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Abstract 44 

Historically, Mediterranean systems, particularly the Mediterranean Basin, have been substantially 45 

impacted by multiple regional-scale disturbances resulting from complex interactive effects of 46 

global-change drivers. However, such effects are typically studied on isolated groups of organisms, 47 

often disregarding how ecological processes such as biotic interactions affect ecosystem responses 48 

to global change. We use the Doñana Protected Area, one of the most important wetlands and 49 

shrublands in Europe, as a well-documented case study to highlight how regional anthropogenic 50 

pressures simultaneously affect various interacting species, creating cascading impacts across 51 

trophic webs on different ecosystems. Using two examples representing the role of key habitat-52 

structuring species on ecosystem processes, the cork oak (Quercus suber) and European rabbit 53 

(Oryctolagus cuniculus), we show how abundance decreases of such key species due to interlinked 54 

direct and indirect anthropogenic pressures can alter multitrophic communities – but not always 55 

negatively, as other species can adapt to the loss of key species. We also use two examples of 56 

species that have flourished under human pressures, the native wild boar (Sus scrofa) and invasive 57 

red swamp crayfish (Procambarus clarkii), and how their abundance increases have had complex 58 

impacts on ecosystems. We then discuss, based on the outcomes of actual conservation actions, 59 

how management targeted at single species or taxa is ineffective for ecosystem functioning, as it 60 

ignores complex interlinks with other components of the system. Instead, the ecosystem-wide 61 

impacts of gain and losses of interacting species serves as an excellent empirical example for the 62 

need for conservation management and research agenda that account for the complexity of global 63 

change in the Mediterranean. 64 

 65 

1. Impacts of interacting global-change drivers in the Mediterranean Basin  66 

Ecosystems in the Mediterranean Basin have been shaped by human activities for millenia 67 

(Blondel 2006; Valladares et al. 2014, Peñuelas et al. 2017), and much of the current biodiversity 68 

is the result, at least in part, of human land use and exploitation (Pausas et al. 2008). Biodiversity 69 

is, however, increasingly threatened by global change drivers such as land-use change, climate 70 

change, invasive species, pollution, and overexploitation of natural resources (Brook et al. 2008) 71 



(IPBES 2018) (Fig. 1). For instance, over the past two decades, the intensification of agriculture 72 

and expansion of urban areas (Miranda et al., 2018) has led to habitat loss and fragmentation, 73 

excessive withdrawal of groundwater, high levels of pollution of coastal ecosystems and altered 74 

fire regimes (PBES, 2018; Bourlion and Ferrer, 2018; Jaureguiberry et al. 2022). Thus, land-use 75 

change has been proven the strongest driver of global biodiversity loss (Jaureguiberry et al. 2022), 76 

whose effects are moreover exacerbated by climate change. In the Mediterranean region, annual 77 

mean temperatures are already 1.5 ºC above their preindustrial averages and are expected to 78 

increase by up to 5.6 ºC by 2100 under the most pessimistic representative concentration pathway 79 

of emissions (RCP 8.5; MedECC et al. 2020); while winter precipitation has decreased by 25-40 80 

% over the past two decades (Tuel & Eltahir 2020). The severe changes in climate put further 81 

stress on altered or exploited natural communities (Díaz et al. 2019), such that Mediterranean 82 

biomes affected by a changing climate are projected to see a 30% reduction in species richness in 83 

human-modified landscapes compared to natural habitats (Newbold et al. 2020). This makes the 84 

Mediterranean, along with the tropics, the most sensitive biomes to biodiversity loss (Newbold et 85 

al. 2020).  86 

 87 

Both land-use and climate change in the Mediterranean are modulating other threats on 88 

biodiversity, such as the impacts of biological invasions or environmental pollution (Stachowicz 89 

et al. 2002; Green et al. 2017; Taylor et al. 2021; Gallardo et al. 2024). For instance, human 90 

infrastructure has facilitated biological invasions, and the western Mediterranean Basin is already 91 

among the regions with the highest invasion threats (Early et al. 2016). The levels of environmental 92 

contaminants or their toxicity can also increase under predicted rises in extreme events such as 93 

fires, droughts and floods (Souza et al. 2016; Nunes et al. 2018; MedECC, 2020). These 94 

interactions can then facilitate the spread of invasive species (Crooks et al. 2011). These examples 95 

highlight the complex ways in which regional pressures from interacting global-change drivers 96 

affect natural ecosystems in the Mediterranean Basin. However, past and current research has 97 

typically assessed the effects of a single global-change driver on a limited number of species or 98 

overlooked non-additive effects of multiple drivers and their impacts across the ecosystem 99 

(Peñuelas et al. 2004; Giannakopoulos et al. 2009). Here, we use one of the most well-studied 100 

examples of threatened Mediterranean ecosystems, the Doñana Protected Area (hereafter Doñana) 101 

in Southern Spain, to first highlight how several, simultaneously acting, regional pressures from 102 



global-change drivers affect multiple species across trophic levels. Using evidence from the 103 

numerous studies about Doñana, we then show how these complex global-change effects can 104 

produce cascading impacts, from populations to communities up to whole ecosystems, and discuss 105 

the need for a shift in the management paradigm towards conservation that recognizes and 106 

integrates such complex impacts.  107 

 108 

2. Doñana as a hotspot for Mediterranean biodiversity and effects of global-change drivers  109 

The Doñana area is located in southwestern Spain, around the Guadalquivir estuary. It originally 110 

included a marshland in the left bank of the river which has now been totally lost (Fig.1). Doñana’s 111 

ecological value has been recognised for centuries, but it was only in 1963 when the first hectares 112 

of land were protected. The Doñana National Park was created in 1969, and it was classified as a 113 

UNESCO Biosphere Reserve in 1980 and as a UNESCO World Heritage Site in 1994. The Doñana 114 

Natural Area, which corresponds to the Biosphere Reserve, includes the National Park, the Natural 115 

Park, formed by some peripheral areas of different habitats surrounding the National Park, and 116 

areas with lower level of protection in contact with agricultural areas (Fig. 1). It is considered a 117 

Mediterranean-climate region with a subhumid climate characterized by variable rainy seasons 118 

historically centred in autumn and spring but shifting towards winter over the last decades, and hot 119 

and dry summers (Pérez-Ramos et al. 2017; Paniw et al. 2023). Doñana integrates a large variety 120 

of terrestrial and aquatic ecosystems, including pine and cork oak forests, shrublands, grasslands, 121 

sand dunes, and marshlands with different levels of salinity. This mosaic of habitats is the main 122 

reason for its great biodiversity. Over 1,300 species of plants, including 170 endemisms, have been 123 

identified, 400 of which are associated with wetlands (Díaz-Delgado et al. 2024; Díaz-Paniagua et 124 

al. 2010). The diversity of terrestrial vertebrates is also remarkable, with 50 species of mammals, 125 

over 300 species of birds, and 25 species of reptiles, including emblematic species such as the 126 

Spanish imperial eagle (Aquila adalberti) and the Iberian lynx (Lynx pardinus) (Green et al. 2016). 127 

