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Abstract 14 

Dormancy has been widely recognized as an evolutionarily conserved strategy that enables cells 15 

and organisms to endure environmental stress, resource scarcity, or developmental arrest. 16 

While transcriptional regulation has been extensively studied in this context, increasing 17 

attention is being directed toward post-transcriptional mechanisms that allow rapid and 18 

energy-efficient control of gene expression. Among these, epitranscriptomic modifications, 19 

chemical marks added to RNA, have emerged as dynamic and reversible regulators of mRNA 20 

fate. In this perspective, it is proposed that RNA modifications can play a central role in 21 

establishing and maintaining dormancy across diverse biological systems. Evidence from plant 22 

seeds, microbial persisters, stem cells, and dormant cancer cells suggests that specific RNA 23 

marks, such as N6-methyladenosine (m6A), influence mRNA stability, translation, and 24 

localization in a context-dependent manner. It is argued that these modifications serve as a 25 

molecular interface between environmental signals and cellular responses, fine-tuning the 26 

transition between active and paused states. By examining dormancy through an 27 
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epitranscriptomic lens, a unifying model is presented in which RNA modifications contribute to 28 

the evolutionary flexibility of dormant programs. This article highlights key mechanistic insights, 29 

evolutionary parallels, and outstanding questions at the intersection of RNA regulation and 30 

cellular dormancy. 31 

 32 

Keywords: 33 

Dormancy, Epitranscriptomics, RNA modifications, Cellular quiescence, Eco-evolutionary 34 

adaptation  35 

 36 

1.  Introduction  37 

Dormancy has been recognized as a widespread and evolutionarily conserved strategy that 38 

enables cells, tissues, and entire organisms to withstand periods of environmental or 39 

physiological stress (Miller, Brown, Enderling, Basanta, & Whelan, 2021; Webster & Lennon, 40 

2025). Across the tree of life, from unicellular bacteria to multicellular plants and mammals, 41 

dormancy has been employed as a temporally controlled mechanism that promotes survival 42 

during unfavorable or unpredictable conditions (McDonald et al., 2024; Özgüldez & Bulut-43 

Karslioğlu, 2024; Wilsterman, Ballinger, & Williams, 2021). Rather than representing a passive 44 

shutdown, dormancy has been increasingly understood as a highly regulated, energy-45 

conserving state that involves distinct molecular, metabolic, and structural features (Alekseev & 46 

Vinogradova, 2019; Klupczyńska & Pawłowski, 2021; Montrose, López Cabezas, Paukštytė, & 47 

Saarikangas, 2020; Pranzini, Raugei, & Taddei, 2022; Sajeev, Koornneef, & Bentsink, 2024; S. 48 

Yang et al., 2025). Its prevalence across phylogenetically distant organisms has been 49 

interpreted as evidence of strong selective pressure favoring phenotypic plasticity and 50 

reversible growth arrest under stress (Constant, Dobson, Habold, & Giroud, 2023; Webster & 51 

Lennon, 2025; Wilsterman et al., 2021). In prokaryotes, dormancy has been observed in the 52 

form of spore formation or persister cell states, where replication is halted and metabolic 53 

activity is drastically reduced, allowing survival in the presence of antibiotics or immune 54 
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responses (McDonald et al., 2024; Walker, Sanabria, & Youk, 2024). In plants, seed dormancy 55 

has evolved as a developmental pause that is tightly regulated by environmental cues such as 56 

temperature, light, and moisture (Klupczyńska & Pawłowski, 2021; Sajeev et al., 2024). In 57 

animals, dormancy-like states, including diapause in invertebrates and quiescence in adult stem 58 

cells, have been shown to underlie developmental timing and tissue regeneration (Wilsterman 59 

et al., 2021). Similarly, in oncology, a dormant phenotype has been increasingly attributed to 60 

disseminated tumor cells that evade chemotherapy and remain clinically undetectable for years 61 

before reactivation (S. Yang et al., 2025).  62 

Despite their varied contexts, all forms of dormancy are characterized by a shift in cellular 63 

priorities: from active proliferation or differentiation to survival and maintenance (Considine, 64 

2024; Gomis & Gawrzak, 2017; Pshennikova & Voronina, 2022). This transition is achieved 65 

through global suppression of biosynthetic processes, reduced transcriptional output, and 66 

highly selective translation of stress-adaptive proteins (Amissah, Combs, & Shevtsov, 2024; 67 

Buijs, Vogelzang, Nijveen, & Bentsink, 2020; Jobava et al., 2021; Koli & Shetty, 2024; Tognacca & 68 

Botto, 2021). Such states are not only reversible but are often poised for rapid reactivation 69 

upon re-exposure to permissive conditions (Özgüldez & Bulut-Karslioğlu, 2024; Pshennikova & 70 

Voronina, 2022). This reversibility has underscored the need for regulatory mechanisms that 71 

can efficiently toggle gene expression without relying solely on genomic or transcriptional 72 

alterations. Given the limitations of transcription-based regulation in energy-restricted 73 

environments, it has been hypothesized that post-transcriptional control plays a central role in 74 

dormancy (Collignon et al., 2023; Craft et al., 2020; Luján-Soto & Dinkova, 2021; Pi et al., 2022; 75 

Reynolds, 2019; Tognacca & Botto, 2021). Recent studies have pointed to the significance of 76 

mRNA stabilization, selective translation, and RNA-protein granule formation in sustaining the 77 

dormant state (Collignon et al., 2023; Escalante & Gasch, 2021; Ignatov et al., 2015; Lorenzo-78 

Orts & Pauli, 2024). These mechanisms allow cells to preserve transcripts for future use, 79 

degrade non-essential messages, or modulate translation rates in a transcript-specific manner. 80 

However, the emerging field of epitranscriptomics has introduced an additional layer of 81 

regulation that may operate as a rapid and reversible switch during dormancy transitions 82 

(Collignon et al., 2023; Dhingra, Gupta, Gupta, Agarwal, & Katiyar-Agarwal, 2023; Shao, Wong, 83 



Review                                                                                                         

4 
 

Shen, & Yu, 2021). Thus, dormancy can be viewed not merely as a passive delay in growth, but 84 

as a highly evolved, dynamically regulated, and energy-efficient survival program. Its recurrence 85 

across evolutionarily distant lineages suggests the existence of conserved molecular 86 

frameworks, among which RNA-based regulation is increasingly considered to be fundamental. 87 

