

1 **Macroalgae morphological complexity affects the functional diversity of**
2 **epifaunal annelid assemblages**

3
4 Samuel Lucas da Silva Delgado Mendes^{1,2} (<https://orcid.org/0000-0003-4894-3270>),
5 Nykon Craveiro³ (<https://orcid.org/0000-0001-8296-5217>),
6 Paulo Cesar de Paiva¹ (<https://orcid.org/0000-0003-1061-6549>),
7 José Souto Rosa-Filho³ (<https://orcid.org/0000-0002-5496-7706>),
8 Rodolfo Leandro Nascimento^{1,4,5*} (<https://orcid.org/0000-0002-2133-0880>)
9

10 1 - Laboratório de Polychaeta, Universidade Federal do Rio de Janeiro, Núcleo de
11 Taxonomia – TaxoN. Avenida Carlos Chagas Filho, 791, Rio de Janeiro, RJ, Brazil.

12 2 - Universidade Federal do Rio de Janeiro, Instituto de Biologia, Programa de Pós-
13 Graduação em Ecologia (PPGE-UFRJ)

14 3 - Laboratório de Benthos – Departamento de Oceanografia, Universidade Federal de
15 Pernambuco, Av. Prof. Moraes Rêgo, 1235, CEP 50670-901, Recife, PE, Brazil

16 4 - Universidade Federal do Rio de Janeiro, Instituto de Biologia, Programa de Pós-
17 Graduação em Biodiversidade de Biologia Evolutiva (PPGBE-UFRJ)

18 5 - Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia
19 Marinha, Laboratório de Ecologia e Evolução Molecular

20
21 *Corresponding author: rodolfolns@ufrj.br

22
23 **Abstract**

24 Host structural complexity influences the diversity of associated epifaunal species, but
25 its role in shaping functional trait diversity remains underexplored. We developed a
26 trait-based framework to assess whether macroalgal structural complexity significantly
27 influences the functional assembly of marine annelid epifauna in a sandstone reef
28 system at Enseada dos Corais Beach (NE Brazil). Sampling was conducted in
29 December 2018, February 2019, April 2019, and June 2019. Ten fronds from each of
30 four macroalgal species, *Gelidiella acerosa* and *Palisada perforata* (corticated),
31 *Padina gymnospora*, and *Ulva lactuca* (foliose), were collected to describe the
32 associated annelid fauna. Structural complexity was quantified using the interstitial
33 space index (ISI), height, and the fractal dimensions of frond area (Da) and perimeter
34 (Dp). Based on body length, feeding strategy, and larval development, the functional
35 trait diversity of annelid assemblages was assessed using Rao's Quadratic Entropy
36 (Rao's Q) and RLQ analysis. Corticated algae species hosted more functionally
37 dissimilar annelid assemblages than foliose ones. Moreover, macroalgal
38 morphological traits influenced epifaunal functional trait composition, particularly
39 during the rainy season, when hydrodynamics are more intense. Our findings thus
40 supported the hypothesis that increased habitat complexity positively influences
41 functional trait diversity in marine macroalgal phytal communities.

42
43 **Keywords:** Trait-Based Approach, Benthos, Polychaeta, Geometric complexity.

44

45 **Introduction**

46

47 The critical role of habitat structure in shaping community diversity has long
48 been recognized in the ecological literature (Tokeshi & Araraki, 2012; Carvalho &
49 Barros, 2017). This concept encompasses both the qualitative and quantitative
50 aspects of spatial structuring, following the paradigm that greater habitat complexity
51 provides more microhabitats and ecological niches, ultimately supporting higher
52 biodiversity (Tokeshi & Araraki, 2012; Stein et al., 2014; Carvalho & Barros, 2017;
53 LaRue et al., 2023). Habitat structure is typically described in terms of three key
54 components: scale, heterogeneity, and complexity (Carvalho & Barros, 2017; Loke &
55 Chisholm, 2022; LaRue et al., 2023). Complexity refers to the multidimensional
56 variation in structural attributes within an environment, while heterogeneity represents
57 a single facet of habitat complexity (Carvalho & Barros, 2017; LaRue et al., 2023).

58 Accordingly, the complexity component of habitat structure comprises
59 complementary dimensions, with Loke & Chisholm (2022) presenting a framework that
60 classifies them into two main groups: informational and geometric. Informational
61 complexity captures the diversity, variability, and spatial organisation of system
62 elements (e.g., entropy), whereas geometric complexity describes the physical
63 structure of habitats in two or three dimensions (e.g., rugosity, modularity, fractal
64 dimensions). Numerous studies, especially from marine and freshwater systems, have
65 quantified the influence of habitat complexity and heterogeneity on species diversity
66 at local scales, consistently revealing a strong positive effect, especially from a
67 geometric perspective (Dean & Connell, 1987; Christie et al., 2009; Stein et al., 2014;
68 Carvalho & Barros, 2017; Torres-Pulliza et al., 2020).

69 Phytal ecosystems, characterized by dense assemblages of macroalgae and
70 macrophytes in shallow coastal waters, play a crucial role in sustaining high ecological
71 productivity and biodiversity (Christie et al., 2009; Stagnol et al., 2013). However, they
72 are increasingly threatened by climate change and various human-induced impacts
73 (Stagnol et al., 2013). These vegetated habitats provide shelter and resources for
74 multiple animal species, acting as natural architects of habitat structure (Gee &
75 Warwick, 1994; Christie et al., 2009). Such habitat engineers might exhibit a wide
76 variety of morphologies, which can be summarized into distinct functional groups
77 based on their chemical, reproductive, and morphological traits (Gee & Warwick, 1994;

78 Steneck & Dethier, 1994; Balata et al., 2011; Gan et al., 2019). Among them, two
79 recurrent architectural groups have been recognized based on macroalgae frond
80 morphology: (i) foliose species, with broad blades with none to few branching (Fig.
81 1a), and (ii) corticated species, with stiff, highly ramified thalli (Fig. 1a). Corticated
82 forms supply a more intricate three-dimensional matrix than their foliose counterparts
83 (Fig. 1a) (Steneck & Dethier, 1994; McAbendroth, 2005; Dibble & Thomas, 2006; Gan
84 et al., 2019; Craveiro & Rosa-Filho, 2024).

85 Dean and Connell (1987) proposed three non-exclusive mechanisms by which
86 increasing algal complexity (Fig. 1a) can raise the diversity of resident epifauna: (i) the
87 protection effect – complex fronds block visual or tactile detection by predators,
88 reducing predation-induced mortality; (ii) the sheltering effect – interstices dampen
89 physical stressors such as wave action; (iii) the filtering effect – intricate matrices slow
90 water flow, trapping larvae or suspended food particles and enhancing colonization.
91 These mechanisms are linked to macroalgal morphology and play key roles in the
92 assembly of epifaunal communities by buffering the effects of environmental stressors,
93 such as hydrodynamics, and negative biological interactions, including predation and
94 resource competition (Dean & Connell, 1987; Christie et al., 2009). Hence, favouring
95 the current assembly theory perspective that macroalgae hosts act as "habitat
96 templates" for their epifauna by imposing selective filters towards colonization
97 (Southwood, 1977; HilleRisLambers et al., 2012).

98 Previous studies have shown that higher structural complexity of host
99 macroalgae supports greater epifaunal abundance, diversity, and biomass (Gee &
100 Warwick 1994; Veiga et al. 2014; Pérez-García et al. 2015; Gan et al. 2019; Waren et
101 al. 2019; Duarte et al. 2020a, b; Craveiro & Rosa-Filho 2024). However, only a few
102 investigations have tested this prediction using a functional trait-based approach, and
103 these studies indicate that host complexity positively influences epifaunal functional
104 diversity (Barbosa et al., 2019; Duarte et al., 2020a; Katsiaras et al., 2022). Moreover,
105 this relationship may exhibit important nuances because a more complex corticated
106 architecture can also impose spatial constraints on larger-bodied adult epifaunal
107 species (Dean & Connell, 1987; Gee & Warwick, 1994). Therefore, a well-designed
108 study employing specific functional traits linked to hypotheses about the role of
109 structural complexity could enhance our understanding of how macroalgal morphology
110 influences the assembly of associated epifaunal communities. By varying

111 experimental designs, focal species, and geographic regions, such research would
112 enable broader generalizations about patterns in this critical component of coastal
113 marine ecosystems.

114 Marine annelids, particularly polychaetes, are among the most diverse groups
115 inhabiting the ocean floor, performing many ecological functions and exhibiting a
116 remarkable array of forms and life strategies (Rouse et al., 2022). Notably, these
117 animals are prevalent in macroalgal epifaunal communities (Bailey-Brock et al., 1980;
118 Rossbach et al., 2021). Their functional traits – defined as morphological,
119 phenological, and physiological traits indirectly or directly related to fitness (Viole et
120 al., 2007) – have been employed to discern ecological patterns across various
121 environmental gradients, contributing to the overall understanding of the assembly
122 process in coastal systems (Wouters et al., 2018; Morais et al., 2019; Nogueira et al.,
123 2023; Medeiros et al., 2021; Katsiaras et al., 2022; Mendes et al., 2025).

124 We analyzed a dataset of epifaunal annelid assemblages associated with four
125 distinct macroalgal species from a tropical phytal ecosystem in a beachrock reef
126 formation called Enseada dos Corais (South Atlantic, NE Brazil). The region is
127 characterized by a seasonal dynamic driven by wind reversals, which define a rainy
128 season with increased rainfall and hydrodynamic stress, and a drier, thus, more
129 hydrodynamically stable season (Domingues et al., 2017). In this system, host
130 macroalgal species exhibited morphological trait changes over time in response to
131 seasonal variation, thereby affecting the taxonomic diversity of their associated
132 epifaunal assemblages (Craveiro & Rosa-Filho, 2024). Indeed, these variations
133 related to abiotic stress are well known to drive macroalgae eco-morphological and
134 eco-physiological responses (Clark et al., 2018; Craveiro & Rosa-Filho, 2024). Thus,
135 building on the well-documented role of macroalgal architecture in providing
136 protection, filtering, and shelter for associated fauna (Dean & Connell, 1987; Christie
137 et al., 2009), we hypothesize that macroalgal morphological traits effectively capture
138 the geometric complexity of habitat structure that they provide in phytal ecosystems,
139 thereby influencing the trait diversity of associated annelid epifaunal assemblages
140 (Fig. 1).

141 Body size, feeding, and reproductive behaviours are key functional response
142 traits directly related to the life history strategies adopted by species to couple with:
143 environmental gradients, distinct patterns of resource fluctuation, and biotic

144 interactions (Beauchard et al., 2017; Medeiros et al., 2021; Beauchard et al., 2022).
145 For example, in marine systems, harsher conditions tend to impose trait convergence
146 toward r-selected traits, such as smaller body sizes, opportunistic feeding, and
147 reproductive behaviours (Medeiros et al., 2021; Beauchard et al., 2022; Mendes et al.,
148 2025). On the other hand, environmental stability tends to promote trait divergence
149 towards K-selected functional traits, such as larger body sizes, active macrophagic
150 behaviours, and diverse reproductive strategies (Medeiros et al., 2021; Beauchard et
151 al., 2022; Mendes et al., 2025). Specifically, we expect that more complex corticated
152 morphologies can buffer against environmental severity, particularly during the rainy
153 season, thereby supporting annelid assemblages with a broader range of body sizes,
154 feeding strategies, and reproductive traits than structurally simpler foliose macroalgae.
155 In contrast, foliose forms are expected to promote narrower trait configurations due to
156 greater exposure to external conditions and a reduced capacity to retain nutrients on
157 their fronds (Fig. 1).

