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ABSTRACT  

Host-associated microbes are key components of animal health and physiology, with 

parHcular importance for determining responses to pathogen infecHon. The gut microbiota 

is highly variable at the individual level, being shaped by a mulHtude of factors including 

diet, social behaviour, and age. Yet the relaHve influence of these traits on microbiota 

composiHon, and the consequences of this variaHon for host responses to pathogens remain 

unresolved. Here we invesHgate factors that shape the faecal microbiome in European 

badgers (Meles meles). Badgers act as a wildlife reservoir of Mycobacterium bovis, a 

zoonoHc pathogen and the causaHve agent of bovine TB (bTB) in caSle, but the potenHal 

role of the microbiome in shaping paSerns of infecHon and severity of disease are not 

known. Analysing 165 samples from 72 badgers over 3 years, we found that social group and 

age were key determinants of faecal microbiota composiHon, and idenHfied several bacterial 

genera associated with bTB infecHon. InvesHgaHon of microbiome dynamics at the individual 

level using longitudinally sampled badgers revealed marked heterogeneity in age-dependent 

microbiome trajectories that were not detectable from populaHon level trends in 

chronological age. These data provide novel insights into the factors associated with 

microbial community dynamics in complex wild systems and highlight the need for 

individual-level and longitudinal approaches to studying host-microbiome associaHons.  

  



INTRODUCTION  

Host-associated microbial communiHes play an important role in biological processes 

including digesHon and diet selecHon (Cholewińska et al., 2020; Trevelline & Kohl, 2022), 

social behaviour (Vernier et al., 2020), ageing (Wilmanski et al., 2021) and suscepHbility to 

pathogens (King et al., 2016). Bacterial and fungal microbiotas vary widely among species, 

olen with host phylogeny (Harrison et al., 2021; Youngblut et al., 2019), but also display 

substanHal intraspecific variaHon within and among populaHons (Amato et al., 2013; Ingala 

et al., 2019; Kueneman et al., 2014; Liukkonen et al., 2024). Understanding the causes and 

consequences of variaHon in the microbiome at the individual level remains a major 

research goal (Worsley, Videvall, et al., 2024), especially for ecologically complex natural 

systems (reviewed in Marsh et al., 2024). Recent research focussed on wild animal 

microbiomes has revealed that individual traits such as age (Kohl et al., 2019; Rojas et al., 

2023), diet (Jones et al., 2023), social status (Heitlinger et al., 2017) and social interacHons 

(Pfau et al., 2023; Raulo et al., 2024) shape the structure and stability of individual symbioHc 

microbial communiHes, olen in a sex-specific manner (Leech et al., 2021; Pafčo et al., 2019). 

However, we sHll lack a comprehensive understanding of the relaHve importance of these 

traits in determining microbiota dynamics, and of the potenHal impact of variaHon in host-

microbe associaHons on key life history traits such as suscepHbility to disease. Addressing 

these gaps in our knowledge is vital, both for understanding the importance of the 

microbiome in shaping host life history, and for predicHng paSerns of disease severity and 

transmission using metrics of host microbiota dynamics.  

 

Here we invesHgate host-microbiome-pathogen associaHons in the European badger (Meles 

meles), using samples from a large cohort of wild animals (n = 165 samples from 72 badgers 

over 3 years). The European badger has been the subject of considerable research, in part 

owing to its role in the epidemiology of Mycobacterium bovis, the causaHve agent of bovine 

tuberculosis (bTB) in domesHc caSle. Here, we explore the relaHonship between the faecal 

microbiome and host age, sex, body mass, social group membership, and M. bovis infecHon 

status. Across much of their geographic range badgers live in social groups where they 

engage in physical interacHons, including playing and allogrooming (Fell et al., 2006), and 

sharing underground dens (seSs) (Böhm et al., 2009). Recent work in wild mice has 

highlighted the relaHve importance of both direct (social) and indirect (space sharing) 



interacHons as transmission routes for anaerobic and aerotolerant suites of bacteria, 

respecHvely (Raulo et al., 2024), and increased rates of contact are thought to be a key 

mechanism driving the emergence of social group-level microbial signatures (Sarkar et al., 

2020). Social group effects are common in wild systems, parHcularly in non-human primates 

(BenneS et al., 2016), though their effects can be diluted by other traits such as seasonal 

variaHon (Orkin et al., 2019) and potenHally diet. Previous work on badgers has revealed 

significant within-group dietary specialisaHon, where individuals occupy unique foraging 

niches within social groups despite having access to similar resources (Robertson et al., 

2014). Divergence in diet among members of the same group is expected to create 

heterogeneity in gut microbiome composiHon and dynamics (Jones et al., 2023) whilst 

higher rates of social interacHons within groups will act simultaneously in the opposite 

direcHon by increasing the sharing of microbes (Raulo et al., 2024). Here we use the badger 

social system to quanHfy group and individual-level variaHon in the faecal microbiome, with 

a parHcular focus on understanding spaHal and temporal dynamics linked to group affiliaHon 

and age.  

