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Abstract12

Understanding the drivers of mast seeding is critical for predicting reproductive dy-13

namics in perennial plants. Here, we evaluate the performance of four statistical meth-14

ods for identifying weather-associated drivers of annual seed production, i.e, weather15

cues: climate sensitivity profile, P-spline regression, sliding window analysis, and peak16

signal detection. Using long-term seed production data from 50 European beech (Fagus17

sylvatica) populations and temperature records, we assessed each method’s ability to18

detect a benchmark window around the summer solstice. All methods successfully iden-19

tified biologically meaningful windows, but their performance varied with data quality,20

signal strength, and sample size. Sliding window and climate sensitivity profile methods21

showed the best balance of accuracy and robustness, while peak signal detection had22

lower consistency. Cue identification was more reliable with at least 20 years of data, and23

predictive accuracy was highest when models were based on seed trap data. A simula-24

tion study showed method-specific sensitivity to signal strength, with the sliding window25

performing best. Our findings provide a means to improve masting forecasts through a26

practical guide for selecting appropriate cue identification methods under varying data27

constraints.28
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Introduction46

Mast seeding, or masting, is synchronous and highly variable reproduction among years by47

a population of perennial plants (Kelly, 1994; Pearse et al., 2016). Masting increases polli-48

nation efficiency and reduces seed predation, enhancing reproductive success (Kelly et al.,49

2001; Zwolak et al., 2022; Bogdziewicz et al., 2024a). Moreover, interannual variation in seed50

production generates resource pulses that shape ecosystem functioning by influencing seed51

consumer populations and, in turn, their predators, parasites, and scavengers (Clark et al.,52

2019; Maag et al., 2024; Widick et al., 2025). Masting also influences tree growth, defense in-53

vestment, nutrient cycling, and the abundance of mycorrhizal fungi (Hacket-Pain et al., 2018;54

Redmond et al., 2019; Michaud et al., 2024). Thus, ecosystem management and conserva-55

tion of plants and animals require a comprehensive understanding of the drivers of masting56

(Pearse et al., 2021). Among these drivers, weather cues, i.e., weather variation that regu-57

lates processes such as flower initiation, pollination success, and fruit maturation, play a58

major role (Kelly et al., 2013; Bogdziewicz et al., 2025). Given the large variations in weather59

cues among species and populations (Bogdziewicz et al., 2019; Koenig et al., 2020; Fleurot60

et al., 2023), and historic data scarcity (Koenig, 2021), the relationships between seeding61

and weather are largely unidentified or rely on, often somewhat arbitrary, a priori selection62

(Crone & Rapp, 2014). Yet, identification of weather cues is a key step in analyses aimed63

at masting forecasting important in conservation in management (Wion et al., 2025; Oberk-64

lammeetal., 2025), advancing understanding of masting biology (Journéetal., 2024; Szymkowiak65

et al., 2024), and improving predictions of the effects of climate change on masting dynamics66

(LaMontagne et al., 2021; Bogdziewicz et al., 2024b). Here, we evaluate four statistical meth-67

ods designed to identify periods of strongest correlation between weather variation and bi-68

ological responses to detect weather cues of masting.69

Masting plants have evolved hypersensitivity to weather variation, a trait that amplifies70

interannual variation in seed production relative to the variation in weather fluctuations (Janzen,71

1971; Kelly et al., 2013). This hypersensitivity enables plant populations to synchronize re-72

productive efforts by collectively delaying reproduction under unfavorable conditions and73

initiating mass seeding events when conditions improve (Abe et al., 2016; Schermer et al.,74

2020; Ascolietal., 2020). Weather variation influences seed production across multiple stages75

of the fruit maturation cycle, including flower initiation, pollination, and fruit maturation76

(Pearse et al., 2016; Bogdziewicz et al., 2025). Specific weather cues differ among species and77
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populations. For example, increased flower bud initiation may follow hot summers, whereas78

reproduction may largely fail when spring weather hinders effective pollen transfer (Koenig79

et al., 2015; Fleurot et al., 2024; Journé et al., 2024). Some species exhibit conserved cues and80

mechanisms; European beech (Fagus sylvatica), for example, relies on summer temperatures81

across its range (Journé et al., 2024). In contrast, sessile oaks (Quercus petraea) display spa-82

tial variation in masting regulation, with spring temperatures governing pollination success83

and fruit set in semi-continental climates and flower number being a primary determinant84

in oceanic climates (Fleurot et al., 2023).85

Finding the best weather correlate for seed production for a particular population is im-86

portant. In global change biology, shifts in weather cue frequency associated with climate87

change can alter masting patterns (Shibata et al., 2020; Foest et al., 2024), with effects varying88

according to whether reproduction associates with warm or cold temperatures (Bogdziewicz89

etal., 2024b). When reproduction relies on warm-associated cues, warming increases cue fre-90

quency, leading to more frequent but smaller flower crops and reduced synchrony among91

individuals (Bogdziewicz et al., 2021; Foest et al., 2024). Such changes diminish the bene-92

