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Abstract 16 

Disturbances shape assemblages and spatial patterns of flora and fauna across the globe, and accurate 17 

disturbance mapping can aid conservation science and decision-making. However, mapping and 18 

differentiating among disturbance types using remote sensing is challenging, especially in forests with 19 

hidden subcanopy disturbances. On federal lands in the western US, wildfire, drought, and fuels 20 

management are three primary disturbance agents of forest change. The US Forest Service’s (USFS) 21 

Forest Activity Tracking System (FACTS) provides nationwide fuels management data on USFS lands, 22 

but has not been widely utilized to understand the drivers of forest change, partially due to missing data 23 

and spatial and temporal uncertainty. We compared fuels management areas as represented in FACTS 24 

with annual, remotely-sensed predictions of canopy loss (Mortality Magnitude Index in the eDaRT 25 

system for Landsat processing; MMI) and assessed their spatial and temporal accuracy. We determined 26 

that a temporal window spanning two years before to one year after the reported FACTS completion year 27 

accounted for 98.5% of high-change fuels management areas delineated using remote sensing and 28 

visually confirmed using NAIP imagery. Our approach indicates that FACTS, once buffered temporally 29 

(and possibly spatially, depending on the user’s objectives), can provide reliable information on the 30 

history of fuels management. We used these data in conjunction with estimates of fire severity (composite 31 

burn index) and drought-related tree mortality (MMI) to characterize annual patterns in forest disturbance 32 

on USFS lands in the Sierra Nevada and Southern California from 2003 to 2022. We found that 73% and 33 

76% of these regions were disturbed, respectively (25,000 km2 across both regions). Of the 25,000 km2 34 

affected, wildfire was the dominant disturbance agent (17,204 km2; 69%), followed by drought/other 35 

mortality (12,813 km2; 51%), and fuels management (3,472 km2; 14%), with some overlap between these 36 

categories across the 20-year span. These results underscore recent widespread disturbance agents and the 37 

possible transformation of California forests, changes that are having profound effects on biodiversity. 38 

The accompanying disturbance dataset and processing code provide new and potentially powerful 39 

opportunities for scientists and managers studying and stewarding these rapidly changing ecosystems. 40 
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1. Introduction 45 

Understanding the drivers of environmental change can facilitate appropriate and effective management 46 

interventions. In forest ecosystems, a multitude of disturbances can cause changes to forest structure and 47 

composition, result in tree death, and reset forest succession (Pickett and White 1985, Turner 2010). 48 

Natural disturbances such as wildfire (Bond and Keeley 2005), drought-induced tree mortality (Allen et 49 

al. 2010), insect outbreaks (Raffa, Grégoire, and Lindgren 2015), and windfall (Baumann et al. 2014), as 50 

well as anthropogenic disturbances such as tree harvesting (Kittredge Jr, Finley, and Foster 2003) and 51 

grazing (Öllerer et al. 2019) can all influence forest dynamics. Forest managers intent on guiding the 52 

conservation of particular forest characteristics must understand how natural and anthropogenic 53 

disturbances interact to influence change, and incorporate such knowledge into management prescriptions 54 

(Leverkus et al. 2021). As the frequency, size, and intensity of disturbances and their interactions 55 

accelerate in many forest systems (Burton, Jentsch, and Walker 2020), managers must also understand the 56 

nature and distribution of changing disturbances to optimize conservation decisions. Furthermore, 57 

financial investments by government or private entities in management activities are contingent upon 58 

accurate reporting thereof such that subsequent work is appropriately allocated based on actual work 59 

accomplishments. 60 

Despite the importance of understanding disturbance processes, detecting and delineating the 61 

spatial and temporal boundaries of interacting disturbances is challenging (Stahl et al. 2023). Some 62 

disturbances, such as wildfire, can be discrete in space (have clear boundaries) and punctuated in time 63 

(have clear start and end dates). Other disturbances, like drought-induced tree mortality, are more gradual 64 

in nature, having ambiguous spatial footprints and start and end dates (Asner et al. 2015, Parry et al. 2016, 65 

Diaz et al. 2020). Discrete disturbances are relatively straightforward to map; gradual disturbances are 66 

not. Hidden subcanopy disturbances, such as surface fire or understory mechanical thinning, also 67 

challenge change detection (Jarron et al. 2020, Gao et al. 2020). Moreover, discrete and gradual canopy 68 

and subcanopy disturbances can interact in space and over time, creating a complex challenge in terms of 69 
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attributing which factor was responsible for producing landscape change. Wildfire can occur within the 70 

context of an ongoing drought (Crockett and Westerling 2018); insect outbreaks can precede wildfires and 71 

influence their behavior (Wayman and Safford 2021); and so on. The increasing likelihood of disturbance 72 

interactions and the task of accurate disturbance mapping challenge managers’ ability to understand and 73 

respond appropriately to landscape change and quantify disturbance impacts to sensitive species and 74 

biodiversity. 75 

In western United States forests, wildfire is the dominant driver of landscape change and, as such, 76 

robust monitoring systems exist to track fire occurrence and severity (Eidenshink et al. 2007). Existing 77 

evidence, based on monitoring data produced by such systems, suggests that rapidly changing fire 78 

regimes have begun transforming western US forests (Coop et al. 2020, Parks and Abatzoglou 2020, 79 