 

Evidence from animal models has indicated that hosts can lose the ability to regulate their 

intesHnal microbiota with age, leading to dysbiosis, which in turn accelerates senescence (Li 

et al., 2016), increases inflammaHon and compromises immunity (Thevaranjan et al., 2017). 

Previous work on badgers has idenHfied age-related declines in immunity (Beirne et al., 

2014), and the co-variaHon of rates of actuarial senescence with inbreeding and bTB 

infecHon (Hudson et al., 2023). Therefore, we expect that in badgers, advancing age should 

be associated with changes in overall microbiome composiHon linked to senescence, and 

that this effect might covary with infecHon status. Studies from other wild animal systems 

have found both a negaHve relaHonship between microbiota richness and chronological age 

(spoSed hyenas, Crocuta crocuta; Rojas et al., 2023), or a relaHvely weak effect of age on 

declines in bacterial richness (Seychelles warblers, Acrocephalus sechellensis; Lee et al., 

2025). Age-related declines in diversity at the popula:on level may arise through selecHve 

disappearance of individuals with highly diverse microbiotas, or shils in diet and behaviour 

at the individual level.  However, few studies can disentangle these compeHng explanaHons 

due to the challenges of obtaining high-resoluHon longitudinal samples from wild hosts 

(Marsh et al., 2024). 



Understanding the drivers of microbiome diversity is important in the study of infecHous 

diseases because of the direct relevance of the microbiota to host immunity. Diverse 

microbiotas may be protecHve against infecHon by pathogens (Dillon et al., 2005; KnuHe, 

2020; Rebollar et al., 2016; Stecher et al., 2010), by acHng either through direct mechanisms 

such as consuming nutrients that invading pathogens require (Spragge et al., 2023), or 

indirectly by priming the host immune system. Age-related declines in microbiome diversity 

(Rojas et al., 2023) may therefore be associated with increased pathogen suscepHbility. 

Tuberculosis in badgers is typically a chronic infecHon primarily affecHng the lungs and 

lymph nodes, with clinical presentaHons ranging from latent infecHon (with no apparent 

clinical signs) to systemic, disseminated disease affecHng mulHple organs (Gallagher & 

Clilon-Hadley, 2000). The primary route of transmission among badgers is believed to be 

inhalaHon of infecHous respiratory droplets during close contact, but badgers with 

progressed disease may shed M. bovis in saliva, sputum, urine, faeces and pus from infected 

wounds (Clilon-Hadley et al., 1993). Given the most likely route of infecHon, we expect any 

associaHon between the faecal bacterial microbiota (as a proxy for the gut microbiota) and 

bTB infecHon to be representaHve of indirect effects, where shils in the gut microbiome 

may compromise systemic immunity (Thaiss et al., 2016) and make individuals more 

suscepHble to both infecHon and the subsequent progression of disease. Previous work on 

humans has found clear differences in gut microbiome between healthy paHents and those 

infected with Mycobacterium tuberculosis (Hu et al., 2019). Closely related M. bovis can also 

cause disease in humans and has a significant economic impact on livestock producHon in 

several parts of the world (Barnes et al., 2023). In some regions, including parts of the 

United Kingdom and Ireland, the infecHon circulates between badgers and caSle 

(Akhmetova et al., 2023; Crispell et al., 2019). Understanding the link between microbiome 

dynamics and bTB infecHon in badgers is important, as variaHon in the microbiome may be a 

driver of individual heterogeneity in infecHon status and severity.  

 

Here we test the hypotheses that in European badgers i) social group membership 

determines gut microbiome composiHon, consistent with similar studies in other group-

living animals (Sarkar et al., 2020), but that we will sHll observe substanHal among-individual 

heterogeneity in gut microbiome within groups consistent with foraging niche parHHoning; 

and ii) both the probability of infecHon with M. bovis and advances in host age will be 



associated with shils in microbiota composiHon. Specifically, we test the predicHon that M. 

bovis infecHon will be associated with lower overall microbiome diversity. CollecHvely, our 

findings provide a novel assessment of the factors associated with microbiome variaHon in a 

wild social mammal.  