158 By examining the interplay among macroalgal structural complexity, local
159 seasonal dynamics, and the functional-trait diversity of associated annelid
160 assemblages, this study aims to advance our understanding of how habitat complexity
161 shapes community structure in marine ecosystems. In this sense, we adopt a
162 functional trait-based perspective to explore the mechanisms by which habitat-forming
163 macroalgae mediate environmental conditions, influence species filtering, and
164 ultimately determine patterns of functional diversity within epifaunal communities.
165

166 **Material and methods**

167 **Data collection**

169

170 Samples of two corticated macroalgae, *Gelidiella acerosa* (Forsskål) Feldmann
171 & Hamel, 1934, and *Palisada perforata* (Bory) K.W. Nam, 2007, and two foliose
172 macroalgae, *Padina gymnospora* (Kützing) Sonder, 1871, and *Ulva lactuca* Linnaeus,
173 1753b, were randomly collected during four sampling periods: December 2018,
174 February, April, and June 2019. Collections were conducted at Enseada dos Corais
175 (8°19'09.6" S, 34°56'53.7" W) in northeastern Brazil. This site is a 3-km-long coastal
176 area characterized by sandstone (beachrock) reefs parallel to the shoreline
177 (Vasconcelos et al., 2013). The region has a tropical monsoon climate according to

178 Köppen–Geiger classification (Peel et al., 2007), with two distinct seasons: a dry
179 season from September to February and a rainy season from March to August
180 (Domingues et al., 2017; Craveiro & Rosa-Filho, 2024). So, samples collected in
181 December and February correspond to the dry season, whereas those collected in
182 April and June correspond to the rainy season. Environmental conditions include a
183 mean water temperature of 27 °C, salinity levels around 36, high dissolved oxygen
184 concentrations, and low turbidity (Domingues et al., 2017).

185 At each sampling time, ten fronds from each macroalgae species were
186 collected. Before detaching the algae from the substrate, fronds were enclosed in a
187 plastic bag to prevent the escape of the motile fauna. The specimens were then
188 preserved in 4% saline formalin buffered with sodium tetraborate. In the laboratory,
189 the samples were rinsed in fresh water and shaken multiple times to dislodge
190 associated organisms. The resulting water was passed through a 0.3 mm mesh sieve
191 to capture the epifaunal annelids. The fronds were then placed on a sheet of white
192 paper, spread out to their full extent, and pressed. The fronds were subsequently dried
193 in an oven at 60 °C for 72 hours. After drying, each frond was removed from the
194 botanical press and photographed using a Nikon Coolpix AW100 digital camera. The
195 photographs were analyzed using ImageJ to measure the Interstitial Spatial Index
196 (ISI), height (cm), fractal dimension of the area (Da), and perimeter (Dp) (Scheider et
197 al., 2012).

198 The Interstitial Space Index (ISI) was calculated following the Dibble and
199 Thomaz (2006) method. Briefly, two vertical black dashed lines, one orange dotted
200 line, and three horizontal black dashed lines were superimposed on each image to
201 delineate the upper, middle, and lower sections of the frond, and the interstitial spaces
202 within the macroalgae were quantified along these lines (Craveiro & Rosa-Filho,
203 2024). Specifically, the index was calculated using the formula: $ISI = \frac{fh}{lh} + \frac{fv}{lv}$, where fh
204 is the average frequency of interstices intercepted per centimeter along the horizontal
205 axis, lh is the average length of interstices along the horizontal axis, fv is the average
206 frequency of interstices intercepted per centimeter along the vertical axis, and lv is the
207 average length of interstices along the vertical axis (Dibble & Thomas, 2006; Craveiro
208 & Rosa-Filho, 2024).

209 Macroalgae height was calculated by setting a central line (base to apex) on
210 each image (Craveiro & Rosa-Filho, 2024). Finally, regarding the fractal dimensions,

211 Da represents the measure of the area covered by the macroalgae, which is an
212 estimate of the area occupancy of its fronds, while Dp indicates the perimeter area of
213 the macroalgae, which means the degree of dissection of its fronds (Haley et al., 2004;
214 McAbendroth et al., 2005). Fractal dimensions were calculated following the methods
215 of McAbendroth et al. (2005) and Kovalenko et al. (2009), using the box-counting
216 algorithm in ImageJ (Craveiro & Rosa-Filho, 2024).

217

218 Functional traits

219

220 A functional trait matrix was constructed using fuzzy-coding of body size,
221 feeding strategy, and reproductive traits of annelid epifaunal genera (Table 1). The
222 scores were 0 (no affinity), 1 (low affinity), 2 (high affinity), and 3 (absolute affinity, i.e.,
223 when all other modalities were 0-scored), following the Oug et al. (2012) coding
224 criteria. Annelid size was assessed using the body-length trait modalities of Jumars et
225 al. (2015), with coding based on a generic-level literature review. Regarding the
226 feeding strategy trait, we follow the guidelines of Jumars et al. (2015) and Wouters et
227 al. (2018). Feeding trait modalities, whenever possible, were also coded based on the
228 generic-level literature. When diet information was unavailable at a generic level,
229 family-level literature was consulted for additional information. Larval development
230 was assessed based on Rouse (2000) and updated family- and genus-level literature
231 (Rouse et al., 2022). The complete dataset of functional traits fuzzy scores and the
232 references supporting the assignment are available at the following GitHub repository:

233 <https://github.com/samuelmendes-polychaeta?tab=repositories>.

234

235 Data analysis

236

237 The macroalgae traits were compared between morpho-functional groups
238 (corticated vs foliose) and among months (“December/18”, “February/19”, “April/19”,
239 and “June/19”) using a Permutational Analysis of Variance (Permanova). Moreover,
240 for the linear modelling step described below, a Principal Component Analysis (PCA)
241 of scaled macroalgae traits and a Pearson correlation test were conducted to assess
242 multicollinearity. The Rao’s Q of epifaunal communities was modelled against the
243 interaction between macroalgae functional groups (fixed factor with two levels:

244 “corticated” and “foliose”) and months (fixed factor with four levels: “December/18”,
245 “February/19”, “April/19” and “June/19”).

246 The fuzzy-scores for each trait were calculated using the *prep.fuzzy* function
247 from the *ade4* R package (Dray & Dufour, 2007). Then, a Gower distance matrix was
248 calculated from the fuzzy-coded traits of annelid genera. This matrix, alongside the
249 abundance of each genus per macroalgae frond matrix, was used to calculate Rao’s
250 Quadratic Entropy (Rao’s Q) index of each epifaunal assemblage using the “melodic”
251 function (de Bello et al., 2016). Rao’s Q measures trait dispersion by quantifying the
252 mean dissimilarity among epifaunal genera in each assemblage, summarizing the
253 expected differences between randomly selected species pairs with replacement
254 (Ricotta & Moretti, 2011; de Bello et al., 2016; Pavoine, 2026).

255 Macroalgae traits related to their morphological complexity (Da, Dp, Height, and
256 ISI) were fitted as predictors of Rao’s Q in a global model. A multimodel inference
257 approach, combining model selection and model averaging, was applied to determine
258 which macroalgae traits were included in the best-fitting models for explaining variation
259 in epifaunal Rao’s Q values, using the *MuMIn* package in R (Burnham & Anderson,
260 2002; Bartoń, 2024). The model with the lowest Akaike Information Criterion corrected
261 for small sample sizes (AICc) was considered the best approximating model for
262 predicting Rao’s Q variation (Burnham & Anderson, 2002). To evaluate the importance
263 of each predictor (macroalgal trait) and estimate their average effects, we selected all
264 models with $\Delta\text{AICc} < 2$ units relative to the first-ranked model (Burnham & Anderson,
265 2002; Symonds & Moussalli, 2011; Tredennick et al., 2021). The importance of a given
266 predictor was quantified as the sum of Akaike weights (AICw) across all models in
267 which it appeared, representing the probability that the predictor is part of the best
268 approximating model (Burnham & Anderson, 2002; Galipaud et al., 2013). Each model
269 weight (AICwi) was calculated as the relative likelihood of the model “i” divided by the
270 sum of the likelihoods across all selected models (Burnham & Anderson, 2002;
271 Galipaud et al., 2013).

272 Separately, to investigate specific correlations between annelid and
273 macroalgae traits, RLQ and fourth-corner analysis were employed. RLQ and fourth-
274 corner analyses were conducted using the *ade4* package to investigate potential
275 associations between functional traits and macroalgae traits (Dray et al., 2014). The
276 RLQ analysis integrates three matrices: R (scaled macroalgae traits), L (genera
277 abundances), and Q (fuzzy-coded functional traits), enabling the identification of

278 multivariate correlation structures between environmental gradients (in our case,
279 macroalgal traits) and annelid functional traits, mediated by annelid genera
280 abundances (Dray et al., 2014). The fourth-corner analysis complements this
281 approach by assessing the significance of bivariate associations between annelid and
282 macroalgal traits (Dray et al., 2014). In this sense, the two analyses complement the
283 patterns revealed by Rao's Q modelling by explicitly disentangling how individual
284 functional traits contribute to overall functional diversity and how their dispersion varies
285 along gradients of macroalgal morphological complexity (Wouters et al., 2018;
286 Beauchard et al., 2022; Mendes et al., 2025). By examining trait-specific responses,
287 this approach provides a more mechanistic interpretation of the observed patterns of
288 functional diversity, allowing us to identify which traits are most responsive and how
289 macroalgal morphological complexity shapes the functional space occupied by
290 associated annelid assemblages.

291 Each matrix was individually processed using appropriate multivariate
292 analyses. The Q matrix was analyzed using a Fuzzy Correspondence Analysis (FCA),
293 while the R and L matrices were subjected to Principal Component Analysis (PCA)
294 and Correspondence Analysis (CA), respectively. Finally, a Monte Carlo permutation
295 test, with 49.999 repetitions within model 6, was implemented to assess the
296 significance of correlations between macroalgae traits and annelid traits following the
297 abovementioned fourth-corner approach, controlling for p-values using the false
298 discovery rate (FDR) method (Benjamini & Hochberg, 1995; Dray et al., 2014). All
299 analyses were performed in R using RStudio (R Core Team, 2023).

300

301 **Results**

302

303 Most morphological complexity traits of macroalgae (Da, Dp, Height, and ISI)
304 differed significantly between the two morpho-functional groups (Table S1; Figs. S1–
305 S2) and among months (Table S1; Fig. S3), with particularly marked differences in
306 June (Fig. S3). In most months, corticated and foliose macroalgae had distinct values
307 of Da and Dp, except in June, when both groups had maximum values and no longer
308 differed (Fig. S2a-b). ISI values remained relatively consistent throughout the year,
309 although the ISI of corticated macroalgae notably increased in June, becoming more
310 subdivided than in previous months (Fig. S2c). Corticated and foliose algae had similar

311 height throughout most of the year, except in June, when corticated algae were taller
312 while foliose algae were shorter (Fig. S2d).

313 The two morpho-functional groups of macroalgae supported polychaete
314 epifaunal assemblages with distinct patterns of trait dissimilarity (Table 2, Fig. 3a).
315 Corticated algae generally hosted a more diverse set of epifaunal annelids traits than
316 the foliose ones (Fig. 3a). The mean trait dissimilarity of the epifaunal assemblages
317 did not vary significantly among months (Table 2, Fig. 3a). In addition, model selection
318 indicated Da, ISI, and Height as predictors of Rao's Q in the best approximating model
319 (Table 3). The ISI was positively associated with Rao's Q, whereas Da and Height
320 were negatively associated.

321 The RLQ analysis demonstrated an evident covariation of macroalgae
322 functional groups on the traits of epifaunal annelids, with corticated and foliose algae
323 being distinctly separated from each other (Fig. 4a). The first two axes accounted for
324 99,8% of the variation (axis 1: 98.7%, axis 2: 1.7%), only model 2 permutation test
325 was significant (Table S2). Axis one distinguished corticated macroalgae (mostly
326 positively associated) from foliose macroalgae (primarily negatively associated), but
327 with both groups exhibiting some degree of overlap over time (L correlation = 0.435).
328 However, observations from June (Fig. 4a) formed a distinct topological group from
329 those of the other months, a pattern that was more pronounced along the second axis
330 (L correlation = 0.24). Epifaunal annelid traits were significantly associated only with
331 the first RLQ axis, particularly suspension feeding, herbivory, and predation (Table 4).
332 In contrast, body size and larval development strategies were weakly correlated with
333 RLQ axes 1 and 2 and did not contribute significantly to the observed multivariate
334 pattern (Table 4). Importantly, fourth-corner analysis revealed no significant bivariate
335 correlations between annelid and macroalgal traits.