In this context, the role of RNA modifications as part of the dormancy machinery is now gaining 88 

attention as a key mechanistic and evolutionary feature of this ancient adaptive state. 89 

 90 

2. Dormancy-regulating signaling pathways across biological kingdoms  91 

Plant dormancy, particularly in seeds and buds, is governed primarily by the abscisic acid (ABA) 92 

and gibberellin (GA) signaling pathways (Tuan, Kumar, Rehal, Toora, & Ayele, 2018). ABA 93 

induces and maintains dormancy under stress by promoting desiccation tolerance and 94 

repressing growth-related genes (Maia, Dekkers, Dolle, Ligterink, & Hilhorst, 2014), while GA 95 

promotes dormancy release and germination by activating growth-promoting gene expression 96 

(Ogawa et al., 2003). Sugar signaling, mediated through the SnRK1 kinase pathway, also plays a 97 

crucial role in energy sensing and metabolic adjustment during dormancy (Choudhary, Kumar, 98 

Kaur, & Kaur, 2022). Additional regulation comes from auxin and cytokinin signaling, which 99 

influence bud dormancy and reactivation (Matilla, 2020; Qiu et al., 2019; Schaller, Street, & 100 

Kieber, 2014). Recent research has demonstrated that m⁶A RNA methylation plays a key role in 101 

regulating these hormone pathways: m⁶A marks affect the stability and translation of ABA and 102 

GA pathway transcripts, thereby modulating the timing and sensitivity of dormancy induction 103 

and release (Amara, Shoaib, & Kang, 2022; Shen & Yu, 2025; J. Tang, Yang, Duan, & Jia, 2021; 104 

Huihui Wang et al., 2025; X. Wu et al., 2024). This indicates a functional epitranscriptomic layer 105 

fine-tuning the plant’s dormancy transitions (Figure 1A). 106 

In animals, dormancy (often termed quiescence in stem cells or latency in cancer) involves a 107 

complex interplay of metabolic and stress-related pathways (Dias, Bouma, & Henning, 2021; 108 

Özgüldez & Bulut-Karslioğlu, 2024). The mTOR and AMPK pathways are central: mTOR 109 

promotes growth and biosynthesis under favorable conditions (Alhasan et al., 2021; Bulut-110 

Karslioglu et al., 2016), while AMPK becomes activated during energy stress to conserve 111 
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resources and promote dormancy (Kadekar & Roy, 2019; Kamata, Yamada, & Sekijima, 2023; 112 

Rider, 2015). FOXO transcription factors support dormancy through stress resistance and cell 113 

cycle arrest (van der Weijden et al., 2024), while pathways like TGF-β, Notch, and Wnt/β-114 

catenin regulate stem cell quiescence and dormancy plasticity in cancer (Abravanel et al., 2015; 115 

Dias et al., 2021; R. Fan et al., 2020; Herrick, Lin, Peterson, Schnittke, & Schwob, 2017; Prunier, 116 

Baker, ten Dijke, & Ritsma, 2019; van der Weijden & Bulut-Karslioglu, 2021). Increasingly, 117 

evidence highlights a significant role for m⁶A RNA methylation in modulating these pathways. 118 

For instance, m⁶A regulates mTOR and AMPK signaling by affecting the translation of key 119 

metabolic genes (G. Li et al., 2021; J. Liu et al., 2023). FOXO mRNAs are also subject to m⁶A-120 

dependent stabilization or decay, influencing stress adaptation (X. Li et al., 2023; Lin et al., 121 

2020; Xi Liu et al., 2024). In cancer cells, m⁶A modification of Wnt pathway transcripts 122 

modulates self-renewal and exit from quiescence (K. Li et al., 2023; Shouyi Zhang et al., 2023). 123 

Similarly, TGF-β pathway components are regulated by m⁶A-dependent RNA decay or 124 

translational control, fine-tuning cell cycle arrest and reactivation (W. Fan et al., 2024; Feng 125 

Zhang et al., 2024). These recent findings suggest that epitranscriptomic mechanisms are 126 

deeply embedded in the regulation of dormancy decisions in animal cells (Figure 1A). 127 

Fungal dormancy is most commonly observed in spores and quiescent vegetative states, 128 

regulated primarily by nutrient-responsive pathways like TOR, cAMP-PKA, and AMPK-like 129 

kinases (Plank, 2022; G. Sun, Qi, & Wilson, 2019). When nutrients are scarce, TOR signaling is 130 

inhibited, prompting a shift from proliferation to dormancy; cAMP-PKA signaling similarly 131 

balances growth and stasis. While epigenetic regulation in fungal dormancy is well-established, 132 

epitranscriptomic regulation is an emerging field. Recent studies in Saccharomyces cerevisiae 133 

have identified m⁶A modifications in transcripts related to metabolic adaptation and stress 134 

resistance, though specific pathway interactions are still being uncovered (Scutenaire et al., 135 

2023; Hong Wang, Zhao, Cheng, Bi, & Zhu, 2022; Yadav & Rajasekharan, 2017). There is 136 

preliminary evidence that m⁶A affects mRNAs involved in the TOR and stress response 137 

pathways (Bodi, Bottley, Archer, May, & Fray, 2015; Z. Ren et al., 2022), likely influencing the 138 

timing of sporulation or quiescence. However, unlike in plants and animals, these interactions 139 

remain under-characterized and necessitating deeper mechanistic study. 140 
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Bacterial dormancy, including sporulation, persistence, and latency, is regulated by unique 141 

prokaryotic pathways such as the stringent response (via (p)ppGpp), toxin-antitoxin systems, 142 

and two-component regulatory systems (Abid et al., 2025; McDonald et al., 2024). These 143 

networks help cells survive antibiotic stress, nutrient deprivation, and immune evasion by 144 

shutting down transcription, translation, and replication. Unlike in eukaryotes, 145 

epitranscriptomic regulation in bacteria is less extensively studied, though it is gaining attention 146 

(Tan et al., 2024). Some studies have identified bacterial RNA modifications, including m⁶A and 147 

m⁵C, in transcripts related to dormancy, persistence, and stress response (Antoine et al., 2021a; 148 