 

METHODS 

Sample Collec:on 

We use data from the long term Woodchester Park field study in Gloucestershire, UK, where 

the populaHon of European badgers has been conHnuously monitored for almost 50 years. 

Boundaries of all social group territories are mapped every spring using bait marking 

(Delahay et al., 2000) and badgers are trapped at acHve seSs (Cheeseman & Harris, 1982). 

Captured badgers are anaestheHsed and idenHfied with a unique taSoo given at first 

capture. Data on sex, mass and age class (juvenile < 1 year, adult >1 year) are recorded and 

each individual is assigned to a social group based on the territory in which they were 

captured. For those first caught as juveniles, we esHmate known age to the nearest year 

from subsequent trapping data. During the rouHne examinaHon of captured badgers from 

2016-2018, a rectal swab was taken and stored dry at -20°C in the plasHc swab tube prior to 

dispatch to the laboratory for characterisaHon of the faecal microbiome. 

 

Mycobacterium bovis (bTB) Infec:on Status 

The infecHon status of an individual is determined at every capture event using a 

combinaHon of tests.  These include M. bovis culture from tracheal and oesophageal 

aspirates, urine, faeces and swabs from any wounds, and tesHng of venal blood samples for 

anHbodies (using the DPP® VetTB assay or the now disconHnued Brock TB Stat-Pak test 

(Chembio DiagnosHcs Systems Inc., Medford, New York 11763, USA)) and a cellular  immune 

response (the IFNγ-release assay;Ashford et al., 2020). Using a site-wide esHmate of the 

prevalence of infecHon for each year, and the reported sensiHvity and specificity of the 

assays, we calculated the cumulaHve contemporaneous posterior probability of infecHon for 

each individual badger, at each capture point during the study (Powell et al. in prep). This 

approach idenHfied the first posiHve result in each individual’s capture history and therealer 

calculated the cumulaHve probability of infecHon at subsequent captures whilst accounHng 

for potenHal false posiHve and false negaHve results, or disease resoluHon. In contrast to a 

binary classificaHon system (i.e. infected or uninfected) this approach was deemed more 

likely to capture the impact of disease progression and Hme on the microbiome, 



hypothesising that higher posterior probabiliHes of infecHon (either due to mulHple posiHve 

assays, or longer infecHons) will be of greater impact. 

 

Sequencing and Bioinforma:cs 

We sent badger rectal swabs for DNA extracHon at Fera, York, UK using Qiagen DNEasy kits 

followed by a heat inacHvaHon step of 80°C for 20 minutes. This protocol inacHvates M. 

bovis, rendering samples safe for processing in Biosafety Level 2 (BSL-2) faciliHes while 

preserving the integrity of DNA for subsequent molecular invesHgaHons (Doig, 2002; Mtafya 

et al., 2023; SabiiH et al., 2018). We prepared sequencing libraries using a modified form of 

the protocol in Kozich et al., (2013), where we amplified a ~250bp secHon of the v4 region of 

the 16S rRNA gene (detailed protocol in Harrison et al., 2019). We used a Miseq nano 

cartridge to quanHfy inter-library variaHon in concentraHon, then pooled equimolar libraries 

for sequencing on a v2 chemistry 500bp PE MiSeq run. 

 

We used the solware R (R Core Team, 2023) for all downstream bioinformaHcs and 

staHsHcal analysis. The package dada2 (Callahan et al., 2016) was used to call Amplicon 

Sequence Variants (ASVs) and assign taxonomy using the SILVA v132 database (Quast et al., 

2013; Yilmaz et al., 2014), using standard parameters. We used phyloseq (McMurdie & 

Holmes, 2013) to remove all ASVs with no Phylum level taxonomic annotaHon, as well as any 

assigned as Chloroplasts (Order), Mitochondria (Family) or Archea (Kingdom) (total = 2604 

ASVs). We then used the R package decontam (Davis et al., 2018) to idenHfy contaminants 

present in the negaHve sequencing controls. Using the ‘prevalence’ method and a threshold 

of 0.6, we idenHfied and removed a further 722 ASVs. We then removed ASVs with 10 or 

fewer total reads, giving a final dataset of 844 ASVs across 165 samples, and a mean library 

size of 56,101 reads [range 13,569 – 267,515].  