336 The macroalgal traits ISI and height were positively related to the first axis,
337 whereas Da and Dp were negatively related (Fig. 4b). Specifically, Da and height were
338 more strongly correlated with this axis than Dp and ISI, which were more closely
339 associated with axis 2 (Table S3). Herbivore and facultative suspension-feeding
340 nereidids, such as *Platynereis* Kinberg, 1865, and *Pseudonereis* Kinberg, 1865, were
341 the dominant genera, showing a negative association with the first axis (Fig. 4c-d). In
342 contrast, predatory genera, mostly syllids, were positively related (Fig. 4c-d).
343 Moreover, the first axis distinguished some foliose algae observations in June from
344 the others, occupying its negative extreme (Fig. 4a). The second axis was negatively

345 correlated with all macroalgae traits, and distinguished some samples collected in
346 June from others, as some observations of corticated algae exhibited high ISI and
347 height values, clearly separating them from their foliose counterparts (Fig. 4a-b). The
348 higher ISI and height associated with the June observations on the second axis were
349 consistent with the opportunistic/scavenging and deposit-feeding strategies of
350 epifaunal annelids (Fig. 4c).

351

352 **Discussion**

353

354 It was hypothesized that the two distinct macroalgal functional groups would
355 differ from each other and across months, providing contrasting habitats for their
356 associated annelid assemblages and thereby favouring distinct epifaunal trait
357 configurations. Our findings showed that Rao's Q varied significantly between the two
358 macroalgal functional groups, reflecting differences in morphological complexity.
359 However, the expected seasonal pattern was controversial, as Rao's Q test did not
360 yield a significant difference across the months assessed. In addition, as
361 demonstrated by the RLQ analysis, corticated and foliose macroalgae showed distinct
362 affinities for annelid traits and genera, corroborating the initial expectations. Finally,
363 the assessed macroalgal morphological traits, as predictors of Rao's Q for annelid
364 assemblages, captured relevant aspects of the assembly process at the frond scale
365 and exerted non-negligible effects on the trait diversity of associated epifauna.

366

367 On the relationship between macroalgae and their associated epifauna

368

369 Among the measured macroalgal traits, Da, ISI, and height were selected in the
370 best-fitting model, with Da and ISI having higher importance than height. Since Da
371 represents a measure of fractality, expressed as total frond occupancy area, fronds
372 with higher Da values are less subdivided than those with lower Da values; thus, higher
373 values of Da indicate structurally simpler fronds (McAbendroth et al., 2005). On the
374 other hand, ISI quantifies the degree to which macroalgal fronds are subdivided, with
375 higher ISI values indicating fronds with numerous interstitial spaces (Dibble & Thomas,
376 2006). Thus, the structural complexity of macroalgae influenced the trait dispersion of
377 their annelid assemblages, and this finding is consistent with the well-documented role
378 of morphological complexity of hosts in shaping epifaunal taxonomic diversity in

379 freshwater and marine ecosystems (Dean & Connell, 1987; Gee & Warwick, 1994;
380 Chemello & Milazzo, 2002; Hansen et al., 2010; Hansen et al., 2011; Veiga et al.,
381 2014; Gan et al., 2019; Fraser et al., 2020; Duarte et al., 2020a,b; Craveiro & Rosa-
382 Filho, 2024).

383 Under this paradigm, the combination of the RLQ approach with Rao's Q
384 modelling demonstrates an interesting trade-off in epifaunal trait combinations in
385 response to the fractal nature of host macroalgae. Although the more complex
386 corticated architecture is expected to impose spatial restrictions on adult epifaunal
387 species with larger body sizes (Dean & Connell, 1987; Gee & Warwick, 1994), these
388 assemblages displayed higher ISI and lower Da values, suggesting more dissimilar
389 feeding trait configurations rather than necessarily smaller body length. As for foliose
390 species, the lower Rao's Q values agree with prior expectations, as they do not impose
391 size restrictions on their epifauna, but are less effective in capturing suspended
392 material and in providing protection (Dean & Connell, 1987; Gee & Warwick, 1994),
393 ultimately leading to the observed narrower set of feeding trait affinities. A similar
394 pattern was observed in previous studies on feeding strategies and body-size traits,
395 with complex macroalgae supporting higher functional diversity in mollusc
396 assemblages (Barbosa et al., 2019; Duarte et al., 2020a).

397 Such pattern is expected because of the positive effects of macroalgae and
398 macrophytes structural complexity on the diversity of their epifaunal communities,
399 which act by influencing the space availability for foraging, colonization, and refuge
400 (Gregg & Rose, 1982; Dean & Connell, 1987; Hacker & Steneck, 1990; Gee &
401 Warwick, 1994; Christie et al., 2009; Barbosa et al., 2019; Ware et al., 2019; Duarte
402 et al., 2020a). More structurally complex hosts are effective at accumulating organic
403 matter, facilitating the settlement and persistence of small-sized, detritivorous, and
404 opportunistic species (Christie et al., 2009; Panyawai et al., 2019; Barbosa et al., 2019;
405 Duarte et al., 2020a), while also enhancing protection against predation and
406 hydrodynamics as interstitial spaces serve as refuges (Barbosa et al., 2019; Ware et
407 al., 2019).

408 The observed influence of macroalgal morphology on epifaunal trait
409 dissimilarity is also consistent with previous findings on the evolutionary aspects of
410 epibiotic interactions, in which coevolution between hosts and associated fauna has
411 important consequences for community structure and ecosystem processes (Thornber
412 et al., 2016). The eco-evolutionary relevance of these interactions often reveals

413 reciprocal morphological adaptations between partners and broad-scale diversity
414 gradients (Thornber et al., 2016; Gross et al., 2022). Moreover, these relationships
415 may be negative, positive, or “neutral,” depending on the ecological context and the
416 biology of the species involved, with illustrative examples arising from interacting
417 systems composed of marine annelids and macroalgae (Woodin, 1977; Kollars et al.,
418 2016; Álvarez-Campos & Verdes, 2017; Rossbach et al., 2021; Cronau et al., 2023).

419 Commensalistic and facilitative interactions between annelids and macroalgae
420 are widespread in benthic systems, often providing benefits to one or both partners by
421 facilitating colonization and protection, whereas negative effects are mostly attributed
422 to herbivory and overgrowth (Thornber et al., 2016; Kollars et al., 2016; Álvarez-
423 Campos & Verdes, 2017; Rossbach et al., 2021). For instance, serpulid polychaetes
424 living as epiphytes on red algal thalli exemplify commensalism, as the calcareous
425 tubes of these species attach to algal mats, using the thalli as a substrate, with minimal
426 impact on the host under normal conditions (Rossbach et al., 2021). Similarly, syllid
427 polychaetes inhabiting kelp holdfasts exploit the complex three-dimensional cavities
428 generated by holdfast morphology for shelter and foraging, benefiting from protection
429 from predators and access to food resources without apparent harm to the kelp
430 (Álvarez-Campos & Verdes, 2017). In the beachrock phytal system studied here,
431 polychaetes may likewise benefit from the interstitial spaces provided by corticated
432 macroalgae, which likely function as refuges offering protection and, consequently,
433 favor a more diverse set of trait configurations.

434 Beyond one-directional benefits for epifauna, annelids can also facilitate
435 macroalgal colonization and persistence. For example, serpulid worms form biogenic
436 structures that enhance macroalgal persistence in high-intertidal zones, as their
437 calcareous tubes create microhabitats that retain moisture, protect algal spores, and
438 supply nutrients through excretions (Liversage, 2018). Another illustrative case
439 involves annelid “gardening” behaviour, in which species, particularly from the genus
440 *Platynereis*, actively seize macroalgal fronds and exhibit selective grazing that allows
441 algal fragments to persist and even grow (Woodin, 1977). Similarly, onuphid annelids
442 can anchor the red alga *Gracilaria vermiculophylla* (Ohmi) Papenfuss, 1967 to their
443 tubes in substrate-poor soft sediments, while the seaweed, in turn, enhances prey
444 availability by attracting amphipods (Kollars et al., 2016).

445 The presence of associated epifauna from other phyla can generate trophic
446 cascades that shape community structure, particularly involving molluscs and

447 crustaceans that commonly coexist with marine annelids in phytal systems, where they
448 may function as competitors for space and food, as well as predators and/or prey
449 (Kollars et al., 2016; Thornber et al., 2016; Cronau et al., 2023). For instance, epiphytic
450 algae growing on host macroalgae, or the host macroalgae themselves, may serve as
451 nursery habitats and food sources for juvenile crustaceans, which in turn can be
452 preyed upon by carnivorous polychaetes (Kollars et al., 2016). This configuration
453 results in a multi-step facilitation cascade in which macroalgae support epiphytes,
454 epiphytes support crustaceans, and crustaceans support polychaetes. Interestingly,
455 the interaction among the annelid *Platynereis*, the gastropod *Littorina* Féruccac, 1822,
456 and the macrophyte *Zostera* Linnaeus, 1753a provides a clear example of such
457 complex trophic cascades (Cronau et al., 2023). In this system, *Platynereis* negatively
458 affects *Zostera* by promoting epiphyte growth, whereas *Littorina* mitigates this effect
459 by grazing on epiphytes and consuming *Platynereis* tubes. This three-way interaction
460 highlights that the net effect of annelids on macrophytes can depend on the presence
461 and abundance of associated invertebrate epifauna (Cronau et al., 2023).

462 Together, these examples highlight the complex and multidirectional nature of
463 interactions between epifauna and their hosts, mediated by habitat structure and eco-
464 evolutionary processes (Thornber et al., 2016; Gross et al., 2022; Cronau et al., 2023).
465 In this context, research aimed at disentangling the ecological responses and effects
466 of epibiotic relationships in marine ecosystems is of paramount importance,
467 particularly in the context of current climate change and increasing anthropogenic
468 pressures.

469

470 The seasonal change controversy

471

472 On the Pernambuco coast, winds are mainly driven by the semi-permanent
473 high-pressure system over the South Atlantic Ocean, and control rainfall and
474 hydrodynamics (Lira et al., 2010; Domingues et al., 2017). Winds are predominantly
475 from the east in austral summer and shift to the southeast in austral winter (Lira et al.,
476 2010). This seasonal inversion in wind direction affects rainfall and hydrodynamics,
477 effectively dividing the year into two distinct climatic periods: a rainy season (March to
478 August) and a dry season (September to February) (Macêdo et al., 2004; Lira et al.,
479 2010; Vasconcelos et al., 2013; Domingues et al., 2017). In the rainy season, high
480 rainfall, hydrodynamics, and turbidity stress intertidal marine plants and algae

481 (Domingues et al., 2017; Bérgamo et al., 2022; Bérgamo et al., 2024). Macroalgae
482 may respond to such stressful conditions by altering their morphological traits, growth
483 rates, and flexibility (Madsen et al., 2001; Hurd, 2000). This pattern was observed by
484 Craveiro & Rosa-Filho (2024) in the studied system, in which macroalgal
485 morphological complexity and biomass were higher in more hydrodynamically stable
486 months during the dry season.

487 Although Rao's Q did not vary significantly among months, the RLQ analysis
488 indicated a monthly affinity of both macroalgae and annelid traits in relation to June
489 observations. This apparent discrepancy between the mean dissimilarity of annelid
490 traits, as quantified by Rao's Q, and the RLQ output also contrasts with the findings of
491 Craveiro & Rosa-Filho (2024), who documented a monthly shift in epifaunal species
492 composition in response to changes in macroalgal morphological traits. Such changes
493 affected the dominance patterns of polychaetes within the same phytal system,
494 suggesting that local conditions shape the assembly process by filtering species with
495 similar traits, consistent with the "habitat templet" hypothesis (Southwood, 1977;
496 HilleRisLambers et al., 2012). Another possible explanation lies in the connection
497 between Rao's Q and taxonomic diversity, which reduces the index's sensitivity to
498 changes driven by species relative abundances in low-richness systems, where the
499 dissimilarity matrix is "small" (de Bello et al., 2016; Pavoine, 2026).