fits of masting and can result in dramatic reductions in viable seed production (Bogdziewicz93

et al., 2020b, 2023b). What is more, the increased frequency of reproduction leads to growth94

reduction (Hacket-Pain et al., 2025). In contrast, in plants that rely on cues associated with95

low temperatures, warming leads to fewer reproductive attempts, resulting in prolonged pe-96

riods of seed failure (Numata et al., 2022; Yukich-Clendon et al., 2023). Thus, determining97

the timing of cues and establishing the direction of the relationship between weather cues98

and reproduction are essential steps in predicting the impact of climate change on masting99

patterns and the reproductive capacity of plants (Bogdziewicz et al., 2024b). Moreover, fore-100

casts of seed production depend on a solid understanding of the links between weather and101

reproductive output (Journé et al., 2023; Wion et al., 2025; Oberklamme et al., 2025). Thus,102

accurate identification of seed production-weather correlates reinforces effective manage-103

ment and conservation in ecosystems that include masting species (Pearse et al., 2021). Fi-104

nally, detecting correlation signals guides experimental manipulations by informing both the105

timing of interventions and the choice of environmental variables, such as temperature or106

precipitation (Pérez-Ramos et al., 2010; Samarth et al., 2021). Reliable methods of weather107

cue identification from increasingly available long-term data (Hacket-Pain et al., 2022; Foest108

et al., 2024) are now needed.109

In this study, we compared four approaches to investigating relationships between seed110
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production and weather variation: climate-sensitive profiling, P-spline regression, sliding111

window analysis, and peak signal identification (Table 1) (Roberts, 2008; Simmonds et al.,112

2019; Bailey & van de Pol, 2016; Lee et al., 2024). Due to the limitations of observational113

studies and the logistical challenges of experimentally manipulating environmental signals114

in trees (Bogdziewicz et al., 2020a), the true causal relationships between weather variation115

and seed production remain elusive (Pearse et al., 2014; Pesendorfer et al., 2021). The lack of116

an unequivocal reference for these relationships poses a significant challenge for validating117

statistical methods. To address this limitation, we used the well-documented relationship118

in European beech (Fagus sylvatica) as a benchmark. European beech exhibits robust neg-119

ative correlations between seed production and June–July temperatures two years prior to120

seed fall, and positive correlations one year prior (Piovesan & Adams, 2011; Vacchiano et al.,121

2017; Nussbaumer et al., 2018; Bogdziewicz et al., 2023a). The timing of these effects is con-122

sistent across the species’ range, as the window is anchored to the summer solstice (Journé123

et al., 2024). We assessed how each method detects these known patterns under varying124

conditions of data quality and sample size, and conducted a simulated case study in which125

the strength of the weather–seed production relationship was altered. By doing so, we test126

whether the focal methods can detect the benchmark cue without any prior assumptions,127

and we hope that this analysis can guide future applications of weather cue identification.128

We foresee that this aspect will become increasingly important for advancing understanding129

of masting dynamics.130
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Table 1: Summary of weather cue identification methods used in this study to determine the timing of weather
cues. That is, to identify the specific time window when plants are most sensitive to variation in a given weather
variable. The paper is supplemented with an R compendium that can facilitate the implementation of the focal
methods.

Method Summary Reference

Climate sensitivity
profile

This method includes running a linear regression between an-
nual seed production and weather variables for each day, ex-
tracting the slope and R2 values. To smooth these relationships
over time, two generalized additive models (GAMs) are fitted us-
ing βdays (slope) and R2

days, as responses. The weather cue win-
dow is the consecutive days during which the slope and R2 val-
ues exceed the lower and upper quantiles (2.5th and 97.5th per-
centiles obtained from all days).

Thackeray et al.
(2016); Sim-
monds et al.
(2019)

P-spline regression Similar to the climate sensitivity profile approach, but it differs
in that partial coefficients are smoothed by applying a penalty to
differences between consecutive days. Can handle multiple ex-
planatory variables (e.g., all individual daily measurements) in a
single analysis by using a data reduction step to address high di-
mensionality. This is done by constructing a B-spline function,
consisting of piecewise polynomial curves connected at prede-
fined knots. By combining B-splines with a difference penalty, P-
splines (penalized B-splines) are created, preventing overfitting
by penalizing excessive variation between the B-splines.

Roberts (2008);
Roberts et al.
(2015)

Peak signal detection In the peak signal detection approach, the weather time series
is systematically shifted by one day relative to annual seed pro-
duction, and at each lag, the regression between the two is calcu-
lated. The lag that produces the highest correlation is interpreted
as the time at which the weather variable most strongly relates
to seed production. This method provides a direct measure of
the optimal lag, although it relies on identifying a single peak in
the correlation function. The signal strength for each day is de-
termined by multiplying the coefficient of determination (R2) by
the slope. A peak signal detection is then used to identify the spe-
cific days with the strongest influence on seed production.

