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Abstract

Exposure to multiple toxic compounds imposes selective pressures across biological levels. There are several
known toxin resistance mechanisms—such as behavioral avoidance, metabolic detoxification, and target-site
insensitivity but an integrative approach to consider multiple toxins and resistance strategies. Predators of
amphibians, for example, must counteract multiple chemicals secreted by different species or even by the
same individual prey. The pan-Amazonian snake Erythrolamprus reginae (Squamata: Colubridae) preys on
multiple species of poisonous frogs, including members of the Dendrobatidae family, and is therefore
exposed to a chemically diverse diet. We aimed to evaluate the process of consuming a toxic prey, from
behavioral decisions to a suite of resistance mechanisms. First, feeding assays revealed that E. reginae
exhibited longer handling times and aversive behaviors toward the highly toxic Ameerega trivittata,
suggesting additional foraging costs. Second, we showed that soluble proteins in the liver partially restored
the activity inhibited by A. trivittata alkaloids and neosaxitoxin, indicating the presence of toxin-binding
proteins. Third, transcriptomic profiling across tissues revealed a complementary detoxification mechanism
based on liver-specific upregulation of transporters. Finally, we showed that E. reginae voltage-gated sodium
channel Nav1.4 is highly resistant to tetrodotoxin, saxitoxin, and neosaxitoxin. However, this same Nav1.4
channel variant did not prevent inhibition by A. trivittata alkaloids. These demonstrate that E. reginae
populations may be adapting to a chemically diverse diet by evolving multiple, overlapping forms of
resistance. This highlights the complexity of resistance where selection favors multiple mechanisms acting
at different physiological levels, providing unparalleled insight into whole-organismal resistance.

Significance Statement

Ecosystems where predators eat multiple chemically defended prey offer a window into how organisms
survive multiple toxin exposures. We studied the Amazonian snake Erythrolamprus reginae (Colubridae),
which feeds on poisonous frogs, to explore toxic prey consumption and resistance from genes to the whole
organism. Our results show that E. reginae adapts to a chemically diverse diet through multiple,
complementary resistance strategies. While these snakes prefer non-toxic prey, they have evolved genetic
and gene-expression mechanisms to handle toxic ones, with physiological strategies differing by toxin type.
This highlights the broad physiological and evolutionary effects of toxins on organismal physiology.

Main Text

Introduction

Small-molecule toxins often exert strong effects in ecological interactions, mostly by serving as chemical
defenses against predation or herbivory (1, 2). Exposure to multiple toxins imposes diverse selective
pressures, potentially leading to a toxin-resistant phenotype that operates across biological levels (3).
Predators of amphibians, for example, have to counteract multiple chemicals secreted from different species
or even the same individual (4—6). As a result, some predators avoid toxic prey. However, others have evolved
to resist toxins through multiple behavioral, physiological, and molecular adaptations (3). Understanding
such traits requires an integrative approach because of the inherent system complexity.

The pan-Amazonian Royal Ground snake Erythrolamprus reginae (Squamata: Colubridae) is a generalist
predator that consumes multiple species of poisonous frogs (Bufonidac and Dendrobatidae families) that
have a diverse set of steroidal and alkaloid defenses (7, 8). E. reginae harbors substitutions in voltage-gated
sodium channels (Nav) that provide target-site resistance (TSR) to two guanidinium toxins: tetrodotoxin
(TTX), which is present in some bufonids, and saxitoxin (STX), for which a local source is unknown (9). In
addition, many snakes are not sensitive to the effects of the steroidal toxins (e.g., bufadienolides) because of
TSR mutations in their sodium-potassium pumps (10, 11). Resistance mechanisms to other alkaloids present
in poisonous frogs is largely uncharacterized. Thus, toxin resistance in E. reginae likely involves additional
mechanisms such as the upregulation of xenobiotic enzymes, the formation of diffusion barriers, or toxin-
binding proteins (reviewed by (3)). The last strategy has been documented in frogs for saxitoxin (STX) via
the STX-binding protein saxiphilin (Sxph) and for STX and tetrodotoxin (TTX) in pufferfish via the

3
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pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) (12—16). Radiolabelled STX binding studies
have also suggested the presence of STX-binding proteins in reptiles, amphibians, fish, and arthropods (3,
17). Yet, resistance mechanisms for the vast majority of naturally occurring toxins remain unknown,
especially for predators such as snakes that are both elusive and scarce.

Here we aim to unravel the complexity of toxin resistance in E. reginae by investigating several biological
scales where toxins may influence the evolution of resistant traits, from behavioral decisions to the suite of
possible molecular resistance mechanisms. We employ multiple methods to investigate this paradigm by: 1)
observing predation behavior to assess interactions with toxic prey; 2) investigating the expression of
detoxifying proteins in several organs, and 3) evaluating the resistance conferred by TSR against different
toxins present in the snake’s diet. Our findings offer a compelling and comprehensive example of how
predators adapt to diverse toxic pressures, revealing the physiological and evolutionary complexity of toxin
resistance.

Results and Discussion

E. reginae snakes exhibit avoidance and specific behaviors when feeding on the toxic poison frog
Ameerega trivittata

While toxic prey are traditionally considered a low-quality food due to energetic trade-offs between prey
nutrition and harmful effects of toxins (18-25), and many studies assume that predators avoid toxic prey,
some predators such as E. reginae clearly do not, possibly because the trade-off between nutrition and toxicity
may be minimized for resistant predators. Most toxic prey studies, outside herbivory research, focus on lab-
trained predators or clay models (26-28), yet little is known about predator behavior in natural settings,
especially in vertebrates. Bridging this gap can help connect theoretical and experimental approaches with
real-world ecological interactions.

We tested for behavioral avoidance by offering adult E. reginae snakes from Leticia, Amazonas, Colombia
(Data S6) (fasted for five days) a set of locally co-occurring frog prey with diverse chemical defenses and
toxicity levels. The only highly toxic frog included was the dendrobatid Ameerega trivittata, which secretes
histrionicotoxins (HTX), pumiliotoxins (PTX), and decahydroquinolines (DHQ) (4, 29), and is a known prey
item of E. reginae (7). The other frogs included putatively non-toxic hylid species, primarily Scinax ruber,
as well as Dendropsophus sp. and Sphaenorhynchus lacteus. Additionally, some snakes were offered mildly
toxic frogs, Leptodactylus sp. and Rhinella margaritifera, which secrete amines and steroidal toxins
(respectively) (30-32). Chemical analysis using gas chromatography mass spectrometry (GC-MS) confirmed
the presence of multiple neurotoxic alkaloids from whole skins of A. trivittata (n = 6), including DHQs, N-
methyl-DHQs, 5,8-indolizidines, and HTXs, but not S. ruber (n = 6); other species were not tested.

When offered A. trivittata, only 4 of 10 snakes were willing to eat, and one died after ingestion (Fig. 1A-B,
Data S1-S2). If the snake did not consume A. trivittata within two hours, we then removed the 4. trivittata
and offered another prey option (S. ruber, Dendropsophus sp., Sphaenorhynchus lacteus, Leptodactylus sp.,
or R. margaritifera). All 6 of the snakes that refused to consume A. trivittata consumed the second prey that
was offered, usually within one minute. Snakes also showed significant differences in the handling and
consumption of A. trivittata versus other prey by taking longer to swallow them (Fig. 1C) and exhibiting a
unique "dragging" behavior—rubbing the frog along the ground (see video Data S2 and YouTube
(https://youtube.com/shorts/CUsNjgG3]TA?feature=share)). This behavior was exclusively observed during
ingestion of 4. trivittata (Fig. 1D). We hypothesize that rubbing the frog on the ground may help remove or
break down some of the toxins. Similar behaviors such as dragging, wiping, or washing, have been reported
in the hooded merganser (Lophodytes cucullatus), the southern ground hornbill (Bucorvus leadbeateri), and
the grey heron (Ardea cinerea) when feeding on frogs and toxic newts (33—35). Thus, increased time and/or
energy is expended when handling highly toxic prey (36).
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Our findings demonstrate behavioral avoidance of 4. trivittata by E. reginae and underscore challenges posed
by toxic prey at the organismal level, as reflected in distinct behavioral responses and survival outcomes.
Optimal foraging theory predicts that predators may consume toxic prey when the alternative is less nutritious
(29, 37) or more difficult to locate (38). However, multiple factors influence this type of foraging behavior,
including physiological state: starved predators are more likely to consume toxic prey (39), and well-fed
predators tend to make decisions based on prior experiences (40). Therefore, profitability is not a binary
variable but instead an integration of physiology, prey community, toxin resistance, and prior experience,
and even when animals might possess some resistance to toxins, they may still endure significant energetic
and opportunity costs.