Riquelme-Barrios et al., 2025; Vargas-Blanco & Shell, 2020). However, direct crosstalk between 149 

specific dormancy pathways (e.g., RelA and SpoT-mediated stringent response) and RNA 150 

methylation remains speculative and largely unexplored (Pletnev et al., 2020; Yu et al., 2025). 151 

Current evidence suggests that while bacteria may use RNA modifications for fine-tuning gene 152 

expression during dormancy, detailed molecular mechanisms are still emerging. 153 

 154 

3. Beyond transcription: the need for post-transcriptional control in dormancy  155 

Dormancy has traditionally been explored through the lens of transcriptional regulation, with 156 

many studies focusing on stress-responsive transcription factors, chromatin remodeling, and 157 

promoter-level silencing. While such mechanisms have provided foundational insights, 158 

accumulating evidence suggests that transcriptional repression alone does not fully account for 159 

the dynamic, flexible, and energy-efficient control required during dormancy. In many systems, 160 

dormancy has been shown to persist even when transcription is globally reduced, pointing to 161 

the existence of additional regulatory layers acting downstream of gene transcription. This has 162 

led to increased interest in the post-transcriptional landscape, where RNA molecules and their 163 

processing, stability, and translation are tightly regulated in response to dormancy-inducing 164 

conditions (Collignon et al., 2023; Luján-Soto & Dinkova, 2021; Pi et al., 2022; Tognacca & 165 

Botto, 2021). 166 

A compelling need for post-transcriptional control in dormancy arises from the metabolic 167 

constraints faced by cells in the dormant state (Storey & Storey, 2004; Tognacca & Botto, 2021). 168 
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Transcription is an energy-intensive process, and its global suppression under stress is both 169 

adaptive and necessary (Logan, Wu, & Storey, 2019; Ramnanan, Allan, Groom, & Storey, 2009; 170 

Storey & Storey, 2012). However, survival during dormancy still requires the production of 171 

selective proteins involved in stress resistance, metabolic rewiring, and the maintenance of 172 

cellular architecture (Bezrukov, Prados, Renzoni, & Panasenko, 2021; Lorenzo-Orts et al., 2023; 173 

Sajeev, Bai, & Bentsink, 2019). To resolve this paradox, many organisms rely on stored 174 

transcripts, which are preserved in a translationally silent state and selectively activated when 175 

needed (Bai et al., 2020; Bazin et al., 2011; Ignatov et al., 2015; Sano, Rajjou, & North, 176 

2020)(ref). This allows cells to maintain a minimal yet responsive proteome without initiating 177 

new transcription. Moreover, the spatial and temporal regulation of mRNA adds another layer 178 

of control that transcription cannot achieve on its own. For example, in plant seeds, bacteria 179 

and certain invertebrates, mRNAs critical for germination, sporulation or developmental 180 

progression are localized to specific subcellular compartments and remain untranslated until 181 

favorable conditions return (Iwańska et al., 2024; Lorenzo-Orts & Pauli, 2024; Özgüldez & Bulut-182 

Karslioğlu, 2024; Sano et al., 2020; Stuckas, Mende, & Hundsdoerfer, 2014; Xingzhuo Yang, 183 

Zhao, Zhao, & Du, 2024). In stem cells and cancer cells, stress granules and P-bodies serve as 184 

reservoirs for silenced mRNAs, whose fate is determined by post-transcriptional cues rather 185 

than promoter activity (Fefilova et al., 2022; Lavut & Raveh, 2012; J. Ren, Zhang, Zong, Zhang, & 186 

Zhou, 2022). These structures exemplify how dormancy involves dynamic mRNA regulation at 187 

the cytoplasmic level, where storage, decay, and translation are finely tuned. Post-188 

transcriptional regulation has also been observed to interact with metabolic signaling pathways 189 

known to control dormancy, such as TOR (target of rapamycin) (Alhasan et al., 2021; Bulut-190 

Karslioglu et al., 2016; Yeh & Yong, 2020) and AMPK pathways (Ramnanan, McMullen, Groom, 191 

& Storey, 2010; Teraoka et al., 2006; You et al., 2022). These kinases regulate the activity of 192 

translation initiation factors and RNA-binding proteins, thereby influencing which mRNAs are 193 

translated under dormancy-inducing conditions. Interestingly, both of these metabolic 194 

pathways are known to have extensive regulatory crosstalk with epitranscriptomic mechanisms 195 

in the same cells that they control dormancy (An & Duan, 2022; T. Chen et al., 2024; G. Li et al., 196 

2021). Thus, post-transcriptional control is not an isolated layer but is functionally integrated 197 
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with upstream signaling and environmental sensing. Finally, other post-transcriptional 198 

mechanisms playing important role in dormancy such as microRNAs (Huo, Wei, & Bradford, 199 

2016; Ruksha, 2019) and alternative splicing (J. Li et al., 2021; Penfield, Josse, & Halliday, 2010) 200 

are tightly regulated by epitranscriptomic mechanisms such m6A RNA modification (Erson-201 

Bensan & Begik, 2017; Mei et al., 2023; Zhu, Huo, Zhang, Shan, & Pei, 2023).  202 

 203 

4. The reversible nature of dormancy and RNA modifications 204 

A hallmark feature of dormancy is its reversibility, the ability of cells or organisms to return to 205 

an active, proliferative, or developmental state upon receiving appropriate stimuli (Miller et al., 206 

2021; Özgüldez & Bulut-Karslioğlu, 2024; Pshennikova & Voronina, 2022). This reversibility 207 

distinguishes dormancy from terminal differentiation or senescence and underpins its adaptive 208 

value in fluctuating environments (Fujimaki & Yao, 2020). Mechanistically, such plasticity 209 

requires the existence of regulatory systems that are dynamic, sensitive to environmental 210 

changes, and energetically conservative. In recent years, RNA modifications have emerged as 211 

prime candidates fulfilling these criteria, offering a versatile means of regulating gene 212 

expression without permanent genomic changes. 213 

The best-characterized RNA modification to date, N6-methyladenosine (m6A), has been shown 214 

to influence a wide array of post-transcriptional processes, including mRNA stability, splicing, 215 

nuclear export, and translation efficiency (Meyer, 2019; Meyer & Jaffrey, 2014). Importantly, 216 

m6A is installed by "writer" complexes such as METTL3/METTL14, removed by "eraser" 217 

enzymes like FTO and ALKBH5, and interpreted by "reader" proteins (e.g., YTH domain-218 

containing proteins) (Zaccara, Ries, & Jaffrey, 2019). This tripartite system enables dynamic and 219 

reversible control over RNA fate (Fu, Dominissini, Rechavi, & He, 2014; Leighton et al., 2018; 220 