Brakel (2014);
Lee et al. (2024)

Sliding window anal-
ysis

This approach tests a range of candidate time windows over
which environmental data (e.g., temperature) are aggregated.
For each window, defined by its start and end days, a summary
statistic (e.g., mean) is calculated. A regression model is then fit-
ted to assess how this aggregated weather variable explains vari-
ation in annual seed production. Models are compared using AIC,
and the window with the best performance (lowest AIC) is iden-
tified as the optimal period of environmental influence.

van de Pol et al.
(2016); Bailey
& van de Pol
(2016)
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Methods131

Seed production data132

Our analysis is based on MASTREE+, a database of annual records of population-level re-133

productive effort in perennial plants from all vegetated continents (Hacket-Pain et al., 2022;134

Foest et al., 2024). We extracted data on European beech (Fagus sylvatica) and restricted the135

analysis to time series that included at least 20 years of records, observed after 1952 and136

before 2021, the latter done to match the weather dataset. We excluded flower and pollen137

counts, and ordinal records of seed production. In total, we used 50 time series, with a me-138

dian length of 43 years (max = 67 years, Figure 1). We log-transformed annual seed produc-139

tion for each population to normalize data and ensure compatibility with the different cue-140

identification methods, all of which assume a Gaussian distribution.141

In the MASTREE+ dataset, annual seed production is estimated at the population level142

using various methods, including seed counts – ground counting within a certain time frame143

(Foest et al., 2025a), seed traps (Bajocco et al., 2021), and visual crop assessment. Visual144

assessments are often used over large areas by foresters, for example, by the Polish State145

Forests (Pesendorfer et al., 2020). These methods may differ in how well they capture among-146

year variation in seed production (Foest et al., 2025a). Thus, we have assessed whether the147

performance of focal methods of weather cue window detection varies across methods of148

seed monitoring. Out of the 50 populations used in our analysis, 14 have annual records of149

seed production based on seed count, 17 used seed traps, and 19 used visual crop assess-150

ment.151

Climate data152

We extracted daily average temperature data for each site from the corresponding 0.1° grid153

cell of the E-OBS dataset (Cornes et al., 2018) (version 28.0). The temperature was available154

from 1950 to 2023. We standardized the average temperature for each time series to ensure155

comparability and facilitate a simulation case study.156

8



Figure 1: a) Map of the 50 European beech populations included in the study (minimum time series length: 20
years, median: 43 years). Each dot represents a single population. b) Temporal dynamics of seed production.
Each line shows one population, with seed production values log-transformed (+1).

Description of the weather cue identification methods157

For each of the four methods, we established the starting reference point as November 1st158

of the year associated with seed fall. We defined a time range extending from this reference159

date back to 600 days prior. This duration was chosen to include potential influences from160

summer temperature cues in both the first and second year preceding seed fall (Vacchiano161

et al., 2017; Journé et al., 2024).162

Sliding window163

The absolute positioning of the window opening and closing is defined by setting an origin164

point, from which the window moves backward in time (here, reference day, 1st November).165

In this approach, the window extends up to 600 days into the past, with a step length of166

one day. Additionally, the window length varies, ranging from a single day to a maximum167

of 600 days. When testing different windows, an aggregation method must be specified, for168
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instance, using the mean, maximum, or minimum of all daily weather values within a win-169

dow. We used the climwin R package (version 1.2.3) (Bailey & van de Pol, 2016) to run the170

sliding window, and chose the mean temperature aggregation within the window. Climwin171

reports the best model based on the Akaike Information Criterion corrected for small sample172

sizes (AICc) (Bailey & van de Pol, 2016).173

Peak signal detection174

We regressed daily mean temperature against annual seed production for each day of the175

year, starting from the reference date until 600 days before, using a linear model. We ex-176

tracted the slope and the model coefficient of determination (R2) from each regression. Model177

strength was then determined by calculating the product of the slope and coefficient of de-178

termination (β ∗ R2), which measures the model’s explanatory power. To detect peaks and179

valleys of model strength within the time series, we use a robust peak detection algorithm180

based on a z-score thresholding approach. The algorithm uses a rolling window, defined by181

a lag parameter, to calculate both the mean and standard deviation of model explanatory182

power. At each step, the algorithm flags a "signal" if the model’s explanatory power for a day183

deviates from the local moving mean by more than a predefined number of standard devia-184

tions (the threshold) (Brakel, 2014). In our case, we used a lag of 100 days and a threshold of185