Soluble liver proteins contribute to E. reginae ability to consume A. trivittata

Once toxin ingestion occurs, predators rely on resistance mechanisms that involve metabolizing the toxin
and/or modifying its target (3). We endeavored to identify proteins implicated in toxin resistance in the liver,
the primary organ responsible for detoxification. Given the enormous diversity of toxic compounds present
in frogs, we chose to focus on a subset that act on Nav channels (29). We first established their activity on
the human skeletal muscle Nav channel(HsNavl.4) using semi-automated planar patch-clamp
electrophysiology in mammalian cells. Half-maximal inhibitory (ICso) values were in line with previous
studies (Fig. S2) (41, 42). We also present the first Nav electrophysiological data for several alkaloids unique
to poison frogs: histrionicotoxin (HTX) 283A, H8-HTX, decahydroquinoline (DHQ) 167, and DHQ 195A,
A. trivittata skin secretion (diluted 1:200), and pumiliotoxin 251D (PTX 251D), which has been previously
studied (43). We selected concentrations sufficient to block approximately 90% of the HsNavl.4 current
(neoSTX: 1.5 nM, STX: 100 nM, TTX: 300 nM). Due to scarce material and the lower affinity against
HsNavl.4, poison frog toxins were tested at single concentrations sufficient to block HsNav1.4 by at least
60%: PTX 251D, 500 uM; Hs-HTX, 250 pM; HTX 283A, 500 uM.

We then developed a novel assay for screening liver tissue for toxin neutralization activity. We pre-treated
toxins with E. reginae liver extract (0.2 mg/mL final concentration) for 30 minutes at room temperature, to
allow any proteins to bind to or modify the toxins. We then used semi-automated planar patch-clamp
electrophysiology to compare HsNavl.4 currents sequentially elicited under saline (baseline), toxin,
incubated toxin:liver extract, and finally liver extract (Fig. S3). Restoration of channel activity in the presence
of the incubated toxin:liver extract, relative to baseline and toxin-alone block, was interpreted as evidence
for detoxifying or toxin-binding proteins in the liver (Fig. 2). E. reginae liver extracts were compared against
liver extracts from two control (toxin-sensitive) species: the house mouse (Mus musculus) and another snake,
Contia tenuis, a North American colubrid with no known natural exposure to dendrobatid alkaloids. None of
the tested liver extracts significantly inhibited HsNav1.4 currents when applied alone (Fig. 2B, Fig. S4 and
S5). Remarkably, preincubation of E. reginae liver extract ameliorated the effects of all poison frog alkaloids
tested, with the greatest current recovery observed for HTX 283A (mean 76.3 + 9.1%, Fig. 2B), representing
the first known resistance mechanism to HTX. This effect also extended to A. trivittata skin extract (16.6 £
2.7%, Fig.2A) and neoSTX (61.1 £ 6.0%, Fig. 2F), but not to TTX or STX. By contrast, mouse liver extract
did not restore sodium channel activity for any toxin (Fig. 2 and Fig. S4), indicating that amelioration of the
toxin block was not driven by general vertebrate liver detoxification enzymes. Similarly, C. fenuis liver
extract had no effect on any dendrobatid toxin, STX, or TTX, but it completely ameliorated block by neoSTX
(91.5 £ 7.4%) (Fig. 2F and Fig. S5). These findings suggest that liver detoxification of neoSTX may be
common in snakes, but that E. reginae liver detoxification activity is also ecologically specific, targeting
toxins present in A. trivittata. Interestingly, the inability of E. reginae liver extracts to affect HsNav1.4 block
by STX or TTX suggest that E. reginae relies on alternative resistance strategies for these compounds.

Although E. reginae liver extract reduced the inhibitory effects of PTX 251D, Hs-HTX, HTX 283A, and 4.
trivittata, some block remained (Fig. 2). This suggests that while the liver may reduce the impact of these
toxins, there may still be some physiological cost associated with consuming A. trivittata, which may explain
the snakes' reduced preference for this diet. Alternatively, the high concentrations of dendrobatid toxins used
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in the present study (250-500 uM) may have exceeded the neutralizing capacity of the liver. Additionally,
while E. reginae liver had no effect on TTX and STX, it restored the majority of HsNavl.4 current from the
closely related structural analogue neoSTX (Fig. 2F). Due to limited toxin and liver material, we were unable
to test varying ratios of toxin:liver extract to explore potential limits of this mechanism. It would also be of
interest to explore other higher affinity pharmacological targets of dendrobatid toxins, such as nicotinic
acetylcholine receptors for HTX. Increasing the incubation time for the liver:toxin extracts may also further
modulate the toxin effects. Additionally, gene expression related to detoxification may vary under different
conditions, potentially increasing the liver's detoxifying capacity in response to toxin exposure. This is
particularly relevant since the tissues used in this study were obtained from fasting snakes, rather than from
individuals exposed to toxins.

While total protein amount was standardized for these assays, the identity, relative abundance and affinities
of the proteins contributing to detoxification are currently unknown. Further, we cannot exclude the
possibility that the stability or functionality of potential toxin-binding proteins may have been impaired or
lost during extraction. Since no detergents were used during either the protein extraction or toxin incubation
in the liver neutralization assay, it likely primarily captured soluble candidate proteins while excluding
membrane proteins. Further work is therefore needed to identify and characterize these proteins. Nonetheless,
it is remarkable that E. reginae liver extracts uniquely modulated toxin activity, underscoring liver
detoxification as a key mechanism of toxin resistance for E. reginae.

High expression of transporter-related proteins in the liver is associated with A. trivittata consumption

Following prey ingestion, resistance can also be modulated by increased expression of specific genes
involved in toxin breakdown, binding, and clearance (3). To identify specific molecular candidates that
mediate detoxification, we generated transcriptomes from four digestive tissues (tongue, stomach, liver, and
gut) in E. reginae that had consumed A. trivittata (n = 3), Scinax ruber (n = 3), or were fasting (n = 3) (Data
S7). Expression profiles clustered primarily by tissue, with tongue being most distinct (Fig. SOA-B). The
greatest number of upregulated genes was observed in response to A. trivittata consumption, with the liver
showing the strongest transcriptional response among the tissues (Fig. 3A-B). In contrast, S. ruber elicited
the weakest transcriptional activation. Fasting snakes show upregulation of some genes, particularly in the
stomach, likely related to canonical responses to starvation (44).

As liver extracts from fasting E. reginae neutralized A. trivittata toxins, we reviewed genes upregulated in
the liver after consuming 4. trivittata to identify candidate genes underlying neutralization. Literature
suggests several soluble proteins may contribute to toxin neutralization, including serpins (45), transferrin-
like proteins (TF, TFRC, TFR2, TFIP11) (46-48), and lactotransferrin-like proteins (LOC139173594) (47).
However, none of these genes were upregulated in the 4. trivittata treatment. One, however, showed
significant upregulation (SERPING, adjusted p-value < 0.05) in snakes fed S. ruber (Fig. S6C). Gene
Ontology (GO) analyses did not detect enrichment of soluble proteins (Fig. S6D). Nonetheless, many soluble
proteins that could contribute to toxin neutralization were expressed in all liver transcriptomes, suggesting
that presence, rather than overexpression, of toxin-binding proteins may be sufficient for functional
resistance. Alternatively, some toxin-binding proteins may remain uncharacterized, potentially
corresponding to unannotated LOC genes that were upregulated (see Data S3) (45).

Focusing on liver-specific responses to consumption of A. trivittata, GO analyses revealed significant
enrichment of membrane-bound proteins involved in transport activity (Fig. 3C). Among the most
upregulated genes were members of the solute carrier (SLC) family, widely known for absorption, uptake,
and clearance of xenobiotics and drugs (49, 50) (Fig. S6C). For example, the upregulated gene SLC2247
encodes a known organic anion transporter involved in hepatic excretion of toxins and metabolites in humans,
including the plant and amphibian pyrrolizine toxins (51, 52). Other upregulated solute carriers included
SLC1541, involved in peptidomimetic uptake (53), and transporters such as SLCIAS5, SLCI16A46, and
SLC5A412, linked to amino acid and monocarboxylate metabolism (49). While many of these transporters
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exhibit substrate overlap and species-specific variability, their roles in xenobiotic handling make them strong
candidates for toxin clearance (49). This multifunctionality of SLC transporters warrants further
investigation, especially considering that non-synonymous mutations in SLC genes have been linked to
altered substrate specificity and efficiency (54-56). Such mutations may underlie evolutionary adaptations
that enable predators like E. reginae to regularly consume chemically defended prey without succumbing to
their most toxic effects.