500 In June, the multivariate distinction between algae morpho-functional groups
501 and annelid traits was influenced by the affinity of opportunistic/scavenger and
502 deposit-feeding annelid trait modalities with corticated algae, observations positioned
503 along the negative extremes of the second RLQ axis, and herbivore and facultative
504 suspension-feeding modalities with foliose species observations positioned along the
505 negative extremes of the first RLQ axis. As corticated macroalgae can retain
506 suspended material more efficiently (Dean et al., 1987), the superposition of deposit-
507 feeding and opportunistic/scavenger annelid genera with observations from corticated
508 algae is expected. In contrast, the suspension-feeding correlation with foliose algae is
509 attributed to the presence of large herbivores and tube-building nereidids, which
510 secrete mucus within their tubes to capture suspended material from the water column
511 for later ingestion (Daly, 1973; Toba & Sato, 2013).

512 Taken together, the structural complexity of macroalgal hosts can be used to
513 evaluate the assembly process of their epifauna through the lens of the filtering
514 metaphor, particularly in a niche-selection context (Dean & Connell, 1987;

515 HilleRisLambers et al., 2012; Locke & Chisholm, 2023). Briefly, assembly theory
516 predicts that at fine spatial scales, biotic interactions exert a more decisive influence
517 than abiotic environmental filtering in modulating functional trait diversity within local
518 communities (Mayfield & Levine, 2010; Kraft et al., 2015; Boet et al., 2022; Gross et
519 al., 2022). The morphological traits of macroalgae can be considered filters for
520 associated epifaunal traits, mediating this process at the frond scale. They significantly
521 affected the mean trait dissimilarity among annelid genera, leading to distinct epifaunal
522 trait affinities between the two host morpho-functional groups. For these reasons, the
523 assembly of epifaunal communities on macroalgae is a multifaceted ecological
524 process mediated by host structural traits that mitigate the effects of negative
525 interspecific interactions and buffer environmental stress, thereby creating complex
526 habitats that sustain high biodiversity at both taxonomic and functional levels.

527

528 **Conclusion**

529

530 The relationship between habitat structure and functional trait diversity was
531 examined, revealing that increased macroalgal architectural complexity positively
532 influences the trait dispersion of associated epifaunal assemblages. However, the
533 strength and nature of this relationship varied depending on the specific traits
534 considered, as different traits capture distinct dimensions of species' ecological niches
535 (Spasojevic et al., 2012; Kraft et al., 2015). All annelid genera inhabiting macroalgae
536 were errant polychaetes, characterized by a shared set of morphological traits linked
537 to an epifaunal lifestyle and high mobility, typical of the Errantia clade (Rouse et al.,
538 2022). Nonetheless, their traits varied primarily in body size, reproductive modes, and
539 feeding strategies, with the latter contributing most significantly to the observed
540 multivariate patterns of trait distribution across macroalgal morpho-functional groups
541 and months.

542 Finally, a major limitation to the advancement of more robust trait-based
543 approaches is the current paucity of information on the life-history traits of marine
544 invertebrates, a knowledge gap known as the "Raunkiaeran shortfall" (Hortal et al.,
545 2015; Gonçalves-Souza et al., 2023; Luza et al., 2023). To overcome this constraint,
546 future research should prioritize the characterization of functional traits in epifaunal
547 species, with particular emphasis on updating and expanding trait data for tropical
548 taxa. It is also important to recognize that macroalgae interact with both their

549 environment and associated fauna not only through morphological traits, but also via
550 chemical and reproductive characteristics. Future research should place greater
551 emphasis on elucidating their role in shaping the functional, phylogenetic, and
552 taxonomic diversity of epifaunal assemblages. Such efforts may reveal a highly
553 multidimensional structure of epifaunal biodiversity, underscoring the need for an
554 integrative, cross-taxa framework that encompasses multiple facets of biological
555 diversity. This comprehensive approach will be crucial for advancing our
556 understanding of how climate change and anthropogenic pressures impact marine
557 phytal ecosystems.

558

559 **Acknowledgments:** This paper is part of the Ph.D. research of S.L.D.D.M., conducted
560 within the Graduate Program in Ecology (PPGE) at the Federal University of Rio de
561 Janeiro (UFRJ) under P.C.P. and R.L.N. supervisions. The data analyzed were
562 derived from N.C. Ph.D. work at the Federal University of Pernambuco (UFPE). We
563 thank PPGE, UFRJ, UFPE, and the following funding agencies for their support:
564 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho
565 Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo
566 à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Fundação de Amparo
567 à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Instituto Serrapilheira. We
568 also thank the anonymous reviewers and the editorial team for their contributions,
569 which significantly improved the quality of this work.

570

571

572 **Funding** S.L.D.D.M. is currently supported with a Ph.D. fellowship (grant number
573 88887.948088/2024-00) by CAPES. P.C.P. received productivity grants from CNPq
574 (grant number 306788/2021-7) and FAPERJ (grant number E-26/200.375/2023).
575 J.S.R.F. received productivity grants from CNPq (grant number 303609/2022-2). N.C.
576 thanks FACEPE (BFP-0151-1.08/24) and CNPq (140581/2019-7) for the Research
577 Grants. R.L.N. was supported by FAPERJ (grant numbers E-26/204.205/2021 and E-
578 26/201.554/2024) and by the Serrapilheira Institute (grant number R-2305-43289).

579

580 **Author contributions** R.L.N and S.L.D.D.M originally formulated the idea. S.L.D.D.M
581 analyzed the data and wrote the first manuscript draft under the supervision of R.L.N
582 and P.C.P. Both R.L.N and P.C.P contributed to the statistical analysis, routine

583 supervision, data modelling insights, and theoretical refinement. J.S.R.F and N.C
584 formulated the sampling design, conducted the fieldwork, and provided the taxonomic
585 identifications. All authors reviewed and edited the final text.

586

587 **Data availability:** The trait data will be made available after the review process at the
588 S.L.D.D.M. GitHub repository ([https://github.com/samuelmendes-
589 polychaeta?tab=repositories](https://github.com/samuelmendes-polychaeta?tab=repositories)).

590

591 **Conflict of interest:** We have no conflict of interest to declare.

592

593 **References**

594

595 Álvarez-Campos, P., & A. Verdes, 2017. Syllids inhabiting holdfasts of *Lessonia*
596 *spicata* in Central Chile: diversity, systematics, and description of three new
597 species. *Systematics and Biodiversity* 15(6):520–531.
598 <https://doi.org/10.1080/14772000.2017.1285364>

599

600 Bailey-Brock, J. H., J. K. White & L. A. Ward, 1980. Effects of algal turf and
601 depressions as refuges on polychaete assemblages of a windward reef bench at
602 Enewetak Atoll. *Micronesica* 16(1):43–58

603

604 Balata, D., L. Piazzi & F. Rindi, 2011. Testing a new classification of morphological
605 functional groups of marine macroalgae for the detection of responses to stress.
606 *Marine Biology* 158:2459–2469. <https://doi.org/10.1007/s00227-011-1750-3>

607

608 Barbosa, D.F., T. L. P. Dias, S. F. Lopes, R. C. F. Duarte & F. M. D. Amaral, 2019.
609 Community structure and functional traits of mollusks associated with coastal reef
610 macroalgae in Northeastern Brazil. *Marine Ecology* 40(5):e12563.
611 <https://doi.org/10.1111/maec.12563>

612

613 Bartoń, K., 2024. MuMIn: Multi-Model Inference. R package version 1.48.4.
614 <https://CRAN.R-project.org/package=MuMIn>

615

616 Beauchard, O., H. Veríssimo, A. M. Queirós & P. M. J. Herman, 2017. The use of
617 multiple biological traits in marine community ecology and its potential in ecological
618 indicator development. *Ecological Indicators* 76:81–96.
619 <https://doi.org/10.1016/j.ecolind.2017.01.011>

620

621 Beauchard, O., S. Mestdagh, L. Koop, T. Ysebaert & P. M. Herman, 2022. Benthic
622 synecology in a soft sediment shelf: habitat contrasts and assembly rules of life

623 strategies. *Marine Ecology Progress Series* 682:31–50.
624 <https://doi.org/10.3354/meps13928>

625

626 Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical
627 and powerful approach to multiple testing. *Journal of the Royal Statistical Society: Series B (Methodological)* 57:289–300.

628

629

630 Bérgamo, D.B., D. H. de Oliveira, N. Craveiro & J. S. Rosa Filho, 2024. Foraminifera associated with macroalgae on tropical coastal sandstone reefs. *Marine Micropaleontology* 186:102325.
631 <https://doi.org/10.1016/j.marmicro.2024.102325>

632

633

634 Bérgamo, D.B., D. H. Oliveira & J. S. Rosa Filho, 2022. Responses of foraminiferal assemblages to hydrodynamics and sedimentary processes on tropical coastal beachrocks. *Journal of South American Earth Sciences* 120:104051.
635 <https://doi.org/10.1016/j.jsames.2022.104051>

636

637

638

639 Boet, O., X. Arnan & J. Retana, 2020. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. *PLoS ONE* 15(2):e0228625. <https://doi.org/10.1371/journal.pone.0228625>

640

641

642

643 Burnham, K.P. & D. R. Anderson, 2002. *Model Selection and Inference: A Practical Information-Theoretic Approach*. Springer-Verlag, New York.
<http://dx.doi.org/10.1007/b97636>

644

645

646

647

648 Carvalho, L. R. S. & F. Barros, 2017. Physical habitat structure in marine ecosystems: the meaning of complexity and heterogeneity. *Hydrobiologia* 797:1–9. <https://doi.org/10.1007/s10750-017-3160-0>

649

650

651

652 Chemello, R. & M. Milazzo, 2002. Effect of algal architecture on associated fauna: some evidence from phytal molluscs. *Marine Biology* 140(5):981–990.
<https://doi.org/10.1007/s00227-002-0777-x>

653

654

655

656 Christie, H., K. Norderhaug & S. Fredriksen, 2009. Macrophytes as habitat for fauna. *Marine Ecology Progress Series* 396:221–234.
<https://doi.org/10.3354/meps08351>

657

658

659

660 Clark, J. S., Poore, A. G., & Doblin, M. A., 2018. Shaping up for stress: Physiological flexibility is key to survivorship in a habitat-forming macroalga. *Journal of Plant Physiology* 231:346–355.
<https://doi.org/10.1016/j.jplph.2018.10.005>

661

662

663

664

665 Craveiro, N. & J. S. Rosa Filho, 2024. Macroalgae traits and seasonality as drivers of polychaete assemblages on macroalgae of tropical sandstone reefs. *Estuarine,*

666

667 Coastal and Shelf Science 297:108619.
668 <https://doi.org/10.1016/j.ecss.2024.108619>

669

670 Cronau, R.J., Telgenkamp, Y., de Fouw, J., van Katwijk, M.M., Bouma, T.J.,
671 Heusinkveld, J.H., Hoeijmakers, D., van Der Heide, T. & L. P. Lamers, 2023.
672 Seagrass is protected from ragworm pressure by a newly discovered grazer–
673 ragworm interaction; implications for restoration. *Journal of Applied Ecology*
674 60(6):978–989. <https://doi.org/10.1111/1365-2664.14381>

675

676 Daly, J. M., 1973. Behavioural and secretory activity during tube construction by
677 *Platynereis dumerilii* Aud & M. Edw. [Polychaeta: Nereidae]. *Journal of the Marine
678 Biological Association of the United Kingdom* 53(3):521–529.
679 <https://doi.org/10.1017/S0025315400022311>

680

681 de Bello, F., C. P. Carmona, J. Lepš, R. Szava-Kovats & M. Pärtel, 2016.
682 Functional diversity through the mean trait dissimilarity: resolving shortcomings
683 with existing paradigms and algorithms. *Oecologia* 180:933–940.
684 <https://doi.org/10.1007/s00442-016-3546-0>

