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Abstract

Host structural complexity influences the diversity of associated epifaunal species, but
its role in shaping functional trait diversity remains underexplored. We developed a
trait-based framework to assess whether macroalgal structural complexity significantly
influences the functional assembly of marine annelid epifauna in a sandstone reef
system at Enseada dos Corais Beach (NE Brazil). Sampling was conducted in
December 2018, February 2019, April 2019, and June 2019. Ten fronds from each of
four macroalgal species, Gelidiella acerosa and Palisada perforata (corticated),
Padina gymnospora, and Ulva lactuca (foliose), were collected to describe the
associated annelid fauna. Structural complexity was quantified using the interstitial
space index (ISl), height, and the fractal dimensions of frond area (Da) and perimeter
(Dp). Based on body length, feeding strategy, and larval development, the functional
trait diversity of annelid assemblages was assessed using Rao’s Quadratic Entropy
(Rao’s Q) and RLQ analysis. Corticated algae species hosted more functionally
dissimilar annelid assemblages than foliose ones. Moreover, macroalgal
morphological traits influenced epifaunal functional trait composition, particularly
during the rainy season, when hydrodynamics are more intense. Our findings thus
supported the hypothesis that increased habitat complexity positively influences
functional trait diversity in marine macroalgal phytal communities.

Keywords: Trait-Based Approach, Benthos, Polychaeta, Geometric complexity.
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Introduction

The critical role of habitat structure in shaping community diversity has long
been recognized in the ecological literature (Tokeshi & Araraki, 2012; Carvalho &
Barros, 2017). This concept encompasses both the qualitative and quantitative
aspects of spatial structuring, following the paradigm that greater habitat complexity
provides more microhabitats and ecological niches, ultimately supporting higher
biodiversity (Tokeshi & Araraki, 2012; Stein et al., 2014; Carvalho & Barros, 2017,
LaRue et al., 2023). Habitat structure is typically described in terms of three key
components: scale, heterogeneity, and complexity (Carvalho & Barros, 2017; Loke &
Chisholm, 2022; LaRue et al., 2023). Complexity refers to the multidimensional
variation in structural attributes within an environment, while heterogeneity represents
a single facet of habitat complexity (Carvalho & Barros, 2017; LaRue et al., 2023).

Accordingly, the complexity component of habitat structure comprises
complementary dimensions, with Loke & Chisholm (2022) presenting a framework that
classifies them into two main groups: informational and geometric. Informational
complexity captures the diversity, variability, and spatial organisation of system
elements (e.g., entropy), whereas geometric complexity describes the physical
structure of habitats in two or three dimensions (e.g., rugosity, modularity, fractal
dimensions). Numerous studies, especially from marine and freshwater systems, have
quantified the influence of habitat complexity and heterogeneity on species diversity
at local scales, consistently revealing a strong positive effect, especially from a
geometric perspective (Dean & Connel, 1987; Christie et al., 2009; Stein et al., 2014;
Carvalho & Barros, 2017; Torres-Pulliza et al., 2020).

Phytal ecosystems, characterized by dense assemblages of macroalgae and
macrophytes in shallow coastal waters, play a crucial role in sustaining high ecological
productivity and biodiversity (Christie et al., 2009; Stagnol et al., 2013). However, they
are increasingly threatened by climate change and various human-induced impacts
(Stagnol et al., 2013). These vegetated habitats provide shelter and resources for
multiple animal species, acting as natural architects of habitat structure (Gee &
Warwick, 1994; Christie et al., 2009). Such habitat engineers might exhibit a wide
variety of morphologies, which can be summarized into distinct functional groups

based on their chemical, reproductive, and morphological traits (Gee & Warwick, 1994;
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Steneck & Dethier, 1994; Balata et al., 2011; Gan et al., 2019). Among them, two
recurrent architectural groups have been recognized based on macroalgae frond
morphology: (i) foliose species, with broad blades with none to few branching (Fig.
1a), and (ii) corticated species, with stiff, highly ramified thalli (Fig. 1a). Corticated
forms supply a more intricate three-dimensional matrix than their foliose counterparts
(Fig. 1a) (Steneck & Dethier, 1994; McAbendroth, 2005; Dibble & Thomas, 2006; Gan
et al., 2019; Craveiro & Rosa-Filho, 2024).

Dean and Connell (1987) proposed three non-exclusive mechanisms by which
increasing algal complexity (Fig. 1a) can raise the diversity of resident epifauna: (i) the
protection effect — complex fronds block visual or tactile detection by predators,
reducing predation-induced mortality; (ii) the sheltering effect — interstices dampen
physical stressors such as wave action; (iii) the filtering effect — intricate matrices slow
water flow, trapping larvae or suspended food particles and enhancing colonization.
These mechanisms are linked to macroalgal morphology and play key roles in the
assembly of epifaunal communities by buffering the effects of environmental stressors,
such as hydrodynamics, and negative biological interactions, including predation and
resource competition (Dean & Connell, 1987; Christie et al., 2009). Hence, favouring
the current assembly theory perspective that macroalgae hosts act as “habitat
templates" for their epifauna by imposing selective filters towards colonization
(Southwood, 1977; HilleRisLambers et al., 2012).