The aquatic fauna is also highly diverse, with rich communities of continental fishes (27 species) 128 

and amphibians (11 species), as well as macro- and micro-invertebrates occurring mostly in a 129 

complex network of temporary and permanent ponds. In addition, Doñana hosts numerous 130 

endemic terrestrial invertebrate species (Cárdenas et al. 2024; Serediuk et al. 2024; Wood et al. 131 

2022). 132 



 133 
Figure 1: Representation of the historical (a) and present (b) landscape of the Doñana National 134 

Park, the Doñana Natural Area, and the surrounding influence zone. The historical representation 135 

is a recreation of the landscape before the major anthropogenic alterations started (i.e. ca. 17th 136 

century) based on topographical criteria and historical information (for the marshland), and with 137 

an arbitrary mosaic of native habitats. The present landscape is based on a reclassification of 138 

Corine Land Cover data. 139 

 140 

 141 

Doñana cannot be fully understood without considering its long history of anthropogenic pressures 142 

(Martín-López et al. 2011; Santamaría & Martin-Ortega 2023) (Figs. 1 & 2). Before the creation 143 

of the National Park in 1969, it was mostly a hunting reserve. But centuries of deforestation 144 

dramatically modified the landscape. In the 17th century, the climax forest dominated by cork oak 145 

(Quercus suber) started being heavily exploited for the extraction of firewood and charcoal 146 

(Corona et al. 1988). In the 18th century, official documents already report extensive plantations 147 

of pine trees in some areas, which were progressively extended until the 20th century. Over the 148 

last century, most of the remaining native forest was replaced (Fig. 2) (Granados Corona 1987): 149 

first, by extensive plantations of non-native Eucalyptus sp. (1940-1990), and then, in an attempt 150 

to eradicate the eucalypt and alleviate the damages these tree produce in terrestrial ecosystems, by 151 

plantations of native pine species, i.e., Pinus pinea (reviewed in Román Sancho 2009). 152 

 153 



The history of direct and indirect human pressures on Doñana has led to major landscape 154 

transformations. More than 80% of the original marsh surface area has been transformed, 155 

representing one of the largest losses of marshes in Europe (Ruiz et al. 2015) (Fig. 1). Between 156 

1956 and 2007, urbanized areas in the surroundings of the protected area increased by 590% and 157 

irrigated fields by 126%, whereas scrubland area diminished by 44%, wetlands by 40%, and 158 

grasslands by 20% (Palomo et al. 2014). Road density (mainly unpaved) has doubled since 1956, 159 

currently covering approximately 4% of the protected area and causing habitat fragmentation 160 

(Román et al., 2010). Although the hydrological alterations in Doñana’s ecosystems slowed down 161 

after the creation of the National Park (Zorrilla-Miras et al. 2014), an open conflict over water use 162 

emerged since the 1980s, causing a persistent tension between economic development, including 163 

urbanization (Fig. 1), and conservation efforts for expanding the protected area, which increased 164 

to more than 100,000 ha (Gómez-Baggethun et al. 2012) (Fig. 1).  165 

 166 

The profound land transformation not only destroyed natural habitats but has also led to increased 167 

pollution pressures (Fig. 1) (Paredes et al. 2021). In addition, a tailing dam collapsed at the mine 168 

of Aznalcóllar in 1998 (60 km north of Doñana), leaking away six million m3 of acidic water and 169 

mud enriched in heavy metals into the Guadiamar river, which used to feed part of the Doñana 170 

marshes (Grimalt et al. 1999). This pollution event affected 2,754 ha within Doñana Natural and 171 

National Parks and led to a mass die-off of fishes and aquatic invertebrates, whereas many 172 

terrestrial species suffered long-lasting health effects and habitat loss (Meharg et al. 2002; Baos et 173 

al. 2006; Sánchez-Chardi et al. 2009). 174 

 175 

Currently, excessive and unsustainable groundwater extraction, up to 20 m in the deep aquifer, is 176 

the biggest threat to Doñana's ecosystems (de Felipe et al. 2023, Green et al. 2024). This is mostly 177 

due to intensive agriculture and urbanization (Fig. 1) in adjacent areas that heavily exploit the 178 

aquifer that feeds Doñana (Serrano & Serrano 1996; Blade et al. 2010) (Sousa et al. 2007), but 179 

climate change is aggravating the water-deficit problem (Guardiola-Albert & Jackson 2011) (Fig. 180 

1). Temperatures have been increasing in the last three decades, while precipitation has decreased 181 

in the last decade; and these trends are projected to continue into the future (Fig. 2; Supporting 182 

Material S1). This conjunction of pressures is resulting, among others, in lower recharges to the 183 

aquifer, lower water inputs into ponds and marshes, poorer water quality owing to greater salinity 184 



and pollutant concentrations, and lower soil moisture (Silva Junior et al. 2010; Guardiola-Albert 185 

& Jackson 2011; Fernández-Delgado 2017; Paredes et al. 2021). Consequently, multiple impacts 186 

to temporary ponds and marshes, as well as to terrestrial vegetation, are already evident (Green et 187 

al. 2024). For example, numerous temporary ponds (59.2%) have not flooded since 2013, and 188 

many are expected to disappear (de Felipe et al. 2023). In July 2024, for the first time since we 189 

have records, the biggest permanent lagoon in Doñana totally dried up for the third consecutive 190 

summer. 191 

 192 

 193 
Figure 2: Conceptual representation of the relative intensity of the different drivers impacting 194 

Doñana over time. Note that the width (i.e., intensity) cannot be compared between drivers. The 195 

vertical dashed line marks the beginning of the protection of the area in the mid-60s: A. Protection 196 

of the first hectares of land (1963) B. Creation of the Doñana National Park (1969); C. 197 

Classification as a UNESCO Biosphere Reserve (1980); D. Designation as UNESCO World 198 



Heritage Site (1994). Numbers represent notable events (see the main text for a more detailed 199 

description): (1) Beginning of international trading in which the Guadalquivir estuary served as 200 

the "gateway to the Indies/Americas"; (2) Large scale conversion of natural land to rice fields and 201 

other irrigated crops; (3) Increased spread of non-native vegetation (Eucalyptus sp.); (4) Arrival 202 

of Myxomatosis; (5) tourism and urban expansion; (6) Introduction of the red swamp crayfish; (7) 203 

Arrival of the Rabbit Hemorrhagic Fever; (8) Large scale conversion of land for berry production; 204 

(9) Aznalcóllar mine spill. 205 

 206 

Biological invasions represent another strong stressor in Doñana and exacerbate the combined 207 

challenges of land-use and climate change (Fig. 2). Multiple invasions have occurred in both 208 

aquatic (e.g., marshes and ponds) and terrestrial (e.g., shrubland, grassland) ecosystems, with a 209 

range of examples from viruses to vertebrates (see Supporting Material S2). In aquatic ecosystems, 210 

shorter wetland hydroperiods, resulting from aquifer extraction and reduced rainfall, have 211 

facilitated the establishment of tolerant and fast-growing aquatic species, such as the water 212 

boatman Trichocorixa verticalis (Céspedes et al. 2019); and increased phosphorus loading has 213 

facilitated the introduction of the invasive aquatic fern Azolla filiculoides (García-Murillo et al. 214 