685

686 Dean, R. L. & J. H. Connell, 1987. Marine invertebrates in an algal succession. III.
687 Mechanisms linking habitat complexity and diversity. *Journal of Experimental
688 Marine Biology and Ecology* 109:249–273. [https://doi.org/10.1016/0022-0981\(87\)90056-0](https://doi.org/10.1016/0022-0981(87)90056-0)

689

690

691 Dibble, E. D. & S. M. Thomaz, 2006. A simple method to estimate spatial
692 complexity in aquatic plants. *Brazilian Archives of Biology and Technology* 49:421–
693 428. <https://doi.org/10.1590/S1516-89132006000400010>

694

695 Domingues, E. D. C., C. A. F. Schettini, E. C. Truccolo & J. C. Oliveira Filho, 2017.
696 Hydrography and currents on the Pernambuco continental shelf. *Brazilian Journal
697 of Water Resources* 22:1–17. <http://dx.doi.org/10.1590/2318-0331.0217170027>

698

699 Dray, S. & A. Dufour, 2007. The ade4 Package: Implementing the Duality Diagram
700 for Ecologists. *Journal of Statistical Software* 22:1–20.
701 <https://doi.org/10.18637/jss.v022.i04>

702

703 Dray, S., P. Choler, S. Doledec, P. R. Peres-Neto, W. Thuiller, S. Pavoine S & C.
704 J. ter Braak, 2014. Combining the fourth-corner and the RLQ methods for
705 assessing trait responses to environmental variation. *Ecology* 95:14–21.
706 <https://doi.org/10.1890/13-0196.1>

707

708 Duarte, R. C. S., E. L. S. Mota & T. L. P. Dias, 2020b. Algal complexity positively
709 affects the abundance, richness and diversity of molluscan assemblages of a

710 semiarid hypersaline mangrove. *Aquatic Ecology* 54(4):1001–1013.
711 <https://doi.org/10.1007/s10452-020-09789-3>

712
713 Duarte, R. C. S., G. Barros, S. V. Milesi & T. L. P. Dias, 2020a. Influence of
714 macroalgal morphology on the functional structure of molluscan community from
715 hypersaline estuary. *Hydrobiologia* 847(4):1107–1119.
716 <https://doi.org/10.1007/s10750-020-04171-8>

717
718 Feldmann, J. & G. Hamel, 1934. Observations sur quelques Géliadiacées. *Revue
719 Générale de Botanique* 46:528–549.

720
721 Féruccac, A. E. J. P. J. F. d'A. de (1822). *Tableaux systématiques des animaux
722 mollusques, classes en familles naturelles, dans lesquels ou est établi la
723 concordance de tous les systèmes. Suivis de'un prodrome général.* Paris:
724 Bertrand.

725
726 Fraser, K. M., R. D. Stuart-Smith, S. D. Ling, F. J. Heather & G. J. Edgar, 2020.
727 Taxonomic composition of mobile epifaunal invertebrate assemblages on diverse
728 benthic microhabitats from temperate to tropical reefs. *Marine Ecology Progress Series*
729 Series 640:31–43. <https://doi.org/10.3354/meps13300>

730
731 Galipaud, M., M. A. F. Gillingham, M. David & F. X. Dechaume-Moncharmont,
732 2014. Ecologists overestimate the importance of predictor variables in model
733 averaging: a plea for cautious interpretations. *Methods in Ecology and Evolution*
734 5(10):983–991. <https://doi.org/10.1111/2041-210X.12251>

735
736 Gan, S.X., Y. C. Tay & D. Huang, 2019. Effects of macroalgal morphology on
737 marine epifaunal diversity. *Journal of Marine Biological Association of the United
738 Kingdom* 99(8) 1697–1707. <https://doi.org/10.1017/S0025315419000900>

739
740 Gee, J. M. & R. M. Warwick, 1994. Metazoan community structure in relation to the
741 fractal dimensions of marine macroalgae. *Marine Ecology Progress Series*
742 103:141–150. <https://doi.org/10.3354/meps103141>

743
744 Gonçalves-Souza, T., L. S. Chaves, G. X. Boldorini, N. Ferreira, R. A. Gusmão, P.
745 B. Perônico, N. J. Sanders & F. B. Teresa F. B., 2023. Bringing light onto the
746 Raunkiær shortfall: A comprehensive review of traits used in functional animal
747 ecology. *Ecology and Evolution* 13(4):e10016. <https://doi.org/10.1002/ece3.10016>

748
749 Gregg, W. W. & F. L. Rose, 1982. The effects of aquatic macrophytes on the
750 stream microenvironment. *Aquatic Botany* 14:309–324.
751 [https://doi.org/10.1016/0304-3770\(82\)90104-0](https://doi.org/10.1016/0304-3770(82)90104-0)

752

753 Gross, C. P., J. E. Duffy, K. A. Hovel, M. R. Kardish, P. L. Reynolds, C. Boström,
754 K. E. Boyer, M. Cusson, J. Eklöf, A. H. Engelen & B. K. Eriksson, 2022. The
755 biogeography of community assembly: latitude and predation drive variation in
756 community trait distribution in a guild of epifaunal crustaceans. *Proceedings of the*
757 *Royal Society B* 289(1969):20211762. <https://doi.org/10.1098/rspb.2021.1762>

758
759 Hansen, J. P., J. Sagerman & S. A. Wikström, 2010. Effects of plant morphology
760 on small-scale distribution of invertebrates. *Marine Biology* 157:2143–2155.
761 <https://doi.org/10.1007/s00227-010-1479-4>

762
763 Hansen, J.P., S. A. Wikström, H. Axemar & L. Kautsky, 2011. Distribution
764 differences and active habitat choices of invertebrates between macrophytes of
765 different morphological complexity. *Aquatic Ecology* 45:11–22.
766 <https://doi.org/10.1007/s10452-010-9319-7>

767
768 HilleRisLambers, J., P. B. Adler, W. S. Harpole, J. M. Levine & M. M. Mayfield,
769 2012. Rethinking community assembly through the lens of coexistence theory.
770 *Annual review of ecology, evolution, and systematics* 43(1):227–248.
771 <https://doi.org/10.1146/annurev-ecolsys-110411-160411>

772
773 Hortal, J., F. De Bello, J. A. F. Diniz-Filho, T. M. Lewinsohn, J. M. Lobo & R. J.
774 Ladle, 2015. Seven shortfalls that beset large-scale knowledge of biodiversity.
775 *Annual review of ecology, evolution, and systematics* 46(1):523–549.
776 <https://doi.org/10.1146/annurev-ecolsys-112414-054400>

777
778 Hurd, C. L., 2000. Water motion, marine macroalgal physiology, and production.
779 *Journal of Phycology* 36(3):453–472. <https://doi.org/10.1046/j.1529-8817.2000.99139.x>

780
781 Jumars, P. A., K. M. Dorgan & S. M. Lindsay, 2015. Diet of worms emended: an
782 update of polychaete feeding guilds. *Annual review of marine Science* 7(1): 497–
783 520. <https://doi.org/10.1146/annurev-marine-010814-020007>

784
785 Katsiaras, N., A. Evangelopoulos, N. Simboura, A. Atsalaki & D. Koutsoubas, 2022.
786 Functional traits of polychaetes change between different types of *Posidonia*
787 *oceanica* habitats. *Marine Environmental Research* 181:105731.
788 <https://doi.org/10.1016/j.marenvres.2022.105731>

789
790 Kinberg, J. G. H., 1865. *Annulata nova. [Continuatio.]*. *Öfversigt af Königlich*
791 *Vetenskapsakademiens förhandlingar*, Stockholm 22(2):167–179.

792
793 Kovalenko, K., E. D. Dibble, & R. Fugi, 2009. Fish feeding in changing habitats:
794 effects of invasive macrophyte control and habitat complexity. *Ecology of*
795 *Freshwater Fish* 18: 305–313. <https://doi.org/10.1111/j.1600-0633.2008.00348.x>

797

798 Kraft, N. J. B., O. Godoy & J. M. Levine, 2015. Plant functional traits and the
799 multidimensional nature of species coexistence. *Proceedings of the National
800 Academy of Sciences of the United States of America* 112(3):797–802.
801 <https://doi.org/10.1073/pnas.1413650112>

802

803

804 LaRue, E. A., R. T. Fahey, B. C. Alveshere, J. W. Atkins, P. Bhatt, B. Buma, A.
805 Chen, S. Cousins, J. M. Elliott, A. J. Elmore & C. R. Hakkenberg, 2023. A
806 theoretical framework for the ecological role of three-dimensional structural
807 diversity. *Frontiers in Ecology and the Environment* 21(1):4–13.
808 <https://doi.org/10.1002/fee.2587>

809

810 Linnaeus, C. 1753a. *Species plantarum, exhibentes plantas rite cognitas ad
811 genera relatas cum differentiis specificis, nominibus trivialibus, synonymis selectis,
812 locis natalibus, secundum systema sexuale digestas.* Vol 1. Salvius, Stockholm.

813

814 Linnaeus, C. 1753b. *Species plantarum, exhibentes plantas rite cognitas, ad
815 genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis
816 selectis, locis natalibus, secundum systema sexuale digestas.* Vol. 2. Laurentii
817 Salvii, Holmiae.

818

819 Lira, L., C. Wor, F. H. V. Hazin, H. A. D. C. B. Júnior & J. C. P. Santos, 2010.
820 Estudo de correntes marinhas por meio do lançamento de cartões de deriva no
821 litoral do estado de Pernambuco, Brasil. *Arquivos de Ciências do Mar* 43(1):30–37

822

823 Laversage, K. (2018). First evidence of biogenic habitat from tubeworms providing
824 a near-absolute habitat requirement for high-intertidal *Ulva* macroalgae. *Plos one*
825 12(5):e0176952. <https://doi.org/10.1371/journal.pone.0176952>

826

827 Loke, L. H. & R. A. Chisholm, 2022. Measuring habitat complexity and spatial
828 heterogeneity in ecology. *Ecology Letters* 25(10):2269–2288.
829 <https://doi.org/10.1111/ele.14084>

830

831 Loke, L. H. & R. A. Chisholm, 2023. Unveiling the transition from niche to dispersal
832 assembly in ecology. *Nature* 618(7965):537–542. <https://doi.org/10.1038/s41586-023-06161-x>

834

835 Luza, A.L., D. R. Barneche, C. A. Cordeiro, C. S. Dambros, C. E. Ferreira, S. R.
836 Floeter, V. J. Giglio, O. J. Luiz, T. C. Mendes, V. A. Picolotto & J. P. Quimbayo,
837 2023. Going across taxa in functional ecology: Review and perspectives of an
838 emerging field. *Functional Ecology* 37(12) 3091–3110.
839 <https://doi.org/10.1111/1365-2435.14442>

840

841 Macêdo, S. J., K. Muniz & M. J. Flores-Montes, 2004. Hidrologia da região costeira
842 e plataforma continental do Estado de Pernambuco. In: Eskinazi-Leça E,
843 Neumann-Leitão S, Costa MF (eds) Oceanografia: Um Cenário Tropical. Bagaço,
844 Recife, pp 255–286.