Previous studies have shown that higher structural complexity of host
macroalgae supports greater epifaunal abundance, diversity, and biomass (Gee &
Warwick 1994; Veiga et al. 2014; Pérez-Garcia et al. 2015; Gan et al. 2019; Waren et
al. 2019; Duarte et al. 2020a, b; Craveiro & Rosa-Filho 2024). However, only a few
investigations have tested this prediction using a functional trait—-based approach, and
these studies indicate that host complexity positively influences epifaunal functional
diversity (Barbosa et al., 2019; Duarte et al., 2020a; Katsiaras et al., 2022). Moreover,
this relationship may exhibit important nuances because a more complex corticated
architecture can also impose spatial constraints on larger-bodied adult epifaunal
species (Dean & Connell, 1987; Gee & Warwick, 1994). Therefore, a well-designed
study employing specific functional traits linked to hypotheses about the role of
structural complexity could enhance our understanding of how macroalgal morphology

influences the assembly of associated epifaunal communities. By varying
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experimental designs, focal species, and geographic regions, such research would
enable broader generalizations about patterns in this critical component of coastal

marine ecosystems.

Marine annelids, particularly polychaetes, are among the most diverse groups
inhabiting the ocean floor, performing many ecological functions and exhibiting a
remarkable array of forms and life strategies (Rouse et al., 2022). Notably, these
animals are prevalent in macroalgal epifaunal communities (Bailey-Brock et al., 1980;
Rossbach et al., 2021). Their functional traits — defined as morphological,
phenological, and physiological traits indirectly or directly related to fitness (Violle et
al., 2007) — have been employed to discern ecological patterns across various
environmental gradients, contributing to the overall understanding of the assembly
process in coastal systems (Wouters et al., 2018; Morais et al., 2019; Nogueira et al.,
2023; Medeiros et al., 2021; Katsiaras et al., 2022; Mendes et al., 2025).

We analyzed a dataset of epifaunal annelid assemblages associated with four
distinct macroalgal species from a tropical phytal ecosystem in a beachrock reef
formation called Enseada dos Corais (South Atlantic, NE Brazil). The region is
characterized by a seasonal dynamic driven by wind reversals, which define a rainy
season with increased rainfall and hydrodynamic stress, and a drier, thus, more
hydrodynamically stable season (Domingues et al., 2017). In this system, host
macroalgal species exhibited morphological trait changes over time in response to
seasonal variation, thereby affecting the taxonomic diversity of their associated
epifaunal assemblages (Craveiro & Rosa-Filho, 2024). Indeed, these variations
related to abiotic stress are well known to drive macroalgae eco-morphological and
eco-physiological responses (Clark et al., 2018; Craveiro & Rosa-Filho, 2024). Thus,
building on the well-documented role of macroalgal architecture in providing
protection, filtering, and shelter for associated fauna (Dean & Connell, 1987; Christie
et al., 2009), we hypothesize that macroalgal morphological traits effectively capture
the geometric complexity of habitat structure that they provide in phytal ecosystems,
thereby influencing the trait diversity of associated annelid epifaunal assemblages
(Fig. 1).

Body size, feeding, and reproductive behaviours are key functional response
traits directly related to the life history strategies adopted by species to couple with:

environmental gradients, distinct patterns of resource fluctuation, and biotic
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interactions (Beauchard et al., 2017; Medeiros et al., 2021; Beauchard et al., 2022).
For example, in marine systems, harsher conditions tend to impose trait convergence
toward r-selected traits, such as smaller body sizes, opportunistic feeding, and
reproductive behaviours (Medeiros et al., 2021; Beauchard et al., 2022; Mendes et al.,
2025). On the other hand, environmental stability tends to promote trait divergence
towards K-selected functional traits, such as larger body sizes, active macrophagic
behaviours, and diverse reproductive strategies (Medeiros et al., 2021; Beauchard et
al., 2022; Mendes et al., 2025). Specifically, we expect that more complex corticated
morphologies can buffer against environmental severity, particularly during the rainy
season, thereby supporting annelid assemblages with a broader range of body sizes,
feeding strategies, and reproductive traits than structurally simpler foliose macroalgae.
In contrast, foliose forms are expected to promote narrower trait configurations due to
greater exposure to external conditions and a reduced capacity to retain nutrients on
their fronds (Fig. 1).