2007; Espinar et al. 2015), producing cascading trophic negative impacts on macrophytes and 215 

amphibians (Pinero-Rodríguez et al. 2021). Warmer temperatures have benefited other aquatic 216 

invasive species with wide physiological tolerances over native biodiversity (Lejeusne et al. 2014; 217 

Espinar et al. 2015). Moreover, fish communities in the Doñana marshes are now almost entirely 218 

composed of invasive species (Moreno-Valcárcel et al. 2013). Intended introductions, such as 219 

those of red swamp crayfish Procambarus clarkii for aquaculture (Oficialdegui et al. 2020, see 220 

below), and unregulated activities, such as intensive hunting and poaching of wild ungulates and 221 

native predators (Revilla et al. 2001; López et al. 2014), are also promoting invasive species 222 

establishment. In terrestrial ecosystems, pollution and human-mediated dispersal have facilitated 223 

the spread of invertebrate invaders, such as the Argentine ant (Linepithema humile) (Carpintero et 224 

al. 2005), and generalist, stress-tolerant invasive vegetation from areas surrounding Doñana (the 225 

number of catalogued non-native plant species is at least 99; Valdés 2015). Of serious concern is 226 

also the arrival of pathogenic organisms, such as the invasive oomycetes Phytophthora cinnamomi 227 

and Pythium spiculum that infect and cause defoliation and root necrosis in cork oaks (see below) 228 

(Vita et al. 2013; González et al. 2020). 229 



 230 

The above-described regional pressures exerted by interacting global-change drivers have 231 

impacted Doñana’ biodiversity. The hydrological alterations and increased aridity have led to 232 

substantial decreases in primary production (Alcaraz-Segura et al. 2009, Green et al. 2024), as well 233 

as to decreased food quality and quantity for herbivores and frugivores that affect animal 234 

phenology (e.g., Campo-Celada et al. 2022) and fitness components (Millán et al. 2021; Giralt-235 

Rueda & Santamaria 2021; Lloret et al. 2016; Pérez-Ramos et al. 2017; Paniw et al. 2021b). Also, 236 

climate change has been linked to the local extinction of some common species, such as the 237 

Eurasian hobby (Falco subbuteo) (Sergio et al. 2021) and to a higher prevalence of some disease 238 

vectors (Roiz et al. 2014). On the other hand, species more tolerant to salinity, heat, and/or 239 

concentration of nutrients have increased (Rouco et al. 2011; Espinar et al. 2015; Green et al. 2017; 240 

González-Ortegón et al. 2020). In what follows, we describe how the plethora of stressors and their 241 

interactions have affected four key species in Doñana (Fig. 3) that led to cascading effects across 242 

taxa, trophic webs, and ecosystems. 243 

 244 

3. Cascading impacts of global-change drivers on biodiversity: four case studies in Doñana 245 

 246 

Doñana is an intensively studied natural area. The effects of direct or indirect human pressures on 247 

its ecosystems have been described in 395 peer-reviewed articles (ca. 40% of all scientific 248 

publications about Doñana on the Web of Science until the end of 2024). This makes Doñana an 249 

ideal system to describe the impacts of global-change drivers on populations and communities of 250 

interacting species, and how these in turn affect ecosystem processes and services. 251 

To highlight the importance of understanding the complex interactions of abiotic and biotic factors 252 

on Mediterranean ecosystems, we focus on four well-documented case studies in which the 253 

available scientific literature identifies both trophic and co-extinction cascading effects in Doñana 254 

(Fig. 3). The selected species, i.e., cork oak, European rabbit, wild boar, and red swamp crayfish 255 

are important elements in different ecosystems (from aquatic to terrestrial), play a variety of 256 

ecological roles within the ecosystems (predator, prey, host, structuring agents of the physical and 257 

biotic characteristics of habitats) and reflect different responses to global-change drivers (negative 258 

or positive) across different timescales (centuries to decades; see abundance trends of these species 259 

in Fig. 3). We rely on a wide scientific literature to identify major impacts on these species and 260 



infer cascading effects through biotic interactions with other species, including different trophic 261 

levels. Such cascading effects have substantial impacts across food webs, causing for example the 262 

collapse of top predator species, and transforming the ecosystems and even the landscape. 263 

 264 
 265 

Figure 3: Conceptual timeline of the impacts of the drivers on the relative abundance trends of the 266 

four case study species. Note that line slopes and levels cannot be compared between species. 267 

Some of the most relevant impacts for each species are represented with arrows. The cork oak 268 

(Quercus suber) and the European rabbit (Oryctolagus cuniculus) show negative trends, whereas 269 

the wild boar (Sus scrofa) and the red swamp crayfish (Procambarus clarkii) overall show positive 270 

trends. 271 

 272 

 273 

 274 

3.1 Habitat-structuring species negatively affected by global change: the case of cork oaks 275 

and European rabbits 276 

 277 

The cork oak is an emblematic long-lived evergreen tree of the Mediterranean Basin that provides 278 

valuable economic and cultural services to humans, such as cork and high-quality fodder for 279 

domestic animals (Aronson et al. 2012). It also provides food, shelter, and nesting support for 280 



many species (Valverde 1967). After centuries of logging, cork oak populations have decreased in 281 

Doñana from approximately 16,000 individuals in 1600 to a few hundred isolated centenary trees 282 

at present (Corona et al. 1988; Castroviejo 1993) (Fig. 3). The remaining individuals are vulnerable 283 

to emerging local threats such as unsustainable seed predation, seedling browsing, or trampling by 284 

wild and domestic ungulates (Venero Gonzalez 1984; Herrera 1995), which have become more 285 

abundant under land-use change (including the wild boar Sus scrofa, see below) (Fig 4A). These 286 

local pressures can also directly collapse the natural regeneration of cork oak (Herrera 1995). The 287 

regional effects of land-use change are interacting with effects of climate change, especially 288 

prolonged droughts (Corcobado et al. 2014; González et al. 2020), and invasive pathogens that 289 

negatively affect cork oak stands (Robin et al. 2001; Homet et al. 2019). In particular, the invasive 290 

pathogen cinnamon fungus Phytophthora cinnamomi has affected several cork oak populations in 291 

Doñana (Vita et al. 2013) and across the Iberian Peninsula (Brasier 1992; Gómez-Aparicio et al. 292 

2012; Moricca et al. 2016) (Fig. 4A). The remaining Doñana’s cork oaks have been home, until 293 

few years ago, to large colonies of waterbirds whose droppings alter the chemistry and microbial 294 

community of the soil, ultimately resulting in higher cork oak mortality (García et al. 2011; 295 

Domínguez et al. 2017). Although we do not have a documented history of impacts caused by the 296 

loss of cork oak forest, several historical accounts, including Valverde (1967), support the 297 

conclusion that the loss of cork oaks meant the destruction of an entire biome once dominating the 298 

terrestrial landscape of Doñana. The different life stages of a cork oak tree once provided habitat 299 

and shelter for reptiles, birds, and mammals, including iconic species that are nowadays very 300 

scarce in Doñana, such as the Iberian lynx, the Spanish imperial eagle and many other bird species 301 

(see cascading effects on top predators and waterbirds in Fig. 4A). More than half a dozen species 302 

were observed to breed at the same time in a single cork oak tree (Valverde 1967). This highly 303 

diverse biome is not observed in the (currently) dominating pine forest (Valverde 1967; Rogers & 304 