3 standard deviations. The algorithm includes an influence parameter (here set at 0), which186

controls how much these identified signals affect future calculations of the moving mean and187

standard deviation, in order to prevent future bias in signal detection. Since this method can188

identify multiple potential windows due to multiple peaks per time series, we retained only189

one window for each time series based on the highest R2.190

Climate sensitivity profile191

In this approach, the daily mean temperature is regressed against annual seed production192

for each day of the year. In our case, we started with the mean temperature on the reference193

day and regressed it against the seed production of the focal year using a linear model. This194

process was iterated backward in time for up to 600 days, generating a time series of regres-195

sion results. Then, for each regression, we extracted the slope of the relationship (similar to196

the Peak signal detection method), and the model R2. These values are then smoothed over197

time using a Generalized Additive Model (GAM) implemented in the mgcv R package (Wood198
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2017, version 1.9-3). The smoothed functions help identify the calendar days that have the199

greatest influence on seed production. This critical period was determined as the consec-200

utive days in which the slope coefficient exceeds either the lower or upper quantiles ( 2.5%201

and 97.5% thresholds) calculated from all daily coefficients at the same time as theR2 values202

exceed the upper quantile (97.5%) (Thackeray et al., 2016).203

P-spline regression204

P-spline signal regression for cue identification was originally introduced by Roberts (2008)205

and follows a similar principle to the climate sensitivity profile method. However, instead of206

a two-step process, P-spline regression combines smoothing and coefficient estimation into207

a single step. This method regresses all 600 days of temperature against the response vari-208

able simultaneously, generating partial coefficients that describe the relationship between209

daily temperature and seed production. These coefficients are smoothed by penalizing dif-210

ferences between consecutive days to prevent overfitting. To handle the inclusion of numer-211

ous explanatory variables, coming from many time lags, P-spline regression incorporates a212

data-reduction phase using B-splines, which create a series of polynomial curves joined at213

predefined knots. The number of knots must be specified and is limited to one less than the214

sample size (Roberts, 2012). By combining B-splines with a difference penalty, the model215

applies P-splines (penalized B-splines) to enforce smooth transitions between coefficients.216

The penalty level is optimized through cross-validation to achieve the best balance between217

flexibility and interoperability. We implemented this method by using the mgcv R package,218

following the setup described in Roberts (2008); Roberts et al. (2015).219

Time series length and cue identification220

We assessed how the length of the time series affects the window identification by focusing221

on the longest time series available (> 50 years of observations, N = 15 populations). We di-222

vided each time series into four subsets of increasing length: 5, 10, 15, 20, 25, and 30 years223

(i.e., the subset of 30 years contains all smaller subsets). For each data subset and time series,224

we applied the four weather cue identification methods and extracted the window identified.225

This entire procedure was repeated 50 times to account for variation due to random selection226

of year blocks (this step is most significant for 5-year-long subsets). To facilitate comparisons,227

we summarized windows opening and closing to the median and inter-quantile range (IQR)228
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across each subset of time series length and weather cue method.229

Cross validation of window identification and model performance230

We evaluated the predictive performance of identified weather cues selected with each method231

by performing block cross-validation (Roberts et al., 2017). We restricted this analysis to time232

series beginning after 1980 and randomly selected five populations for each of the three seed233

collection methods (seed count, seed trap, and visual crop assessment), yielding 15 popula-234

tions in total. For each population, we extracted a continuous 30-year period and divided235

it into five equal blocks. Three blocks were randomly selected for model training and cue236

identification, while the remaining two blocks were used for validation by predicting seed237

production. This approach allowed us to evaluate model performance and the robustness of238

the selected weather cue across data subsets and collection methods.239

Model accuracy was assessed using the coefficient of determination (R2), based on com-240

parisons between predicted and observed seed production in the validation dataset. We also241

calculated the normalized Root Mean Square Error (rRMSE = RMSE/mean(observation)),242

which reflects the average prediction error. An rRMSE near 0 indicates high accuracy, whereas243

values above 1 suggest performance worse than random noise.244

Simulation study245

We conducted a simulation study to assess how well the focal weather cue detection meth-246

ods could identify a predefined cue window under varying levels of signal strength, expressed247

as the R2 of the relationship between the cue window and annual seed production. We sim-248

ulated seed production datasets using a known weather cue window, with temperature as249

the predictor, based on parameter ranges derived from our empirical analysis. Empirical dis-250

tributions of model parameters—intercepts (α), slopes (β), and residual standard deviations251

(σ)—were obtained from 200 fitted models (50 time series × 4 cue identification methods).252

These parameters represent the estimated relationships between seed production and mean253

temperature over identified climatic windows.254

The simulation model followed a linear regression form:255
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log(seed)s = αs + βs × Temperaturew,s + ϵs, ϵs ∼ N (0, σ2
s)

We generated 1,000 datasets, each representing a simulated population s, using temper-256

ature values drawn from a predefined 10 days window (w)—June 10 to June 20— of the seed-257

fall year (T0). Temperature values were scaled, and seed production was log-transformed to258

match the preprocessing used in the empirical models.259

To explore a gradient of signal strength between temperature and seed production, we260

manipulated the residual variance σs, while drawing αs and βs from uniform distributions261

bounded by the empirical parameter ranges:262

αs ∼ U(αmin, αmax); βs ∼ U(βmin, βmax); σs ∼ U(σmin, σmax) (1)

By varying σs, we simulated datasets spanning a wide range of explanatory power, from263

very weak (R2 ≈ 0) to very strong (R2 ≈ 0.99) signal. This allowed us to assess the perfor-264

mance of each cue identification method under differing levels of signal detectability.265