By examining the interplay among macroalgal structural complexity, local
seasonal dynamics, and the functional-trait diversity of associated annelid
assemblages, this study aims to advance our understanding of how habitat complexity
shapes community structure in marine ecosystems. In this sense, we adopt a
functional trait—-based perspective to explore the mechanisms by which habitat-forming
macroalgae mediate environmental conditions, influence species filtering, and

ultimately determine patterns of functional diversity within epifaunal communities.

Material and methods

Data collection

Samples of two corticated macroalgae, Gelidiella acerosa (Forsskal) Feldmann
& Hamel, 1934, and Palisada perforata (Bory) K.W. Nam, 2007, and two foliose
macroalgae, Padina gymnospora (Kutzing) Sonder, 1871, and Ulva lactuca Linnaeus,
1753b, were randomly collected during four sampling periods: December 2018,
February, April, and June 2019. Collections were conducted at Enseada dos Corais
(8°19'09.6" S, 34°56'563.7" W) in northeastern Brazil. This site is a 3-km-long coastal
area characterized by sandstone (beachrock) reefs parallel to the shoreline
(Vasconcelos et al., 2013). The region has a tropical monsoon climate according to
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Koppen—Geiger classification (Peel et al., 2007), with two distinct seasons: a dry
season from September to February and a rainy season from March to August
(Domingues et al., 2017; Craveiro & Rosa-Filho, 2024). So, samples collected in
December and February correspond to the dry season, whereas those collected in
April and June correspond to the rainy season. Environmental conditions include a
mean water temperature of 27 °C, salinity levels around 36, high dissolved oxygen
concentrations, and low turbidity (Domingues et al., 2017).

At each sampling time, ten fronds from each macroalgae species were
collected. Before detaching the algae from the substrate, fronds were enclosed in a
plastic bag to prevent the escape of the motile fauna. The specimens were then
preserved in 4% saline formalin buffered with sodium tetraborate. In the laboratory,
the samples were rinsed in fresh water and shaken multiple times to dislodge
associated organisms. The resulting water was passed through a 0.3 mm mesh sieve
to capture the epifaunal annelids. The fronds were then placed on a sheet of white
paper, spread out to their full extent, and pressed. The fronds were subsequently dried
in an oven at 60 °C for 72 hours. After drying, each frond was removed from the
botanical press and photographed using a Nikon Coolpix AW100 digital camera. The
photographs were analyzed using ImageJ to measure the Interstitial Spatial Index
(ISI), height (cm), fractal dimension of the area (Da), and perimeter (Dp) (Scheider et
al., 2012).

The Interstitial Space Index (ISI) was calculated following the Dibble and
Thomaz (2006) method. Briefly, two vertical black dashed lines, one orange dotted
line, and three horizontal black dashed lines were superimposed on each image to
delineate the upper, middle, and lower sections of the frond, and the interstitial spaces
within the macroalgae were quantified along these lines (Craveiro & Rosa-Filho,

2024). Specifically, the index was calculated using the formula: ISI = ’;—: + ’;—:

is the average frequency of interstices intercepted per centimeter along the horizontal

, Where fh

axis, Ih is the average length of interstices along the horizontal axis, fv is the average
frequency of interstices intercepted per centimeter along the vertical axis, and /v is the
average length of interstices along the vertical axis (Dibble & Thomas, 2006; Craveiro
& Rosa-Filho, 2024).

Macroalgae height was calculated by setting a central line (base to apex) on
each image (Craveiro & Rosa-Filho, 2024). Finally, regarding the fractal dimensions,
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Da represents the measure of the area covered by the macroalgae, which is an
estimate of the area occupancy of its fronds, while Dp indicates the perimeter area of
the macroalgae, which means the degree of dissection of its fronds (Haley et al., 2004;
McAbendroth et al., 2005). Fractal dimensions were calculated following the methods
of McAbendroth et al. (2005) and Kovalenko et al. (2009), using the box-counting
algorithm in ImagedJ (Craveiro & Rosa-Filho, 2024).

Functional traits

A functional trait matrix was constructed using fuzzy-coding of body size,
feeding strategy, and reproductive traits of annelid epifaunal genera (Table 1). The
scores were 0 (no affinity), 1 (low affinity), 2 (high affinity), and 3 (absolute affinity, i.e.,
when all other modalities were 0-scored), following the Oug et al. (2012) coding
criteria. Annelid size was assessed using the body-length trait modalities of Jumars et
al. (2015), with coding based on a generic-level literature review. Regarding the
feeding strategy trait, we follow the guidelines of Jumars et al. (2015) and Wouters et
al. (2018). Feeding trait modalities, whenever possible, were also coded based on the
generic-level literature. When diet information was unavailable at a generic level,
family-level literature was consulted for additional information. Larval development
was assessed based on Rouse (2000) and updated family- and genus-level literature
(Rouse et al., 2022). The complete dataset of functional traits fuzzy scores and the
references supporting the assignment are available at the following GitHub repository:

https://qgithub.com/samuelmendes-polychaeta?tab=repositories.