 

Sta:s:cal Analysis 

We collected 165 rectal samples from 72 unique individuals (range 1-8 swabs per badger, 

where each swab represents a separate capture event). We were able to assign the age at 

capture for 62 individuals (145 samples) because they were first captured as cubs.  

To examine variaHon in alpha diversity of microbiomes we rarefied libraries to the 

minimum per-sample read depth (13,569). RarefacHon curves indicated that the number of 



species plateaued at about 10,000 reads, suggesHng this cut-off sufficiently captures 

variaHon in diversity. We used a bivariate response model in the R package brms (Bürkner, 

2018, 2021) to quanHfy predictors of bacterial microbiota richness. Here, badger mass and 

ASV richness were used as responses, with capture year, chronological age, M. bovis 

infecHon probability, and sex as fixed effect predictors (factors), and social group and badger 

ID as random intercept terms. This analysis allows us to control for other predictors of mass 

(e.g. sex and age) that may also influence ASV richness. A significant relaHonship between 

mass and richness manifests as a non-zero posterior correlaHon between these variables 

aler controlling for other predictors. This dataset comprised 145 samples from 62 badgers 

allocated to 18 different social groups.  

To invesHgate variaHon in paSerns of beta diversity of microbiomes, we generated 

stacked bar plots of the relaHve abundance of the five most common bacterial Phyla across 

sampling years and social groups. We visualised differences in bacterial microbiota 

composiHon among social groups and among individuals using PCA ordinaHons on CLR-

transformed community abundances, which allows us to use all sequencing data, even if 

per-sample sequencing depths differ, whilst also accounHng for the composiHonality of 

microbiome datasets (Gloor et al., 2017). Here we used only social groups with at least five 

samples (n = 131 observaHons of 54 badgers across 11 social groups) to ensure accurate 

esHmaHon of group centroids. We used PERMANOVA on CLR-transformed community 

abundances to test the effects of social group, age, M. bovis infecHon probability and 

individual ID on microbiome composiHon (n = 145 samples from 62 known age badgers, age 

range 1-10).  

We used the package gllvm (Niku et al., 2019) to fit Generalised Linear Latent 

Variable models to idenHfy differenHally abundant bacterial genera. We restricted the 

dataset to the top 50 most abundant genera and fiSed a model including infecHon status, 

age and sex, and an infecHon x sex interacHon, whilst controlling for variaHon among years 

(fixed effect) and repeated measures on the same individual (random intercept). We fiSed 

the model to CLR-transformed abundances using a Gaussian distribuHon and specifying two 

latent variables.  

To further invesHgate age-related shils in the microbiome, we restricted the data to 

badgers of known age that had been sampled on at least three occasions (n = 6 badgers, 

range 3-8 samples per badger) and ploSed microbiome trajectory by age for these 



individuals. We also ploSed temporal trends for 22 badgers (some of which were not of 

known chronological age) to invesHgate shils in microbiome composiHon with changes in 

M. bovis infecHon probability.  

  



RESULTS 

Effects of Social Group and Age on Bacterial Microbiota Composi;on  

Using data from 72 badgers sampled repeatedly over 3 years, we detected marked variaHon 

in bacterial community composiHon among social groups (Fig. 1A) and sampling years (Fig. 

1B). The most abundant bacterial phyla detected in the badger gut microbiome were 

Firmicutes and Proteobacteria, followed by Fusobacteriota, Bacteroidota and 

Campylobacterota. Although the relaHve distribuHon of these phyla remained broadly stable 

over Hme, 2018 shows a large increase in the abundance of Proteobacteria compared to 

previous years (Fig 1B). PERMANOVA analysis indicated significant effects of social group, 

sex, chronological age and individual ID on bacterial microbiota composiHon (all p <0.003; 

Table 1). Of these, individual ID (r2 = 32.5%) and social group (r2 = 16.5%) explained the most 

variaHon in microbiota composiHon. Conversely, there was no evidence for an effect of M. 

bovis infecHon probability on beta diversity at the populaHon level (p=0.6; Table 1). 

OrdinaHon of CLR-transformed bacterial communiHes supported these results, revealing 

marked variaHon both within- and among different social groups (Fig. 2).  

  



 

 
Figure 1. ComposiHonal bar plots showing bacterial community structure across (A) 18 social 

groups and (B) 3 sampling years. Sample size was 165 badgers across all years and social 

groups.  