Myers 1980), which suggests the magnitude of biodiversity depletion following the cork oak forest 305 

loss. Other ecosystem services, such as carbon sequestration, water quality regulation, and 306 

protection from erosion, have been also arguably severely affected by the decline of this foundation 307 

species (Marañón et al. 2012).   308 

 309 

Just like cork oaks, the European rabbit (Oryctolagus cuniculus) plays a key ecological role in 310 

southwestern Mediterranean areas, including Doñana (Delibes-Mateos et al. 2008). Rabbits alter 311 



chemical and physical soil properties through their latrines and their digging activities (Willott et 312 

al. 2000; Eldridge & Simpson 2002), and disperse seeds of numerous plant species (Delibes-313 

Mateos et al. 2007). They are also an important prey for >30 species, including the threatened 314 

Spanish imperial eagle and Iberian lynx (Veiga & Hiraldo 1990; Delibes-Mateos et al. 2008). Once 315 

extremely widespread in Doñana, rabbit populations have declined by > 90% since the early 2000s 316 

(Moreno et al. 2007; Delibes-Mateos et al. 2009). This decline can only be understood in light of 317 

complex regional manifestations of interacting global-change drivers, including habitat loss and 318 

introduced diseases (Fig. 4B). Rabbits have suffered mass mortality events due to diseases since 319 

the 1950s, first myxomatosis and then, aggravating the population declines under myxomatosis, 320 

rabbit hemorrhagic disease virus (RHDV in 1988 and RHDV2 in 2012; Moreno et al. 2007; 321 

Delibes-Mateos et al. 2009, 2014). RHDV caused mortality rates of 55-75% (Villafuerte et al. 322 

1995; Tablado et al. 2012), whereas RHDV2 was linked to a decrease in abundance of > 80% in 323 

2013 in Doñana (Delibes-Mateos et al. 2014; Monterroso et al. 2016). Rabbit populations have 324 

been slow to recover from these population declines (Calvete 2006). Climate change may further 325 

compromise population recovery, since decreasing rainfall in southwestern Spain is leading to 326 

shorter and less successful breeding seasons (Tablado et al. 2009; Tablado & Revilla 2012). 327 

Another important factor precluding the recovery of rabbit populations is that suitable habitats 328 

(i.e., mixture of pasture for feeding and shrublands for sheltering) are increasingly being lost in 329 

Doñana due to a higher frequency of drought under climate change, high herbivory pressure 330 

(including introduced and domestic species), and land use change causing groundwater 331 

overexploitation (Moreno & Villafuerte 1995; Cabezas & Moreno 2007; de Felipe et al. 2023; 332 

Paniw et al. 2023). Past declines in rabbit populations have had severe negative effects on specialist 333 

predator populations, and these effects are projected to continue (Fordham et al. 2013) (Fig. 4B). 334 

Declines in rabbit populations by 60–70% have been associated with decreases of 65.7% in Iberian 335 

lynx and 45.5% in imperial eagle fecundities (Monterroso et al. 2016). The population declines of 336 

these highly specialized apex predators favor mesopredator release (Fig. 4B) (Palomares et al. 337 

1995; Jiménez et al. 2019), which, in the absence of rabbits, may increase predation pressures on 338 

other species (Delibes-Mateos et al. 2007). Furthermore, the cascading effects of rabbit declines 339 

on decreasing nutrient availability, which affect plant community composition and landscape 340 

structure, are well documented in Doñana (Delibes-Mateos et al., 2008). Furthermore, since rabbit 341 

pellets importantly affect the levels and distribution of soil nutrients and fertility (Delibes-Mateos 342 



et al. 2008), rabbits declines in Doñana are likely to have negative cascading effects in plant 343 

community composition and landscape structure.  344 

 345 

346 
Figure 4: Summary of the impacts of global-change drivers on the four case study species and 347 

associated cascading effects. Each panel builds on a simplified trophic web of Doñana that 348 

illustrate several hierarchical trophic levels, while additional biotic interactions are also shown, 349 

such as nesting or interference interactions. Icons represent different functional groups, including 350 

predators, omnivores, herbivores, and primary producers (see Fig. S3.1 for details). Arrows 351 

indicate the impacts of global-change drivers (dotted lines) and biotic interactions (solid lines) 352 

affecting the case study species (highlighted with an orange border) and cascading effects on 353 

species interacting directly with the focal species. Arrow color denotes effect direction: blue for 354 

positive and red for negative effects on or from the focal species. The figure highlights the 355 



complexity of how global-change drivers and ecological interactions jointly propagate 356 

disturbances throughout the ecosystem, as discussed in detail in the main text. This representation 357 

should not be interpreted as a typical trophic web but as a representation of the evidence-based 358 

interconnections among global-change drivers and species/functional groups discussed in the text.   359 

 360 

3.2 Habitat-structuring species positively affected by global change: the case of wild boars 361 

and red swamp crayfish 362 

The wild boar can substantially affect ecosystems both positively and negatively depending on 363 

population densities. Wild boar behaviors such as uprooting, digging, and trampling can change 364 

soil structure and thus decomposition and nutrient cycling (Macci et al. 2012; Wirthner et al. 2012), 365 

as well as facilitation of seed recruitment for some species, which can ultimately affect plant 366 

species composition (Lowe et al. 2000; Barrios-Garcia & Ballari 2012). As in other European 367 

countries, wild boar populations have been increasing since the 60’s in Spain (Sáez-Royuela & 368 

Tellería 1986; Valente et al. 2020) due to the interplay between human activities and climate 369 

change (Melis et al. 2006; Acevedo et al. 2011). The overabundance of feeding resources derived 370 

from anthropogenic activities (Castillo-Contreras et al. 2021; Markov et al. 2022) is often 371 

accompanied by rising temperatures and milder winters, favoring a higher reproductive success 372 

especially in Central and Northern Europe (Melis et al. 2006; Vetter et al. 2015). The 373 

disappearance of its main natural predator, the wolf Canis lupus, across many regions (including 374 

Doñana; Clavero et al. 2023) since the beginning of the 20th century probably also promoted 375 

increased wild boar abundance (Melis et al. 2006; Rodriguez-Recio et al. 2022).  376 

 377 

In Doñana, wild boars have always been widely distributed (Valverde 1967; Venero Gonzalez 378 

1984) and actively hunted by landowners and poachers (Acosta Naranjo 2004). The local 379 

populations likely increased after the establishment of the protected area and the reduction of both 380 

hunting and poaching activities (Mulero Mendigorri 1986; Castroviejo 1993). More recently, since 381 

the end of the 20th century, this species has been regularly culled in order to control bovine 382 

tuberculosis (Gortázar et al. 2008; Barroso et al. 2020), which caused its local populations to 383 

remain stable from 2005 to 2021 (ICTS-RBD, 2022). Climate change will likely increase the risk 384 

of transmitting diseases to other wild and domestic ungulates because the number of watering holes 385 

is projected to decrease, thus bringing wild boars into contact with other species more frequently 386 



(Barasona et al. 2014; Magallanes et al. 2023). At the same time, the management of wild boar 387 

populations in Doñana does not seem suitable to mitigate the negative effects that increasing 388 

densities had over the years on several species locally threatened by multiple global-change drivers 389 