Other genes involved in transport were also overexpressed in E. reginae after consumption of 4. trivittata.
These include ABCA12 and NPCILI, known lipid and cholesterol transporters (56—58). Given their role in
lipophilic molecule transport, these proteins may contribute to the movement of hydrophobic toxins such as
HTX and PTX. The upregulated RAB11FIP1, a protein involved in the regulation of intracellular transport
vesicles, may play a role in facilitating toxin engulfment, intracellular trafficking, and eventual elimination,
potentially contributing to the cellular handling of toxic compounds (59).

Beyond direct detoxification, transporters also play essential roles in maintaining systemic homeostasis.
Their increased expression in response to A. trivittata ingestion may reflect a broader metabolic stress
response, involving inter-organ signaling and physiological adaptation (49). Supporting this idea, we
observed overexpression of heat shock proteins in the A. trivittata treatment, including HSPA2 and its
associated regulator HSPBAPI (60) (Fig. S6C). The phospholipase PLA2G7, a gene found in the venom of
various organisms such as snakes, bees, and scorpions, as well as the sphingosine-1-phosphate plasma
transporter MFSDZ2B, were also highly expressed and are known to be involved in inflammatory responses
(61-65) (Fig. S6C). These proteins are well-established markers of cellular stress and may signal a
generalized physiological response to toxic prey ingestion.

Altogether, our RNA-seq data suggest that transporter overexpression in the liver represents a complementary
resistance mechanism of toxin elimination. While no previously reported toxin-binding proteins were
strongly upregulated after 4. trivittata consumption, the presence of soluble candidates and upregulation of
transmembrane transporters indicate that multiple pathways, including toxin binding, membrane trafficking,
and metabolic elimination, jointly contribute to toxin resistance in E. reginae.

Some E. reginae voltage-gated sodium channel alleles (Nav1.4) are highly resistant to tetrodotoxin,
saxitoxin, and neo-saxitoxin

The final frontier of toxin resistance is at the toxin target itself. If the toxin reaches its target, amino acid
substitutions can decrease or prevent toxin binding —a mechanism known as target-site resistance (TSR)
(10, 66—72). Putative TSR has been previously identified in Nav sequences of Erythrolamprus snakes (9, 73).
In some E. reginae populations, Nav channels exhibit amino acid substitutions at sites experimentally
reported to confer tetrodotoxin (TTX) resistance in Navl.1, Nav1.3, Nav1.4, Nav1.6, and Nav1.8 (9, 66, 74,
75).

The evolution of TSR in the muscle-expressed Navl.4 sodium channel is closely associated with toxin
resistance in organisms exposed to high levels of TTX and STX (9). However, physiological experiments are
necessary to confirm whether amino acid substitutions actually alter toxin sensitivity or affect protein
function (69). We tested the hypothesis that TSR-associated substitutions in E. reginae Navl.4 reduce
channel sensitivity to guanidinium neurotoxins. To do so, we examined two variants: a putative resistant
variant (ErNayl1.4-R), which harbors TTX TSR-associated substitutions, and a non-resistant variant
(ErNav1.4-NR) lacking these mutations, as described in (9) (Fig. S1, Data S4). The resulting experiments
provide the most comprehensive electrophysiological data for a snake Nav channel to date.

ErNav1.4-R includes five amino acid substitutions at functionally relevant sites (Fig. S1); at least two of
them, D1539N and G1540D, have been characterized as conferring TTX resistance in other species (66, 75,
76). Using two-electrode voltage-clamp (TEVC) recordings in Xenopus laevis oocytes, we compared the
toxin responses of ErNav1.4-R and ErNavl.4-NR, alongside the human Nav1.4 (HsNavl.4) channel as a
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control. These recordings, performed under single-stimulus protocols, allowed us to assess the extent to
which the substitutions in the ErNav1.4-R variant contribute to toxin resistance in E. reginae. Importantly,
we synthesized the wild-type E. reginae Nav1.4 channels rather than introducing point mutations into a model
organism sequence, preserving natural channel variation and its full response to toxin exposure. To provide
a comprehensive characterization of ErNav1.4-R and ErNav1.4-NR, we evaluated basic electrophysiological
properties such as activation and inactivation curves (Fig. S8), the half-maximal activation and inactivation
voltages (Vactivationi» —FErNav1.4-R: -23.52 mV + 3.554 mV; ErNav1.4-NR: -22.98 nV =+ 3.382 mV;
Vlnactivationi» —FErNav1.4-R: -52.47 + 2.929; ErNavl.4-NR: -53.32 + 3.229) (Fig. S8 and Table S3).
Inactivation curves showed no differences, suggesting that the substitutions distinguishing the two variants
do not affect inactivation, consistent with previous findings (77).

We conducted concentration—response curves for each toxin and found that the ICso values for ErNav1.4-R
are extremely high, in some cases, even the highest toxin concentrations applied had negligible effect on
channel activity, making a precise ICso calculation impossible (Fig. 4, ErNav1.4-R TTX & STX ICso >> 3000
nM; neoSTX ICso >> 333 nM; Fig. 3). In contrast, ErNav1.4-NR exhibited a sensitivity profile closely aligned
with that of HsNav 1.4, with the following rank order: neoSTX > STX > TTX (Fig. 3, ICs0 0.4048 nM + 0.235
nM, 6.565 nM = 1.013 nM, and 18.09 + 2.02 nM, respectively). ICso values for HsNav1.4 are reported in
Table S3. These results demonstrate that TSR in ErNavl.4-R confers high resistance to TTX, STX, and
neoSTX in E. reginae.

While five amino acid substitutions are present in ErNav1.4-R, not all are likely to contribute equally to the
observed resistance. The substitutions D1539N and G1540D, located in the domain IV p-loop (selectivity
filter), are well-characterized TSR substitutions previously shown to confer high TTX resistance (66, 75, 76),
and likely represent the primary contributors to the STX and TTX-resistant phenotype in E. reginae as shown
in the structural models (Fig. 4M-P). An additional substitution, P1550S, also occurs in this region and is
found in dendrobatid frogs, though its functional role remains unclear. Structural modeling (Fig. 4M-P)
shows that the remaining substitutions, [425L (domain I, segment 6) and S725N (domain II, segment 5), are
located on the outer face of the pore domain, making it unlikely that they directly affect STX or TTX binding.
Notably, S725N is also found in highly TTX-resistant species such as Heterodon platirhinos and Thamnophis
sirtalis (Willow Creek population), despite not being previously identified as a TSR site (9, 78). Together,
these data suggest that while five substitutions are present, resistance is most parsimoniously explained by
the convergent D1539N and G1540D mutations in the domain I'V p-loop, consistent with findings from other
resistant lineages (66, 75).

These guanidinium toxins are common across various ecosystems but have not yet been documented in the
known diet or habitat of E. reginae (9, 79). The extreme resistance observed in some individuals suggests
that populations of E. reginae may be exposed to high concentrations of one or more of these toxins (9, 80).
Because GC—MS cannot detect TTX, its presence in A4. trivittata cannot be ruled out. Interestingly, neoSTX
appears to be counteracted by two independent resistance mechanisms: liver-expressed proteins that
neutralize the toxin (Fig. 2F) and TSR-associated mutations in Nav1.4. Although we initially hypothesized
that this redundancy evolved in response to the extreme potency of neoSTX (ICso < 1 nM), STX is also a
low-nanomolar blocker, making a strictly potency-based explanation less conclusive. Moreover, the added
protection conferred by liver-mediated detoxification, despite the strong TSR-mediated resistance, raises the
possibility that neoSTX may have an additional, unidentified molecular target.

Our findings confirm the coexistence of multiple resistance mechanisms in E. reginae from Leticia,
Colombia. This population carries the ErNav1.4-R variant and was also the source of liver samples used in
recovery assays demonstrating the capacity to neutralize dendrobatid toxins and neoSTX (Data SS5).
Together, these results indicate that this population exhibits both TSR in Navl.4 and liver-mediated
detoxification, highlighting the integrative nature of toxin resistance in this species and its ability to
counteract complex chemical defenses.