Hagmann et al. 2021). Increasingly, though, other forms of forest disturbance are becoming more 80 

common and/or consequential and are typically more difficult to map with high precision. Drought-81 

induced tree mortality has increased in western US forests in recent years (Williams et al. 2015, Crockett 82 

and Westerling 2018), but drought plays out over years, and sometimes trees do not die until after the 83 

drought has concluded (Young et al. 2017), challenging attribution. Although fuels management such as 84 

understory mastication, forest thinning, and other restoration projects regularly occur on USFS land, the 85 

pace and scale of this management needs to increase to mitigate fire and drought effects (North et al. 86 

2015, Stephens et al. 2013). The US Forest Service maintains one of the largest databases describing the 87 

details of each of these projects: the Forest Activity Tracking System (FACTS). However, this system is 88 

error-prone and incomplete (Knight et al. 2022), and as such has not been widely utilized to understand 89 

the drivers of forest change. An improved understanding of the relative and absolute influences fire, fuels 90 

management, and drought on western US forest change, as well as the spatial and temporal distribution of 91 

these drivers, is critical for informing data-driven forest management moving forward. 92 

Here, we present a novel approach for attributing forest change to fire, fuels management, and 93 

drought/other disturbance types across California’s Sierra Nevada and Southern California, USA 94 

bioregions over the period 2003-2022. These regions are at the center of contemporary forest 95 
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management issues and represent biodiversity hotspots experiencing rapid environmental change.  Our 96 

approach integrates two previously existing spatiotemporal datasets (fire, drought) and introduces a new 97 

approach for vetting and attributing fuels management activities using existing databases. Specifically, we 98 

1) assess the temporal and spatial accuracy of FACTS fuels management polygons, and 2) compile fire, 99 

fuels management, and drought/other disturbance into synthetic annual disturbance layers across a 20-100 

year period for the Sierra Nevada, CA and Southern California study areas. We provide freely available 101 

geospatial raster datasets and code for managers and scientists to update the spatial dataset for new areas 102 

or in the future as forests continue to change. These methods and code for facilitating disturbance type 103 

summary – especially because they are accompanied by a rigorous accuracy assessment of fuels 104 

management activities actually used by land managers for reporting accomplishments – can serve as a 105 

much needed and repeatable approach to compare the relative proportions of the drivers of ecosystem 106 

change over time in national forests and will facilitate forest planning, biodiversity conservation, and new 107 

scientific advances. 108 

 109 

2. Methods 110 

2.1 Study area 111 

Our study areas were limited to USFS land and encompassed 19,871 km2 in the Sierra Nevada and 14,045 112 

km2 in Southern California. The climate is Mediterranean with warm, dry summers and cool, wet winters 113 

and elevations ranging from 226 to 3,972 m in the Sierra Nevada and 102 to 3,504 m in Southern 114 

California. The Sierra Nevada is primarily forested, including Sierra mixed conifer, subalpine forests, and 115 

oak woodlands, as well as non-forest areas including wet meadows, shrubfields, and rocky areas. The 116 

Southern California study area is more sparsely forested and is primarily characterized by oak woodland 117 

and chaparral shrubfields. Because we eliminated non-USFS ownership from our analyses, our study 118 

areas were a checkerboard pattern in some areas. The study landscape is primarily influenced by three 119 

disturbance types: a) fires of different sizes and severities, b) fuels management efforts by the USFS, and 120 
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c) drought that spiked at different times in the northern and southern Sierra Nevada, as well as in 121 

Southern California. 122 

 123 

2.2 FACTS fuels management 124 

The FACTS database provides nationwide data on activities related to fire, fuels, silviculture, and 125 

invasive species on USFS lands from as early as the 1850s up to the present, as well as treatments that are 126 

planned but not yet implemented. This database of spatially explicit polygons includes 113 attributes for 127 

each treatment polygon including treatment activity type, method, equipment used, award and completion 128 

date, funding information, project name, and National Environmental Policy Act (NEPA) details. Note 129 

that these spatial data are typically hand-delineated using background imagery and maps, and often by 130 

managers who are not necessarily trained in spatial analysis. Knight et al. (2022) compared FACTS data 131 

with remote sensing for the purpose of more accurately accounting for the area with fuels management 132 

across time, and found potential over-reporting. However, they did not deeply explore temporal accuracy 133 

or potential underreporting when fuels management was not in FACTS. Although this information-rich 134 

database could be a goldmine for researchers, it has not been widely used in forest or biodiversity science, 135 

in part because of missing data and uncertainty around the spatial and temporal accuracy of the records. 136 

This database is used extensively by the USFS for reporting, however, emphasizing the importance of 137 

thorough assessment and data validation.  138 

We downloaded the FACTS Common Attributes shapefile for Region 5 (USDA Forest Service 139 

2025) and exported only treatments awarded since 1980 that were located within the 10 km buffered 140 

study area. Although we were only interested in fuels management since 2003, activities can take over a 141 

decade to be completed, and we aimed to avoid removing potentially relevant data, so we looked as far 142 

back as 1980 to ensure that all activities in 2003 or later were considered. We filtered the FACTS dataset 143 

to a limited subset of activities representing fuels management. Specifically, we identified 97 (of 483) 144 

activity types representing fuels management (including prescribed fire, mechanical, and manual fuel 145 

reduction) and excluded wildfire and non-fuels management activities like planting or surveys, as well as 146 
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low-impact and spatially broad activities like Christmas tree harvests (personal communication, S. 147 