Results266

Weather cue windows identified with the focal methods267

Assuming the benchmark opening date for the weather cue in beech—i.e., the summer sol-268

stice (21st June)—is accurate, all methods performed reasonably well in identifying the cue269

across the 50 time series included in the study. Across all methods, the median estimated270

window opening was day 490, corresponding to 30th June (Fig. 2). However, the spread271

around this estimate varied by method: it was similarly narrow for the climate sensitivity pro-272

file, sliding window, and P-spline regression (each with ± 20 days), and substantially wider273

for peak signal detection (> 100 days). Interestingly, for the climate sensitivity profile, sliding274

window, and P-spline regression, the deviation from the benchmark date was asymmetri-275

cal—fewer simulations indicated window openings before the solstice—aligning with theo-276

retical expectations (Journé et al., 2024) (Fig. 2). In contrast, an apparently poorer perfor-277

mance of peak signal detection resulted from identifying the cue window in winter or spring278

of the seedfall year in 11 time series (Fig. S4).279
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Figure 2: a) Distribution of coefficients of determination (R2) across 50 populations of European beech for
each weather cue identification method: climate sensitivity profile, P-spline regression, peak signal identifica-
tion, and sliding window. Dashed lines indicate the average mean R2 across populations for each method. b)
Median window opening (blue) and closing (orange) dates for each method. Whiskers indicate the interquartile
range. The black dashed line marks the summer solstice (21st June) in the year preceding seedfall (benchmark
used in this study), while the grey shaded area highlights the summer months (June–August). N indicates the
number of populations used per method; N was lower for P-spline regression due to time series that were too
short or noisy to identify a reliable window.

The median window closing day estimated with the sliding window method was day 450280

(9th August), closely matching that of peak signal detection (day 448, 11th August) (Fig. 2).281

In contrast, the climate sensitivity profile and P-spline regression yielded shorter windows,282

with median closing dates of day 472 (18th July) for both methods (Fig. 2). Variation around283

the median also differed among methods: it was narrowest for the climate sensitivity profile284

and P-spline regression (±15 days), broader for the sliding window method (±35 days), and285

widest for peak signal detection (±120 days) (Fig. 2). Peak signal detection showed the great-286

est deviation, with some runs producing windows that both opened and closed before the287

summer solstice (Fig. S4). Median opening and closing dates, along with their 95% interquar-288

tile ranges, are provided in Table S1. The best window identified for each population using289

the four methods is shown in Fig. S1, Fig. S2, Fig. S4, and Fig. S3. Note that, in contrast to the290

window-opening date, which appears anchored to the summer solstice, the closing date of291

the window is not associated with a known date (Journé et al., 2024).292
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On average, the sliding window method provided the window with the highest model293

predictive performance (mean R2 = 0.38), followed then by peak signal detection (mean R2
294

= 0.32), climate sensitivity profile (mean R2 = 0.28), and P-spline regression (mean R2 = 0.20)295

(Fig. 2).296

Time series length and cue identification297

Reducing the sample size (i.e., shortening the time series) had a strong impact on the accu-298

racy of the identified weather cue window, with methods differing in their sensitivity to data299

reduction. The climate sensitivity profile was the most robust, yielding median estimates for300

the window opening date that remained closely aligned with the summer solstice even when301

only 10 years of data were used (Figure 3). As expected, variation around the estimated dates302

was lowest when 25–30 years of data were included. For P-spline regression and the sliding303

window, at least 20 years of data were needed to achieve reasonably consistent estimates,304

while accurate alignment with the summer solstice was generally achieved with 30 years of305

data (Figure 3). In contrast, peak signal detection performed comparatively poorly across all306

sample sizes, including those with 25 or 30 years of data (Figure 3).307

Model performance308

Block cross-validation revealed that, on average, the climate sensitivity profile method achieved309

the highest predictive performance (mean R2 = 0.18), followed by P-spline regression (R2 =310

0.17), the sliding window (R2 = 0.12), and peak signal detection (R2 = 0.11). Model perfor-311

mance varied significantly by seed collection method, particularly for the climate sensitivity312

profile and sliding window approaches, with seed traps consistently yielding higher accuracy313

(Figure 4, Figure S5). For the climate sensitivity profile, the mean R2 was 0.22 when based314

on seed trap data, compared to 0.17 for seed counts and 0.13 for visual crop assessments.315

Similarly, for the sliding window method, seed traps produced a mean R2 of 0.17, while seed316

counts and visual assessments yielded lower values (0.11 and 0.08, respectively).317

Signal strength and cue detection318

The simulation study showed that under very strong signal strength (R2 > 0.75), both the slid-319

ing window and peak signal detection methods accurately recovered the predefined cue win-320
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Figure 3: Effects of reducing time series length on the identified cue window. From the longest time series
(>50 years of observation, N = 15), we randomly sampled 5, 10, 15, 20, 25, or 30 consecutive years, applied each
method to identify the cue window, and repeated this process 50 times. Opening and closing dates identified
in each iteration were aggregated to estimate medians and associated interquartile ranges (IQR) for each pop-
ulation.