Xiong, Yi, & Peng, 2017), which is particularly advantageous in dormant cells that must remain 221 

in a poised but inactive state. The reversibility of RNA modifications mirrors the reversible entry 222 

and exit from dormancy observed across biological contexts. For instance, in hematopoietic 223 

stem cells, m6A levels are dynamically regulated during transitions between quiescent and 224 

active states, with specific m6A readers promoting the translation of cell cycle regulators upon 225 
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activation (Chang et al., 2024; Hu Wang et al., 2018; Yao et al., 2018). Similarly, in cancer 226 

biology, dormant tumor cells exhibit altered expression of m6A machinery, and changes in m6A 227 

status have been linked to both entry into dormancy and metastatic reawakening (Collignon et 228 

al., 2023). These findings underscore that RNA modifications act as regulatory switches, not 229 

only marking transcripts for degradation or translation, but doing so in a context-sensitive and 230 

reversible manner. This molecular flexibility is ideally suited to the demands of dormancy, 231 

where a rapid shift in cellular state must be achieved without de novo transcription. 232 

Furthermore, the reversibility of RNA modifications offers potential for fine-tuning gene 233 

expression thresholds, enabling cells to "test the waters" before fully committing to 234 

reactivation. It has also been proposed that external cues, such as hypoxia, nutrient availability, 235 

or oxidative stress, can modulate the activity of RNA-modifying enzymes, thereby linking the 236 

extracellular environment directly to RNA fate (Ahi & Singh, 2024; Cayir, Byun, & Barrow, 2020). 237 

This positions epitranscriptomic machinery as a sensor–effector interface that transduces 238 

environmental signals into changes in the translational landscape, an essential capability for 239 

reversible dormancy (Buijs et al., 2020; Ramnanan et al., 2009). Altogether, the reversible 240 

nature of both dormancy and RNA modifications points to a deep mechanistic compatibility 241 

between these two phenomena. By harnessing the inherent flexibility of RNA chemical marks, 242 

cells are able to execute reversible gene expression programs that underpin survival, latency, 243 

and reactivation, traits that are evolutionarily selected and biologically indispensable.  244 

 245 

5. Mechanistic insights: epitranscriptomic marks that modulate translation, 246 

stability, and localization 247 

RNA modifications have gained increasing recognition for their role in modulating the 248 

functional fate of transcripts (Arzumanian, Dolgalev, Kurbatov, Kiseleva, & Poverennaya, 2022; 249 

Moshitch-Moshkovitz, Dominissini, & Rechavi, 2022; Motorin & Helm, 2022; Zhao, Roundtree, 250 

& He, 2016). These modifications, which decorate coding and non-coding RNAs, have been 251 

observed to influence three major post-transcriptional processes highly relevant to dormancy: 252 

mRNA stability (Basbouss-Serhal, Pateyron, Cochet, Leymarie, & Bailly, 2017; Vargas-Blanco & 253 



Review                                                                                                         

10 
 

Shell, 2020), translation efficiency (Basbouss-Serhal, Soubigou-Taconnat, Bailly, & Leymarie, 254 

2015; Lorenzo-Orts & Pauli, 2024), and subcellular localization (C. L. K. Nguyen et al., 2025; Xia 255 

et al., 2019). Each of these regulatory dimensions contributes to how cells manage their protein 256 

output in states of low metabolic activity, making them particularly relevant to dormant 257 

conditions where selective protein synthesis is required.  258 

Among the various known RNA modifications, m6A is the most extensively characterized in 259 

eukaryotic systems (Meyer, 2019; Meyer & Jaffrey, 2014). It has been shown to mark mRNAs 260 

for differential decay rates; for instance, methylation near the 3′ untranslated region can 261 

facilitate transcript degradation via recruitment of YTHDF2 (Sikorski, Selberg, Lalowski, 262 

Karelson, & Kankuri, 2023). In contrast, methylation in coding sequences or near the 5′ UTR can 263 

enhance translation through recognition by other reader proteins, including YTHDF1 and 264 

YTHDC2 (Sikorski et al., 2023). This context-dependent interpretation of RNA marks allows a 265 

single modification to produce opposing functional outcomes depending on its placement and 266 

associated readers (Shi, Wei, & He, 2019). Such a system permits dormant cells to selectively 267 

stabilize or degrade transcripts involved in stress resistance, metabolic adaptation, or 268 

reactivation readiness (Collignon et al., 2023). 269 

Epitranscriptomic marks also control translation efficiency (Meyer, 2019), which is especially 270 

critical when dormancy is accompanied by global downregulation of protein synthesis (Buijs et 271 

al., 2020; Koli & Shetty, 2024; Ramnanan et al., 2009). Through direct modification of the mRNA 272 

or via reader-mediated recruitment of translation machinery, these marks can determine which 273 

transcripts bypass translational repression. For example, specific m6A modifications have been 274 

associated with cap-independent translation initiation, a mechanism that is favored under 275 

stress or when eIF4E-mediated cap binding is inhibited (Coots et al., 2017; Meyer et al., 2015). 276 

This permits dormant cells to synthesize a small number of survival-critical proteins even when 277 

canonical translation is suppressed. 278 

In terms of localization, modifications like m6A and pseudouridine have been found to guide 279 

mRNAs into stress granules or P-bodies; cytoplasmic sites involved in mRNA storage or decay 280 

(Eyler et al., 2019; Fu & Zhuang, 2020; Loedige et al., 2023; Vaidyanathan, Alsadhan, Merriman, 281 

Al-Hashimi, & Herschlag, 2017; Zlotorynski, 2024). These compartments have been repeatedly 282 
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observed in dormant or quiescent cells across different organisms (Davies, Stankovic, Vian, & 283 