E. reginae Nav1.4-R is sensitive to A. trivittata toxins
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Navl.4 has been identified as a key target of several toxins secreted by 4. trivittata, including HTX and PTX
(4, 29). To test for TSR to these toxins , we repeated the above experiments with isolated compounds found
in Ameerega species, including histrionicotoxins (HTX 293A and Hs-HTX), pumiliotoxins (PTX 251D), and
decahydroquinolines (DHQ 167 and DHQ 195A). We also compared responses to 4. trivittata (toxic) and S.
ruber skin secretions non-toxic (control). We also tested . Due to the scarcity of toxin material, we only used
the HsNav1.4 as the control channel, and only assessed a single high concentration that allowed for sufficient
repetitions to ensure statistical robustness in both ErNav1.4-R and HsNavl.4.

Unexpectedly, ErNav1.4-R did not exhibit resistance to A4. trivittata skin secretions, which significantly
reduced the current by ~20% (Fig. 4C). The S. ruber secretion reduced currents by 5% (Fig. 5F). Although
not statistically significant, the human channel showed a ~10% reduction in current following exposure to 4.
trivittata secretions (Fig 3C). To further validate these findings, we tested individual toxins found in A.
trivittata and other dendrobatid frogs, including the alkaloids noted above (Fig. S7). Consistent with the
whole-secretion current reductions, neither the £#Nav1.4-R nor HsNav1.4 exhibited resistance to any of these
toxins, which caused ~10%-60% significant current reductions (Kruskal-Wallis test, P < 0.05). These
findings suggest that E. reginae relies on alternative toxin resistance mechanisms to consume A. trivittata, as
discussed in previous sections. However, we cannot rule out the possibility that TSR in other targets plays a
role, given that some A. trivittata-derived toxins are known to target channels beyond Nav1.4, such as
nicotinic acetylcholine receptors (4, 29). Additionally, the concentrations used in this study for some of these
toxins (Table S1) are exceedingly high compared to those typically encountered in nature, further suggesting
that Nav1.4 may not be their primary target (81-83). Overall, our results indicate that TSR in ErNavl.4 is
not the primary resistance mechanism against A. trivittata secretions but it is essential for resistance to TTX,
STX, and neoSTX.

Conclusion

Here we present a multiscale investigation of toxin resistance in an elusive amazonian predator of poisonous
frogs, the Royal Ground Snake Erythrolamprus reginae. We demonstrate that toxin resistance in E. reginae
is not the result of a single trait but instead emerges from a dynamic integration of behavioral, physiological,
and molecular adaptations. E. reginae exhibits behavioral avoidance towards toxic prey, despite
demonstrating unique signatures of resistance to prey toxins. Mechanisms of resistance differed by toxin
class, with TSR in voltage-gated sodium channels contributing to guanidinium alkaloid but not poison frog
lipophilic alkaloid resistance. In contrast, liver extracts were able to neutralize poison frog alkaloids but not
guanidinium alkaloids, except for neoSTX. The presence of both mechanisms for neoSTX suggests strong
selection for resistance to this toxin. Mysteriously, sources of STX, TTX, and neoSTX exposure are unknown
for E. reginae, raising questions about the necessity of resistance, or alternatively our ignorance of the
distributions of these toxins in the Amazon basin. Possible local sources of TTX include the Harlequin frogs
(genus Atelopus) and flatworms; STX may occur in freshwater cyanobacteria that have yet to be identified
in the Amazon. In summary, an integrative lens on the resistance phenotype has offered new insights into the
depth of the physiological and behavioral consequences of consuming lethal neurotoxins. Adaptations to
neurotoxins in animals such as E. reginae can inform drug design and help inspire novel treatments for cases
of poisoning in humans.

Materials and Methods

Animal collection

We collected 12 Erythrolamprus reginae snakes, 6 Ameerega trivittata frogs, and 6 Scinax ruber frogs from
Leticia, Amazonas, Colombia (Table S1). These specimens were captured by hand or using a snake hook.
Collection permit was granted by the Colombian Authority for Environmental Licenses (ANLA; No. 1249,
23 July 2020, RCI0002-00-2020). To avoid any impact of chemical euthanasia on our results, we euthanized
snakes by decapitation followed by rapid extraction of the brain tissue. Frogs were euthanized using
hypothermic shock. Euthanasia and predation trial (below) protocols were approved by the IACUC No. AUP-
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2019-08-12457-1 issued by the University of California Berkeley, USA. Non-CITES tissue samples were
exported under the ANLA permits No. 02191, No. 02376, and No. 3271. For A. trivittata the exportation of
the tissues was granted by the CITES export permits No. CO26165 and No. CO46959.

Predation Behavior Test

We hand or snake-hook captured snakes and housed them individually close to the site of capture in mesh
cages (30 cm x 30 cm from RestCloud) with water, and natural leaves, ground, and hiding spots (log
cylinders) for an acclimatization period of five days. This period ensured that the digestive tracts of the snakes
were empty before the experiment. The anurans were collected one or two days before each trial and kept
under the same mesh cages conditions. We video-recorded using a Nikon D5600 camera E. reginae predation
events against the poisonous frog A. trivittata (Dendrobatidae) and the non-poisonous S. ruber (Hylidae;
Dataset S1 & Dataset S2). If after 2 hours the toxic frog was not ingested, we removed the toxic frog, and a
second frog—Leptodactylus sp., Sphaenorynchus lacteus, Dendropsophus sp., Rhinella margaritifera, or
Scinax ruber—was introduced to the enclosure to determine whether the snake was generally unwilling to
eat or specifically rejected 4. trivittata (see Fig. 1A). All offered frogs are natural prey of E. reginae, ensuring
that the experiment simulated natural feeding conditions.

During the experiment, the snake and posteriorly the frog were introduced into an empty mesh enclosure. We
recorded the interaction until 40 minutes after ingestion or vomiting of the frog, or up to two hours if no
ingestion occurred. If no predation was observed, the trial was terminated after two hours. Predation events
were classified as "ingested," "vomited," or "avoided" following Brodie and Tumbarello (84). Snakes were
euthanized 40 minutes after the frog was completely swallowed to obtain tissue samples for transcriptome
analysis. According to Williams et al. (85), toxin intoxication effects become measurable within 30-40
minutes post-ingestion. Video recordings were analyzed to document notable behaviors, including the time
elapsed from the first attack to the moment the frog was fully swallowed ("Time to swallow") and the number
of times the snake exhibited dragging behavior ("Dragging cycles"). We define dragging behavior as the act
of swabbing or rubbing the frog, already held in the snake's mouth, along the floor or wall. Each dragging
cycle was counted from the moment the snake began dragging to when it paused, rather than based on the
number of physical drags performed.

Transcriptome

RNA library preparation

Snakes were sacrificed after each predation experiment (4. trivittata or S. ruber ingestion) or after a 5-day
fasting period (control; Table S2). Snake tissues were collected in the field, stored in RNA later, and
transported for a longer storage at -80 °C freezer (Table S2). For RNA extraction, we used the Monarch®
Total RNA Miniprep Kit from NEB Biolab and followed the protocol for <10 mg initial tissue. The
homogenization of the tissues was performed using the PowerLyzer™ 24 bead beater (MO BIO Laboratories,
Inc.), with two cycles of 3500 RPM for 45 seconds, each followed by a 30-second rest period, and an
intermediate speed of 3500 RPM. To assess starting RNA quantity and quality, we used the Qubit RNA HS
Assay Kit from ThemoFisher Scientific and Bioanalyzer RNA Analysis from Agilent.

For the RNA library prep, we selected the high quality RNA samples (RIN = 7) with up to 500 ng RNA,
except for a few irreplaceable samples that had low RIN scores despite several extraction attempts. We
followed a poly(A) selection protocol for all samples using the Watchmaker mRNA Capture Kit from
Watchmaker Genomics. For the library amplification, seven extra cycles were used for the low RIN score
samples (Table S2). RNA libraries were sequenced to obtain ~30 M paired-end reads (150 bp) per tissue on
a [llumina NovaSeq™ X 10B flow cell. Raw data is available in (Bioproject PRINA1274516, see complete
biosample numbers in table S1).

RNA-seq data processing and analysis

Raw paired-end RNA-seq reads were quality-filtered and trimmed using fastp v0.23.2 (86) with adapter
detection enabled and default settings. Cleaned reads were aligned to the E.reginae reference genome
(GCF _031021105.1) using HISAT2 v2.2.1 (87) with the --dfa flag to facilitate transcript assembly.
Alignment outputs in SAM format were converted to BAM, sorted, and indexed using Picard and samtools
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v1.21 . Alignment quality metrics were generated with the flagstat tool. The genome annotation file (GFF)
was converted to GTF format using gffread (88), with manual correction of gene identifiers to ensure
compatibility with downstream quantification tools. Transcript abundance was quantified using HTSeq-count
v0.13.5 (89) in unstranded mode (-s no) with exon-level features and gene-level aggregation (-i gene id).