dow, with median opening and closing dates closely matching the true values (Fig. 5). The cli-321

mate sensitivity profile and p-spline regression also performed well in this scenario, although322

with greater variability around the estimates. At strong signal strength (R2 = 0.5–0.75), the323

sliding window and peak signal detection methods remained robust, maintaining close align-324

ment with the predefined window and showing only moderate increases in estimation error.325

Both methods continued to perform reasonably well under moderate signal strength (R2 =326

0.25–0.5), with median estimates still near the predefined dates and low to moderate error.327

When signal strength dropped belowR2 = 0.25, the accuracy of all methods declined, but the328

sliding window remained the most reliable, providing estimates still relatively close to the329

predefined window and with comparatively small errors. In contrast, the climate sensitivity330

profile was more sensitive to declining signal strength: it began to deviate from the true win-331

dow already under strong signal conditions, showed increasing error under moderate signal332

strength, and failed to recover the correct window entirely under weak signals.333
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Figure 4: Model performance, measured by R2, based on cross-validation using three blocks for training and
two for validation, repeated over 10 iterations. Results are aggregated across a random sample of five time
series per seed collection method (seed count, seed trap, and visual crop assessment). Pairwise differences
between methods were tested using Wilcoxon tests, with significance levels denoted as "***" (p < 0.001), "**"
(p < 0.01), "*" (p < 0.05), and "NS" for non-significant differences. Model accuracy based on nRMSE is shown on
Figure S5.
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Figure 5: Simulation of window detection accuracy across the four window detection methods. We simulated
10,000 datasets, each spanning 40 years, by generating values from a linear model using randomly drawn pa-
rameters (intercept α, slope β, and error term σ) within ranges derived from empirical data. The predefined
window influencing the biological response was fixed between days 150 and 160. (a) Distribution of simulated
R2 values, representing the strength of the relationship between the biological response and the weather cue.
Simulations were categorized into four signal strength classes: weak (R2 < 0.25), moderate (0.25–0.5), strong
(0.5–0.75), and very strong (R2 > 0.75). (b) Window detection performance across four methods, grouped by
signal strength class. Points represent median estimated opening and closing dates; bars show the IQR (25th
to 75th percentiles). The dashed lines indicate the predefined window range used in the simulations, with an
additional 10-day margin around those dates highlighted with a shaded area.
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Discussion334

When applied to our dataset of 50 time series (each spanning at least 20 years, with a me-335

dian length of 43 years), all four weather cue identification methods successfully detected336

the benchmark cue window, defined as the period just after the summer solstice (Journé337

et al., 2024). This result, reinforced by our simulation study, demonstrates that these meth-338

ods can reliably uncover biologically meaningful cues without requiring prior assumptions339

about their timing, an increasingly valuable capability in masting research. Hypersensitivity340

to weather cues is a central mechanism underlying mast seeding (Kelly, 1994; Bogdziewicz341

et al., 2024b), and a substantial literature has examined correlations between weather vari-342

ation and interannual seed production (Crone & Rapp, 2014). However, much of this work is343

constrained by the use of diverse a priori assumptions about which cues are relevant (Crone344

& Rapp, 2014). At the same time, recent findings also highlight within-species variation in345

the climatic drivers of seed production (Koenig et al., 2020; Bogdziewicz et al., 2023a; Fleurot346

et al., 2023), which is increasingly recognized as important for explaining spatial synchrony347

in reproduction (Bogdziewicz et al., 2023a), improving forecasting accuracy (Oberklamme348

et al., 2025), and climate change biology (Bogdziewicz et al., 2024b). Our results indicate that349

modern data-driven methods offer a framework for identifying key weather cues, providing350

an important step forward for both theoretical understanding and predictive modeling in351

masting systems.352

Our comparison of cue identification methods highlights both their strengths and limita-353

tions, particularly in relation to data characteristics and signal clarity. A key limitation of peak354

signal detection appears to be its sensitivity to isolated, strong correlation peaks, even when355

these occur in biologically less likely periods. This tendency contributed to the larger devi-356

ations from the benchmark cue windows observed with peak signal detection in our analy-357

sis. In contrast, methods such as the sliding window and climate sensitivity profile are more358

robust to such anomalies. The sliding window approach systematically evaluates model fit359

across all possible time windows, while the climate sensitivity profile and P-spline regression360

smooth the signal using generalized additive models, reducing the influence of outliers.361