(Fig. 4C). For instance, high densities of wild boars contributed to severely reducing recruitment 390 

of cork oaks due to the consumption of acorns (Herrera 1995). Rooting behavior has also resulted 391 

in a reduction of 9% of the total herbaceous production of Doñana (Fernández-Llario, 1996), and 392 

now this overgrazing, together with groundwater overexploitation (de Felipe et al. 2023) and 393 

climate change (Paniw et al. 2023), are drastically threatening local plant communities and animal 394 

populations relying on them (Giralt-Rueda & Santamaria 2021). Additionally, wild boars act as 395 

opportunistic predators of ground-nesting birds and their clutches and nestlings in Doñana 396 

(Santoro et al. 2010), but also amphibians (Díaz-Paniagua et al. 2007) and young rabbits (Venero 397 

Gonzáles 1982). This predation has even been suggested to negatively affect rabbit abundances 398 

and recovery (Virgós et al. 2011) (Fig. 4C). Overall, wild boars have a negative effect on individual 399 

species, which, together with the local actions of global change drivers, impact the entire 400 

ecosystems of Doñana. 401 

 402 

The red swamp crayfish Procambarus clarkii is one of the most studied and controversial invasive 403 

species worldwide (e.g., Souty-Grosset et al. 2016: Guareschi et al. 2024). Native to North 404 

America, it currently represents a common species in Doñana since the intended introduction into 405 

nearby rice fields in 1974 (Delibes & Adrián 1987; Oficialdegui et al. 2020). This species has 406 

spread across various freshwater environments in Doñana (Cruz & Rebelo 2007; Garcia-Murillo 407 

et al. 2025), though water shortages and hydroperiod alterations significantly impact its seasonal 408 

distribution (Arribas et al.  2014), highlighting the need for further research in the context of 409 

climate change. The red swamp crayfish affects native communities through direct consumption 410 

of macrophytes and consequent increase in water turbidity (Garcia-Murillo et al. 2025), which 411 

cascades to upper trophic levels, for example by decreasing food availability for herbivorous 412 

waterbirds (Rodríguez et al. 2005) (Fig. 4D). This omnivore-polytrophic species also consumes 413 

microbial and plant detritus, invertebrates (Gherardi 2006; Loureiro et al. 2015), small fish 414 

(Gutiérrez-Yurrita et al. 1998; Alcorlo et al. 2004) and amphibians (Cruz et al. 2008; Arribas et al.  415 

2014), which can substantially decrease the local viability of the latter group (e.g., Cruz et al. 416 

2008). Importantly, this species is also a major vector and reservoir of invasive pathogens, such as 417 



the fungi Aphanomyces astaci and Batrachochytrium dendrobatidis, which exacerbate the 418 

devastating effects on amphibians (Oficialdegui et al. 2019) (Fig. 4D). On the other hand, positive 419 

feedback loops have emerged, as some native species in Doñana have benefited from the 420 

introduction of the invasive crayfish (Fig. 4D). For instance, over 60% of native generalist 421 

predators, mostly piscivorous waterbirds but also raptors (Tablado et al. 2010) and some mammal 422 

species, e.g., European otter Lutra lutra and wild boar (Delibes & Adrián 1987), have adapted 423 

their diet to prey on this abundant invader, increasing, in some cases, their local abundance 424 

(Tablado et al. 2010; but also see Ramo et al. 2013). Therefore, this invasive species has had far-425 

reaching impacts spanning both aquatic and terrestrial ecosystems, with parallel economic 426 

consequences, and addressing its multiple implications would benefit from a multidisciplinary 427 

approach. 428 

 429 

4. A way forward for the conservation of Mediterranean ecosystems 430 

 431 

Global change drivers are becoming more severe and interact synergistically (e.g., Northrup et al. 432 

2019; Giejsztowt et al. 2020), and, as illustrated above in the case of the Doñana Protected Area, 433 

many species such as the cork oak or the European rabbit are succumbing to the new conditions 434 

(section 3.1), while others such as the wild boar or the red swamp crayfish may thrive in these 435 

altered environments (section 3.2). At the population level, impacts of global change are 436 

manifested primarily by decreasing or increasing individual fitness, leading in turn to population 437 

reduction and even local extinction (Paniw et al. 2021a). When scaling up to communities and 438 

ecosystems, the direct and indirect interactions between species may be affected by these 439 

population changes and result in impacts beyond single species. This is particularly relevant for 440 

species that are considered ecosystem engineers, such as our four case studies. Ecosystem 441 

engineers may directly affect just a few ecological processes or species. Yet, because of their 442 

location within the food web they may have myriads of indirect effects on many other species, and 443 

alterations in their abundances can have ecosystem-wide cascading impacts (Loreau & de 444 

Mazancourt 2013). 445 

 446 

Doñana is a living laboratory and an excellent example for the wider Mediterranean on how the 447 

intensity of the multiple interacting human pressures, and their cascading effects on ecosystems, 448 



can influence future conservation practices. The conservation of Doñana transcends its regional 449 

value due to the role it plays in global conservation (Navedo et al. 2022; de Felipe et al. 2024), 450 

holding a great diversity of Mediterranean ecosystems and endemic species and being a key 451 

migratory hotspot for birds (Valverde 1967; Camacho et al. 2022). Our case studies, documenting 452 

the impacts of global change from single species to the ecosystem level, illustrate the importance 453 

of implementing an ecosystem-based conservation approach focused on ecological processes and 454 

restoration of habitats and the functionality of interactions. As discussed below, many conservation 455 

interventions in Doñana targeting specific species have not been successful, highlighting the need 456 

for more ambitious and holistic approaches. Doñana also emphasizes that in the Mediterranean, 457 

where humans have dominated landscapes for millennia, such approaches must include the co-458 

design of strategies with multiple stakeholders to increase the chances of success of ecosystem-459 

based conservation approaches (Perino et al. 2022; Fisher et al. 2023). With the following 460 

discussion we intend to highlight some critical elements to be considered in future conservation 461 

and land management planning that are often overlooked when targeting single species or taxa or 462 

omitting the human dimension. 463 

 464 

4.1 Conservation challenges and solutions 465 

 466 

A simplified, single-species focus in conservation, decoupled from wider ecosystem processes, 467 

may decrease the resilience of Mediterranean systems to ongoing global change (Verissimo et al. 468 

2011). In the case of species such as the cork oak, where only small fragments of previous 469 

ecosystems remain and many species have adapted to the loss of the once dominant species 470 

(Fedriani et al. 2017), an important conservation dilemma is: should we restore what once was the 471 

climax (forested) community, or make sure that species that have replaced cork oaks and their 472 

habitat remain resilient to climate change? As another example, the conservation of the Iberian 473 

lynx and Spanish imperial eagle has relied on reinforcing rabbit populations. Yet, rabbit 474 

restockings have had a limited effect on the recovery of their predators (Carro et al. 2019). This is 475 

in part due to the ongoing pressures from global-change drivers on rabbit populations, which limit 476 

rabbit densities hence jeopardising efforts to increase the population densities of their predators 477 