Transcript abundance data were analyzed using DESeq2 in R (v4.3.0) (90). Count matrices from HTSeq-
count were merged and filtered to include genes expressed in digestive tissues: liver, tongue, stomach, and
intestine. These tissues were obtained from 3 different feeding treatments (see above): after 5 days fasting,
or 40 minutes after the ingestion of an A. trivittata or S. ruber prey. Differential gene expression (DE)
analyses were performed using DESeq?2 with tissue and condition as covariates (see dataset S3: log2fold and
p-value results). Principal component analysis (PCA) and volcano plots were generated to assess sample
clustering and DE genes (Fig. S7). Genes with adjusted p-value < 0.05 and log2FoldChange > 0 were
considered significant and upregulated (Dataset S3). The final list of upregulated genes for each condition
was compiled by combining DE genes identified across the three pairwise comparisons: fasting vs. 4
trivittata, fasting vs. S. ruber, and S. ruber vs. A. trivittata. For the expressed gene counts, we retained only
protein-coding genes from the set of upregulated transcripts by filtering the set of upregulated genes by E.
reginae gene identifiers from the NCBI genome annotation classified as protein-coding. To investigate
functional patterns of gene expression across conditions, we classified differentially expressed genes into
biologically relevant categories based on gene name patterns and annotations. Using regular expressions, we
extracted gene sets associated with specific protein families and functional categories from the differential
expression results.

Gene categories related to toxin resistance were used to highlight potential differential expression of these
genes in the volcano plots (Fig. S7). We grouped solute carrier family genes (SLC), phospholipase A2 genes
(PLA2), cytochrome P450 genes (CYP), serine protease inhibitors (SERPIN), ATP-binding cassette
transporters (ABC), heat shock proteins (HSP), and Rab GTPases (RAB) based on their gene name prefixes.
Transferrin-related genes (TF, TFRC, TFIP11, and TFR2) were grouped using known gene symbols.
Cholinesterase-like genes (E. reginae transcript IDs: LOC139158370-LOC139158371, LOC139159376,
LOC139160160, LOCI139160166, LOC139160209-LOC139160211, LOC139160214-LOC139160215,
LOC139160217, LOCI139160219-LOC139160220, LOCI139160232), lactotransferrin-like gene (ID:
LOC139173594 and LTF) and 85 transporters genes (Data S8) were manually identified using the ncbi gene
annotations of Erythrolamprus reginae (GCF_031021105.1).

Functional enrichment of DE genes was assessed using topGO (ontology: Molecular Function) (91). Gene-
to-GO mappings were obtained using Anolis carolinensis annotations (Unitprot taxon ID 28377). Only genes
with detectable expression across samples (mean normalized counts > 0.5) were used as background.
Enrichment results were visualized using the molecular function option “MF” and cellular component option
“CcC.

Skin secretion GC-MS toxin profile analysis

Following euthanasia, we removed entire skins from 6 A. trivittata and 6 S. ruber and placed each in ~1 mL
100% ethanol in glass vials with PTFE-lined caps and stored at -80 °C. A 100 pL aliquot of the solution was
sampled and analyzed directly by Gas-Chromatography Mass-Spectrometry (GC-MS). Samples (1 pL) were
analyzed using either a Thermo iTQ1100 unit resolution ion trap instrument or Thermo Exploris GC high-
resolution orbitrap instrument. GC separation used 5% phenyl methylsilicone columns (Restek RTX-5MS or
Thermo TG-5S1, 0.25 mm x 30m, 0.25 um film thickness) with splitless injection with a ramp from 100C to
280C as previously described. Retention indices (Kovats) were determined by comparison to alkane
standards injected with the group. Samples were sequentially analyzed in electron ionization (EI) and
chemical ionization with ammonia reagent gas (CI-NH3). Compounds were identified by comparison with
EI library spectra, molecular weight/formula match, and retention index.

Toxin sources and preparation for electrophysiology analyses
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STX was synthesized as described (Andresen and Bois 2009). Neosaxitoxin (neoSTX) was purchased from
Sigma Aldrich (Sigma-Aldrich GmbH, Switzerland, cat. no. 41619). Tetrodotoxin citrate (TTX) was
purchased from Cayman Chemical (MI, USA, cat. no. NC1735928). All toxins were lyophilized and
dissolved in ultrapure water in stocks of 1-5 mM for further use.

From the original 100% ethanol solution containing whole-skin extracts of A. trivittata and S. ruber, 100 pl
was taken from each individual skin sample to create a combined 600 pl skin secretion solution for each
species. Ethanol was evaporated using a low-pressure nitrogen flow in a Rotavapor R-300 vacuum system
(100 mbar, 35 °C). The resulting solute was then resuspended in 30 pl of ultrapure water containing 5%
DMSO to facilitate the dilution of hydrophobic compounds.

Another five toxins found in dendrobatid frogs were shared by the Fitch lab (coauthor) from the John W.
Daly laboratory collection (4). Decahydroquinoline 195A (DHQ 195A, aka PTX-C, PTX-Ci), Synthetic
racemic DHQ 167 HCI, (aka PTX-Civ) was a generous gift of Dr. Larry Overman (92). Synthetic (+)-PTX
251D HCI was prepared as described (93). Racemic octahydrohistrionicotoxin HCI (H8-HTX, HTX 291A)
was a generous gift of Dr. Yoshito Kishi (94). Natural Histrionicotoxin (HTX 283A) was isolated from
mixed frog collections (95). were diluted in ultrapure water or ultrapure water plus 5% DMSO to obtain a
30nM to 100 nM stock dilution (Table S3).

Generating liver soluble protein extracts

E. reginae (n=2) and C. tenuis (n = 1) specimens were collected and euthanized according to approved UCB
IACUC protocols (AUP-2019-08-12457) and a California Department of Fish and Wildlife Scientific
Collecting Permit S-190980001-19111-001 (Table S1). Animals were humanely euthanized via decapitation,
and liver samples were immediately dissected, flash-frozen, and stored at -80°C. Control mouse liver samples
were collected from 5-6-week-old female CD1-IGS mice (Charles River Laboratories, Wilmington, MA,
USA) under UCSF TACUC protocol AN076215-01F, and immediately flash-frozen in liquid nitrogen and
stored at -80°C. Liver homogenization was adapted from descriptions of isolating soluble toxin-binding
proteins from animal tissues by Llewellyn ef al. (17, 96) and 1998. In brief, livers were homogenized at
approximately 1 ml per g of tissue in a buffer consisting of 10 mM Tris-HCl, 0.2 mM
ethylenediaminetetraacetic acid (EDTA), pH 7.4, supplemented with EDTA-free protease inhibitor tablets
(ThermoFisher Scientific, Waltham, MA, USA, Cat. A32955). Livers were homogenized using a
PowerLyizer™ 24 bead beater with two cycles of 3500 rpm for 45 seconds, 30 seconds rest, and 3500 rpm
for 45 seconds. Liver extracts were then centrifuged at 10,000 g for 15 minutes and the resultant pellet was
discarded. The supernatant was filtered and then flash-frozen and stored at -80°C until use. Total protein
was measured using the Pierce binchoninic acid (BCA) protein assay (ThermoFisher Scientific, cat. no.
23225) and extracts standardized to 0.2 mg/mL final concentration.

Mammalian cell culture

Chinese hamster ovary (CHO) cells stably expressing the a-subunit of the human skeletal muscle sodium
channel isoform (HsNav1.4, NM 00334.4, B’SYS GmbH, cat. no. BSYS-NaV1.4-CHO-C) were maintained
at 37°C, 5% COz2 in culture medium containing Ham’s F-12 medium with GlutaMAX (Gibco, cat. no.
31765035) supplemented with 9% (v/v) heat-inactivated fetal bovine serum (Gibco, cat. no. 16140071),
penicillin-streptomycin (0.9% (v/v), Gibco, cat. no. 15-140-122) and 100 pg/mL Hygromycin B (Sigma-
Aldrich, cat. no. 10843555001).

Whole-cell patch-clamp electrophysiology

The effects of treating toxins with liver extract on HsNav1.4 were assessed using a semi-automated QPatch
Compact II electrophysiology platform (Sophion Bioscience, Ballerup, Denmark). Recordings were
conducted at 22°C. The intracellular solution (IC) contained the following in mM: 140 CsF, 1/5
EGTA/CsOH, 10 HEPES, 10 NaCl (pH 7.3 with 3M CsOH), 320 mOsm. The extracellular solution (EC,
saline) contained the following in mM: 2 CaClz, 1 MgCla, 4 KCI, 145 NaCl, 10 HEPES, 10 glucose (pH 7.4
with NaOH), 305 mOsm. Solutions were filtered using a 0.22 pM membrane filter.