 

 



 

Figure 2. Principal Component Analysis (PCA) ordinaHon of centre-log transformed 

community distances of badger faecal microbiotas. Each point is an individual sample from 

54 badgers from 11 social groups, where each social group is represented by at least five 

sampled badgers. Lines connect individual samples to the centroid of the social group. 

Ellipses represent the 95% confidence interval of group centroids   



Term DF R2 F P Value 
Social Group 17 0.16 1.57 0.001 

Chronological Age 1 0.01 2.00 0.002 
Sex 1 0.01 1.87 0.001 

M. bovis Infection Probability 1 0.01 0.93 0.589 
Capture Year 2 0.02 1.95 0.001 
Individual ID 48 0.33 1.10 0.035 

Residual 74 0.46     
 

Table 1. PERMANOVA analysis invesHgaHng drivers of variaHon in beta diversity in badger 

faecal bacterial microbiotas. Significant terms shaded grey. 

 

Limited Varia;on Among Social Groups in Alpha Diversity  

InvesHgaHon of paSerns of alpha diversity among social groups revealed limited evidence for 

differences in mean bacterial ASV richness (Fig. 3, Table 2). Instead, we detected significant 

within-group heterogeneity in bacterial richness consistent with the paSerns observed in 

beta diversity (Fig. 3). This suggests that the observed variaHon in overall microbiota 

‘structure’ within social groups (see Figs. 1A and 2) is driven partly by differences in bacterial 

community composiHon, where two badgers may have similar ASV richness but different 

species of bacteria present in the faecal microbiota. 

A bivariate general linear mixed model (n = 145 measurements from 62 badgers of 

known age from 18 social groups) supported these paSerns, indicaHng limited heterogeneity 

among groups in mean ASV richness (social group random effects SD = 0.04, 95% credible 

interval [0 - 0.11]; Table 2). There was no evidence for systemaHc variaHon in richness due to 

chronological age, sex, or bTB infecHon status (Table 2). We found no evidence of a 

correlaHon between microbiome richness and body mass at the individual level aler 

controlling for the other variables (mean posterior correlaHon 0.26, 95% CI -0.56 – 0.93; 

Table 2). We also found no consistent variaHon in bacterial richness in relaHon to M. bovis 

infecHon probability within social groups (Fig. S1A) or sampling years (Fig. S1B).  

 

  



 
Figure 3. Bacterial richness for 18 social groups of badgers sampled between 2016 – 2018. 

Filled circles are raw data. White diamonds are group means and black bars represent 

standard errors.  

  



 Random Effects 

 Social Group (n=18) Mean Lower95% Upper95% 

 sd(Richness) 0.05 0 0.13 

 sd(Weight) 0.59 0.05 1.31 

 cor(Richness,Weight) -0.08 -0.95 0.94 

     
 Badger ID (n= 65) Mean Lower95% Upper95% 

 sd(Richness) 0.13 0.03 0.22 

 sd(Weight) 0.82 0.28 1.29 

 cor(Richness,Weight) 0.26 -0.52 0.93 

     
 Fixed Effects 

  Mean Lower95% Upper95% 

RI
CH

N
ES

S 

Intercept (2016, Female) 4.18 3.99 4.36 

Capture Year 2017 0.04 -0.08 0.15 

Capture Year 2018 -0.09 -0.27 0.08 

Chronological Age -0.09 -0.19 0.01 

Chronological Age2 0.01 -0.002 0.02 

Sex Male -0.04 -0.16 0.08 

M bovis Infection Probability  0.06 -0.1 0.22 

W
EI

G
HT

 

Intercept (2016, Female) 6.31 5.2 7.44 

Capture Year 2017 0.63 0.01 1.26 

Capture Year 2018 0.26 -0.66 1.17 

Chronological Age 0.65 0.08 1.23 

Chronological Age2 -0.08 -0.14 -0.02 

Sex Male 1.54 0.8 2.29 

M bovis Infection Probability  0.34 -0.58 1.28 

     
 Family Specific Parameters 

  Mean Lower95% Upper95% 

 shape_Observed 16.41 11.17 23.96 

 sigma_weight 1.51 1.3 1.76 
 

Table 2. Model results from a bivariate mixed effects model examining the relaHve impacts 

of capture year, chronological age, sex and M. bovis infecHon probability on both microbiota 

richness and badger weight. Parameter esHmates not crossing zero are shaded in grey.  

