was only in
two of five replicates (Table S4). Both yeast species had 12 identified peaks that were found in all five
replicates. The majority of volatiles were primary alcohols (8 compounds), followed by esters (5 compounds),
acids (3 compounds), methyl ketones (1 compound), and secondary alcohol (1 compound) (Table S4).

Discussion

Our research aimed to connect several levels of biological organization to further our understanding of
which yeasts are present in local flower nectar and how and whether they affect pollinator foraging decisions.
Our results provided some of the first information on nectar yeast presence and species composition in the
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southeastern US (Rering et al., 2024). Our results are consistent with previous studies in other regions: M.
reukaufii is often the predominant yeast found in nectar (Lachance et al., 2001; Herrera et al., 2009a; Pozo et al.,
2011; Schaeffer et al., 2015). However, we observed frequent co-occurrences of multiple yeast species within
flowers. The most common co-occurrence was that of M. reukauffii with M. gruessi, which, intriguingly, is
reflective of previous findings in nectar sampled in Europe (Pozo et al., 2011, 2016; Alvarez-Pérez et al., 2016).
It is unclear whether the shared yeast composition of European and North American flowers reflects large,
natural geographic ranges of floral yeasts, or if invasion of floral yeasts has occurred. Overall, our results are
consistent with other studies suggesting that the nectar microbiome is species poor, and add to the growing body
of work from across North America, South America, and Europe demonstrating that M. reukaufii is the dominant
nectar yeast with a widespread distribution.

One can hypothesize a scenario in which the most common yeast in flowers is also the most attractive to
pollinators, with its commonness resulting in part from its ability to attract pollinators and, hence, to disperse
phoretically. However, in our study, M. reukaufii, the most common yeast, was no more attractive to pollinators
than sterile nectar. Instead, a less prevalent species, M. koreensis, showed much stronger pollinator attraction
when compared to sterile nectar (Herrera et al., 2013; Rering et al., 2018a; Schaeffer et al., 2019). If pollinators
are the main method of yeast dispersal (as indicated by previous research), our results bring up interesting
questions as to the method of M. reukaufii's community dominance (Brysch-Herzberg, 2004; Good et al., 2014).
M. reukaufii might have adaptations that allow it to outcompete other yeasts in nectar, allowing it to dominate a
nectar source even if co-introduced with other yeast species. It is also possible that M. reukaufii is better able to
tolerate the conditions in nectar (e.g., environmental filtering), such as the particularities of sugar and amino
acid composition, secondary chemicals, and pH levels (Petanidou, 2005; Herrera et al., 2006; de Vega et al.,
2009; Tucker & Fukami, 2014; Lievens et al., 2015). M. reukaufii growth in extreme sugar environments is
mediated by methylation differences in response to sugar content and composition (Herrera et al., 2012). This
plastic response, in combination with strong host plant-mediated diversity of M. reukaufii genotypes, may be a
mechanistic explanation of its broad ecological niche (for a nectar yeast) and general ubiquitousness in flower
nectar (Herrera et al., 2014). If M. reukaufii is a more competent colonizer of nectar, but has less potent
pollinator attraction than other yeast species, it calls into question our assumptions of the role nectar yeast play
in pollinator foraging choices, yeast transmission, and yeast community dynamics.

We had expected that both yeast species would be more attractive to bee visitors than sterile nectar, but
this was not the case. While a growing body of evidence has documented bee (especially bumble bee) preference
for flowers inoculated with yeast over sterile nectar (Herrera et al., 2013; Schaeffer et al., 2017; Deng et al.,
2024), this pattern is not universal (Good et al., 2014; Rering et al., 2018a; Schaeffer et al., 2019; Colda et al.,
2021). Our results align with the conclusions of Rering et al. (2018a) and Fukami et al. (2014), where bumble
bees and honey bees, respectively, showed no difference in foraging between sterile nectar and inoculated M.
reukaufii. Other studies show preference for M. reukaufii in bumble bees and parasitoids (Schaeffer et al., 2017;
Sobhy et al., 2018), aversion in honey bees (Rering et al., 2021), or attraction only when the yeast was grown in
conjunction with Acinetobacter nectaris (Colda et al., 2021). So far, there is no consensus for why or under what
conditions floral visitors prefer yeast-inoculated flowers or not. However, the species identities of the flower,
visitor, and yeast may have an effect, along with the ecological background in which the experiments are
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conducted. For example, because we observed the effects of the two yeast species relative to sterile nectar at
different time periods, the proportions of pollinator species or groups who visited the arrays differed. Preference
studies for each bee species in how they respond to each yeast species relative to sterile nectar and relative to
each other could yield important insights. We also inoculated our flowers with yeast cultures directly before
observation, which likely obfuscates important ecological realities in natural systems, such as yeast growth
altering plant VOC emissions and nectar metabolites (Vannette & Fukami, 2016; Rering et al., 2021).