Coppeto and T. Moore; see Table S.1 for full list of the 97 activity codes used). In cases where there was 148 

no recorded completion date, we noted the year of the award (i.e. the financial allocation, and the most 149 

recent of the two fields “award date” and “date award” if both were filled). Finally, we projected the 150 

filtered polygon fuels management layer to match the Mortality Magnitude Index (MMI) rasters 151 

describing canopy cover change (described in the following section). 152 

 153 

2.3 Wildfire data and MMI prep 154 

We mapped wildfire severity for the Sierra Nevada and Southern California study regions from 2000 to 155 

2022. We used the random forest model developed by Parks et al. (2019) within Google Earth Engine 156 

(Gorelick et al. 2017) to predict a field-based metric of fire severity, the composite burn index (CBI), at a 157 

30 m resolution. CBI characterizes the effects of fire on soils and vegetation on a continuous scale from 0 158 

to 3 (unburned/unchanged to high-severity; Key and Benson 2006) and can be modeled as a function of 159 

several pre- and post-fire Landsat spectral indices, climate, and latitude (Parks et al. 2019). Specifically, 160 

we predicted CBI within wildfire perimeters ≥ 4 ha (Cova et al. 2023) obtained from the CAL FIRE Fire 161 

and Resource Assessment Program’s historical fire perimeters geodatabase (CAL FIRE 2024). 162 

We downloaded tiled annual 30 m rasters of MMI from the eDaRT system for Landsat processing 163 

(Koltunov et al. 2020, Slaton et al. 2025). Briefly, MMI represents an estimate of canopy cover loss as a 164 

proportional area within each 30 m pixel. Although the MMI is computed on an annual basis and MMI 165 

values are associated with the total canopy cover loss associated with a mortality event in the given year, 166 

in some instances MMI incorporates change over two years (e.g. where clear Landsat images were not 167 

available nearer in time to a discrete disturbance’s timing). Importantly, the canopy cover loss conveyed 168 

by MMI could represent a variety of causes, including fire, fuels management, drought, disease, insect 169 

damage, windthrow, etc. We will henceforth refer to all disturbances other than fire and fuels 170 

management as drought, and while we acknowledge that some of these disturbed areas were not due to 171 

drought, we assumed that the majority of them were, based upon known – and often-times severe – 172 
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drought impacts documented in Calfornia, especially during 2004-2006 and 2014-206, and subsequent 173 

resulting insect and disease damag. Pixels were excluded from the analysis in cases where 1) the MMI 174 

could not be computed in the eDaRT algorithm (e.g. too few clear images were available in the search 175 

windows before and after disturbance to calculate change), 2) the pixel was burned in that or the previous 176 

3 years (i.e. had a categorized CBI score of 0-3; essentially any pixel that fell within a fire polygon), and 177 

thus would already be categorized as “fire” and not need to be further analyzed using MMI. MMI pixels 178 

with a value < 10 were also excluded, since these low scores reflect relatively small changes in the 179 

canopy less likely to be driven by the major drivers of change of interest to us. Tiled MMI rasters were 180 

mosaicked and snapped to align with a tile in the center of each study area (Sierra Nevada or Southern 181 

California) by taking the maximum MMI value of each pixel in the areas where they overlapped. Finally, 182 

we clipped the mosaiced MMI raster for each year to the 10 km buffered study area. 183 

 184 

2.4 FACTS fuels management temporal and spatial accuracy 185 

In order to assess the spatiotemporal accuracy of the FACTS fuels management polygons, we first defined 186 

areas with clustered and substantial canopy cover loss in the northern portion of our study area (areas with 187 

comparatively less drought mortality to best isolate fuels management) annually from 2004-2022. For 188 

simplicity, we will refer to these high canopy change clusters as HCC clusters henceforth. While not all 189 

fuels management is visible in imagery or the MMI product, we reasoned that areas of clustered high 190 

MMI values would most often be associated with fuels management activities, which typically remove 191 

canopy cover within targeted continuous stands with distinct boundaries. To generate the HCC clusters, 192 

we first identified pixels with MMI > 20% (e.g. pixels with substantial canopy cover loss). We then used 193 

a 5x5 cell neighborhood to identify pixels where at least 60% (15/25) of pixels in the neighborhood had 194 

high canopy cover loss. We chose these relatively high thresholds to ensure that extraneous noise / 195 

drought in the MMI layers from one year to the next was eliminated and that most HCC clusters visually 196 

aligned with existing fuels management polygons (using NAIP imagery). Finally, we merged pixels that 197 

were orthogonally contiguous into patches and removed any patches < 0.9 ha (10 pixels) in area.  198 
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To assess the temporal accuracy of FACTS fuels management data, we compared the area where 199 

HCC clusters overlapped FACTS fuels management polygons, checking for HCC cluster area from five 200 

years before to five years after the reported completion year (e.g. activity date). We chose a five-year 201 

window around this date to include potential misreporting, as well as activities that took multiple years to 202 

complete. We thus compared HCC clusters from 2004-2022 that overlapped completion years from 2009-203 

2017 (254 km2). We then examined this distribution and determined a suitable temporal window, based 204 

on the FACTS completion date, that captured the majority of this change. We used that temporal window 205 

to guide further analyses and shape fuels management areas in our ultimate disturbance dataset. 206 

To assess the spatial accuracy of FACTS fuels management polygons (and other fuels 207 

management activities), we visually examined NAIP imagery overlapping any instance where HCC 208 

clusters did not overlap probable FACTS fuels management (using the temporal window discussed in the 209 

previous paragraph). We wanted to focus this analysis on areas with relatively minimal drought 210 