845
846 Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001.
847 The interaction between water movement, sediment dynamics and submersed
848 macrophytes. *Hydrobiologia* 444:71–84.
849
<https://doi.org/10.1023/A:1017520800568>

850
851 Mayfield, M. M. & J. M. Levine, 2010. Opposing effects of competitive exclusion on
852 the phylogenetic structure of communities. *Ecology letters* 13(9):1085-93.
853
<https://doi.org/10.1111/j.1461-0248.2010.01509.x>

854
855 McAbendroth, L., P. M. Ramsay, A. Foggo, S. D. Rundle & D. T. Bilton, 2005. Does
856 macrophyte fractal complexity drive invertebrate diversity, biomass and body size
857 distributions? *Oikos* 111(2):279–290. <https://doi.org/10.1111/j.0030-1299.2005.13804.x>

859
860 Medeiros, C. R., F. F. Paiva, R. Ligeiro, J. Molozzi & A. S. Melo, 2021. Saline
861 gradient drives functional nestedness of polychaete communities in tropical
862 estuaries. *Estuarine, Coastal and Shelf Science* 251:107185.
863
<https://doi.org/10.1016/j.ecss.2021.107185>

864 Mendes, S., Paiva, P. & R. Nascimento, 2025. Seasonal upwelling and depth-
865 driven gradients foster functional overdispersion in Southwestern Atlantic annelid
866 assemblages. *Marine Ecology Progress Series* 765, 53–72.
867
<https://doi.org/10.3354/meps14896>

868 Nam, K.W. 2007. Validation of the generic name *Palisada* (Rhodomelaceae,
869 Rhophyta). *Algae (The Korean Journal of Phycology)* 22(2):53–55

870 Nogueira, M., W. Magalhães, E. Mariano-Neto, E. Neves & R. Johnsson, 2023.
871 Taxonomical and functional analyses of epifaunal polychaetes associated with
872 *Mussismilia* spp.: the effects of coral growth morphology. *PeerJ* 11:e15144.
873
<https://doi.org/10.7717/peerj.15144>

874
875 Ohmi, H. 1956. Contributions to the knowledge of Gracilariaeae from Japan, II.
876 On a new species of the genus *Gracilaropsis* with some considerations on its
877 ecology. *Bulletin of the Faculty of Fisheries Hokkaido University* 6:271–279.

878
879 Oug, E., A. Fleddum, B. Rygg & F. Olsgard, 2012. Biological traits analyses in the
880 study of pollution gradients and ecological functioning of marine soft bottom

881 species assemblages in a fjord ecosystem. *Journal of Experimental Marine Biology*
882 and *Ecology* 432:94–105. <https://doi.org/10.1016/j.jembe.2012.07.019>

883
884 Panyawai, J., P. Tuntiprapas & A. Prathee, 2019. High macrophyte canopy
885 complexity enhances sediment retention and carbon storage in coastal vegetative
886 meadows at Tangkhen Bay, Phuket, Southern Thailand. *Ecological Research*
887 34(1):201–212. <https://doi.org/10.1111/1440-1703.1271>

888
889 Pavoine, S., 2026. The rich-Rao quadratic entropy. *Ecological*
890 *Indicators* 182:114512. <https://doi.org/10.1016/j.ecolind.2025.114512>

891
892 Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the
893 Köppen-Geiger climate classification. *Hydrology and earth system sciences*
894 11(5):1633–1644. <https://doi.org/10.5194/hess-11-1633-2007>

895
896 Pérez-García J. A., A. Ruiz-Abierno & M. Armenteros, 2015. Does morphology of
897 host marine macroalgae drive the ecological structure of epiphytic meiofauna?
898 *Journal of Marine Biology and Oceanography* 4(1):2. <https://doi.org/10.4172/2324-8661.1000138>

900
901 R Core Team, 2023. R: A Language and Environment for Statistical Computing. R
902 Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

903
904 Ricotta, C. & M. Moretti, 2011. CWM and Rao's quadratic diversity: a unified
905 framework for functional ecology. *Oecologia* 167: 181–188.
906 <https://doi.org/10.1007/s00442-011-1965-5>

907
908 Rossbach, F. I., E. Casoli, M. Beck & C. Wild, 2021. Mediterranean red macro
909 algae mats as habitat for high abundances of serpulid polychaetes. *Diversity*
910 13(6):265. <https://doi.org/10.3390/d13060265>

911
912 Rouse, G. W. & F. Pleijel, 2001. Polychaetes. Oxford University Press.

913
914 Rouse, G. W., 2000. Bias? What bias? The evolution of downstream larval-feeding
915 in animals. *Zoologia Scripta* 29(3):213–236. doi:10.1046/j.1463-
916 6409.2000.00040.x

917
918 Rouse, G., F. Pleijel & E. Tilic, 2022. Annelida. Oxford University Press.

919 Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25
920 years of image analysis. *Nature Methods* 9:671–675.
921 <https://doi.org/10.1038/nmeth.2089>

922

923 Sonder, O.G. 1871. Die Algen des tropischen Australiens. Abhandlungen aus dem
924 Gebiete der Naturwissenschaften herausgegeben von dem
925 Naturwissenschaftlichen Verein in Hamburg 5(2):33–74.

926
927 Spasojevic, M. J. & K. N. Suding, 2012. Inferring community assembly
928 mechanisms from functional diversity patterns: The importance of multiple
929 assembly processes. *Journal of Ecology* 100(3):652–661.
930 <https://doi.org/10.1111/j.1365-2745.2011.01945.x>

931
932 Stagnol, D., M. Renaud M & D. Davout, 2013. Effects of commercial harvesting of
933 intertidal macroalgae on ecosystem biodiversity and functioning. *Estuarine, Coast*
934 and *Shelf Science* 130:99–110. <https://doi.org/10.1016/j.ecss.2013.03.022>

935
936 Stein, A., K. Gerstner & H. Kreft, 2014. Environmental heterogeneity as a universal
937 driver of species richness across taxa, biomes and spatial scales. *Ecology Letters*
938 17(7):866–880. <https://doi.org/10.1111/ele.12277>

939
940 Steneck, R. S. & M. N. Dethier, 1994. A functional group approach to the structure
941 of algal-dominated communities. *Oikos* 69:476–498.
942 <https://doi.org/10.2307/3545860>

943
944 Symonds, M. R. & A. Moussalli, 2011. A brief guide to model selection, multimodel
945 inference and model averaging in behavioural ecology using Akaike's information
946 criterion. *Behavioral Ecology and Sociobiology* 65:13–21.
947 <https://doi.org/10.1007/s00265-010-1037-6>

948
949 Thornber, C., E. Jones & M. Thomsen, 2016. Epibiont-marine macrophyte
950 assemblages. In Olafsson, E. (eds) *Marine macrophytes as foundation species*.
951 CRC press, Boca Raton, FL. pp. 43–65.

952
953 Toba, Y. & M. Sato, 2013. Filter-feeding behavior of three Asian Hediste species
954 (Polychaeta: Nereididae). *Plankton Benthos Res* 8(4):159–165.
955 <https://doi.org/10.3800/pbr.8.159>

956
957 Tokeshi, M. & S. Arakaki, 2012. Habitat complexity in aquatic systems: fractals and
958 beyond. *Hydrobiologia* 685:27–47. <https://doi.org/10.1007/s10750-011-0832-z>

959
960 Torres-Pulliza, D., M. A. Dornelas, O. Pizarro, M. Bewley, S. A. Blowes, N. Boutros,
961 V. Brambilla, T. J. Chase, G. Frank, A. Friedman & M. O. Hoogenboom, 2020. A
962 geometric basis for surface habitat complexity and biodiversity. *Nature Ecology &*
963 *Evolution* 4(11): 1495–1501. <https://doi.org/10.1038/s41559-020-1281-8>

964

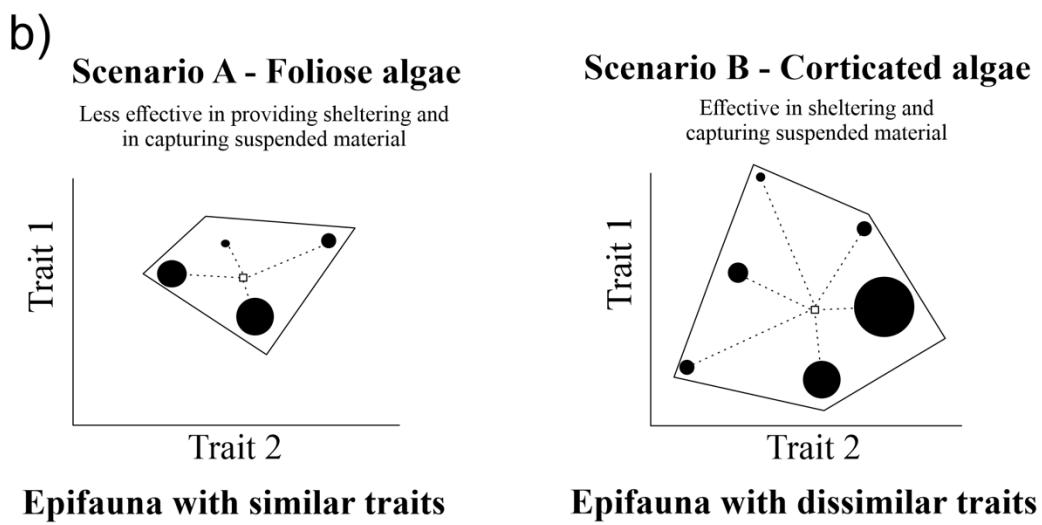
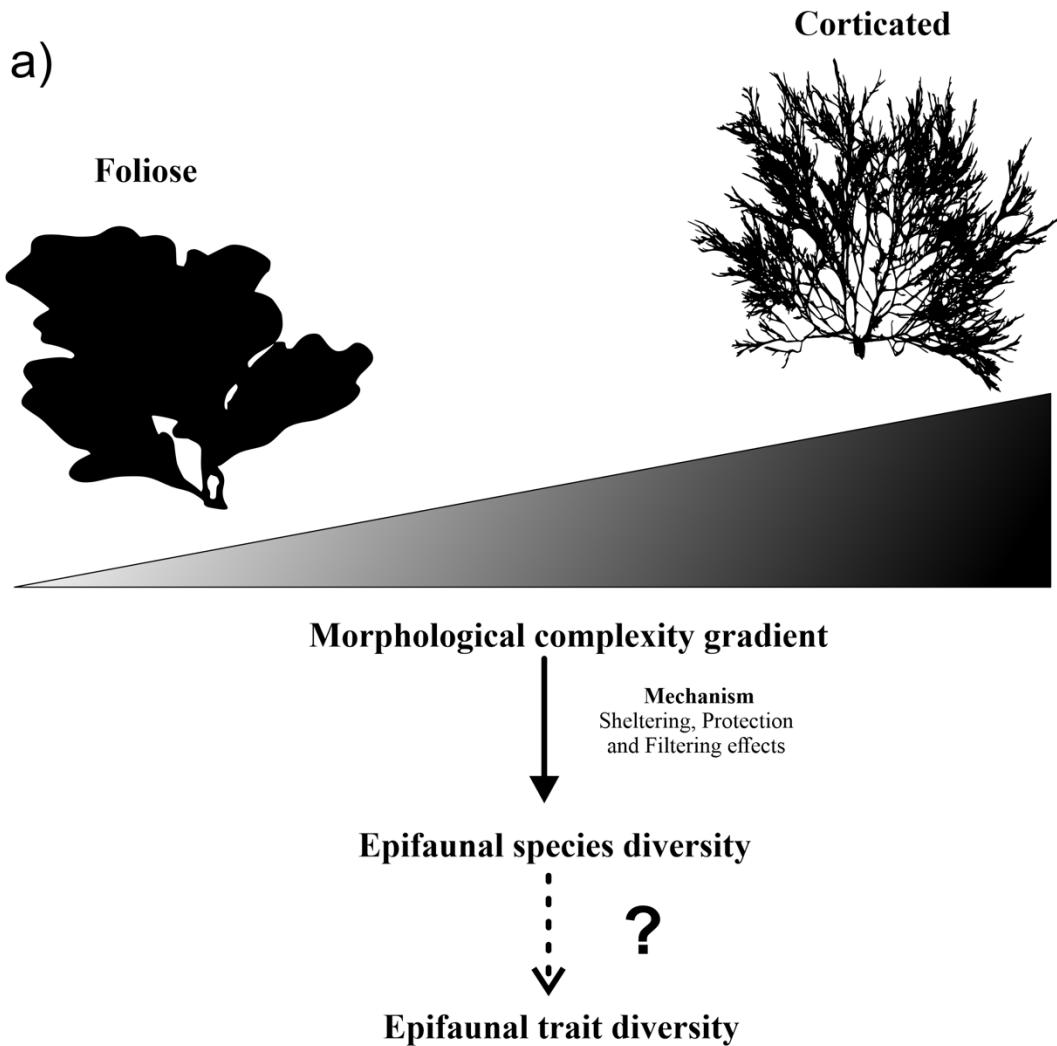
965 Tredennick, A.T., G. Hooker, S. P. Ellner & P. B. Adler, 2021. A practical guide to
966 selecting models for exploration, inference, and prediction in ecology. *Ecology*
967 102(6):e03336. <https://doi.org/10.1002/ecy.3336>