Wood, 2012; Kearly, Nelson, Skirycz, & Chodasiewicz, 2024; Koli & Shetty, 2024; Lee, Cheng, 284 

Chao, & Leu, 2016; Shah et al., 2014; M. Zhang, Joyce, Sullivan, & Nussenzweig, 2013). The 285 

inclusion or exclusion of mRNAs from these compartments appears to depend, in part, on their 286 

modification status (Anders et al., 2018; L. Sun et al., 2023). Thus, RNA modifications act as 287 

sorting signals, governing the spatial organization of the transcriptome in a way that aligns with 288 

dormancy-associated translational priorities. 289 

Beyond m6A, other modifications such as 5-methylcytosine (m5C) and pseudouridine (Ψ) are 290 

also gaining attention for their potential roles in dormancy  (Blanco et al., 2011; David et al., 291 

2017; Gkatza et al., 2019; Lorenzo-Orts & Pauli, 2024; S. Song & Wood, 2020; Soto, Ortiz, 292 

Contreras, Soto-Rifo, & González, 2022). m5C has been implicated in RNA export and stability, 293 

while pseudouridine is thought to influence RNA folding and translational fidelity (Wiener & 294 

Schwartz, 2020). The full functional scope of these modifications in dormant states remains 295 

underexplored, though early findings suggest that they contribute to the precise tuning of RNA 296 

behavior required for long-term survival. Taken together, RNA modifications function not only 297 

as passive chemical marks but as active regulatory signals that orchestrate the life cycle of 298 

individual transcripts. Their capacity to govern stability, translation, and localization in a 299 

selective manner makes them ideally suited to control gene expression during dormancy. These 300 

mechanisms provide a flexible yet specific mode of regulation that does not depend on ongoing 301 

transcription or permanent genetic changes, features that align closely with the core 302 

requirements of the dormant state. 303 

 304 

6. Studies linking epitranscriptomics to dormancy in diverse organisms 305 

Across living organisms, diverse forms of dormancy, including seed and bud dormancy in plants, 306 

diapause in animals, quiescence in stem cells, sporulation and cyst formation in microbes, and 307 

hibernation or estivation in animals, represent distinct but functionally analogous survival 308 

strategies (Özgüldez & Bulut-Karslioğlu, 2024; Webster & Lennon, 2025; Wilsterman et al., 309 

2021). Though these states differ widely in their molecular mechanisms and evolutionary 310 
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origins, they are unified by their role in pausing growth and conserving resources in response to 311 

unfavorable conditions. Common physiological traits include metabolic downregulation, 312 

increased stress tolerance, and reversible developmental arrest. Rather than reflecting a shared 313 

molecular toolkit, dormancy across life forms represents a conserved strategy at the level of life 314 

history and ecological function, enabling organisms to endure environmental stress and resume 315 

activity when conditions improve. However, certain molecular mechanisms, such as RNA 316 

chemical modifications, are emerging as key candidates that may contribute to this convergent 317 

strategy across domains of life.  318 

Examples from multiple biological systems have begun to demonstrate a functional intersection 319 

between epitranscriptomics and dormancy. These case studies provide crucial validation of the 320 

hypothesis that RNA modifications may participate in regulating entry into, maintenance of, 321 

and exit from dormant states. Though much of the mechanistic detail remains under active 322 

investigation, current findings across plants (Z. Li et al., 2024; J. Tang et al., 2021; J. Wang et al., 323 

2024), animals (Rehman, Varma, Gupta, & Storey, 2023; Wade, Hadj-Moussa, & Storey, 2023), 324 

microbes (Antoine et al., 2021b; Kouvela, Zaravinos, & Stamatopoulou, 2021; Fan Zhang et al., 325 

2024), and cancer and stem cell biology (Blanco et al., 2011; Collignon et al., 2023; Gkatza et al., 326 

2019; Feng Zhang et al., 2024) reveal regulatory patterns that support a potentially important 327 

role for epitranscriptomic control. 328 

In plant biology, dormancy is most prominently observed in seeds, which must survive long 329 

periods in a metabolically inactive state. Recent transcriptome-wide mapping in the plant 330 

model, Arabidopsis thaliana, has revealed dynamic changes in m6A methylation patterns during 331 

the activation of germination. Also an m6A mRNA eraser (demethylase) and a reader found to 332 

be involved in the transition from dormancy to germination in this species  (Z. Li et al., 2024; J. 333 

Tang et al., 2021). These modifications are correlated with altered stability and translatability of 334 

transcripts involved in hormone signaling, particularly abscisic acid and gibberellin pathways 335 

(Amara et al., 2022; Y. Li et al., 2025; Shen & Yu, 2025; Huihui Wang et al., 2025; S. Yin et al., 336 

2022), which are known to regulate dormancy depth and release in plants (X. Wang et al., 2024; 337 

Zheng et al., 2015). Moreover, a recent study has demonstrated the involvement of m6A RNA 338 

modification in regulation of bud dormancy in plants (J. Wang et al., 2024).  m6A marks were 339 
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also enriched in transcripts associated with desiccation tolerance, suggesting a potential role in 340 

stress preparedness during dormancy (Han, Shoaib, Cai, & Kang, 2023; X. Wu et al., 2024). 341 

In the microbial world, Mycobacterium tuberculosis (Mtb) provides a compelling example of 342 

long-term dormancy in the form of latent infection (Gengenbacher & Kaufmann, 2012). During 343 

the latent phase, Mtb enters a non-replicative but metabolically active state. Although much 344 

attention has been placed on transcriptional regulators such as DosR (Boon & Dick, 2012), new 345 

evidence points to RNA-based mechanisms as well. Pseudouridine and m6A modifications have 346 

been identified to play role in mechanisms contributing to Mtb dormancy (Ma et al., 2024; 347 

Tomasi, Kimura, Rubin, & Waldor, 2023), with indications that they may influence the stability 348 

of stress-response transcripts under hypoxia or nutrient starvation, conditions characteristic of 349 

granulomatous dormancy. 350 

In animals, metabolic rate depression (MRD) is a unifying physiological state underlying various 351 

forms of dormancy, including hibernation, estivation, torpor, and diapause (Staples, 2016; 352 