(reasoning that drought could create these HCC clusters outside FACTS fuels management polygons, and 211 

these instances were not a relevant factor in this sub-analysis). We therefore performed this HCC cluster 212 

check for the northern 30% of the Sierra Nevada study area in 2013, 2015, and 2017 (covering 9,636 km2 213 

of the following counties: Butte, Lassen, Nevada, Plumas, Shasta, Sierra, Tehama, and Yuba). We deleted 214 

any high change area that overlapped a FACTS fuels management polygon with a completion date 215 

between one year before to two years after the year of change (based on the results from the analyses 216 

described in the previous paragraph). We then visually compared 1 m NAIP imagery (available every two 217 

years) before and after the year of the HCC cluster and classified the cluster’s disturbance type as 1) edge, 218 

2) drought, 3) open (i.e. non-forest), 4) wildfire, or 5) fuels management. We defined the HCC cluster as 219 

edge when it appeared to be a fuels management activity that extended from either a) the edge of USFS 220 

ownership or b) the edge of a FACTS polygon, indicating inaccurate treatment boundary mapping. The 221 

HCC cluster was classified as a) confirmed drought when red stage or needle drop was visible in the 222 

NAIP at the site of the HCC cluster or b) presumed drought when no disturbance was visible in the NAIP. 223 

These two subcategories were both considered to be drought. We classified areas as open when the area 224 
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appeared to be grass, shrub, or rock in the NAIP.  Although eDaRT does detect disturbances in non-forest 225 

areas, MMI is specifically calibrated for tree canopy cover loss. Because these regions had relatively few 226 

open areas, we assumed that errors resulting from these in the final dataset would be minimal. While 227 

recently burned areas should have been eliminated from potential HCC clusters, wildfire perimeters were 228 

not always accurately mapped, and we included this as a category after we noticed a few instances in the 229 

dataset where wildfire extended beyond the mapped boundaries. Finally, if the NAIP showed fuels 230 

management where there was no FACTS record (within the five-year temporal buffer), we noted whether 231 

it was a) shrub mastication or b) forest management. We also visually examined the spatial accuracy 232 

around boundaries of both USFS ownership and FACTS fuels management polygons to determine 233 

whether any additional spatial inaccuracies were present that were not captured by the HCC clusters. We 234 

performed an additional exploratory analysis to gain insight into an appropriate timeframe and method 235 

for fuels management polygons with missing completion dates in the FACTS database (Supplementary 236 

Material). 237 

 238 

2.5 Annual disturbance compilation and assessment 239 

We compiled fire, fuels management, and drought, and summarized disturbance area annually across 20 240 

years for the Sierra Nevada and Southern California. Note that because the FACTS database only 241 

included USFS fuels management activities, we were only able to map disturbance on USFS land. When 242 

compiling the different disturbance types, fire took precedence (i.e. we classed any burned pixel in a 243 

given year as burned, even if that pixel also underwent fuels management, thus assuming that the primary 244 

disturbance agent in that pixel in that year would be fire). Similarly, we only determined drought for 245 

pixels that had neither burned nor undergone fuels management. Importantly, for this compilation, a given 246 

disturbance of each type spanned four years to capture either a) the temporal breadth of the disturbance, 247 

or b) the temporal uncertainty of the disturbance, explicitly for fuels management. This manifested as a 248 

lag after fire and drought to account for secondary fire effects or a prolonged period of drought and a 249 
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temporal envelope around fuels management dates to account for both the temporal uncertainty associated 250 

with FACTS and fuels management activities that were implemented across multiple years. Because the 251 

span was four years across all three disturbance types, we were comfortable comparing the relative area 252 

of each disturbance type on the landscape across time. 253 

We categorized the severity of burned pixels using the CBI scores described in section 2.3, where 254 

pixels with CBI ≥ 2.25 were classified as high severity fire, and pixels with CBI 0-2.25 were classified as 255 

low-moderate severity (Miller & Thode, 2007). Note that while a CBI score of 0 equates to unburned/very 256 

low severity areas within a fire perimeter, we wanted to err on the side of caution and attribute any 257 

potential disturbance within these areas to fire as opposed to other factors (like fuels management or 258 

drought). To account for secondary fire effects after the year of the fire (e.g. delayed tree mortality due to 259 

injury from the fire), we assigned a three-year lag period for any burned pixel of a given severity class. 260 

For instance, we classified a pixel that burned at high severity in 2010 as high severity in 2010-2013.  261 

Because the results from the analyses described in section 2.4 did not provide a definitive path 262 

forward in terms of how to identify fuels management and drought, we calculated each disturbance type 263 

based on two disturbance scenarios (Fig. 1). We designated a maximum and minimum disturbance 264 

scenario using different methodologies to assess the importance of choosing one methodology over 265 

another. The minimum disturbance scenario only used fuels management polygons with a completion 266 

date (using the span of two years before to one year after the completion date; Fig. 1). Conversely, in the 267 

maximum disturbance scenario, we used fuels management polygons regardless of whether a completion 268 

date was entered in the FACTS database. When the completion date field was blank, we used a temporal 269 

range from the year of the award to three years thereafter. Also see Fig. S1 for a more detailed breakdown 270 

of the input data and decisions used to assess the FACTS data alone. 271 

In the maximum disturbance scenario, we determined drought for any pixel that neither burned 272 

nor had fuels management in a given year. In the minimum disturbance scenario, we further excluded any 273 

pixels within 50 m of either a USFS ownership boundary or a fuels management polygon. In either case, 274 

if a pixel had an MMI > 10% in the given year, we classified it as drought and applied a three-year lag 275 



13 
 

period so that the pixel remained “drought” for four years. Examples of the resulting disturbance types on 276 