Data analysis

The macroalgae traits were compared between morpho-functional groups
(corticated vs foliose) and among months (“December/18”, “February/19”, “April/197,
and “June/19”) using a Permutational Analysis of Variance (Permanova). Moreover,
for the linear modelling step described below, a Principal Component Analysis (PCA)
of scaled macroalgae traits and a Pearson correlation test were conducted to assess
multicollinearity. The Rao’s Q of epifaunal communities was modelled against the

interaction between macroalgae functional groups (fixed factor with two levels:
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“corticated” and “foliose”) and months (fixed factor with four levels: “December/18”,
“February/19”, “April/19” and “June/19”).

The fuzzy-scores for each trait were calculated using the prep.fuzzy function
from the ade4 R package (Dray & Dufour, 2007). Then, a Gower distance matrix was
calculated from the fuzzy-coded traits of annelid genera. This matrix, alongside the
abundance of each genus per macroalgae frond matrix, was used to calculate Rao’s
Quadratic Entropy (Rao’s Q) index of each epifaunal assemblage using the “melodic”
function (de Bello et al., 2016). Rao’s Q measures trait dispersion by quantifying the
mean dissimilarity among epifaunal genera in each assemblage, summarizing the
expected differences between randomly selected species pairs with replacement
(Ricotta & Moretti, 2011; de Bello et al., 2016; Pavoine, 2026).

Macroalgae traits related to their morphological complexity (Da, Dp, Height, and
ISI) were fitted as predictors of Rao’s Q in a global model. A multimodel inference
approach, combining model selection and model averaging, was applied to determine
which macroalgae traits were included in the best-fitting models for explaining variation
in epifaunal Rao’s Q values, using the MuMIn package in R (Burnham & Anderson,
2002; Barton, 2024). The model with the lowest Akaike Information Criterion corrected
for small sample sizes (AlCc) was considered the best approximating model for
predicting Rao’s Q variation (Burnham & Anderson, 2002). To evaluate the importance
of each predictor (macroalgal trait) and estimate their average effects, we selected all
models with AAICc < 2 units relative to the first-ranked model (Burnham & Anderson,
2002; Symonds & Moussalli, 2011; Tredennick et al., 2021). The importance of a given
predictor was quantified as the sum of Akaike weights (AICw) across all models in
which it appeared, representing the probability that the predictor is part of the best
approximating model (Burnham & Anderson, 2002; Galipaud et al., 2013). Each model
weight (AlCwi) was calculated as the relative likelihood of the model “i” divided by the
sum of the likelihoods across all selected models (Burnham & Anderson, 2002;
Galipaud et al., 2013).

Separately, to investigate specific correlations between annelid and
macroalgae traits, RLQ and fourth-corner analysis were employed. RLQ and fourth-
corner analyses were conducted using the ade4 package to investigate potential
associations between functional traits and macroalgae traits (Dray et al., 2014). The
RLQ analysis integrates three matrices: R (scaled macroalgae traits), L (genera
abundances), and Q (fuzzy-coded functional traits), enabling the identification of
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multivariate correlation structures between environmental gradients (in our case,
macroalgal traits) and annelid functional traits, mediated by annelid genera
abundances (Dray et al., 2014). The fourth-corner analysis complements this
approach by assessing the significance of bivariate associations between annelid and
macroalgal traits (Dray et al., 2014). In this sense, the two analyses complement the
patterns revealed by Rao’s Q modelling by explicitly disentangling how individual
functional traits contribute to overall functional diversity and how their dispersion varies
along gradients of macroalgal morphological complexity (Wouters et al., 2018;
Beauchard et al., 2022; Mendes et al., 2025). By examining trait-specific responses,
this approach provides a more mechanistic interpretation of the observed patterns of
functional diversity, allowing us to identify which traits are most responsive and how
macroalgal morphological complexity shapes the functional space occupied by
associated annelid assemblages.

Each matrix was individually processed using appropriate multivariate
analyses. The Q matrix was analyzed using a Fuzzy Correspondence Analysis (FCA),
while the R and L matrices were subjected to Principal Component Analysis (PCA)
and Correspondence Analysis (CA), respectively. Finally, a Monte Carlo permutation
test, with 49.999 repetitions within model 6, was implemented to assess the
significance of correlations between macroalgae traits and annelid traits following the
abovementioned fourth-corner approach, controlling for p-values using the false
discovery rate (FDR) method (Benjamini & Hochberg, 1995; Dray et al., 2014). All
analyses were performed in R using RStudio (R Core Team, 2023).