Accurate detection of cue windows that would align with the benchmark strongly de-362

pends on data availability, with most methods requiring at least 20 years of observations to363

produce consistent results. This requirement is unsurprising given the long-term nature of364

masting, where years of high seed production are interspersed with multiple poor years, typ-365
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ically with an interval of 2–4 years between large-seeding years across species and popula-366

tions (Qiu et al., 2023; Kondrat et al., 2025). Under such dynamics, even a 20-year time series367

may contain only a few large-seeding years, limiting the ability to robustly detect weather368

cues. The need for long-term data is well-established in the field. For instance, widely used369

metrics to measure interannual variation in seed production, such as the coefficient of vari-370

ation (CV), require 10–20 years of data before estimates stabilize (Lobry et al., 2023; Foest371

et al., 2025b). In this context, our findings offer new guidance by showing that even 15 years372

of data may be insufficient for cue identification, particularly when the underlying signal is373

weak, stressing the importance of long-term monitoring for understanding masting dynam-374

ics. Gladly, database compilations are increasingly available (Clark et al., 2021; Hacket-Pain375

et al., 2022; Nigro et al., 2024), making application of such restrictions in analysis (e.g., 15+376

years of data) possible.377

Block cross-validation showed that cue windows identified using the climate sensitivity378

profile and P-spline regression consistently yielded the highest predictive accuracy, partic-379

ularly when models were trained on seed trap data. Accurately determining the timing of380

weather cues is a critical step in improving masting forecasts (Journé et al., 2023; Fleurot381

et al., 2023; Wion et al., 2025; Oberklamme et al., 2025). Forecast performance improves382

when weather predictors are drawn from biologically relevant periods and paired with re-383

liable data on past seed production (Journé et al., 2023; Oberklamme et al., 2025). Among384

the methods tested, climate sensitivity profile and P-spline regression produced the most in-385

formative cues, likely due to their capacity to smooth short-term variability and isolate con-386

sistent weather drivers. Additionally, seed–trap–based monitoring, previously shown to re-387

duce uncertainty in reproductive estimates used for forecasting (Journé et al., 2023), was as-388

sociated with stronger model performance in our analysis. Together, these results highlight389

cue identification as a foundation for robust mast forecasts. Nonetheless, for practical rea-390

sons (i.e., lack of a clear benchmark in other species), our conclusions are based on a single391

species. Thus, our results, including the superiority of seed trap monitoring, may not gen-392

eralize across taxa or ecological contexts, highlighting the need for broader testing across393

systems.394

In summary, all four cue window detection methods performed well, but with impor-395

tant variation in performance across tests (Table 2). In terms of identifying the benchmark396

across all data from all 50 populations studied, peak signal detection performed less reli-397

ably, identifying windows far from the benchmark in several time series. The sample size398
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reduction experiment showed that 20 years of data are recommended for consistent and ac-399

curate cue identification. While acceptable deviations will vary depending on study goals,400

researchers working with only 10–15 years of data may consider using the climate sensitiv-401

ity profile method, which remained relatively robust under such constraints. Nevertheless,402

this approach should be applied cautiously when the relationship between weather and seed403

production is weak, as the climate sensitivity profile may then fail to recover the correct win-404

dow. Taken together, our findings suggest that, depending on the study goals, the climate405

sensitivity profile or sliding window methods offer the best balance of accuracy and robust-406

ness (Table 2). The sliding window approach was more tolerant of reduced data availability407

but tended to produce cues with lower predictive power. P-spline regression also performed408

well under favorable conditions but showed reduced reliability when the sample size was409

limited. We provide an R compendium to facilitate applications of these methods in mast410

seeding research.411

Table 2: Summary of the cue window detection methods across various tests performed in
this study.

Method General
accuracy
vs bench-
mark

Performance
under limited
time series
length

Predictive power of
identified cues (Mean
R2)

Detecting a prede-
fined cue window
under varying signal
strength

Sliding window Very good Good 0.12 Very good
Peak signal de-
tection

Failed in
several
runs

Weak 0.11 Very good

Climate sensitiv-
ity profile

Very good Very good 0.18 Moderate

P-spline regres-
sion

Very good Moderate 0.17 Moderate
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Supplementary Tables and Figures623

Table S1: Median and interquartile range (25th and 75th percentiles) of window opening and
closing dates identified by each weather cue detection method (n = 50 sites per method, ex-
cept for P-spline regression with n = 39 due to convergence issues). Model performance (R2)
is also reported as the median and interquartile range across all time series.

Method Window (Open-Close) Median [IQR] R2

Climate sensitivity profile Opening 490 [473, 492] 0.27 [0.23, 0.32]
Closing 472 [455, 478]

P-spline regression Opening 490 [484, 502] 0.23 [0.12,0.28]
Closing 472 [448, 481]

Peak signal detection Opening 489 [228, 495] 0.31 [0.26, 0.37]
Closing 448 [223, 465]

Sliding window Opening 491 [469, 499] 0.37 [0.31, 0.46]
Closing 450 [398, 477]
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Table S2: Median and interquartile range (25th and 75th percentiles) of window opening and
closing dates identified by each weather cue detection method, shown in relation to time
series length.