Before recording, cells were washed with Dulbecco’s phosphate buffered saline (DPBS, Gibco, cat. no.
14190144), detached from culture flasks with Detachin (AMSBIO, cat. no. T100100) and then kept in serum-
free medium (Sigma-Aldrich, cat. no. C5467) supplemented with 25 mM HEPES and 0.04 mg/mL soybean
trypsin inhibitor (Sigma-Aldrich, cat. no. 10109886001). Immediately prior to recording, cells were washed
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and resuspended in EC to a final cell density of 4-6 x 10 cells/mL, and then applied to the QPatch Compact
II (Sophion Bioscience, Ballerup, Denmark) using 8-channel QPlate 8X multihole chips (Sophion
Bioscience, cat. no. SB0210).

Sodium currents were acquired at 25 kHz and filtered at 8333 kHz, with leak subtraction protocol applied
and non-leak subtracted currents acquired in parallel. Sodium currents were elicited using a single pulse
protocol where cells were held at -90 mV, with a hyperpolarization step of -120 mV for 200 ms followed by
a depolarization step to 0 mV for 60 ms and then returned to a holding potential of -90 mV, with sweep-to-
sweep interval duration of 10 seconds. All recordings were conducted at 22°C.

The effect of guanidinium toxins alone on HsNavl.4 in CHO cells were first assessed by determining
cumulative toxin concentration-response curves, with toxin solutions prepared in 3-fold serial dilution series
in EC and applied as increasing concentrations. The ICso concentrations were calculated by fitting the
concentration-response curves with non-linear regression models in GraphPad Prism V10.0. Toxin
concentrations sufficient to block ~90% of HsNav1.4 currents were subsequently calculated using the ICso
and hillslope (H) as follows: ICx =(x100-x)1HIC50 .

The effect of incubating toxin in liver extract was assessed by diluting samples in EC containing 0.05% w/v
bovine serum albumin (BSA) and then incubating at room temperature (23 + 2°C) for 30 min. Samples
included: toxin alone; toxin combined with liver extract (0.2 mg/mL final); and liver extract alone (0.2
mg/mL). Where possible, toxin concentrations were selected with the aim of inhibiting 90% of sodium
currents, which were calculated from the toxin concentration-response curves to be approximately 1.5 nM
for neoSTX, 100 nM for STX, and 300 nM for TTX. In the case of frog-derived alkaloids, where toxin
quantities were exceedingly limited, a single high concentration able to block putatively resistant
Erythrolamprus reginae ErNav1.4 by at least 60% was selected: 250 uM Hs-HTX; 500 uM HTX283A; 500
uM PTX251D; and A. trivittatta skin extract (1:200 dilution). After incubating, these samples were applied
to HsNav1.4 cells, in stable whole-cell patch-clamp configuration with minimum of 1 nA of sodium current,
in a successive fashion. First, steady baseline sodium currents were established in EC, followed by inhibiting
currents with toxin-alone. Toxin samples were then washed out until currents returned to baseline, using at
least nine chamber volumes of EC. The toxin:liver extract mix was then applied and compared against
currents elicited in EC and toxin alone solutions. Finally, the toxin:liver extract mix was washed out and then
liver extract alone was applied as a control. See Fig. S3 for schematic of assay. All liver extracts and toxins
were screened at minimum in duplicate in two independent assays. Normalized current recovery was then
determined using the following equation: , where Icontol is the baseline current elicited in EC, Itoxin is the
current after application of toxin alone, and Iwxindtiver 1S the current following application of the mixed
toxin:liver extract. The degree of current recovery for each toxin between different species of liver extract
was compared by one-way ANOVA with Tukey’s post hoc test. All data analyses were performed using
Sophion Analyzer software (Sophion Bioscience) and GraphPad Prism v10.0 (GraphPad Prism, San Diego,
CA, USA).

Gene Reconstruction and Cloning of E. reginae Nav1.4 (NR & R) and HsNav1.4

We used the E. reginae complete Nav1.4 gene reconstruction from sample No. GECOH 2823 collected in
Santa Maria, Boyacd, Colombia, with complete information published in Ramirez-Castafieda et al. (9), as the
template. Minor gaps in the sequence were completed using transcriptome samples generated in this study,
employing BLAST v2.7.1+ to identify the required sites (97).

Gene synthesis and cloning into the pcDNA3.1+ vector were requested from GenScript USA Inc. for two
sequences: a non-resistant variant and a resistant variant of the E. reginae Navl.4 channel, following the
sequences published in Ramirez-Castaiieda et al. (9) (ErNav1.4-NR and ErNavl4.-R) (see Fig. SI &
complete sequences in Dataset S4). Additionally, we ordered the complete synthesis and cloning of the
human Navl.4 channel into pcDNA3.1 from the same company (Ref=CCDS:CCDS45761.1,
protein_id=NP_000325.4) (HsNavl.4; GenScript USA Inc.) (complete sequences in Dataset S4).
Nomenclature to highlight amino-acid homologous positions is based on the human Nav1.4 sequence.

In initial trials, the ErNav1.4 (NR) and ErNav1.4 (R) constructs were found to be unstable during replication.
To address this, we used CopyCutter™ EPI400 Chemically Competent E. coli cells from VWR International
and followed the recommended protocol.

Two-electrode voltage-clamp electrophysiology (TEVC)
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Two-electrode voltage-clamp (TEVC) recordings were conducted using defolliculated Xenopus laevis
oocytes at developmental stages V—VI. Oocytes were harvested following UCSF IACUC protocol
AN178461, with recordings performed 1-2 days after microinjection with HsNav1.4 mRNA and 3—4 days
post-injection for E. reginae Nav1.4 (NR & R). Linearized cDNA constructs were transcribed into capped
mRNA using the mMESSAGE mMACHINE T7 Transcription Kit (Invitrogen). Microinjections were
performed using 9—16 ng of HsNav1.4 mRNA and 50-64 ng of E. reginae Navl.4 (NR & R) mRNA. Data
acquisition was carried out using a GeneClamp 500B amplifier (MDS Analytical Technologies) controlled
by pClamp software (Molecular Devices), with signals digitized at 1 kHz using a Digidata 1332A digitizer
(MDS Analytical Technologies). Oocytes were impaled with borosilicate glass microelectrodes (0.3—3.0 MQ
resistance) filled with 3 M KCI. Sodium currents were recorded in a bath solution (RS) composed of 96 mM
NaCl, 1 mM CaCl2, 1 mM MgCl2, 2 mM KCI, and 5 mM HEPES (pH 7.5, adjusted with NaOH).

To determine the concentration—response relationship for STX, TTX, and neoSTX, test solutions containing
specific toxin concentrations were sequentially applied via perfusion to oocytes expressing the channels
(n = 6 oocytes, per Nav channel and toxin). Sodium currents were elicited using a single-pulse protocol where
oocytes were held at -120 mV for 3 s, followed by a depolarization step to 0 mV for 60 ms, before returning
to -120 mV. The interval between sweeps was 10 s.

For STX and TTX, toxin block was washed out between concentrations (approximately 20 sweeps). For
neoSTX, a cumulative toxin recording approach was used, where each concentration was maintained for ~50
sweeps. The ICso values (Fig. 2 and Table S4), representing the toxin concentration required to inhibit 50%
of the current, were calculated by fitting concentration-response curves based on the ratio of peak currents in
the presence and absence of toxin using the equation:

Ix=(Imax—Imin)I0(1+ICxIC50)I x =\frac{(I {max} - I {min})}{I 0 (1 +\frac{IC x}{IC {50}})} where
Ix represents the current amplitude at toxin concentration x, /0 is the current amplitude in the absence of
toxin, and / {max} and I {min} correspond to the maximum and minimum peak current amplitudes,
respectively.

Due to the limited availability of skin secretions and other dendrobatid toxins, a single toxin concentration
was applied to the TEVC chamber for single-pulse recordings, followed by washout with buffer for ~50
sweeps (7 = 3 oocytes per Nav channel and toxin). The following toxin concentrations were used: a 1:100
dilution of 4. trivittata and S. ruber skin extract, 500 uM H8-HTX, 500 uM HTX, 500 uM PTX251D, 1000
uM DHQ195A, and 1000 pM DHQ167. The available toxin quantities were insufficient to conduct tests with
multiple concentrations. For statistical analysis, a non-parametric Mann-Whitney test was used to compare
the reduction in current in the presence and absence of the toxin.