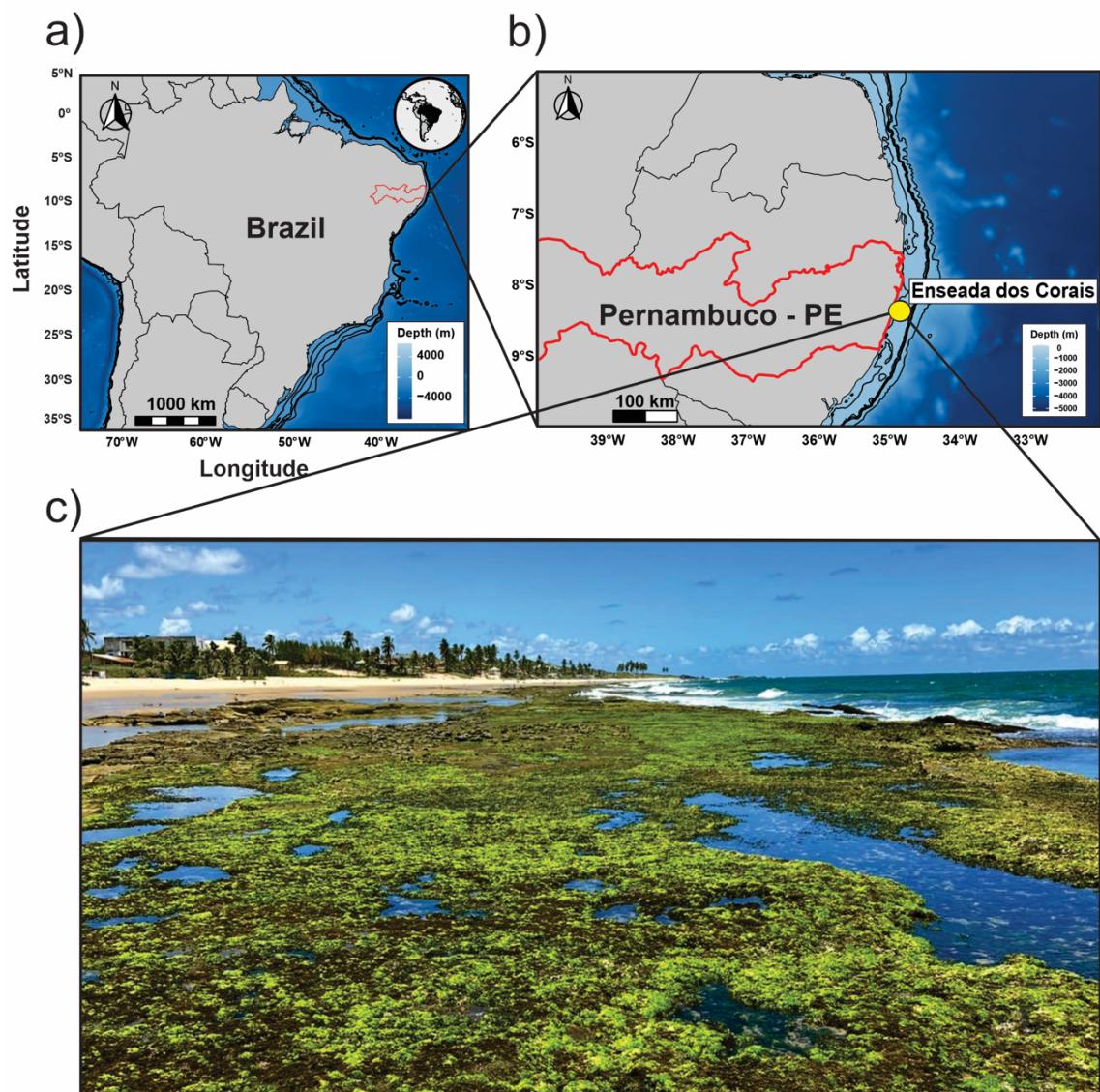
968
969 Vasconcelos, E. R. T. P. P., T. N. V. Reis, N. C. Guimarães-Barros, J. Bernardi, A.
970 J. Areces-Mallea, A. L. M. Concentino & M. T. Fujii, 2013. Padrão espacial da
971 comunidade de macroalgas de mesolitoral em ambiente recifal do Nordeste
972 Brasileiro. *Tropical Oceanography* 41(1–2):84–92.

973
974 Veiga, P., M. Rubal & I. Sousa-Pinto, 2014. Structural complexity of macroalgae
975 influences epifaunal assemblages associated with native and invasive species.
976 *Marine Environmental Research* 101:115–123.
977 <https://doi.org/10.1016/j.marenvres.2014.09.007>

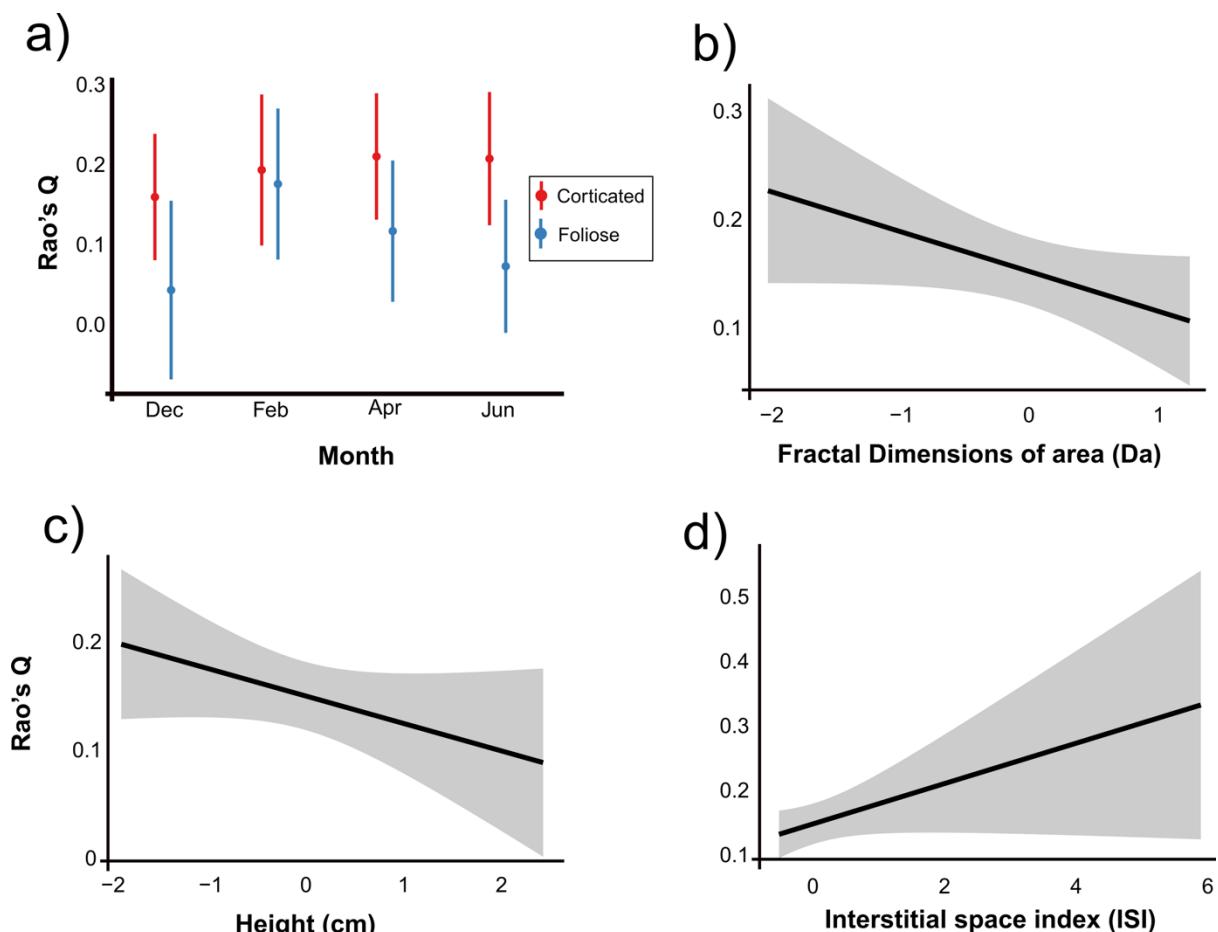
978
979 Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier,
980 2007. Let the concept of trait be functional!. *Oikos*, 116(5): 882-892.
981 <https://doi.org/10.1111/j.0030-1299.2007.15559.x>

982
983 Ware, C., J. A. Dijkstra, K. Mello, A. Stevens, B. O. Brien & W. Ikeda, 2019. A novel
984 three-dimensional analysis of functional architecture that describes the properties
985 of macroalgae as a refuge. *Marine Ecology Progress Series* 608:93–103.

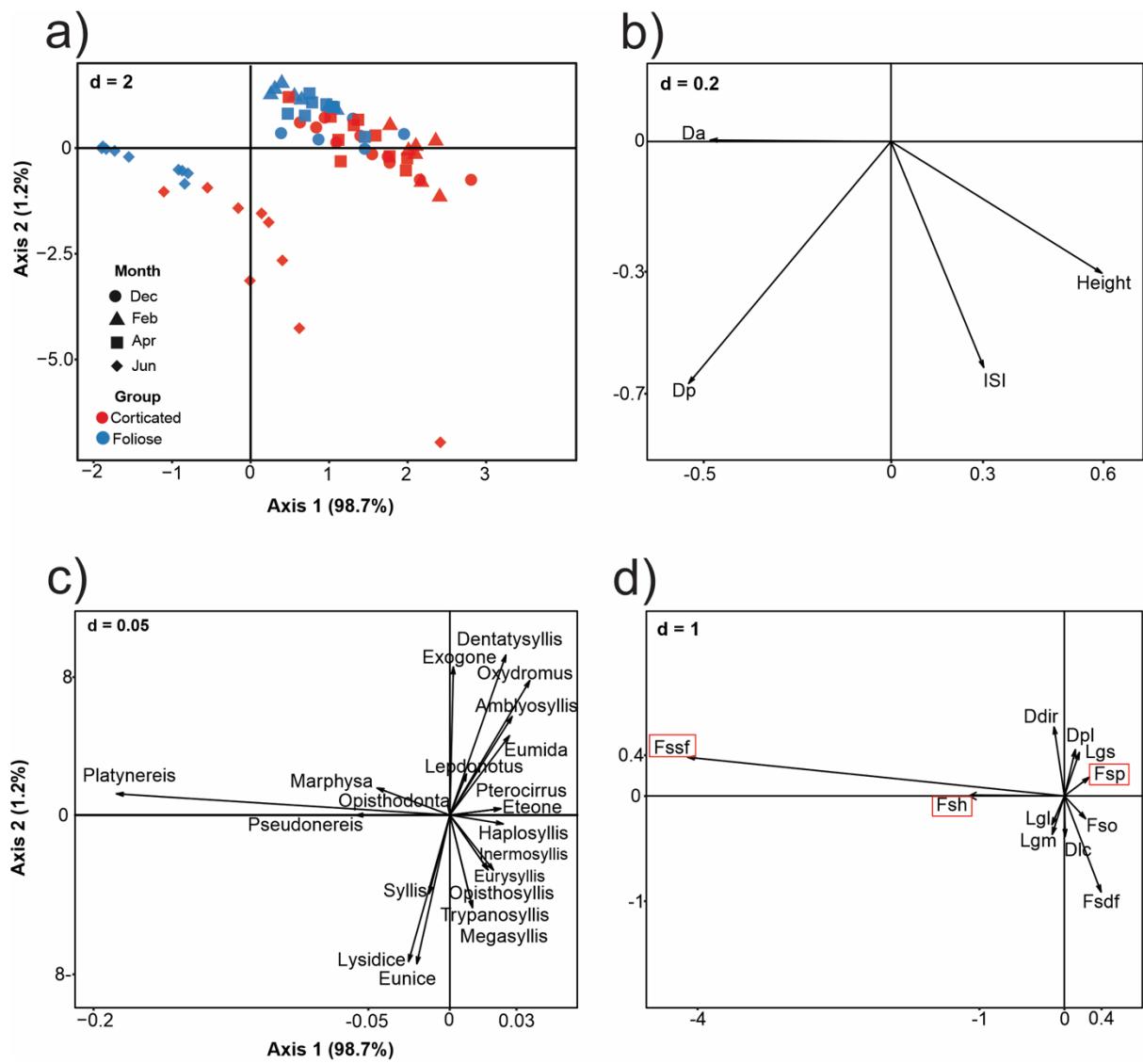


986
987 Woodin, S. A., 1977. Algal “gardening” behavior by nereid polychaetes: effects on
988 soft-bottom community structure. *Marine Biology* 44(1):39–42.
989 <https://doi.org/10.1007/BF0038690>