   



Associa;ons With Individual Bacterial Genera 

Using generalised linear latent variable models (GLLVMs), we idenHfied differences in 

microbiome composiHon linked to M. bovis infecHon probability, sex and age whilst 

controlling for individual ID (Fig. 4A). Males tend to possess greater relaHve abundance of 

the genera Clostridium, Paeniclostridium and Streptococcus, and lower abundances of 

Porphyromonas and Fusobacterium. MulHple ASVs appeared to increase with advancing age, 

including Lachnoclostridium, Fusobacterium and Bacteroides. 

Individuals with higher infecHon probability had lower relaHve abundance of the 

genus Lactobacillus. We also detected a significant sex:infecHon interacHon, where only 

females with higher infecHon probability had higher levels of Plesiomonas.  

When examining residual correlaHons among genera aler accounHng for the effects 

of infecHon and individual ID, we idenHfied several sets of genera that exhibited both 

posiHve and negaHve covariances. For example, several opportunisHc pathogens including 

Morganella, Citrobacter and Terrisporobacter were posiHvely correlated suggesHng they may 

be more likely to co-occur in gut bacterial communiHes (Fig. 4B). We also observed negaHve 

residual correlaHons between Lactobacillus and opportunisHc pathogens such as 

Porphyromonas.  

 



 
 

Figure 4. Output from a generalized linear latent variable model invesHgaHng differenHally 

abundant bacterial genera by sex, age and M. bovis infecHon probability, whilst controlling 

for year and individual ID. (A) Model output showing significantly differenHally abundant 

genera (green circles) for each predictor / interacHon (B) CorrelaHon plot idenHfying residual 
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covariaHon among bacterial genera in the sample aler accounHng for year, sex, age, 

infecHon and individual effects.  

 

Age-Dependent Dynamics  

We used data from six known-age badgers (ranging between 1 and 9 years old) that had 

been sampled three or more Hmes throughout the study to idenHfy marked variaHon among 

individuals in microbiome dynamics with advancing age for both alpha diversity (Fig. 5A) and 

beta diversity (Fig. 5B; Fig S2). Using data from 22 repeat-sampled badgers (some of which 

were of unknown chronological age), there was no indicaHon that this direcHon or slope of 

shils in microbiome was linked to M. bovis infecHon probability (Fig. S3). However, there 

was strong within-year variaHon in the bacterial microbiota in addiHon to among-year / age-

dependent trends idenHfied in Fig. 5A, B).  

 

 

Figure 5. Dynamics of microbiome community composiHon with chronological age at the 

individual level for both alpha diversity (A) and beta diversity (B) for six badgers of known 

age with ≥3 samples (range 3-8 samples per badger). Blue line indicates mean linear trend in 

trait indicaHve of shils in microbiome over Hme.  

  



DISCUSSION 

Our data indicate that individual idenHty, social group, sex and age all predict differences in 

the faecal microbiotas of group-living wild European badgers from a single populaHon. 

Significant ‘individuality’ in the microbiome manifested via differences in both iniHal 

microbiome composiHon and microbiome dynamics within and across years, likely driven by 

individual dietary specialisaHon. We also found subtle effects of M. bovis infecHon 

probability on microbiome composiHon. QuanHfying the drivers of variaHon in individual 

microbiota dynamics is a fundamental part of understanding temporal changes in both host 

health and immunity and paSerns of social transmission of microbes (Marsh et al 2024). 

 

Microbiome Composi;on Varies With Social Group 

Greater within-group similarity in microbiomes is predicted to arise through a range of 

potenHal factors including shared habitat and diet, as well as more frequent direct and 

indirect social contact and higher relatedness (reviewed in Sarkar et al., 2020). Several 

studies have idenHfied social group membership as a strong predictor of microbiome 

composiHon in group-living species (BenneS et al., 2016; Moeller et al., 2016; Raulo et al., 

2018; Tung et al., 2015; Vernier et al., 2020) though the precise drivers olen vary. For 

example, a study of wild ring-tailed lemurs (Lemur caIa) found that the social group 

microbiome remained disHnct even when groups shared similar habitats (BenneS et al., 

2016). Experimental work in Damaraland mole-rats (Fukomys damarensis) found that 

relatedness had no effect on the gut microbiome and that composiHonal similarity was 

driven primarily by a shared spaHal and social environment (Bensch et al., 2023). As badgers 

from the same social group share discrete territories and seSs, we hypothesised that 

animals from the same social group would share a unique microbial signature, but that the 

strength of this effect would be diluted by divergence in foraging niche among individuals. 