NAIP imagery are shown in Fig. S2.  277 

We first calculated the annual area affected by each disturbance type under the maximum and 278 

minimum scenarios to evaluate the range between the two scenarios, the trends of each disturbance type 279 

across the 20-year span, and the relative magnitude of each disturbance in relation to the other disturbance 280 

types. Because the difference between the two scenarios was minimal across the disturbance types and the 281 

two study areas, we used the maximum disturbance scenario to track cumulative disturbed area across 282 

time and to map each disturbance type and all disturbances across the full 20-year span. 283 

 284 

3. Results 285 

3.1 FACTS fuels management temporal and spatial accuracy 286 

Across 254 km2 of HCC clusters (2009-2017; Fig. 2a) that overlapped FACTS fuels management 287 

polygons within five years of the reported completion date, only 157 km2 (62%) of the changed area (as 288 

determined using annual summaries of remote sensing detection methods) occurred on the same year of 289 

FACTS-reported completion (Fig. 2b). An additional 49 km2 (19%) and 15 km2 (6%) of HCC cluster area 290 

occurred one and two years before the completion year, respectively, and 10 km2 (4%) of HCC cluster 291 

area occurred in the year after the completion year. In summary, within a four-year period (from two 292 

years before to one year after the fuels management completion year), 91% of HCC cluster area was 293 

accounted for by fuels management polygons (Fig. 2b). 294 

Across 2013, 2015, and 2017, there was 42.9 km2 of HCC cluster area total (overlapping FACTS 295 

fuels management polygons and not overlapping them). Clusters that overlapped FACTS polygons using 296 

the above four-year temporal window accounted for 35.7 km2 (83%) of that total HCC cluster area. Of the 297 

remaining 7.2 km2 (17%; 156 individual HCC clusters) that did not overlap FACTS fuels management 298 

polygons, drought accounted for the majority (85.6%) of unaccounted HCC cluster area (i.e. not 299 

overlapping with FACTS; Table S.2), and edge accounted for 3.6% of HCC cluster area, including fuels 300 



14 
 

management that was not fully contained by the FACTS polygon. A similarly small proportional area 301 

(3.9%) was due to obvious fuels management activity that was not present in the FACTS dataset, 302 

although some of these were captured by FACTS fuels management polygons with dates outside the four-303 

year span or missing dates. Other cases were completely absent from the FACTS dataset, though this was 304 

due to recent USFS land acquisition in at least one instance. The remaining categories also represented 305 

minimal area, with 5% and 1.9% of unaccounted for HCC cluster area occurring in unforested areas and 306 

mis-mapped wildfire area, respectively. In summary, across 42.9 km2 of HCC cluster area, 83.2% 307 

overlapped with FACTS fuels management, 1.3% (0.5 km2) was visually confirmed to be fuels 308 

management area not captured by our methods, 14.4% was drought, and 1.1% was misclassified for other 309 

reasons.  310 

To estimate the relative rate of fuels management misclassification, we compared the proportion 311 

of HCC cluster area that did not overlap with FACTS fuels management polygons (using the four-year 312 

temporal window) and was visually determined to be fuels management (0.5 km2) to the total fuels 313 

management HCC cluster area over the same area and timeframe (0.5 km2 + 35.7 km2 HCC cluster area 314 

that overlapped with FACTS fuels management polygons using the four-year temporal window). This 315 

yielded a 1.5% misclassification rate where fuels management would have been misclassified as drought. 316 

 317 

3.2 Annual disturbance compilation and assessment 318 

The difference between the maximum and minimum disturbance scenarios was narrow for nearly all 319 

disturbance types across both study areas (Fig. 4). The only exception was for drought in Southern 320 

California between 2003 and 2008. Overall temporal trends show drought pulses in 2007 and 2016 in the 321 

Sierra Nevada and 2015 in Southern California. Wildfire area also fluctuated, with a marked rise in 322 

burned area in the Sierra Nevada in 2020-2022. Fuels management was relatively constant from one year 323 

to the next, and generally the least prevalent driver of forest change. Fuels management varied between 2 324 

and 4% of the land area each year in the Sierra Nevada, but was less than 2% each year in Southern 325 

California. 326 
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When we compiled disturbance across 20 years (2003-2022), 69% of USFS lands were disturbed 327 

across the Sierra Nevada and Southern California (~25,000 km2 total; Fig. 5a; Table 1). Broken down by 328 

each disturbance type on USFS land, fire of any type burned 17,204 km2 (51% of the total area and 69% 329 

of the total disturbed area; Fig. 5b; Table 1). Of that area, severe fire burned 7,343 km2 (22% of the total 330 

area and 29% of disturbed area) and low/moderate severity fire burned 10,966 km2 (32% of the total area 331 

and 44% of disturbed area; Fig. 5b; Table 1). Note that different disturbance types overlapped, and some 332 

areas burned in different fires at both high and low/moderate severity. Fuels management covered 3,472 333 

km2 (10% of the total area and 14% of disturbed area; Fig. 5c; Table 1), and drought impacted 12,813 km2 334 

(38% of the total area and 51% of disturbed area; Fig. 5d; Table 1). 335 

 336 

4. Discussion 337 

We produced a synthetic dataset of disturbances across 34,000 km2, using existing data products collected 338 

by the USFS and derived from remote sensing. Using this synthetic dataset, we showed that substantial 339 

disturbances have occurred on USFS land over time and that the area affected by fire and drought far 340 

exceeds the area under active fuels management. Our method overcomes previous challenges of vetting 341 

and parameterizing uncertainty in one of the input datasets (FACTS) and combines the different 342 

disturbance types into one cohesive product. This product offers a resource for researchers and forest 343 

managers to investigate spatial and temporal disturbance trends, including their interaction, and the 344 

relationship of reported forest management activities to detectable changes on the landscape. 345 