The mechanisms behind pollinator choice remain elusive. Bee pollinators consistently fed more
frequently on flowers supplemented with M. koreensis over sterile nectar, suggesting that olfactory cues
associated with yeast might have guided bees to the inoculated nectar. However, there were no differences in
foraging on M. reukaufii-supplemented nectar vs. sterile nectar, which is unexpected, given that M. reukaufii
releases volatiles that can be detected by bumble bees and have been assumed to be attractive (Rering et al.,
2018a; Schaeffer et al., 2019). Surprisingly, the volatile profiles of these two Metschnikowia species were
virtually indistinguishable. There are several potential explanations for these results. First, the small differences
we observed in volatile profiles may be sufficient to alter pollinator foraging choices. Related to this, it is
possible that certain volatiles not trapped by SPME are key to guiding the differential responses of pollinators.
Further investigations using alternate headspace trapping and chemical analytical techniques could illuminate
differences we were not able to detect — such as dynamic headspace collection and thermal desorption, coupled
with bee electroantennal responses to yeast volatiles. Second, yeast-associated behavior might be guided by
gustation rather than olfaction (or, more plainly, taste rather than smell). In previous research, bumble bees
showed preference for M. reukaufii nectar over bacteria inoculated nectar, but only after tasting the nectar
(Schaeffer et al., 2019). How and why pollinators are making foraging choices in response to microbial
symbionts remains unresolved, but could provide important insights into insect-yeast interactions. Third, we
measured volatiles produced by the two yeast species but not in the floral background in the field. Surprisingly,
few studies of nectar yeast have considered the floral background. We cannot rule out the possibility that the
floral background and other environmental factors that may have differed between the two trials of observation
modified VOC profiles or pollinator perceptions of those profiles.

Insect-fungal symbioses are an ancient and abundant network of ecological interactions, ranging from
purely facultative to completely obligate. There must be strong evolutionary pressures on both insects and yeasts
to maintain these symbioses. Indeed, the production of insect-attracting chemicals is a conserved, and often
necessary, trait of many yeasts (Christiaens et al., 2014; Becher et al., 2018). One intriguing class of such
chemicals is the acetate esters, which are produced by alcohol acetyltransferases (ATFL1 in S. cerevisiae).
Metschnikowia species have 8-9 putative alcohol acetyltransferases, and characterization in Saccharomyces
species and in Saccharomycopsis fibuligera suggests an increased number of alcohol acetyltransferases in non-
Saccharomyces species, and evidence that orthologues produce different odor profiles (Stribny et al., 2016;
Moon et al., 2021). These genes are intriguing targets for molecular mechanisms underlying differences in
odors, and possibly taste, in yeast-insect interactions. Future work to elucidate the genetic underpinnings of
nectar yeast - bee pollinator interactions, such as chemical signalling, nectar metabolism, and pathogen
interference, will lead to new revelations of the mechanisms and the evolution of insect-yeast symbioses
(Schiestl et al., 2006; Christiaens et al., 2014; Bogo et al., 2021; Rering et al., 2023).
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Table 1. Linear mixed effects models of the effects of plant treatment (addition of sterile nectar or
nectar inoculated with yeast) on metrics of bee pollinator visitation. A. The number of plants visited by
each observed bee pollinator each trial day. B. The proportion of the total available flowers visited by

bee pollinators each trial day. C. The visitation rate (number of plants visited * the proportion of

flowers visited) of bee pollinators to each plant treatment. D. The duration of each flower visitation (in

seconds). Plant treatment was included in models as a fixed effect, trial day was included as a random
intercept, and models were fit using maximum likelihood.
A Number of Plants Visited
Metschnikowia reukaufii Metschnikowia koreensis
nDF dDF F-value | p-value nDF dDF F-value | p-value
Plant 1 102 0.92545 | 0.3383 1 122 432158 | 0.0397
treatment
B. Proportion of Flowers Visited
Metschnikowia reukaufii Metschnikowia koreensis
nDF dDF F-value | p-value nDF dDF F-value | p-value
Plant 1 73 1.66775 | 0.2006 1 73 14.6866 | 0.0003
treatment
C. Visitation Rate
Metschnikowia reukaufii Metschnikowia koreensis
nDF dDF F-value | p-value nDF dDF F-value | p-value
Plant 1 75 2.68979 | 0.1052 1 73 15.1512 | 0.0002
treatment
D. Visit Duration
Metschnikowia reukaufii Metschnikowia koreensis
nDF dDF F-value | p-value nDF dDF F-value | p-value
Plant 1 19 0.94718 | 0.3427 1 19 0.96581 | 0.3381
Treatment
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697 Figure 1. The distribution of yeast species across flower families sampled. Plants were selected based
698 on flower structure; funnel-form flowers allowed for nectar collection without contamination from
699 other plant tissues. Nectar samples were plated on rich media, and colonies that presented yeast-like
700 morphology were sequenced and identified to genus or species.
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Figure 2. Most nectar samples contained only one species of yeast (A), which is congruent with the
majority of published studies on nectar microbes. A small portion of the nectar samples contained
multiple yeast species (B), with M. reukaufii being present in all samples.
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712  Figure 3. The effects of plant treatment (addition of sterile nectar or nectar inoculated with yeast) on
713 metrics of bee pollinator visitation. A. The number of plants visited by each observed bee pollinator
714  each trial day. B. The proportion of the total available flowers visited by bee pollinators each trial day.
715 C. The visitation rate (hnumber of plants visited * the proportion of flowers visited) of bee pollinators to
716 each plant treatment.
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720 Figure 4. Principal Component Analysis of the VOC profiles of M. reukaufii and M. koreensis using the
721 proportion of peak volatile area. The proportion of peak volatile area was calculated by dividing
722 the peak area by the total volatile area of the sample. Points represent each analyzed sample
723 (n=5 for each yeast species), with 95% confidence interval ellipses.