Activation and inactivation properties of each expressed Nav channel were determined using specific voltage
protocols. Inactivation was measured by holding the membrane potential at -120 mV for 30 ms, followed by
incremental 10 mV depolarization steps for 600 ms, ending with a final step to 0 mV for 30 ms before
returning to -120 mV. Activation was assessed by first applying a hyperpolarization step to -100 mV for 6.5
ms, followed by a depolarization from -100 mV to 70 mV by incremental 5 mV depolarization steps for 60
ms before returning to -120 mV.
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901 Figure 1. E. reginae presented longer swallowing times and a dragging behavior when feeding on the
902 poisonous frog Ameerega trivittata. (A) Erythrolamprus reginae feeding on a three-striped poison frog (4.
903 trivittata), photographed by Leonardo Castafieda. (B) Summary of predation trials and ingestion percentages.
904  A. trivittata (high alkaloid content) was offered to E. reginae 10 times, of which only four frogs were
905 consumed. One snake died after A. trivittata ingestion. S. ruber (no alkaloids) was offered eight times, and
906 all were consumed, as well as four individuals of other frog species (1 Dendropsophus sp., 1 Leptodactulus
907 sp., | Rhinella margaritifera and 1 Sphaenorynchus lacteus) that were offered. (C) Comparison of
908 swallowing time between E. reginae feeding on A. trivittata, S. ruber, and other species revealed a significant
909 difference (Kruskal-Wallis test; *, P < 0.05). (D) Analysis of drag cycle behavior during predation revealed
910 that this behavior was exhibited only when feeding on A. trivittata. In contrast, no such behavior was
911  observed when feeding on S. ruber or other species. (E) GC-MS example result from an A. trivittata skin, S.
912  ruber skin, and E. reginae liver after feeding on A. trivittata.
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928

Figure 2. E. reginae liver extract mitigates dendrobatid toxin and neoSTX block of HsNavl.4,
providing evidence of liver proteins involved in detoxification. Concentrations used: (A), 4. trivittata
skin extract, diluted 1:200; (B), HTX 283A, 500 pM; (C), Hs-HTX, 250 uM; (D), PTX 251D, 500 uM; (E),
STX, 100 nM; (F), neoSTX, 1.5 nM; (G), TTX, 300 nM; (H), liver extract alone, 0.2 mg/mL. For all toxins
and extracts, exemplar whole-cell patch-clamp recordings of HsNav1.4 expressed in CHO cells are plotted
in the absence of toxin (baseline, black), presence of toxin alone (maroon), and toxin mixed with E. reginae
liver extract (orange). Current recovery with liver-treated toxin relative to baseline and toxin alone, for E.
reginae liver (orange), C. tenuis liver (teal), and mouse liver (blue). Each point represents a single cell
(n = minimum of 4 cells) and error bars represent standard deviation. Asterisks represent statistically
significant differences in toxin current recovery between extracts (p < 0.0001, one-way ANOVA with
Tukey’s post hoc test).

26



929

31

15
5 e O

149

Stomach .

574
Liver ‘

183

35
52 28

39 29 58
Intestine . . '
A. trivittata  S. ruber Fasting
Go.
~7,
C T, -
00t A. trivittata
So, GQD,"OQ\%C/
GQ% .0098)%4 _"‘Z?’G e,

”, \
ey 09
0043535 prol G0 i ntb,»or ¢o°
oin g,
0in sGr'ne/lhreon : : r
GO Se Gy, ! — - - S. rube
0042805 actingy o O~ ~ ” .

. " binding 7 Z otion cis-reaul
GO0042582: "9 W & .000076: transcriptc

y - - ormone binging — ¥ — GO:0000 iptien regulato...
GO:0030546: signaling receptor activator a&?\;uy — - - £ l / - 05000977 RNA po‘ly"-\efas‘e n lrfan-scnpm g. .
GO:0030545: signaling receptor regulator activity == - Z “ ."*‘ - 6050000981: DNA-binding transcriplion factor activit..

atory ragion bind.

'53: * DAy, fing erpton activaior ac;
GO0, 3020 ipapey, Vot
’ YSacchgria N activator 4oy
do"“e“sh de Naing 8.
- NAL "

' '”lcro,uéu";;’"g anse,, .b’"dlng

"on
’a“”'//‘g, Actoy @clrm

&
%
&

Apanoe oL0SURY SUBIGUISWSUEI UCIUE 16068000:00 .



930
931
932
933
934
935
936
937
938
939
940

941

Figure 3. Consumption of A. #rivittata changes liver gene expression in E. reginae more than in other
conditions and induces high expression of transporter genes. (A) Venn diagram showing the overlap of
upregulated protein-coding transcripts across three conditions after differential expression analysis between
fasting vs. A4 trivittata, fasting vs. S. ruber, and S. ruber vs. A. trivittata of the combined digestive system
tissues (tongue, stomach, liver, and intestine). (B) Number of upregulated protein-coding transcripts in each
digestive tissue after differential expression analysis between fasting vs. 4 trivittata, fasting vs. S. ruber, and
S. ruber vs. A. trivittata. Snake diagram was drawn by Bernardo Moreno Peniche. (C) Circular plot
representing the upregulated liver Gene Ontology (GO) enrichment analysis (molecular function category)
using topGO in E. reginae across the three conditions. Each segment represents a GO term. The width of
each segment corresponds to the "Significant" value, indicating the number of upregulated genes associated
with each GO term.
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Figure 4. Amino acid substitutions in ErNav1.4-R confer high resistance to the neurotoxins TTX, STX,
and neoSTX. Exemplar recordings for Human Nav1.4 (HsNavl.4, blue), E. reginae Nav1.4 non-resistant
variant (ErNav1.4-NR, green), and E. reginae Nav1.4 resistant variant (£F¥Nav1.4-R in orange) expressed in
oocytes were exposed to increasing concentrations of TTX (A, B, C), STX (E, F, G) and neoSTX (I, J, K).
Concentration-response curves were subsequently plotted for each Nav channel for TTX, STX, and neoSTX
(D, H, L; respectively; for values, see Table S2). Each point represents mean normalized current with
standard deviation (n = 6). Note the different toxin concentrations used for ErNav1.4-R (C, G, and K)
compared to other graphs. Structural interactions of STX (M, N) and TTX (O, P) with a model of the
ErNav1.4-R variant. Residues shown in space-filling representation highlight the five amino acid
substitutions at functionally relevant sites that differentiate ErNav1.4-R and ErNav1.4-NR. Among these,
only D1539N and G1540D appear to interact directly with the guanidinium toxins. Residue numbers
correspond to the position in HsNavl.4.
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Figure 5. ErNav1.4-R is sensitive to the A. trivittata poison frog skin secretions. Exemplar current
recordings for HsNav1.4 (blue) and ErNavl.4-R (orange) expressed in X. laevis oocytes and exposed to
1:1000 dilution of reconstituted skin secretions from A. trivittata (A, B) or S. ruber (D, E). Comparison of
sodium current reduction in the presence or absence of A. trivittata (C) and S. ruber (F) skin secretions.
Statistical significance was assessed using a Kruskal-Wallis test, with p-values provided for the
corresponding comparisons. P-values are shown in the graph as (ns) P > 0.05; (*) P <0.05; (**) P <£0.01;
(***) P <0.001.
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introduced the cloning vector.
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Fig. S2. Whole-cell patch-clamp recordings of HsNavl.4 responses to guanidinium toxins. (A)
Concentration-response curves to neoSTX (purple, squares), STX (blue, circles) and TTX (yellow, triangles).
Each point represents the mean with standard deviation, n = 5-6 cells. (B-D) Exemplar whole-cell patch-
clamp recordings for increasing concentrations of toxins for neoSTX (B), STX (C), and TTX (D).
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Fig. S3. Schematic for liver extract functional toxin neutralization assay with example HsNav1.4
currents. The capacity for liver protein extracts from different organisms to inhibit the toxin block of
HsNavl.4 were measured by planar patch-clamp assay using a QPatch Compact II (Sophion Bioscience).
Cells were sequentially exposed to four different conditions, with wash steps between: 1. Baseline currents
in ECS (blue), with no toxin or liver extract. 2. Toxin alone (red), TTX, STX, neoSTX, PTX251D, H8-HTX,
HTX283A, and A. trivittata skin secretion were diluted in ECS to concentrations sufficient to inhibit
HsNavl.4 currents by at least 60% and were pre-incubated for 30 minutes before addition to cells. 3.
Toxin:liver extract mixture (yellow), toxins from section 2. were pre-incubated for 30 minutes at room
temperature with liver extracts (final concentration 0.2 mg/mL) from E. reginae, C. tenuis (a control species
of Colubrid snake from California, USA, with no known exposure to dendrobatid toxins), and mouse liver.
If the toxin block observed in section 2. was reduced in the presence of a liver extract, we inferred that the
extract contained a detoxifying or toxin-binding protein. 4. Liver alone (teal), liver extracts alone (final
concentration 0.2 mg/mL) were incubated for 30 minutes at room temperature and added to the cells. If the
liver extract alone affected sodium channel function, it would indicate intrinsic toxicity to HsNav1.4. Figure
was partially generated using https://Biorender.com.
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Fig. S4. Mouse liver extract does not affect toxin block of HsNaV1.4. Exemplar whole-cell patch-clamp
recordings of HsNav1.4 expressed in CHO cells in the absence of toxin (baseline, black), presence of toxin
alone (maroon) and toxin mixed with M. musculus liver extract (blue). Toxin concentrations used: 4. trivittata
skin extract diluted 1:200; HTX283A, 500 uM; Hs-HTX, 250 uM; PTX251D, 500 uM; neoSTX, 1.5 nM,;
STX, 100 nM; TTX, 300 nM. Final liver concentration was 0.2 mg/mL.
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Fig. S6. Transcriptomic responses of E. reginae after consumption of A. #rivittata, S. ruber, or under
fasting conditions. (A) Principal Component Analysis (PCA) of variance-stabilized transformed (VST)
transcriptomic data from the DESeq2 package (1) across four tissues (tongue, liver, stomach, and intestine)