 346 

4.1 FACTS data can be a reliable fuels management data source 347 

These analyses improve our understanding of the uncertainty and limitations of the FACTS database and 348 

indicate that with appropriate treatment of the data with the recommendations provided here, FACTS can 349 

be a reliable data set for tracking fuels management. Knight et al. (2022) examined some inaccuracies in 350 

the FACTS dataset that align with our findings. For instance, they found that disturbance was detected by 351 
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remote sensing within about half of FACTS polygons across an eight-year timespan, and that the median 352 

difference in timing between the award year and the change in the remote sensing was 0 years. However, 353 

their investigation did not focus on exploring treatment timing in further detail (such as the temporal 354 

distribution of fuels management when it was not the same year as that reported) or exploring possible 355 

instances of fuels management that were more than 300 m beyond the borders of FACTS polygons. 356 

Similar to Knight et al. (2022), we found that the majority (62%) of fuels management detected by remote 357 

sensing appeared to occur on the completion year (often the same as the award year). While we did find 358 

some fuels management areas that were not represented in FACTS, these were minimal (1.5% of HCC 359 

cluster fuels management area) when a four-year temporal buffer was applied one year before to two 360 

years after the reported completion year.  361 

One of our aims was to extend the applicability of the work done by Knight et al. (2022) in 362 

generating a robust fuels management spatial dataset. Specifically, we completed additional 363 

spatiotemporal assessment and filtering of the FACTS data to improve its applicability and robustness as 364 

a data product, and we combined the fuels management spatial data with additional disturbances to create 365 

a synthetic multi-disturbance dataset. Furthermore, our product offers some additional end-user flexibility 366 

in that a scientist or manager could tailor how they use the FACTS data depending on the magnitude of 367 

spatial and temporal error acceptable for their study design. For instance, if the objective was to isolate 368 

any area with moderate temporal resolution where canopy change could have been due to USFS fuels 369 

management (and not another disturbance agent), a four-year span (two years before to one year after the 370 

FACTS completion date) paired with a buffer around fuels management polygon boundaries would 371 

capture the majority of fuels management activity. If the objective was to identify areas where change 372 

could be attributable to drought, blocking out the above areas, as well as burned areas and any canopy 373 

change within a buffer around non-USFS ownership would help to exclude any areas affected by other 374 

disturbance types.  375 

Although it may not be intuitive as to why the fuels management temporal buffer would extend a 376 

year beyond the completion date, we suspect that this was due more to a temporal mismatch between the 377 
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MMI and FACTS datasets as opposed to fuels management activities occurring after reported completion. 378 

Because the MMI data estimated canopy cover change between one growing season and the next, any 379 

fuels management that occurred in the fall or winter of a given year would not be detected by MMI until 380 

the following year. Therefore, if MMI (or similar remote sensing technology that detects change primarily 381 

from one growing season to the next) is being used in conjunction with FACTS, we advise users to 382 

accommodate this temporal mismatch by 1) attributing any detected change up to a year after fuels 383 

management completion to fuels management, as opposed to another disturbance type, or 2) instead of 384 

utilizing just the year, as we did in this analysis, utilizing the time of year of fuels management 385 

completion.  386 

 387 

4.2 Disturbance trends on USFS lands over two decades 388 

Our compilation of disturbances showed that 69% of USFS land area in the Sierra Nevada and Southern 389 

California has experienced wildfire, fuels management, drought, or a combination of disturbances across 390 

20 years. Additionally, trends between the different disturbance types across time emerged, including an 391 

oscillating pattern of drought and wildfire. While this broad pattern is not surprising, these data facilitate 392 

analyses that examine more complex relationships between the spatial and temporal patterns of 393 

disturbance and their relationship to the flora and fauna of different landscapes. An examination of the 394 

31% of the landscape that was not disturbed during this timeframe would also be insightful, revealing 395 

either potential disturbance refugia or areas that have sufficient fuel accumulation to be at higher risk of 396 

disturbance in the coming years. 397 

In order to improve the utility of this product and workflow, we have published the code that 398 

generates the disturbance layers, as well as the annual disturbance rasters for the Sierra Nevada and 399 

Southern California at __________________________. Base data needed to generate these disturbance 400 

layers are available for the state of California, though MMI does not extend to other states at this time. 401 

Also note that while MMI has been validated, it may be less accurate in predicting canopy change in 402 

certain areas, but see (Slaton et al. 2025). As part of our code, we embedded the MMI values associated 403 
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with each disturbance type for each pixel for each year, which could allow a user to estimate relative 404 

disturbance intensity. While we did not examine MMI explicitly in its ability to determine disturbance 405 

intensity for either fuels management or drought, greater canopy cover loss associated with these 406 

disturbance types, should be reflected by more intense disturbance in the MMI. For instance, a 407 

preliminary investigation indicated higher MMI in treatment activity types that had more intense fuel 408 

reduction, including group selection and commercial thin activities (Fig. S3). While we encourage 409 

additional testing in this area, these findings suggest that relative intensity of fuels management or 410 

drought / other disturbances could be determined from this dataset. This dataset also incorporates salvage 411 

logging as a disturbance type at two different confidence levels. 412 

 413 

4.3 Alignment with other research   414 

While not strictly comparable, Asner et al. (2015) found that 10,000 km2 of California forests experienced 415 

severe canopy water loss during the 2012-2015 drought, which is similar to our estimate of 12,813 km2 of 416 

substantial canopy loss due to drought and other factors from 2003 to 2022 in the Sierra Nevada and 417 