(Ferrer & Negro 2004). A more integrative landscape management approach to conservation may 478 

put more emphasis on restoring the habitat suitability for the rabbit populations, for instance 479 



through the restoration of the natural hydrology of the area, including the temporary ponds that 480 

once provided feeding pastures to rabbits well into the summer and stricter active management of 481 

(semi)domestic ungulates and wild boars to prevent overgrazing. Such actions would improve the 482 

resilience of multiple species to future pressures (Cabezas & Moreno 2007; D’Amico et al. 2014). 483 

In Doñana, like in other Mediterranean ecosystems, the many decades of interactive global-change 484 

drivers may be leading natural systems towards ecological thresholds beyond which the resilience 485 

of the ecosystem is irreversibly damaged (e.g., Leadley et al. 2014; Rocha et al. 2015). Recently, 486 

appeals have been made for more integrated research and conservation strategies, specifically 487 

aimed to avoid reaching these thresholds (Green et al. 2017). Such strategies increasingly focus on 488 

ecosystem integrity, as well as on the integration of the social and economic dimensions of 489 

biodiversity conservation. The preservation and restoration of ecosystem integrity, resilience and 490 

connectivity is the first goal of the Kunming-Montreal Global Biodiversity Framework (CBD 491 

2022). Conservation approaches that allow the achievement of this goal, may contemplate the 492 

metacommunity framework (Chase et al. 2020; Gawecka & Bascompte 2023) in order to link 493 

global change with impacts on ecological processes and biodiversity. The operationalization of 494 

those frameworks to manage and restore ecological processes is challenging but could lead to a 495 

more complete, integrative and effective conservation strategy (Ladd et al. 2018; Villalva et al. 496 

2025). For example, although the current active management (culling) of ungulates in Doñana is 497 

arguably needed to ensure healthy habitats, that might not be a sustainable strategy in the long 498 

term. Rather, natural predation may be a more sustainable long-term management strategy (Nores 499 

et al. 2008; Tanner et al. 2019). This would require managing ecosystem dynamics, including 500 

ambitious connectivity planning, that would allow wolves to recolonize the area from the North. 501 

Yet, wolf recolonization would likely also cause social conflicts, which would need to be 502 

addressed through environmental education. 503 

 504 

Finally, the anthropogenic origin of the multiple pressures affecting the biodiversity of the iconic 505 

Doñana Protected Area and, more generally, the entire Mediterranean region, together with the 506 

deep traditional human uses of natural land, highlights the importance of considering the human 507 

dimension of conservation. Broad stakeholder engagement is essential to limit conflict and 508 

maximize both social and ecological outcomes (Fisher et al. 2023). In the case of Doñana, this has 509 

already happened successfully in the past. For example, stripping the eucalypt plantations, as well 510 



as two restoration actions that recovered 15% of the current Doñana marshland area, involved the 511 

active collaboration of political, economic, and conservation parties. Currently, efforts should 512 

reconcile mainstreaming biodiversity conservation with the agricultural and tourism sectors by 513 

informing and communicating on the services that a healthy ecosystem provides to the region. A 514 

striking example is the overexploitation of the Doñana’s aquifer, that is leading Doñana to higher 515 

levels of aridity (Green et al. 2024). This is not good news for any of the interested parties, but 516 

only the convergence of conservation, political, and local stakeholders (in the agricultural and 517 

touristic sectors) interests could lead to a long-term sustainable use of the Doñana aquifer. At the 518 

same time, preserving the aquifer can only be an effective conservation strategy if pollution and 519 

nitrification spillover from agricultural areas surrounding the Protected Area are also heavily 520 

restricted – highlighting the need to holistically manage different global-change drivers in Doñana. 521 

Such efforts should also be accompanied by higher collaborations of the administrations playing a 522 

role in the area, stronger governance and prosecution of illegal activities, as well as more 523 

integration of expert technical advice in the management plans (Fernández-Delgado 2017). 524 

 525 

4.2 Knowledge gaps and a future research agenda 526 

 527 

All of the authors of this work are researchers working on different systems in Doñana. We chose 528 

Doñana as a case study for global-change impacts in the Mediterranean due to the rich literature 529 

about ecological impacts of various global-change drivers. A detailed quantitative review of how 530 

global change drivers have been quantified in Doñana is in process to be published elsewhere. 531 

Overall though, an increasing number of papers about direct or indirect human pressures addresses 532 

two or more global-change drivers simultaneously (35 papers since 2010, compared with only 13 533 

from 1977-2010); and, in most cases, the impacts of land-use change have been investigated in 534 

combination with one or two other drivers, particularly climate change and pollution (e.g., 535 

Fernández-Delgado 2017; Ramírez et al. 2018; Paredes et al. 2019; Rodríguez-Rodríguez et al. 536 

2021). However, the remaining literature still focuses on individual drivers, particularly on 537 

pollution and invasive species. Similarly, although global-change effects on multiple species (e.g., 538 

Fordham et al. 2013; Paniw et al. 2023) and ecosystem processes (e.g. Huertas et al. 2017) are 539 

increasingly being studied in this Mediterranean hotspot, we still need to better quantify complex 540 

interactions of global-change drivers and complex impacts across species and ecosystems. Doñana 541 



is a reference for long-term monitoring of populations and communities across numerous 542 

ecosystems. Yet, a stronger integration of the data generated from these long-term monitoring 543 

datasets is essential to understand the consequences of interactions between global change drivers 544 

and their impacts on populations, communities and ecosystems (Zipkin et al. 2021). 545 

 546 
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Supplementary Material S1 
Long-term trends of climatic change of Doñana 
National Park 
Methodology 
Climatic observational data from Doñana Biological Station have been extracted from 
the manual station placed at the Palace of Doñana National Park (35.988856, -
6.443619), which are publicy available at the ICTS-RBD website. Those data appear in 
the form of individual Excel spreadsheets, separated by variables. Data have been 
compiled in a unique spreadsheet, including maximum, minimum and mean 
temperature. Original data cover since 1979 to 2025. However, the series of the first 
years is not complete, so we have included meteorological information from 1985 to 
2024, i.e., belonging to 39 hydrological years. A hydrological year in Doñana, as in the 
rest of ecosystems of the Mediterranean Basin, is defined from September to August, 
corresponding to the start of the rainy season. Analyses were done using hydrological 
(and not natural) years for the precipitation data. Selected variables were 
accumulated precipitation and maximum temperature, as they showed the highest 
rate of change over time. 

The signficance of the trends was analysed with a Mann-Kendall test. 

Precipitation 
We analyzed inter-decadal trend of change of precipitation in Doñana, including the 
accumulated precipitation all over the year as well as the winter precipitation (defined 
as the rainfall accumulated from October to April. 

Total rainfall 

Some years were exceptionally dry in Doñana (Table S1.1), whereas others were 
exceptionally wet for the region (Table S1.2), according to the first and the third 
quartile. 