Storey & Storey, 2004). Characterized by a profound, reversible reduction in energy 353 

consumption and biochemical activity, MRD enables animals to conserve resources, maintain 354 

cellular integrity, and survive prolonged periods of environmental stress such as cold, heat, or 355 

food scarcity. Despite differing triggers and durations, these dormant states converge on MRD 356 

as a shared metabolic adaptation for endurance. Recent studies in animals revealed MRD 357 

related mechanisms involving m6A RNA modification such as hypoxia-induced MRD condition in 358 

naked mole-rats, Heterocephalus glaber (Ingelson-Filpula, Kadamani, Ojaghi, Pamenter, & 359 

Storey, 2024), freezing and anoxia-induced brain MRD in wood frogs, Rana sylvatica (Wade et 360 

al., 2023), and dehydration induced whole-body MRD in the African clawed frog, Xenopus laevis  361 

(Rehman et al., 2023). Another study also revealed changes in RNA A-to-I editing as a 362 

mechanism underlying cold induced MRD during hibernation in the brain of the ground squirrel 363 

(Riemondy et al., 2018). During the diapause of bivoltine silkworm (Bombyx mori), a m6A 364 

reader has been shown to play pivotal role in regulation of the mRNA stability of genes in 365 

ecdysone synthesis pathway, which are required for this process (Y. Chen et al., 2022; Y. H. 366 

Chen et al., 2023). Although intriguing, these examples highlight that our understanding of RNA 367 

modification–mediated mechanisms in animal dormancy remains in its early stages, with much 368 
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still to uncover. They point to a promising frontier in organismal biology, where future research 369 

may reveal how epitranscriptomic regulation shapes dormancy across diverse animal systems. 370 

In hematopoietic stem cells (HSCs), quiescence serves as a protective mechanism that 371 

preserves the long-term regenerative capacity of the cell population. Several studies have 372 

shown that the m6A writer METTL3 is essential for HSC activation, while its depletion promotes 373 

prolonged quiescence and impairs hematopoietic recovery (Hu Wang et al., 2018; Yao et al., 374 

2018; R. Yin et al., 2022; Zuo et al., 2024). Specific targets of m6A-mediated regulation include 375 

mRNAs encoding cell cycle drivers and metabolic regulators. These findings suggest that RNA 376 

methylation contributes to the timing and coordination of dormancy exit, enabling a precise 377 

transition back to proliferation. In cancer biology, tumor cell dormancy represents a major 378 

clinical challenge due to its link to therapy resistance and metastatic relapse. RNA modifications 379 

have been found to be dysregulated in dormant cancer cells (Collignon et al., 2023). For 380 

instance, high expression of the demethylase ALKBH5 has been correlated with increased 381 

dormancy in glioblastoma stem-like cells, partly through the stabilization of transcripts 382 

encoding quiescence-associated transcription factors (Q. Cui et al., 2017; Sicong Zhang et al., 383 

2017). Other cancers, including breast and melanoma, show alterations in the balance of m6A 384 

writers and erasers during periods of therapeutic dormancy (Z. Yang et al., 2022), suggesting 385 

that the epitranscriptome is actively remodeled to support survival without proliferation. 386 

Each of these case studies points to a shared theme: the selective remodeling of RNA 387 

modifications is associated with transitions into and out of dormancy. Whether through 388 

controlling transcript decay in plants, translational priming in stem cells, or stress adaptation in 389 

pathogens and tumor cells, epitranscriptomic mechanisms appear to serve as regulatory 390 

switches that operate across a wide range of biological contexts. This broad applicability hints 391 

at an evolutionarily conserved function and demonstrate the potential of RNA modifications as 392 

targets for modulating dormancy-related processes. 393 

 394 

7. Epitranscriptomics as a fast, flexible toolkit for adaptation 395 
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The persistence of dormancy across distant branches of the evolutionary tree has suggested 396 

that this trait provides a substantial adaptive advantage (Constant et al., 2023). In fluctuating or 397 

hostile environments, dormancy allows cells and organisms to temporarily suspend growth 398 

while remaining viable (Gianinetti, 2023; Jobava et al., 2021; Măgălie, Schwartz, Lennon, & 399 

Weitz, 2023; Roberts, Szejner-Sigal, & Lehmann, 2023). The regulatory systems supporting such 400 

plasticity must operate efficiently under low-energy conditions, respond quickly to 401 

environmental changes, and remain evolutionarily adaptable. Within this context, 402 

epitranscriptomics presents itself as a regulatory system capable of fulfilling all these criteria, 403 

functioning as a post-transcriptional toolkit that is both fast-acting and evolutionarily flexible 404 

(Ahi & Singh, 2024; Dannfald, Favory, & Deragon, 2021; Xiangbo Yang, Patil, Joshi, Jamla, & 405 

Kumar, 2022). Unlike changes at the DNA or chromatin level, RNA modifications do not require 406 

permanent alterations to the genome; instead, they provide rapid and reversible control over 407 

gene expression at the RNA level (Fu et al., 2014; Leighton et al., 2018; Xiong et al., 2017). This 408 

form of regulation minimizes energetic cost and allows for tight, transcript-specific responses. 409 

Such characteristics are advantageous for survival in variable environments, where immediate 410 

and graded responses to stress or resource scarcity may determine evolutionary fitness. 411 

From an evolutionary standpoint, RNA-modifying enzymes and reader proteins are conserved 412 

across a wide range of organisms. For example, homologs of METTL3 and FTO, the m6A writer 413 

and eraser enzymes, have been identified in plants, animals, and fungi  (Kim, Hu, Kang, & Kim, 414 

2024; C. Liu, Cao, Zhang, & Yin, 2022; Sibbritt, Patel, & Preiss, 2013; Wong & Eirin-Lopez, 2021). 415 

This conservation indicates that RNA modifications were likely present in early eukaryotes and 416 

may have been co-opted to support dormancy-related processes in different lineages. Yet, 417 

despite this conservation, considerable functional diversification has occurred, allowing RNA 418 

modification pathways to be tailored to specific ecological niches and developmental programs 419 

(C. Liu et al., 2022; H. Sun, Li, Liu, & Yi, 2023; Wilkinson, Cui, & He, 2022). In microbial species, 420 

RNA modifications may provide a means for bet-hedging, where subpopulations enter 421 

dormancy even in the absence of external cues, enhancing survival against unpredictable 422 

threats (Antoine et al., 2021a; Hou, Masuda, & Foster, 2020; Morawska, Hernandez-Valdes, & 423 