Southern California. This recent drought killed a higher proportion of large trees that are important for 418 

both wildlife habitat and future wildfire resilience, and the effects of drought may be accelerating a 419 

species type conversion (Fettig et al. 2019).  420 

Unsurprisingly, our results regarding the extent of severe wildfire were similar to previous 421 

studies, including larger fires overall (Cova et al. 2023, Westerling et al. 2006) and a high proportion of 422 

severely burned area on USFS land (Stevens et al. 2017) compared to the area burned at low or moderate 423 

severity. Similar to findings by Steel et al. (2023), drought and fire covered greater extents than 424 

mechanically treated area. Abatzoglou et al. (2021) predicted that burned area will continue to increase in 425 

the coming decades, with fire effects potentially amplified by drought through feedback loops. These 426 

findings corroborate arguments of many that the pace and scale of fuels management is slow and 427 

insufficient to prevent the loss of forest ecosystems in the face of climate change (Stephens et al. 2020, 428 

North et al. 2015). Part of the challenge of implementing fuels management has been uncertainty as to 429 
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how these management actions, as well as in combination with other disturbance types, will affect native 430 

species and these ecosystems overall. 431 

Many studies have examined how these disturbance types individually affect rare species or 432 

species communities, but few studies have considered multiple disturbance types as a complex 433 

spatiotemporal mosaic, perhaps in part due to the absence of a comprehensive data source. For instance, 434 

many researchers have examined the effects of fire (severity, spatial configuration, and patch size) on 435 

California spotted owls (Strix occidentalis), and found that they avoid large, severely burned patches for 436 

many years after fire, yet smaller high severity patches and low and moderate severity fire were not 437 

avoided by owls (Kramer et al. 2021, Jones et al. 2021, Roberts et al. 2011). Roberts et al. (2019) 438 

examined the effects of drought on the avian community and found that some species declined, while 439 

others increased. Stephens et al. (2014) showed that while many animal species were not affected by fuels 440 

management, California spotted owl occupancy declined. Pyrodiversity is a metric that captures the 441 

spatiotemporal aspects of fire, and Tingley et al. (2016) demonstrated a link between pyrodiversity and 442 

biodiversity, yet no such metric currently exists for disturbance overall. Steel et al. (2023) examined these 443 

different disturbance types in tandem in Southern California using the Knight et al. (2022) data to 444 

attribute declines in canopy cover and tall trees to different disturbance agents and predicted that more 445 

homogeneous disturbances, combined with the mortality of larger trees, would negatively impact habitat 446 

for old-forest specialists like the California spotted owl and fisher (Pekania pennanti), yet they did not 447 

have data on the movement or occupancy of these species. The comprehensive dataset that we developed 448 

here, combined with species distribution and movement information, can facilitate more nuanced 449 

investigations of the effects of these disturbances on biodiversity. 450 

 451 

4.4 Management implications   452 

Our findings will facilitate forest management and science in at least two important ways; (1) by 453 

demonstrating how the FACTS database can be integrated with remotely sensed data to accurately map 454 

fuels management history and drivers of forest disturbance; and (2) via our compilation of common 455 



20 
 

disturbances into a fine-scale (30 m) series of annual rasters. The FACTS database holds vast and detailed 456 

data on USFS activities, yet it has been underutilized within and outside the agency due to uncertainties 457 

around its accuracy, how to appropriately incorporate this uncertainty into analyses, and the unwieldy size 458 

of the dataset. Here, we suggest ways to organize, filter, and buffer the data based on a potential user’s 459 

objectives. Beyond FACTS, the disturbance rasters we compiled have a fine spatial (30 m) and temporal 460 

(annual, starting in 2003) scale, and could be utilized for numerous purposes. Some potential uses include 461 

1) monitoring change across time in a given area (as we did here), 2) modeling how different disturbances 462 

(including salvage logging and disturbance intensity) influence forest structure or wildlife occupancy or 463 

habitat, and 3) planning study designs or reserves based on different disturbance histories or spatial 464 

patterns. For instance, these data are already being used to model spotted owl occupancy is effected by 465 

the different disturbance types (Ng et al. in review), attributing changes in spotted owl habitat to each 466 

disturbance type (Barry et al. in review), and weighing the slight decline in habitat after intense fuels 467 

management against the gains in habitat resilience in the face of wildfire when fuels management 468 

precedes wildfire, both in general and in the context of the spotted owl (McGinn et al. in review). 469 

In summary, these ecosystems, as well as many areas around the globe, are changing in 470 

multifaceted ways and at an accelerating pace. Many have argued that the pace and scale of restoration 471 

efforts is too slow, and that we risk losing some of these species and ecosystems if we continue the status 472 

quo (Stephens et al. 2020, North et al. 2015). The slow speed of restoration is due, in part, to a lack of 473 

research on the effects of these disturbances on these systems and species, but in order to do this, 474 

scientists first need a comprehensive dataset that captures the facets of those disturbances, and we hope 475 

that this dataset can serve that purpose. 476 
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Table 1. Summary of the USFS-owned land disturbed by different disturbance agents across two decades 

from 2003-2022. 