Results

Most morphological complexity traits of macroalgae (Da, Dp, Height, and ISI)
differed significantly between the two morpho-functional groups (Table S1; Figs. S1-
S2) and among months (Table S1; Fig. S3), with particularly marked differences in
June (Fig. S3). In most months, corticated and foliose macroalgae had distinct values
of Da and Dp, except in June, when both groups had maximum values and no longer
differed (Fig. S2a-b). ISI values remained relatively consistent throughout the year,
although the ISI of corticated macroalgae notably increased in June, becoming more
subdivided than in previous months (Fig. S2c). Corticated and foliose algae had similar
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height throughout most of the year, except in June, when corticated algae were taller
while foliose algae were shorter (Fig. S2d).

The two morpho-functional groups of macroalgae supported polychaete
epifaunal assemblages with distinct patterns of trait dissimilarity (Table 2, Fig. 3a).
Corticated algae generally hosted a more diverse set of epifaunal annelids traits than
the foliose ones (Fig. 3a). The mean trait dissimilarity of the epifaunal assemblages
did not vary significantly among months (Table 2, Fig. 3a). In addition, model selection
indicated Da, IS, and Height as predictors of Rao's Q in the best approximating model
(Table 3). The ISI was positively associated with Rao’s Q, whereas Da and Height
were negatively associated.

The RLQ analysis demonstrated an evident covariation of macroalgae
functional groups on the traits of epifaunal annelids, with corticated and foliose algae
being distinctly separated from each other (Fig. 4a). The first two axes accounted for
99,8% of the variation (axis 1: 98.7%, axis 2: 1.7%), only model 2 permutation test
was significant (Table S2). Axis one distinguished corticated macroalgae (mostly
positively associated) from foliose macroalgae (primarily negatively associated), but
with both groups exhibiting some degree of overlap over time (L correlation = 0.435).
However, observations from June (Fig. 4a) formed a distinct topological group from
those of the other months, a pattern that was more pronounced along the second axis
(L correlation = 0.24). Epifaunal annelid traits were significantly associated only with
the first RLQ axis, particularly suspension feeding, herbivory, and predation (Table 4).
In contrast, body size and larval development strategies were weakly correlated with
RLQ axes 1 and 2 and did not contribute significantly to the observed multivariate
pattern (Table 4). Importantly, fourth-corner analysis revealed no significant bivariate
correlations between annelid and macroalgal traits.

The macroalgal traits ISI and height were positively related to the first axis,
whereas Da and Dp were negatively related (Fig. 4b). Specifically, Da and height were
more strongly correlated with this axis than Dp and ISI, which were more closely
associated with axis 2 (Table S3). Herbivore and facultative suspension-feeding
nereidids, such as Platynereis Kinberg, 1865, and Pseudonereis Kinberg, 1865, were
the dominant genera, showing a negative association with the first axis (Fig. 4c-d). In
contrast, predatory genera, mostly syllids, were positively related (Fig. 4c-d).
Moreover, the first axis distinguished some foliose algae observations in June from
the others, occupying its negative extreme (Fig. 4a). The second axis was negatively
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correlated with all macroalgae traits, and distinguished some samples collected in
June from others, as some observations of corticated algae exhibited high ISI and
height values, clearly separating them from their foliose counterparts (Fig. 4a-b). The
higher ISI and height associated with the June observations on the second axis were
consistent with the opportunistic/scavenging and deposit-feeding strategies of
epifaunal annelids (Fig. 4c).

Discussion

It was hypothesized that the two distinct macroalgal functional groups would
differ from each other and across months, providing contrasting habitats for their
associated annelid assemblages and thereby favouring distinct epifaunal trait
configurations. Our findings showed that Rao's Q varied significantly between the two
macroalgal functional groups, reflecting differences in morphological complexity.
However, the expected seasonal pattern was controversial, as Rao’s Q test did not
yield a significant difference across the months assessed. In addition, as
demonstrated by the RLQ analysis, corticated and foliose macroalgae showed distinct
affinities for annelid traits and genera, corroborating the initial expectations. Finally,
the assessed macroalgal morphological traits, as predictors of Rao’s Q for annelid
assemblages, captured relevant aspects of the assembly process at the frond scale
and exerted non-negligible effects on the trait diversity of associated epifauna.