990
991 Wouters, J. M., J. B. Gusmao, G. Mattos & P. Lana, 2018. Polychaete functional
992 diversity in shallow habitats: Shelter from the storm. *Journal of Sea Research* 135:
993 18-30. <https://doi.org/10.1016/j.seares.2018.02.005>

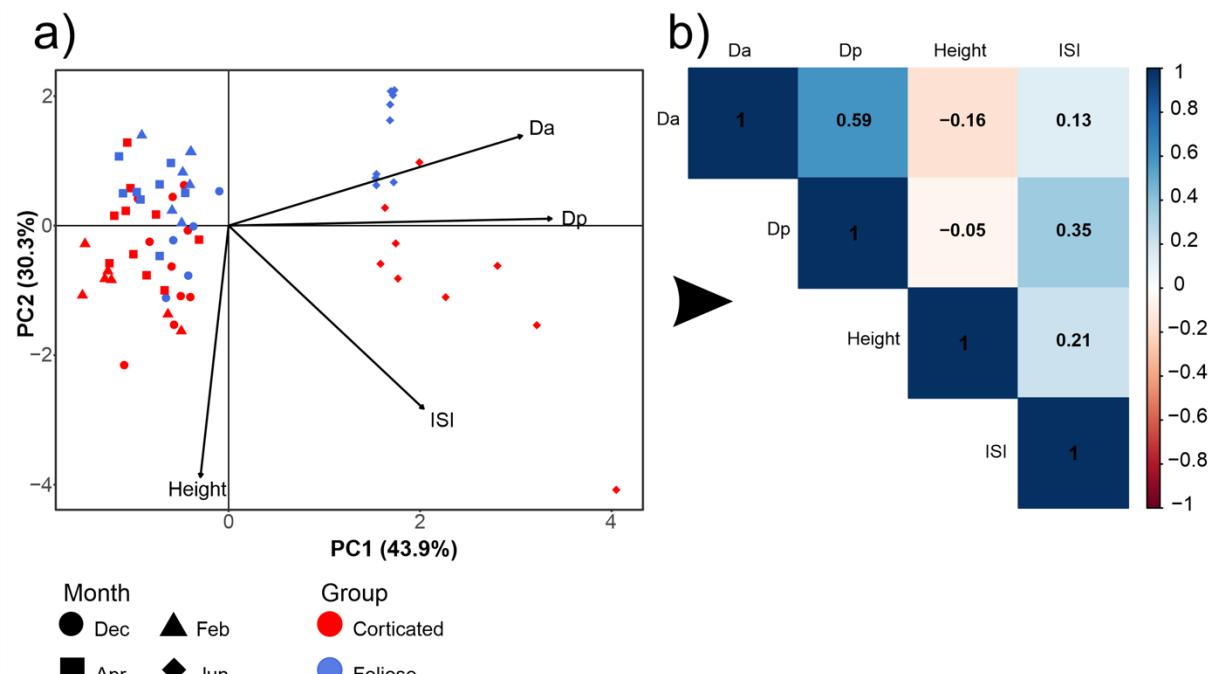
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

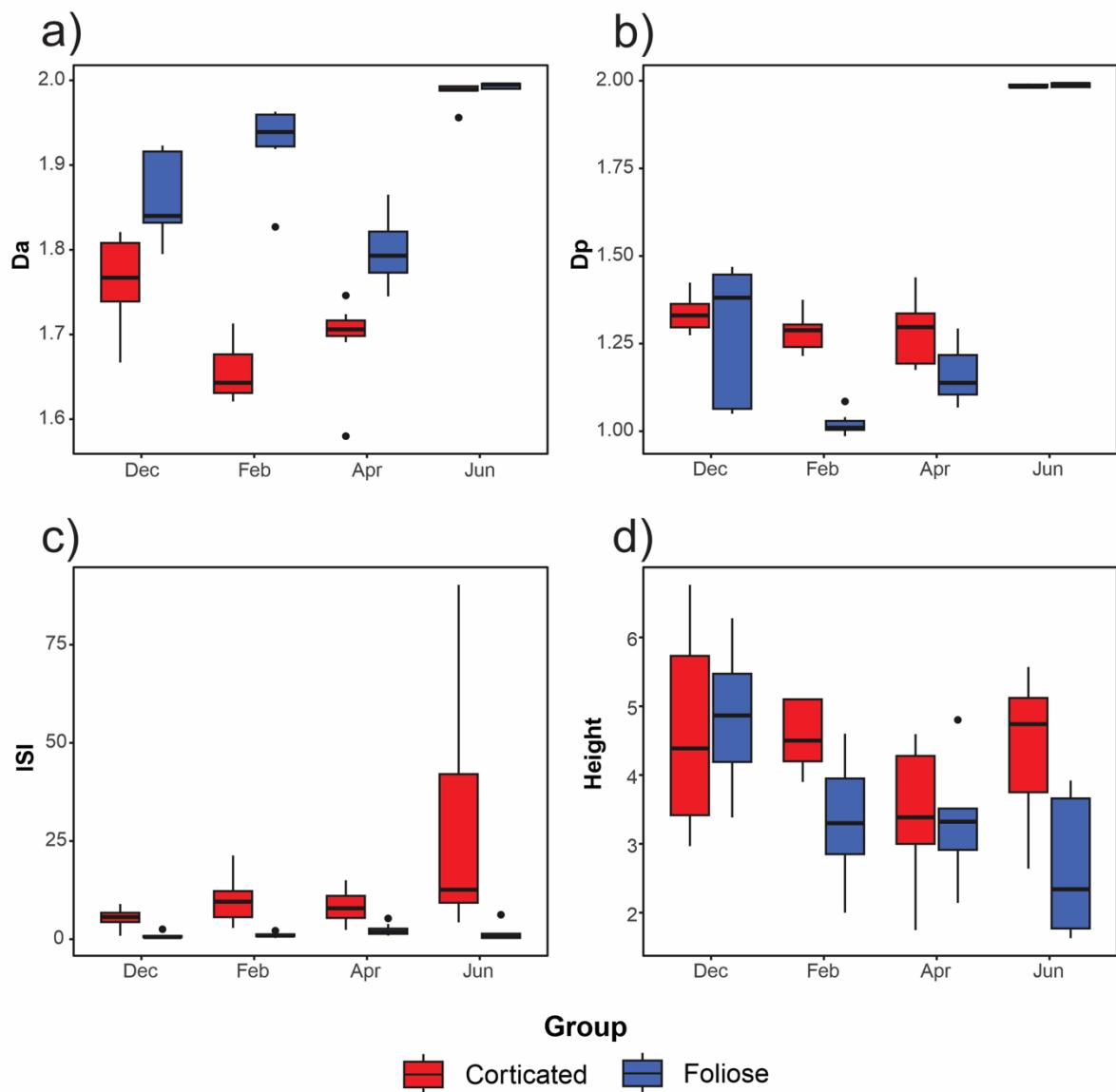

Table 1. Epifaunal marine annelid functional traits and their respective definitions.

Trait	Modality (Abbreviation)	Definition	Response mechanism
Body length (Growth)	Small (Lgs)	Less than 20mm	Energy requirements and species vulnerability (Jumars et al., 2015; Beauchard et al., 2017)
	Medium (Lgm)	From 20 to 200mm	
	Large (Lgl)	More than 200mm	
Feeding strategy (Survival)	Deposit feeder (Fsdf)	Feeds on organic matter accumulated on deposits from any kind of surface	Resource acquisition strategy (Rouse & Pleijel, 2001; Jumars et al., 2015)
	Suspension feeder (Fssf)	Feeds on water- suspended particles	
	Opportunist/scavenger (Fso)	Feeds on decaying matter	
	Herbivore (Fsh)	Feeds on living algae and/or plants	
	Predator (Fsp)	Feeds on other animals	
Larval development (Reproduction)	Direct development (Ddir)	Eggs are brooded until develop in young benthic juveniles, culminating in higher parental care investment and juvenile survival per reproductive event	Recruitment survival investment (Rouse, 2000; Beauchard et al., 2017; Rouse et al., 2022)
	Lecitotrophic larvae (Dlc)	Eggs develop as lecitotrophic larvae that remains in the water column by consuming yolk reserves	
	Planktotrophic larvae (Dpl)	Eggs are spawned as planktotrophic larvae, feeding on water column until settlement, which is associated with rapid colonization but higher juvenile mortality	



1016
 1017
 1018 Figure 2




1019
1020 Figure 3.

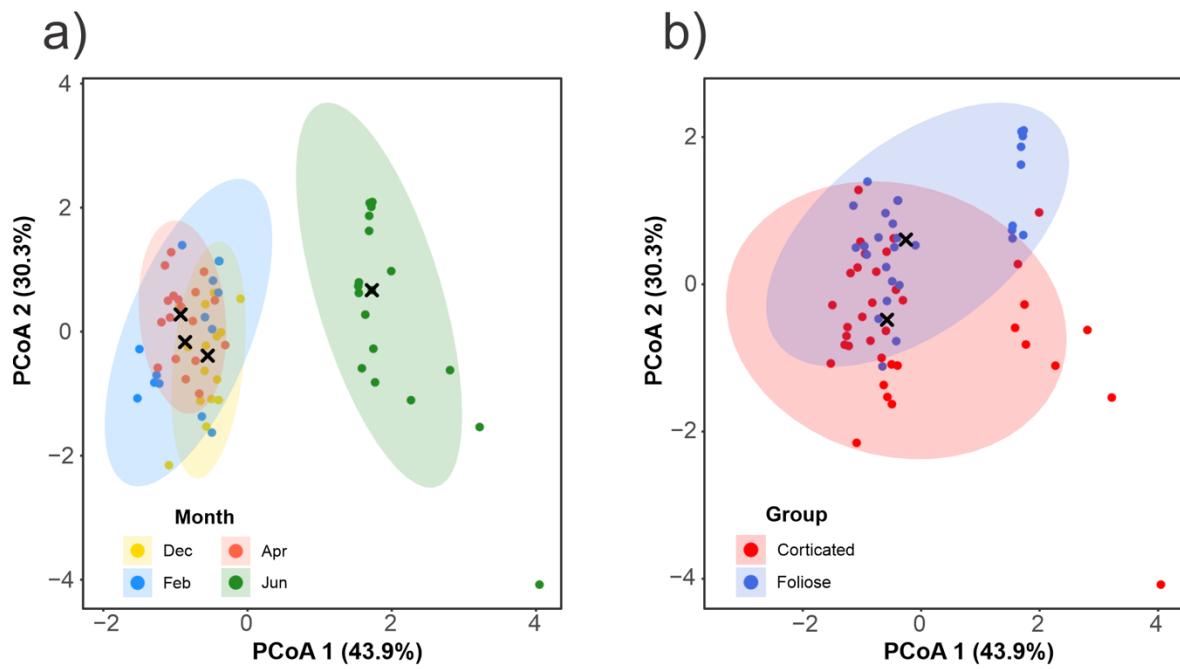

1021
1022
1023
1024

Figure 4.

1028
1029 Figure S2.

1030
1031

Figure S3.