7


https://www.zotero.org/google-docs/?qYjWlk

under three dietary conditions: consumption of 4. trivittata, S. ruber, or fasting. The sample Er113 Li S9
correspond to the snake that died after A. frivittata ingestion (see Table S2). (B) Volcano plots showing
differentially expressed genes across all tissues and in liver tissue for two pairwise comparisons: fasting vs.
A. trivittata and S. ruber vs. A. trivittata. Gene families previously associated with toxin resistance were
highlighted, including solute carriers (SLC), phospholipases (PLA2), cytochrome P450s (CYP), serpins
(SERPIN), ATP-binding cassette transporters (ABC), heat shock proteins (HSP), Rab GTPases (RAB),
cholinesterase-like genes, transferrin-related genes, lactotransferases and other E. reginae genes annotated in
NCBI as transporters. (C) Circular plot showing liver-specific Gene Ontology (GO) enrichment analysis for
upregulated genes under the cellular component category, using topGO (2). Each segment represents a GO
term, with segment width corresponding to the number of upregulated genes annotated with that term
(“Significant” value).
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Figure S7. E. reginae Nav1.4 resistant variant is sensitive to other toxins found in dendrobatid frogs
(B, E, H, K, N). Exemplar current recordings for Human Nav1.4 (HsNav1.4 in blue), and E. reginae Navl.4
resistant variant (ErNav1.4-R in orange) expressed in oocytes cells and exposed to (+)-pumiliotoxin 251D
(PTX251D), histrionicotoxin 283A (HTX283A), (+/-)-H8-histrionicotoxin (H8-HTX), decahydroquinoline
167 (DHQ167), and decahydroquinoline 195A (DHQ195A). Comparison of sodium current reduction in the
presence or absence of 500 uM PTX251D (C), 500 uM HTX283A (F), 500 uM HS8-HTX (I), 1000 uM
DHQ167 (L), and 1000 uM DHQ195A (O). Statistical significance was assessed using a Kruskal-Wallis test,
with p-values provided for the corresponding comparisons. P—values are shown in the graph as
(ns) P > 0.05; (*) P < 0.05; (**) P < 0.01: (**x) P < 0.001.
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113

114
115

117

Molecular |Weight
Toxin weight (mg) Diluted in
DHQ 195A - PTX-C 231.80524 3.8]ddH20
DHQ 167 (PTX-CIV, HCL salt) 203.75208 3.8]ddH20
(+)-PTX 251D (HCL salt) 287.8685 1.8]ddH20
(+/-)-H8-HTX (HCL salt) 327.93236 2(ddH20
Histrionicotoxin HTX 283A 283.4079 2|ddH20 + 5%DMSO

Table S1. Stock and dilution details for toxins PTX 251D, HTX 283A, H8-HTX, DHQ 167, and DHQ 195A.
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118

119
120
121
122
123

Toxin HsNavl.4 ErNav1.4-NR ErNavl.4-R
TTX-TEVC

IC50 (nM) 103.6 £28.32 18.09 £2.02 >>3000 nM
n 5 6 6
STX-TEVC

IC50 (nM) 15.56 £4.217 6.565+1.013 >>3000 nM
n 6 4 6
NeoSTX-TEVC

IC50 (nM) 2.355+1.170 0.4048 + 0.235 >>333 nM
n 6 6 6

Table S2. ICso values for TTX, STX, and neoSTX for ErNavl.4-R “resistant” and ErNav1.4-NR “non-

resistant” variants, and human Nav1.4.
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124

125
126
127
128

Essay ErNavl.4 (NR) ErNavl4 (R)
Inactivation

V50 (mV) -53.32+3.229 -52.47+£2.929
K (slope) -5.712 -5.887

K (95% CI) -6.116 to -5.326 -6.190 to -5.592
n 12 16
Activation

V50 (mV) -22.98 +3.382 -23.52+3.554
K (slope) 4.21 3.939

K (95% CI) 3.647 t0 4.810 3.508 to 4.392
n 6 14

Table S3. Inactivation and activation Vso and slope (K) values for E. reginae Nav1.4-R “resistant” and E.

reginae Nav1.4-NR “non-resistant” variants, and human Nav1.4.
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Movie S1. Recording of E. reginae feeding on S. ruber. Field sample number VRC19.
Movie S2. Recording extract of dragging behavior of E. reginae feeding on A. trivittata. Field sample number
VRCI101.

Dataset S1. (separate file) E. reginae NCBI annotation of upregulated genes across four tissues (tongue,
liver, stomach, and intestine) under three dietary conditions: consumption of A. trivittata, S. ruber, or fasting.
Available in dryad (DOI: 10.5061/dryad.wstqjq302).

Dataset S2.1. (separate file) pcDNA3.1+ expression vectors containing the E. reginae Navl.4 “non-
resistant” (NR) Navl.4 coding sequence. Available in dryad (DOI: 10.5061/dryad.wstqjq302).

Dataset S2.2. (separate file) pcDNA3.1+ expression vectors containing the human Nav1.4 coding sequence.
Available in dryad (DOI: 10.5061/dryad.wstqjq302).

Dataset S2.3. (separate file) pcDNA3.1+ expression vectors containing the E. reginae Navl.4 “resistant”
(R) Nav1.4 coding sequence. Available in dryad (DOI: 10.5061/dryad.wstqjq302).

Dataset S3.1. (separate file) Domain IV sequences of the E. reginae Navl.4 channel from field samples
VRCO09, used in the liver extract screening assay for functional toxin neutralization. Available in dryad (DOI:
10.5061/dryad.wstqjq302).

Dataset S3.2. (separate file) Domain IV sequences of the E. reginae Navl.4 channel from field samples
VRCO09, used in the liver extract screening assay for functional toxin neutralization. Available in dryad (DOI:
10.5061/dryad.wstqjq302).

Dataset S3.3. (separate file) Domain IV sequences of the E. reginae Navl.4 channel from field samples
VRCI10, used in the liver extract screening assay for functional toxin neutralization. Available in dryad (DOI:
10.5061/dryad.wstqjq302).

Dataset S3.4. (separate file) Domain IV sequences of the E. reginae Navl.4 channel from field samples
VRCI10, used in the liver extract screening assay for functional toxin neutralization. Available in dryad (DOI:
10.5061/dryad.wstqjq302).

Dataset S4. (separate file) Available predation experiments raw recordings. Available in dryad (DOI:
10.5061/dryad.wstqjq302).

Dataset S5. (separate file) Complete manuscript in Spanish. The Spanish translation was produced using
ChatGPT and edited by VRC (98) (to be uploaded after revision). Available in dryad (DOI:
10.5061/dryad.wstqjq302).

Dataset S6. (separate file). General information and descriptions of the samples used in experimental assays,
including museum specimen accession numbers and collection data. Available in dryad (DOI:
10.5061/dryad.wstqjq302).

Dataset S7. (separate file). Samples used for transcriptome analysis, including RIN values, SRA accession
numbers, experimental condition, and tissue type. Available in dryad (DOI: 10.5061/dryad.wstqjq302).
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