On the relationship between macroalgae and their associated epifauna

Among the measured macroalgal traits, Da, I1SI, and height were selected in the
best-fitting model, with Da and IS| having higher importance than height. Since Da
represents a measure of fractality, expressed as total frond occupancy area, fronds
with higher Da values are less subdivided than those with lower Da values; thus, higher
values of Da indicate structurally simpler fronds (McAbendroth et al., 2005). On the
other hand, ISI quantifies the degree to which macroalgal fronds are subdivided, with
higher ISI values indicating fronds with numerous interstitial spaces (Dibble & Thomas,
2006). Thus, the structural complexity of macroalgae influenced the trait dispersion of
their annelid assemblages, and this finding is consistent with the well-documented role
of morphological complexity of hosts in shaping epifaunal taxonomic diversity in
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freshwater and marine ecosystems (Dean & Connell, 1987; Gee & Warwick, 1994;
Chemello & Milazzo, 2002; Hansen et al., 2010; Hansen et al., 2011; Veiga et al.,
2014; Gan et al., 2019; Fraser et al., 2020; Duarte et al., 2020a,b; Craveiro & Rosa-
Filho, 2024).

Under this paradigm, the combination of the RLQ approach with Rao’s Q
modelling demonstrates an interesting trade-off in epifaunal trait combinations in
response to the fractal nature of host macroalgae. Although the more complex
corticated architecture is expected to impose spatial restrictions on adult epifaunal
species with larger body sizes (Dean & Connell, 1987; Gee & Warwick, 1994), these
assemblages displayed higher IS| and lower Da values, suggesting more dissimilar
feeding trait configurations rather than necessarily smaller body length. As for foliose
species, the lower Rao's Q values agree with prior expectations, as they do not impose
size restrictions on their epifauna, but are less effective in capturing suspended
material and in providing protection (Dean & Connel, 1987; Gee & Warwick, 1994),
ultimately leading to the observed narrower set of feeding trait affinities. A similar
pattern was observed in previous studies on feeding strategies and body-size traits,
with complex macroalgae supporting higher functional diversity in mollusc
assemblages (Barbosa et al., 2019; Duarte et al., 2020a).

Such pattern is expected because of the positive effects of macroalgae and
macrophytes structural complexity on the diversity of their epifaunal communities,
which act by influencing the space availability for foraging, colonization, and refuge
(Gregg & Rose, 1982; Dean & Connell, 1987; Hacker & Steneck, 1990; Gee &
Warwick, 1994; Christie et al., 2009; Barbosa et al., 2019; Ware et al., 2019; Duarte
et al., 2020a). More structurally complex hosts are effective at accumulating organic
matter, facilitating the settlement and persistence of small-sized, detritivorous, and
opportunistic species (Christie et al., 2009; Panyawai et al., 2019; Barbosa et al., 2019;
Duarte et al., 2020a), while also enhancing protection against predation and
hydrodynamics as interstitial spaces serve as refuges (Barbosa et al., 2019; Ware et
al., 2019).

The observed influence of macroalgal morphology on epifaunal trait
dissimilarity is also consistent with previous findings on the evolutionary aspects of
epibiotic interactions, in which coevolution between hosts and associated fauna has
important consequences for community structure and ecosystem processes (Thornber
et al., 2016). The eco-evolutionary relevance of these interactions often reveals
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reciprocal morphological adaptations between partners and broad-scale diversity
gradients (Thornber et al., 2016; Gross et al., 2022). Moreover, these relationships
may be negative, positive, or “neutral,” depending on the ecological context and the
biology of the species involved, with illustrative examples arising from interacting
systems composed of marine annelids and macroalgae (Woodin, 1977; Kollars et al.,
2016; Alvarez-Campos & Verdes, 2017; Rossbach et al., 2021; Cronau et al., 2023).

Commensalistic and facilitative interactions between annelids and macroalgae
are widespread in benthic systems, often providing benefits to one or both partners by
facilitating colonization and protection, whereas negative effects are mostly attributed
to herbivory and overgrowth (Thornber et al., 2016; Kollars et al., 2016; Alvarez-
Campos & Verdes, 2017; Rossbach et al., 2021). For instance, serpulid polychaetes
living as epiphytes on red algal thalli exemplify commensalism, as the calcareous
tubes of these species attach to algal mats, using the thalli as a substrate, with minimal
impact on the host under normal conditions (Rossbach et al., 2021). Similarly, syllid
polychaetes inhabiting kelp holdfasts exploit the complex three-dimensional cavities
generated by holdfast morphology for shelter and foraging, benefiting from protection
from predators and access to food resources without apparent harm to the kelp
(Alvarez-Campos & Verdes, 2017). In the beachrock phytal system studied here,
polychaetes may likewise benefit from the interstitial spaces provided by corticated
macroalgae, which likely function as refuges offering protection and, consequently,
favor a more diverse set of trait configurations.