Our data were consistent with this hypothesis, revealing that social group membership 

accounted for about 16% of variaHon in the faecal microbiome. This effect operated 

principally through differences in overall composiHon (beta diversity) rather than systemaHc 

differences in overall richness (alpha diversity). Hence, different social groups tended to 

display similar mean bacterial richness but strong within-group variaHon in the number of 

ASVs detected. We also detected significant effects of Hme (year), albeit much weaker than 

the influence of social group. In contrast, research on white-faced capuchins (Cebus 



capucinus imitator) revealed that temporal effects such as season can explain microbiome 

variaHon more than social group (Orkin et al., 2019), whilst in red squirrels (Sciurus vulgaris), 

populaHon-level temporal traits like season and year can dominate individual level traits like 

sex and age (Ren et al., 2017a).  

 

In this populaHon of badgers, individual idenHty explained the greatest amount of variaHon 

(33%) in microbiota composiHon. Previous work using stable isotope analysis has revealed 

that badgers exhibit diverse and long-term dietary specialisaHon, with some animals 

preferring specific food types while others take a far more generalist approach, despite 

having access to the same resources (Robertson et al., 2014). Given the strong effect of diet 

on gut microbiota composiHon (Amato et al., 2015; Ren et al., 2017b; Wang et al., 2021) and 

stability (Jones et al., 2023), we expect that among-individual variaHon in foraging niche 

within a social group is an important driver of within-group microbiome heterogeneity. To 

test this hypothesis, future work could combine forensic metrics of diet from stable isotopes 

(e.g. Robertson et al., 2014) or metabarcoding with contemporaneous measures of gut or 

faecal microbiota. That such considerable within-group variaHon in the microbiota exists 

despite high within-group relatedness (Benton et al., 2016) suggests that host diet may 

outweigh any constraints on host microbiota due to higher geneHc similarity. We did not 

measure relatedness in this study, but future work could aSempt to quanHfy the relaHve 

importance of geneHc versus environmental and behavioural drivers of variaHon in gut-

associated microbes.  

 

Age, M. bovis Infec;on and the Importance of Individual Dynamics 

Both linear modelling and PERMANOVA analysis indicated that age is associated with shils 

in the bacterial community composiHon of badger gut microbiomes. This result contrasts 

with previous work on European badgers that found no age-associated effects on alpha or 

beta diversity (ScoS-Baumann et al., 2022), although that study was conducted on a small 

sample of carcasses (n = 12) and so may not be an accurate representaHon of the microbial 

landscape within live hosts. Host aging in badgers is frequently accompanied by 

corresponding changes in physiology and behaviour, including body condiHon, reproducHve 

status, and social interacHons (Beirne et al., 2014, 2015; Benton et al., 2018; Dugdale et al., 

2011), which are expected to have knock-on effects on the microbiome. Age-associated 



changes in the human microbiome have been well characterised (Yatsunenko et al., 2012), 

and have been implicated in the process of ageing and senescence (reviewed in Ghosh et al., 

2022). We detected increases in the relaHve abundance of the genus Bacteroides with 

advancing age, which in humans is associated with senescence and lower survival 

(Wilmanski et al., 2021). We also found increases in the abundance of Ruminococcus gnavus, 

which is known to trigger host inflammatory responses and increase in relaHve abundance 

with age in humans (Crost et al., 2023). Age-related shils in the microbiome have also been 

observed in non-human primates (BenneS et al., 2016; Pafčo et al., 2019), Drosophila (Leech 

et al., 2021), spoSed hyenas (Rojas et al., 2023), meerkats (Risely et al., 2022) and birds (Lee 

et al., 2025), though several studies in other species have found no clear associaHon 

between age and bacterial microbiota (Funosas et al., 2021; Lavrinienko et al., 2018; 

Maurice et al., 2015; Worsley et al., 2023). One potenHal explanaHon for these contrasHng 

results is that populaHon-level trends in age-microbiome relaHonships may be difficult to 

detect, even when using chronological age (e.g. Worsley et al., 2024, but see Rojas et al., 

2023). PopulaHon-level data may mask important among-individual heterogeneity in ageing 

and microbiome trajectories, requiring that we invesHgate these paSerns at the individual 

level (Risely et al., 2022; Björk et al., 2022). Recent work has idenHfied fine-scale diurnal 

oscillaHons in gut microbiota composiHon in both meerkats (Risely et al., 2021) and spoSed 

hyenas (Melville et al., 2024). These data from diverse mammalian systems highlight the 

importance of studying microbiome dynamics across a broad range of temporal resoluHons 

to idenHfy the causes and consequences of among-individual heterogeneity in microbiota 

composiHon.  