Table S1.1. Driest years of Doñana (with less than 375 mm of total precipitation, 
equivalent to the first quartile of the data series 

year prec 
1980 316.300 
1981 274.300 
1983 276.200 
1987 351.600 

https://meteorologia-palacio.icts-donana.es/


year prec 
1993 373.500 
1995 253.400 
1999 252.701 
2005 173.000 
2012 330.400 
2014 359.000 
2022 282.500 
2023 330.400 

 

Table S1.2. Wettest years of Doñana (with more than 700 mm of total precipitation, 
equivalent to the third quartile of the data series 

year prec 
1988 946.30 
1990 963.50 
1996 1032.30 
1997 885.30 
1998 721.81 
2004 774.90 
2007 716.90 
2010 784.20 
2011 712.51 



 

Figure S1.1.Ridgeline graph for annual precipitation in Doñana National Park 



 

Figure S1.2. Temporal trend of change in total rainfall in Doñana National Park. 

Total rainfall has a large inter-annual variability in Doñana, as it is the typical case of 
Mediterranean climates (see Fig. S1.1). However, in the region, the overall trend is 
showing a decrease in the total precipitation (data from 1985), although the trend is 
not significant (Mann-Kendall test, tau = -0.0708, 2-sided p-value = 0.49965). With a 
simple linear model, we can estimate a decrease in the total precipitation of 168 mm 
(a 27% less over 40 years, Fig. S1.2). 

Winter precipitation (since 1985) 

The same patterns than for the total rainfall appear for the winter precipitation (from 
October to April, Fig. S1.3). The general trend is to decrease over time, although again 
the relationship is not significant (tau = -0.143, 2-sided p-value = 0.19258). The 
estimated winter rainfall decrease from 1985 to 2025 is -137.21 mm (which 
represents a 25.14 % less). 



 

Figure S1.3. Temporal trend of change in winter rainfall (October-April) in Doñana 
National Park 

Temperature 

Maximum temperature (since 1985) 

By contrast, the maximum temperature shows the opposite pattern than rainfall, with 
an increasing trend over the last 40 years (Fig. S1.4). This time the relationship is 
highly significant (tau = 0.424, 2-sided p-value < 0.001). The estimated increase in 
maximum temperature is 1.96 ºC (which represents a 8.44 % increase). The rate of 
change is of 0.049 ºC/year ( 0.009 % ºC/year). 



 

Figure S1.4.Temporal trend of change maximum temperature in Doñana National 
Park 

Summer maximum temperature 

The same pattern than for the mean maximum temperature repeats for the summer 
temperature (June-August), with a significant trend of increase over time (tau = 0.377, 
2-sided p-value = 0.0006) although in this case, the values were even more extreme 
(Fig. S1.5), with an estimated summer maximum temperature increase from 1985 to 
2024 of 2.33 ºC (7.6 %). This corresponds to an annual change of 0.06 ºC/year ( 0.009 
%/year). 



 

Figure S1.5. Temporal trend of the change in summer maximum temperature in 
Doñana NP 

Projections of temperature increase over time 
We have used the prediction models of climate change from the website AdapteCCa, 
a Spanish Portal of Climate Change developed by the Spanish Ministry of Science and 
the Spanish Meteorological Agency (AEMET). In particular, we have downloaded the 
data from the municipality of Almonte (date of download: 14/06/2025), to which it 
belongs Doñana, and selected the projections of two scenarios of climate change: 
middle emissions ( (SSP2-4.5) and high emissions (SSP5-8.5). This models are 
specially suitable for temperatures, and they present a range of variables. In 
particular, we have selected the increase of the maximum temperature estimated for 
the whole year and the summer period (June-July-August). 

Projections of change of the maximum temperature (all over the year) 

The two projected scenarios of emissions (4.5 and 8.5) predict an overall increase of 
maximum temperature in Doñana. 

http://escenarios.adaptecca.es/


 

Figure S1.6. Predicted change in maximum temperature according to two scenarios 
of emissions 

Maximum temperature in summer 

Summer temperature is expected to increase over time for both emissions scenarios. 
However, the predicted values for the common period (2015-2025) are lower for 
Doñana than the observed ones, so it is likely that the models are undestimating 
summer variation. 



 

Figure S1.7. Predicted change in summer maximum temperature according to two 
scenarios of emissions 



Supporting Material S2  
 
Table S2.1. Representative examples of prominent non-native taxa recorded in the 
Doñana Natural Area and Guadalquivir Estuary. Information about taxonomic order, 
native range and specific references are also provided. 
 

Taxa Order Native range Reference 
Pathogens  
Phytophthora cinnamomic Pythiales Asia Burgess et al., 2017 
Pythium speculumª Pythiales unknown (located 

in Spain, France 
and Portugal) 

Paul et al., 2006 

Myxoma virus Chitovirales America Villafuerte et al., 1997 
Rabbit hemorrhagic disease 
virus 

Calicivirus China Moreno et al., 2007 

Sindbis Virus Genotype I Alphavirus Africa and 
Northern Europe 

Gutiérrez-López et al., 2025 

Invertebrates  
Procambarus clarkii Decapoda North America Oficialdegui et al., 2019 
Callinectes sapidus Decapoda North America Izquierdo-Gómez, 2022 
Palaemon macrodactylus Decapoda China, Japan, 

Korea 
Lejeusne et al., 2014 

Rhithropanopeus harrisii Decapoda North America Walton et al., 2015 
Synidotea laticauda Isopoda East Asia Ruiz-Delgado et al., 2019 
Pseudodiaptomus marinus Calanoida NW Pacific 

region 
Reyes-Martínez et al., 2019 

Potamopyrgus antipodarum Littorinimorpha New-Zealand Rodríguez-Pérez & Green, 2012 
Stenopelmus rufinasus Coleoptera North-America Florencio et al., 2015 
Trichocorixa verticalis Hemiptera North America Rodríguez-Pérez et al., 2009 
Linepithema humile Hymenoptera South-America Castro-Cobo et al., 2019 
Aedes albopictus Diptera Asia Martínez-de la Puente et al., 2024 
Vertebrates  
Fish 
Fundulus heteroclitus Cyprinodontiformes North-America Fernández-Delgado, 1989 
Gambusia holbrooki Cyprinodontiformes North-America Moreno-Valcárcel et al., 2013 
Cyprinus carpio Cyprinodontiformes Eastern Europe/ 

Central Asia 
Moreno-Valcárcel et al., 2013 

Carassius spp Cyprinodontiformes Eastern Europe 
and Asia 

Moreno-Valcárcel et al., 2013 

Micropterus salmoides Perciformes Eastern North 
America 

Moreno-Valcárcel et al., 2013 

Lepomis gibbosus Perciformes Eastern North 
America 

Moreno-Valcárcel et al., 2013 

Ameiurus melas Siluriformes North-America Sáez-Gómez & Prenda, 2019 
Reptiles 
Trachemys scripta elegans Testudines North-America Hidalgo-Vila et al., 2020 
Mammals 
Dama damac Artiodactyla East Europe-Asia Ascensão et al., 2021 
Genetta genettac Carnivora Africa Ascensão et al., 2021 



Procyon lotorb Carnivora North 
and Central 
America 

Fernández-Aguilar et al., 2012 

Birds 
Ploceus melanocephalus Passeriformes Sub-Saharan 

Africa 
Royal Decree 630/2013 

Euplectes afer Passeriformes Sub-Saharan 
Africa 

Royal Decree 630/2013 

Estrilda astrild Passeriformes Sub-Saharan 
Africa 

Ascensão et al., 2021 

Anser indicus Anseriformes Asia Ascensão et al., 2021 
Vegetation  
Carpobrotus edulis Caryophyllales  South Africa Valdes, 2015c 
Spartina densiflora Cyperales South America Walton et al., 2015 
Azolla filliculoides  Salviniales South America Espinar et al., 2015 
Acacia spp. (A. saligna, A. 
dealbata) 