Beyond one-directional benefits for epifauna, annelids can also facilitate
macroalgal colonization and persistence. For example, serpulid worms form biogenic
structures that enhance macroalgal persistence in high-intertidal zones, as their
calcareous tubes create microhabitats that retain moisture, protect algal spores, and
supply nutrients through excretions (Liversage, 2018). Another illustrative case
involves annelid “gardening” behaviour, in which species, particularly from the genus
Platynereis, actively seize macroalgal fronds and exhibit selective grazing that allows
algal fragments to persist and even grow (Woodin, 1977). Similarly, onuphid annelids
can anchor the red alga Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 to their
tubes in substrate-poor soft sediments, while the seaweed, in turn, enhances prey
availability by attracting amphipods (Kollars et al., 2016).

The presence of associated epifauna from other phyla can generate trophic
cascades that shape community structure, particularly involving molluscs and
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crustaceans that commonly coexist with marine annelids in phytal systems, where they
may function as competitors for space and food, as well as predators and/or prey
(Kollars et al., 2016; Thornber et al., 2016; Cronau et al., 2023). For instance, epiphytic
algae growing on host macroalgae, or the host macroalgae themselves, may serve as
nursery habitats and food sources for juvenile crustaceans, which in turn can be
preyed upon by carnivorous polychaetes (Kollars et al., 2016). This configuration
results in a multi-step facilitation cascade in which macroalgae support epiphytes,
epiphytes support crustaceans, and crustaceans support polychaetes. Interestingly,
the interaction among the annelid Platynereis, the gastropod Littorina Férussac, 1822,
and the macrophyte Zostera Linnaeus, 1753a provides a clear example of such
complex trophic cascades (Cronau et al., 2023). In this system, Platynereis negatively
affects Zostera by promoting epiphyte growth, whereas Litforina mitigates this effect
by grazing on epiphytes and consuming Platynereis tubes. This three-way interaction
highlights that the net effect of annelids on macrophytes can depend on the presence
and abundance of associated invertebrate epifauna (Cronau et al., 2023).

Together, these examples highlight the complex and multidirectional nature of
interactions between epifauna and their hosts, mediated by habitat structure and eco-
evolutionary processes (Thornber et al., 2016; Gross et al., 2022; Cronau et al., 2023).
In this context, research aimed at disentangling the ecological responses and effects
of epibiotic relationships in marine ecosystems is of paramount importance,
particularly in the context of current climate change and increasing anthropogenic

pressures.

The seasonal change controversy

On the Pernambuco coast, winds are mainly driven by the semi-permanent
high-pressure system over the South Atlantic Ocean, and control rainfall and
hydrodynamics (Lira et al., 2010; Domingues et al., 2017). Winds are predominantly
from the east in austral summer and shift to the southeast in austral winter (Lira et al.,
2010). This seasonal inversion in wind direction affects rainfall and hydrodynamics,
effectively dividing the year into two distinct climatic periods: a rainy season (March to
August) and a dry season (September to February) (Macédo et al., 2004; Lira et al.,
2010; Vasconcelos et al., 2013; Domingues et al., 2017). In the rainy season, high
rainfall, hydrodynamics, and turbidity stress intertidal marine plants and algae
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(Domingues et al., 2017; Bérgamo et al., 2022; Bérgamo et al., 2024). Macroalgae
may respond to such stressful conditions by altering their morphological traits, growth
rates, and flexibility (Madsen et al., 2001; Hurd, 2000). This pattern was observed by
Craveiro & Rosa-Filho (2024) in the studied system, in which macroalgal
morphological complexity and biomass were higher in more hydrodynamically stable
months during the dry season.

Although Rao’s Q did not vary significantly among months, the RLQ analysis
indicated a monthly affinity of both macroalgae and annelid traits in relation to June
observations. This apparent discrepancy between the mean dissimilarity of annelid
traits, as quantified by Rao’s Q, and the RLQ output also contrasts with the findings of
Craveiro & Rosa-Filho (2024), who documented a monthly shift in epifaunal species
composition in response to changes in macroalgal morphological traits. Such changes
affected the dominance patterns of polychaetes within the same phytal system,
suggesting that local conditions shape the assembly process by filtering species with
similar traits, consistent with the “habitat templet” hypothesis (Southwood, 1977;
HilleRisLambers et al., 2012). Another possible explanation lies in the connection
between Rao’s Q and taxonomic diversity, which reduces the index’s sensitivity to
changes driven by species relative abundances in low-richness systems, where the
dissimilarity matrix is “small” (de Bello et al., 2016; Pavoine, 2026).

In June, the multivariate distinction between algae morpho-functional groups
and annelid traits was influenced by the affinity of opportunistic/scavenger and
deposit-feeding annelid trait modalities with corticated algae, observations positioned
along the negative extremes of the second RLQ axis, and herbivore and facultative
suspension-feeding modalities with foliose species observations positioned along the
negative extremes of the first RLQ axis. As corticated macroalgae can retain
suspended material more efficiently (Dean et al., 1987), the superposition of deposit-
feeding and opportunistic/scavenger annelid genera with observations from corticated
algae is expected. In contrast, the suspension-feeding correlation with foliose algae is
attributed to the presence of large herbivores and tube-building nereidids, which
secrete mucus within their tubes to capture suspended material from the water column
for later ingestion (Daly, 1973; Toba & Sato, 2013).