Kuipers, 2022). In plants, seed dormancy has evolved in multiple lineages, often in response to 424 
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local or global climatic pressures (Jaganathan & Phartyal, 2025; Jayasuriya & Phartyal, 2024; 425 

Koutouan-Kontchoi, Phartyal, Rosbakh, Kouassi, & Poschlod, 2020; Rosbakh et al., 2023). The 426 

ability to adjust the sensitivity of dormancy-related transcripts through epitranscriptomic 427 

mechanisms may offer a tunable system that enhances fitness across diverse environments 428 

(Tognacca & Botto, 2021; Xiang et al., 2024). In higher organisms, the evolutionary adaptation 429 

of epitranscriptomic systems has been associated with lifespan extension (McMahon, Forester, 430 

& Buffenstein, 2021; Wagner & Schosserer, 2022), tissue regeneration (G. Cui et al., 2023; 431 

Weng et al., 2018), and cancer resistance (L. Tang et al., 2024), all of which involve quiescent or 432 

dormant cellular states (Heyman, Kumpf, & De Veylder, 2014; Rumman, Dhawan, & Kassem, 433 

2015; Stuart & Brown, 2006). For instance, long-lived mammals exhibit distinct expression 434 

patterns of RNA-modifying enzymes in tissues known to harbor dormant cells (e.g., skeletal 435 

muscles, brain, hair follicles and bone marrow) (Jiapaer et al., 2022; Ogbe et al., 2024; Ozkurede 436 

et al., 2019; Z. Wu et al., 2023; R. Yin et al., 2022). These patterns suggest that selection has 437 

acted not only on the presence of RNA modifications but on their context-dependent 438 

deployment to support long-term cellular maintenance and delayed reactivation. 439 

Taken together, the flexibility of RNA modifications also makes them ideal candidates for 440 

integration into complex regulatory networks. By interacting with stress pathways, metabolic 441 

sensors, and signaling cascades, RNA marks can serve as modular units that plug into pre-442 

existing systems without requiring extensive genetic rewiring. This modularity may explain their 443 

frequent repurposing across taxa to regulate dormancy under diverse physiological and 444 

environmental conditions. Therefore, the epitranscriptome can be viewed as a core regulatory 445 

infrastructure that enhances the evolutionary adaptability of dormancy. It operates with speed, 446 

specificity, and minimal energetic demand, properties that are consistently favored under 447 

conditions where survival depends on reversible growth arrest and precise reactivation timing. 448 

 449 

8. Toward a unified model: the epitranscriptomic regulation of the dormant 450 

state  451 
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As evidence accumulates from different systems, a conceptual framework has begun to emerge 452 

in which the epitranscriptome is positioned as a central regulator of dormancy. In this unified 453 

model, RNA modifications function as key molecular signals that mediate the transition 454 

between active and dormant states; modulate transcript fate in response to environmental 455 

inputs; and support reactivation when conditions improve. Within this model, the initiation of 456 

dormancy involves both transcriptional and post-transcriptional changes. As transcription 457 

slows, a subset of transcripts is selectively marked by modifications such as m6A, which either 458 

stabilize them for later use or direct them toward silencing in granules (Alriquet et al., 2021; 459 

Collignon et al., 2023; Heck & Wilusz, 2019; Loedige et al., 2023; Feng Zhang et al., 2024). These 460 

decisions are governed by RNA-binding proteins that recognize specific modifications and 461 

coordinate the recruitment of decay factors, translational machinery, or storage compartments 462 

(Loedige et al., 2023; D. Song, Chen, Wang, Cheng, & Shyh-Chang, 2024; Zuo et al., 2024). 463 

Maintenance of the dormant state is achieved through continued repression of translation, 464 

paired with selective access to pre-existing transcripts that remain protected and responsive 465 

(Collignon et al., 2023; K. Li et al., 2023; Lorenzo-Orts & Pauli, 2024). RNA marks serve as 466 

molecular bookmarks, allowing the cell to preserve information without active transcription. 467 

This preservation ensures that essential stress-response or metabolic genes can be re-engaged 468 

quickly when conditions change, without the need for new RNA synthesis (Zhou et al., 2015). 469 

Upon exit from dormancy, RNA modifications are reinterpreted by shifts in the expression or 470 

activity of writer, eraser, or reader proteins. External signals such as nutrient availability or 471 

temperature change may influence enzyme localization, substrate affinity, or cofactor 472 

availability, leading to a rewiring of the RNA modification landscape (Collignon et al., 2023; K. Li 473 

et al., 2023; Lorenzo-Orts & Pauli, 2024; Zhou et al., 2015). This transition permits a rapid and 474 

energy-efficient ramp-up of protein synthesis that is essential for re-entering the cell cycle or 475 

resuming development. 476 

The unified model also accommodates context-specific variations, such as differences in which 477 

transcripts are modified or how modifications are interpreted. These variations arise from 478 

differences in tissue type, developmental stage, or organismal lineage but are underpinned by 479 

the same general principles of reversible, mark-driven regulation. Importantly, the model 480 
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supports integration with other regulatory layers, including chromatin state, transcription 481 

factors, and metabolic cues. By uniting disparate observations under a single framework, the 482 

model reinforces the idea that epitranscriptomic regulation is not a peripheral feature of 483 

dormancy but a central organizing mechanism. It explains how dormancy can be sustained 484 

without genetic alterations; how cells remain responsive during inactivity; and how reactivation 485 

is executed with speed and precision. This perspective not only aligns with known biological 486 

data but also provides a useful guide for future investigations, enabling the formulation of 487 

testable hypotheses regarding the timing, specificity, and function of RNA modifications in 488 

dormant states. 489 

 490 

9. Open questions and future directions 491 

While significant progress has been made in identifying RNA modifications and their potential 492 

roles in dormancy, many questions remain unresolved. Addressing these gaps will be essential 493 

for fully understanding how the epitranscriptome contributes to the establishment, 494 

maintenance, and reversal of dormancy in diverse biological systems. One of the most 495 

immediate challenges is the limited resolution of current epitranscriptomic mapping 496 

techniques, particularly in dormant cells, which often yield low RNA quantities. Advances in 497 

single-cell and low-input RNA modification detection (Bresnahan et al., 2023; Tegowski, Prater, 498 