Method Length Time series Window Open Window Close

Climate sensitivity profile 5 540 [249, 599] 341 [1, 520]
10 474 [290, 553] 422 [215, 495]
15 475 [326, 599] 439 [284, 576]
20 477 [312, 506] 449 [288, 474]
25 483 [424, 496] 460 [408, 471]
30 483 [420, 495] 461 [404, 470]

P-spline regression 5 37 [25, 599] 1 [1, 569]
10 599 [30, 599] 563 [1, 575]
15 460 [55, 599] 424 [1, 563]
20 460 [363, 581] 424 [351, 539]
25 472 [448, 599] 448 [424, 575]
30 490 [460, 599] 478 [430, 581]

Peak signal detection 5 358 [220, 490] 356 [220, 490]
10 326 [188, 453] 322 [184, 441]
15 314 [165, 482] 308 [163, 464]
20 315 [240, 467] 308 [231, 444]
25 412 [242, 487] 398 [233, 452]
30 456 [269, 494] 438 [246, 475]

Sliding window 5 413 [216, 489] 346 [161, 440]
10 411 [234, 474] 393 [217, 451]
15 416 [275, 486] 396 [250, 451]
20 455 [330, 497] 403 [307, 466]
25 460 [310, 498] 408 [302, 471]
30 489 [442, 500] 424 [307, 475]
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Table S3: Summary of block cross-validation results showing window detection accuracy and
model performance across weather cue detection methods and seed collection techniques.

Method Seed collection Window Median [IQR] R2 nRMSE

Climate sensitivity profile Seed count Closing 476 [453, 494] 0.17 ± 0.13 1.05 ± 0.21
Opening 501 [485, 526]

Seed trap Closing 468 [464, 475] 0.22 ± 0.17 0.99 ± 0.21
Opening 497 [491, 499]

Visual crop Closing 465 [426, 471] 0.13 ± 0.12 1.02 ± 0.23
Opening 495 [486, 498]

P-spline regression Seed count Closing 563 [96, 569] 0.19 ± 0.14 1.08 ± 0.11
Opening 599 [116, 599]

Seed trap Closing 394 [1, 558] 0.17 ± 0.14 1.01 ± 0.12
Opening 406 [24, 599]

Visual crop Closing 545 [1, 560] 0.11 ± 0.14 1.02 ± 0.06
Opening 599 [31, 599]

Peak signal detection Seed count Closing 256 [209, 420] 0.13 ± 0.18 1.18 ± 0.29
Opening 265 [214, 427]

Seed trap Closing 280 [197, 442] 0.09 ± 0.11 1.12 ± 0.21
Opening 283 [202, 462]

Visual crop Closing 359 [188, 450] 0.1 ± 0.09 1.17 ± 0.28
Opening 359 [191, 494]

Sliding window Seed count Closing 260 [174, 482] 0.11 ± 0.15 1.29 ± 0.3
Opening 270 [193, 486]

Seed trap Closing 462 [217, 479] 0.17 ± 0.17 1.15 ± 0.3
Opening 487 [230, 510]

Visual crop Closing 417 [300, 494] 0.08 ± 0.11 1.36 ± 0.35
Opening 433 [392, 497]
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Figure S1: Identified cue windows for 50 European beech populations based on the sliding
window method. The black dashed lines indicate the summer solstice of the seedfall year
(133 days before the reference date, 1st November) and of the previous year (498 days be-
fore). Colors represent the seed collection method used: seed count (orange), seed trap (red),
and visual crop assessment (blue).
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Figure S2: Identified cue windows for 50 European beech populations based on the climate
sensitivity profile. The black dashed lines indicate the summer solstice of the seedfall year
(133 days before the reference date, 1st November) and of the previous year (498 days be-
fore). Colors represent the seed collection method used: seed count (orange), seed trap (red),
and visual crop assessment (blue).
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Figure S3: Identified cue windows for 44 European beech populations based on the P-spline
regression method. PSR failed to detect a window for 6 additional sites. The black dashed
lines indicate the summer solstice of the seedfall year (133 days before the reference date, 1st
November) and of the previous year (498 days before). Colors represent the seed collection
method used: seed count (orange), seed trap (red), and visual crop assessment (blue).
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Figure S4: Identified cue windows for 50 European beech populations based on the peak
signal detection method. The black dashed lines indicate the summer solstice of the seedfall
year (133 days before the reference date, 1st November) and of the previous year (498 days
before). Colors represent the seed collection method used: seed count (orange), seed trap
(red), and visual crop assessment (blue).
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Figure S5: Model performance, measured normalised RMSE, based on cross-validation using three blocks for
training and two for validation, repeated over 10 iterations. Results are aggregated across a random sample
of five time series per seed collection method (seed count, seed trap, and visual crop assessment). Pairwise
differences between methods were tested using Wilcoxon tests, with significance levels denoted as "***" (p <
0.001), "**" (p < 0.01), "*" (p < 0.05), and "NS" for non-significant differences.
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Figure S6: Robustness of window opening and closing identification using block cross validation. We aggre-
gated opening and closing window, iterated over 10 times for each collection methods. We reported median
and IQR for both window opening and closing. Grey shaded area corresponds to June-July of the previous year
with vertical dotted line for summer solstice.
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