 

Examining microbiome dynamics with chronological age at the individual level in our 

data revealed marked differences in individual-level microbial trajectories in European 

badgers. Age-dependent microbiome trajectories can arise in individuals because they 

occupy different ecological niches (e.g. foraging and climate), because the niches they 

occupy shil over Hme, or because they respond differently to similar ecological condiHons 

with age. A key quesHon is whether the direcHon and magnitude of an individual’s age-

dependent microbiome trajectory is linked to the pace of ageing. Previous work on this 

populaHon has detected age and sex-dependent variaHon in disease progression (Benton et 

al., 2018), and variable rates of immune senescence and telomere shortening (Beirne et al., 



2014). Addressing this quesHon requires that we integrate funcHonal metrics of microbiome 

dynamics with long-term life history and physiological data to invesHgate the mechanisms by 

which the host microbiota may shape paSerns of senescence. For example in Drosophila, 

age-related changes in gut microbiota composiHon have been linked to intesHnal barrier 

dysfuncHon, altered immune gene acHvaHon and subsequently reduced lifespan (Clark et al., 

2015). 

 

We found no support for our predicHon that bTB infecHon would be associated with 

lower microbiome richness, nor did we find differences in overall composiHon at the 

populaHon-level. These findings provide no evidence of large-scale turnover in microbial 

profiles associated with infecHon, olen used as evidence of ‘dysbiosis’ (Becker et al., 2015; 

Bowerman et al., 2020; DeCandia et al., 2020; Hassouneh et al., 2021; Macdonald et al., 

2017; Worsley et al., 2021). The absence of any clear dysbiosis associated with M. bovis 

might be because it is only associated with advanced disease, whereas exposure to M. bovis 

and early stages of infecHon may have limited influence on overall microbiota composiHon. 

We detected subtle shils in the relaHve abundance of key bacterial genera associated with 

M. bovis infecHon probability in badgers. A key finding is that animals with higher infecHon 

probabiliHes exhibited a lower relaHve abundance of the genus Lactobacillus, consistent 

with previous work on meerkats that idenHfied decreases in the relaHve abundance of lacHc 

acid bacteria (LAB) linked to TB exposure (Risely et al., 2023). LAB are important for 

modulaHng host immunity and prevenHng colonisaHon of pathogens (Bravo et al., 2022) 

which may explain the negaHve correlaHon between Lactobacillus and opportunisHc 

pathogens like Porphyromonas in these data. That depleted abundances of LAB may 

indirectly determine suscepHbility to respiratory pathogens such as M. bovis via effects on 

the host immune response remains a key hypothesis to be tested in future work.  

We also detected a significant interacHon between sex and infecHon, whereby 

female badgers with a higher probability of infecHon exhibited a higher relaHve abundance 

of the opportunisHc pathogen Plesiomonas. In an Irish populaHon of badgers, individuals 

infected with M. bovis were more likely to be coinfected with helminths (Kelly et al., 2022) 

though the effect was not sex-dependent. Male badgers possess different immune cell 

profiles to females (van Lieshout et al., 2020), are more likely to develop severe M. bovis 

infecHons (Graham et al., 2013) and show age-related shils in immune profiles (van 



Lieshout et al., 2020). These studies may help explain in part why we observed higher 

abundances of several opportunisHc pathogens in males including Mycoplasma, Clostridium 

and Paeniclostridium. Future work should measure host cellular immunity in tandem with 

the absolute abundances of these microbes to invesHgate how co-infecHon dynamics may 

depend on host age, sex and commensal microbiome composiHon.   

 

Conclusion 

Here we have shown that social group, sex, sampling year and age shape the faecal 

microbiota of European badgers. We also detected subtle shils in microbiota composiHon 

associated with M. bovis infecHon probability. Exploring these paSerns at the individual level 

revealed marked variaHon in microbiome trajectory with Hme and age, suggesHve of strong 

individuality in the microbiome likely linked to diet. Unravelling the importance of the 

microbiome for host traits like immunity and senescence requires that we adopt individual-

level longitudinal approaches to these quesHons to account for marked variaHon in 

microbiome dynamics, and their subsequent impacts on host health.   
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