Holley, & Meyer, 2024) are needed to determine the transcript-specific landscape of 499 

modifications during dormancy transitions. Such tools would enable researchers to determine 500 

whether unique epitranscriptomic signatures define dormant states or predict reactivation 501 

potential. The temporal dynamics of RNA modifications during dormancy remain poorly 502 

understood. It is not yet clear whether these marks are deposited before dormancy entry as a 503 

preparatory measure; added during dormancy to modulate transcript fate; or rapidly rewritten 504 

during reactivation. Controlled time-course studies using inducible dormancy models could 505 

provide insight into the sequence and causality of these events.  506 

Another open question involves the specificity of reader protein interactions. While several 507 

readers of m6A and other marks have been identified, their binding preferences under 508 
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dormancy-inducing conditions are not well characterized. It is possible that shifts in reader 509 

expression or post-translational modifications influence how RNA marks are interpreted, 510 

leading to different outcomes even with identical modification patterns (T. K. H. Nguyen & 511 

Kang, 2024). Furthermore, the extent to which RNA modifications interact with other novel 512 

emerging mechanisms of dormancy state regulation in various organisms and cells, such as 513 

small or long non-coding RNAs (Reynolds, 2019), enhancer RNAs (So et al., 2022; Tremblay et 514 

al., 2024), RNA G-quadruplexes structuring (Zuurbier et al., 2024), intra-cellular phase 515 

separation processes (Xin Liu, Zhu, & Zhao, 2023; Xu, Zheng, Lu, Song, & Zhang, 2021), and 516 

codon usage bias (Feng, Wang, Guo, Liu, & Long, 2025; Kanduc, 2021; Small-Saunders et al., 517 

2024), is still unclear. Interestingly, all of these novel players in regulation of dormancy are 518 

known to have extensive regulatory crosstalk with m6A RNA modifications (Figure 1B). The role 519 

of feedback loops, where modifications influence the expression of their own modifying 520 

enzymes, also deserves further study, as such loops could stabilize or destabilize dormancy 521 

states at cellular level (Deritei, Rozum, Ravasz Regan, & Albert, 2019; J. Wu et al., 2023; Yeo et 522 

al., 2018). Finally, the therapeutic implications of modulating RNA modifications in dormant 523 

cells remain largely unexplored. In cancer, targeting the epitranscriptome could potentially 524 

force dormant cells into reactivation and subsequent vulnerability to therapy (Tamamouna, 525 

Pavlou, Neophytou, Papageorgis, & Costeas, 2022). In agriculture, manipulating RNA 526 

modification patterns in seeds might offer strategies for improving crop resilience or 527 

germination control (Lieberman-Lazarovich, Kaiserli, Bucher, & Mladenov, 2022). 528 

In summary, the field stands at a pivotal point, with enough foundational evidence to justify a 529 

central role for RNA modifications in dormancy, yet with ample opportunity for discovery. 530 

Future work will benefit from multidisciplinary approaches that combine molecular biology, 531 

systems-level analysis, and evolutionary perspectives to unravel the full significance of the 532 

epitranscriptome in the logic of cellular dormancy. 533 

 534 

Box 1 | Key concepts referred in this article 

Dormancy: A reversible, energy-conserving state in which cells or organisms halt growth and division to 
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survive adverse conditions. 

Epitranscriptomics: The study of chemical modifications on RNA molecules that influence their function, 
stability, and translation without altering nucleotide sequences. 

m6A (N6-methyladenosine): The most abundant internal mRNA modification in eukaryotes, regulating 
RNA metabolism through reader, writer, and eraser proteins. 

RNA writers: Enzymes (e.g., METTL3/METTL14) that install chemical modifications onto RNA, setting the 
stage for downstream regulatory effects. 

RNA erasers: Demethylases (e.g., FTO, ALKBH5) that remove RNA modifications, enabling reversibility 
and dynamic regulation. 

RNA readers: Proteins that recognize specific RNA modifications and mediate effects on stability, 
localization, or translation. 

Cellular quiescence: A non-proliferative, reversible state often observed in stem cells and associated 
with dormancy. 

mRNA stability: The resistance of transcripts to degradation, influenced by sequence elements and 
post-transcriptional modifications. 

Translation control: Regulation of protein synthesis from mRNA, often through modifications or binding 
proteins that affect ribosome recruitment. 

Stress granules: Cytoplasmic aggregates of stalled translation initiation complexes that store mRNAs 
during stress or dormancy. 

P-bodies: Cytoplasmic sites for mRNA decay and storage, often active during translational repression in 
dormancy. 

Bet-hedging: An evolutionary strategy where phenotypic variability increases survival under fluctuating 
or unpredictable environments. 

Cap-independent translation: A mechanism of translation initiation not requiring the 5' cap, often 
employed during stress or dormancy. 

Phase separation: The formation of membraneless compartments (e.g., stress granules) through 
physicochemical interactions among proteins and RNAs. 

Pseudouridine (Ψ): A common RNA modification that can alter RNA structure and translation, present in 
tRNAs, rRNAs, and some mRNAs. 

m5C (5-methylcytosine): A modification that can influence RNA export, localization, and stability, 
though its role in dormancy is still emerging. 

Transcriptomic plasticity: The ability of a cell to rapidly alter its RNA expression and regulatory 
landscape in response to environmental changes. 

Dormancy entry signals: Environmental or endogenous cues (e.g., hypoxia, nutrient deprivation) that 
initiate transition into a dormant state. 

Reactivation cues: External or internal triggers that prompt exit from dormancy and resumption of 
cellular activity. 

 535 
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 536 

Figure 1. Potential involvements of m6A RNA modification in dormancy related molecular 537 

mechanisms. (A) Signaling pathways involved in different types of dormancy state across living 538 

organisms, and their regulatory connections with m6A RNA modification. (B) Potential 539 

regulatory effects of m6A RNA modification on dormancy via other mechanisms known to 540 

contribute to this process. The mouse, plant, fungus, and bacterium icons above each 541 

mechanism indicate the existing evidence for that mechanism’s involvement in dormancy in 542 

animals, plants, fungi, and bacteria, respectively. 543 
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