Fabales Australia Royal Decree 630/2013 

Nicotiana glauca Solanales South America Valdes et al., 2011 
Eucalyptus spp. (E. globulus) Solanales Australia Trick & Custodio, 2000 
Arundo donax Poales Asia Gutiérrez-Cánovas et al. 2020 

Notes. ª unclear origin; b not-confirmed established population (single individual); 
chistorical introduction in Iberian Peninsula; d complete review for the introduced 
vegetation of the area; 
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Supporting Materials S3. Biotic Interaction Complexity in Doñana 

The environmental heterogeneity of Doñana supports a rich diversity of species and a complex 
network of biotic interactions, making it an ideal case for exploring the effects of global-change 
drivers. Figure 4 in the main text is a conceptual synthesis that aims to distill this complexity into 
a simplified trophic web, while simultaneously encompassing other biotic interactions such as 
nesting interactions or interferences via habitat alteration. Rather than attempting to capture the 
full spectrum of biotic interactions in Doñana, Figure 4 presents a heuristic model centered on 
four focal species to showcase the impact of global-change drivers on these species and 
the propagation of ecological effects through immediate biotic interactions. This schematic 
is not intended as a quantitative path analysis but rather as a qualitative visualization to 
contextualize the focal species and illustrate how ecosystem-level impacts may arise through 
interconnected interactions. 

The foundation for Figure 4 is a schematic trophic structure derived from the Eltonian pyramid of 
the Doñana ecosystem (Fig. S3.1). This structure integrates ecological data from the literature, 
supported by expert knowledge on trophic interactions. We organized the system into broadly 
defined trophic levels, each comprising functional groups selected for their relevance to the four 
focal species. Figure 4 is structured according to these hierarchical levels: 

1. Primary Producers: Include aquatic macrophytes (e.g., algae and submerged aquatic 
plants), terrestrial herbs and shrubs, and tree strata, represented by the focal species cork 
oak (Quercus suber) 

2. Herbivores: Comprise aquatic herbivorous birds (e.g., Mareca penelope), herbivorous 
invertebrates (e.g., Scarabeus spp), large terrestrial herbivores such as ungulates 
(represented by Cervus elaphus), and small terrestrial herbivores—represented by the 
focal species European rabbit (Oryctolagus cuniculus). 

3. Omnivores: Include amphibians (e.g., Rana sp.), omnivore ungulates —represented by 
the focal species Sus scrofa, and mesopredators (e.g., Vulpes vulpes).  

4. Carnivores: Include aquatic carnivorous birds (represented by Ardea sp.) and the apex 
predator (represented by Lynx pardinus). 

Note that the focal species red swamp crayfish that is shown in Figure 4 is not included in the 
diagram. This species is not part of the natural trophic web in Doñana, but included in Figure 4 
as an example of a biological invasion into the system. 

This conceptual framework underscores the importance of considering ecological complexity 
when assessing the vulnerability of species and ecosystems to global change. 

Interpretation of the interactions illustrated for the four focal species in Figure 4. 

(A) Cork oak (Quercus suber). Cork oak populations are negatively impacted by 
overexploitation (e.g., historical logging), biological invasions (notably Phytophthora 
cinnamomi), and land-use change (e.g., conversion to agriculture). Climate change and 



land-use change both positively influence wild boar while large herbivore populations (e.g. 
domestic herbivores) are affected by land use change, which in turn suppress oak 
recruitment through grazing and disturbance. Aquatic birds also exert negative effects on 
oaks by nesting in them and altering soil biochemistry. Conversely, the decline of oak 
populations reduces suitable nesting habitat for these bird species. 

(B) European rabbit (Oryctolagus cuniculus). Rabbit populations are negatively affected 
by biological invasions (e.g., RHDV, RHDV2), climate change, and habitat loss through 
land-use change. Climate change influences vegetation, which constitutes the primary 
food source for rabbits. High grazing pressure from large herbivores further depletes 
vegetation. Rabbit decline, in turn, impacts mesocarnivores and especially top predators 
(especially the specialist Lynx pardinus), which leads to a mesocarnivore release and a 
subsequent increase in mesocarnivore populations (note the double pointed arrow in 
mesocarnivores coming). Rabbits also play a role in plant community dynamics by grazing 
and dispersing seeds of different plant species, suggesting cascading effects on plant 
composition and structure. 

(C) Wild boar (Sus scrofa). Wild boar benefit from both climate and land-use change thriving 
in human modified landscapes, which promote their expansion. They are disease vectors 
(e.g. Mycobacterium bovis or Brucella suis), contributing to biological invasions that 
negatively affect other large herbivores (e.g. ungulates). Wild boars also act as active 
predators, preying on ground-nesting birds and rabbits. Their foraging behavior (e.g. 
digging, trampling, rooting) modifies herbaceous plant communities and the species 
negatively affects oaks by impeding recruitment through acorn consumption. 

(D) Red swamp crayfish (Procambarus clarkii). This invasive species is favored by land-
use change, particularly those altering water regimes for agriculture (e.g., rice cultivation). 
They degrade macrophyte communities and increase water turbidity. This, in turn, affects 
upper trophic levels such as herbivorous waterbirds (dependent on macrophytes) and 
diving carnivorous waterfowl (dependent on aquatic invertebrates). Besides being 
considered an invasive species itself, it acts as a reservoir for multiple pathogens, 
contributing to biological invasions that indirectly affect amphibians. They also serve as a 
prey item for various predator species, including carnivorous birds, wild boar, and 
mesocarnivores, thus promoting population increases in these groups. 

 



 
Figure S3.1. Conceptual synthesis of a trophic web in Doñana. This figure illustrates key 
trophic interactions among species and functional groups highlighted in the literature review, 
offering a simplified representation of Doñana’s food web. It serves as a foundation for visualizing 
the four focal case studies and their interconnections. The relative position of different species 
corresponds to their average trophic level (i.e The trophic level of a species is the average level 
of their prey plus one, Levine 1980). Arrows represent energy transfers; upward direction reflects 
an increase in the trophic level. Note that Figure 4 in the main text (unlike Fig S4.1 above) also 
includes non-trophic interactions, such as anthropogenic drivers and abiotic effects mediated by 
species. 
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Supporting Material S4 – Extended Contributions 
 
Table S4.1 Extended task contribution by each author in this manuscript  
 

Author Conceptualize 
ms 

Main 
text 
lead 

writing 

Part 
1 

Part 
2 

Part 
3 

Part 
4 

Figures revisions SI 1 SI 2 SI 3 
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  x       

PV x       W CC 4 x     x 

MD x   L L x CC 1 x       

ETo x   L   CO     x       

JBL x 

   

CO 
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IDA 

  

I,P,L I,P,L 

       

 
L - land-use change; C - climate change; I - invasion; P - pollution; O - overexploitation; CO - 
cork oak; R - rabbits; W - wild boars; CF - crayfish; CC - conservation challenges; KG - 
knowledge gaps; SI - Supporting Material. 
 
 