Taken together, the structural complexity of macroalgal hosts can be used to
evaluate the assembly process of their epifauna through the lens of the filtering
metaphor, particularly in a niche-selection context (Dean & Connell, 1987,
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HilleRisLambers et al., 2012; Locke & Chisholm, 2023). Briefly, assembly theory
predicts that at fine spatial scales, biotic interactions exert a more decisive influence
than abiotic environmental filtering in modulating functional trait diversity within local
communities (Mayfield & Levine, 2010; Kraft et al., 2015; Boet et al., 2022; Gross et
al., 2022). The morphological traits of macroalgae can be considered filters for
associated epifaunal traits, mediating this process at the frond scale. They significantly
affected the mean trait dissimilarity among annelid genera, leading to distinct epifaunal
trait affinities between the two host morpho-functional groups. For these reasons, the
assembly of epifaunal communities on macroalgae is a multifaceted ecological
process mediated by host structural traits that mitigate the effects of negative
interspecific interactions and buffer environmental stress, thereby creating complex

habitats that sustain high biodiversity at both taxonomic and functional levels.

Conclusion

The relationship between habitat structure and functional trait diversity was
examined, revealing that increased macroalgal architectural complexity positively
influences the trait dispersion of associated epifaunal assemblages. However, the
strength and nature of this relationship varied depending on the specific traits
considered, as different traits capture distinct dimensions of species’ ecological niches
(Spasojevic et al., 2012; Kraft et al., 2015). All annelid genera inhabiting macroalgae
were errant polychaetes, characterized by a shared set of morphological traits linked
to an epifaunal lifestyle and high mobility, typical of the Errantia clade (Rouse et al.,
2022). Nonetheless, their traits varied primarily in body size, reproductive modes, and
feeding strategies, with the latter contributing most significantly to the observed
multivariate patterns of trait distribution across macroalgal morpho-functional groups
and months.

Finally, a major limitation to the advancement of more robust trait-based
approaches is the current paucity of information on the life-history traits of marine
invertebrates, a knowledge gap known as the “Raunkiaeran shortfall” (Hortal et al.,
2015; Gongalves-Souza et al., 2023; Luza et al., 2023). To overcome this constraint,
future research should prioritize the characterization of functional traits in epifaunal
species, with particular emphasis on updating and expanding trait data for tropical
taxa. It is also important to recognize that macroalgae interact with both their
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environment and associated fauna not only through morphological traits, but also via
chemical and reproductive characteristics. Future research should place greater
emphasis on elucidating their role in shaping the functional, phylogenetic, and
taxonomic diversity of epifaunal assemblages. Such efforts may reveal a highly
multidimensional structure of epifaunal biodiversity, underscoring the need for an
integrative, cross-taxa framework that encompasses multiple facets of biological
diversity. This comprehensive approach will be crucial for advancing our
understanding of how climate change and anthropogenic pressures impact marine
phytal ecosystems.
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Table 1. Epifaunal marine annelid functional traits and their respective definitions.

Modality

Trait (Abbreviation) Definition Response mechanism
Small (Lgs) Less than 20mm
Energy requirements and
Body length . species vulnerability
(Growth) Medium (Lgm) From 20 to 200mm (Jumars et al., 2015:
Beauchard et al., 2017)
Large (Lgl) More than 200mm
Feeds on organic matter
Deposit feeder (Fsdf) accumulated on deposits
from any kind of surface
. Feeds on water-
Suspension feeder (Fssf) suspended particles
Feeding Obportunist/scavenaer Resource acquisition
strategy PP (Fs0) & Feeds on decaying matter  strategy (Rouse & Pleijel,
(Survival) 2001; Jumars et al., 2015)
. Feeds on living algae
Herbivore (Fsh) and/or plants
Predator (Fsp) Feeds on other animals
Eggs are brooded until
develop in young benthic
Direct development Juvgnlles, culminating in
. higher parental care
(Ddir) . . .
investment and juvenile
survival per reproductive
event
Eggs develop as |
i i Recruitment surviva
Larval . . lecitotrophic larvae that .
development Lec1totr((g)1121)c larvae remains in the water investment (Rouse, 2000;
(Reproduction) column by consuming Beauchard et al., 2017;

Planktotrophic larvae
(Dpl)

yolk reserves

Eggs are spawned as
planktotrophic larvae,
feeding on water column
until settlement, which is
associated with rapid
colonization but higher
juvenile mortality

Rouse et al., 2022)
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