  Southern California Sierra Nevada Total 

  

Area 
km2   proportion Area 

km2   proportion Area 
km2   proportion 

proportion 
of disturbed 
area 

Total pixels 14,046  1.000 19,871  1.000 33,917  1.000 NA 
Any disturbance 10,647  0.758 14,429  0.726 25,075  0.739 1.000 
Any fire   7,891  0.562   9,313  0.469 17,204  0.507 0.686 
Severe fire   3,211  0.229   4,131  0.208   7,343  0.216 0.293 
Low/moderate fire   5,277  0.376   5,689  0.286 10,966  0.323 0.437 
Fuels 
management      685  0.049   2,787  0.140   3,472  0.102 0.138 
Drought   5,395  0.384   7,417  0.373 12,813  0.378 0.511 
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Figure 1. Decision tree for determining the disturbance type of an example pixel in 2010 under the 

minimum and maximum disturbance scenarios (light green boxes), based on the input data. The three 

main input datasets include the annual composite burn index (CBI), the USFS's Forest Activity Tracking 

System (FACTS), and the Mortality Magnitude Index (MMI). The unclassified pixel at the top is tested 

by a series of decision points (dark green ovals). If the pixel satisfies the condition of the decision point, it 

follows the arrows left and/or right (pertaining to the minimum and maximum disturbance scenarios, 

respectively) and is classified as the disturbance type in the square box. Otherwise, it continues down the 

decision tree to be tested by subsequent decision points. If it meets none of the criteria, it is classified as 

having no disturbance in the given year. Note that vertical arrows in the middle denote tests for both 
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disturbance scenarios, while arrows within the light green boxes are specific to the given disturbance 

scenario. Although drought is ultimately not classified into “original” (pertaining to drought in the given 

year) and “lag” (pertaining to drought classified in the preceeding three years), we included those terms 

here to clarify the workflow. 
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Figure 2. An example of a high canopy change cluster (HCC cluster) (a) illustrates the input data used for 

determining the (b) distribution of annual HCC cluster area in relation to the reported date of FACTS 

completion. For HCC cluster area that was not within a FACTS polygon (using the 4-year temporal 

window shown in dark blue: 2 years before to 1 year after the completion date), we determined the cause 

of change by visually examining NAIP imagery, summarized in the bar graph (c). Also note that there 

was often minor spatial inaccuracy (d) of forest management polygons and on USFS ownership 

boundaries that was insufficient to create an HCC cluster (often just one or two pixels wide). 
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Figure 4. Proportion of the landscape affected by each disturbance type through time for (a) the Sierra 

Nevada (a), and Southern California (b). The line width represents the span between the minimum and 

maximum disturbance scenarios. Note that all four disturbance types span four years, so the relative 

heights of the lines in relation to one another, as well as over time, should represent the overall magnitude 

of that disturbance type on the landscape in comparison to the other disturbance types. We also display 

the cumulative disturbed area on USFS land (c) in the Sierra Nevada and Southern California study areas. 
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Figure 5. Maps of disturbances compiled across 20 years (2003-2022) in the Sierra Nevada and Southern 

California study areas using the maximum fuels management scenario (very similar in area and pattern to 

the minimum fuels management scenario. We display all disturbance types together (a), as well as 

wildfire (b), fuels management (c) and drought / other canopy mortality (d). We also show an inset map 
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(e) that is zoomed in to show the spatial characteristics of the different disturbance types; note that for the 

clearest view, the layers are displayed with drought on top, followed by fuels management, then fire. 
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Supplement 

 

Table S.1 List of 97 activity codes (and descriptions) defined as “fuels management” that we considered 

for all analyses (out of 483 total activities). 

Activity code Activity description 
1102 Landing Treated - Area Mitigated 
1111 Broadcast Burning - Covers a majority of the unit 
1112 Jackpot Burning - Scattered concentrations 
1113 Underburn - Low Intensity (Majority of Unit) 
1120 Yarding - Removal of Fuels by Carrying or Dragging 
1130 Burning of Piled Material 
1136 Pruning to Raise Canopy Height and Discourage Crown Fire 
1139 Grazing and Range Mgt. for Hazardous Fuels Reduction 
1150 Rearrangement of Fuels 
1152 Compacting/Crushing of Fuels 
1153 Piling of Fuels, Hand or Machine 
1154 Chipping of Fuels 
1160 Thinning for Hazardous Fuels Reduction 
1180 Fuel Break 
2000 Range Grazing Systems 
2341 Range Cover Manipulation 
2360 Range Control Vegetation 
2370 Range Piling Slash 
2510 Invasive - Pesticide Application 
2530 Invasive - Mechanical/Physical 
2540 Invasive - Cultural/Fire 
2560 Invasive - Biocontrol, Livestock 
3132 Recreation Removal of hazard trees and snags - Area 
3340 Visual Resource Prescribed burning 
3370 Precommercial thinning for visual 
3380 Visual Resource Slash treatment 
4101 Coppice Cut (EA/RH/FH) 
4102 Coppice Cut (w/leave trees) (EA/RH/FH) 
4111 Patch Clearcut (EA/RH/FH) 
4113 Stand Clearcut (EA/RH/FH) 
4115 Patch Clearcut (w/ leave trees) (EA/RH/FH) 
4117 Stand Clearcut (w/ leave trees) (EA/RH/FH) 
4121 Shelterwood Preparatory Cut (EA/NRH/NFH) 
4122 Seed-tree Preparatory Cut (EA/NRH/NFH) 
4131 Shelterwood Establishment Cut (with or without leave trees) (EA/RH/NFH) 
4132 Seed-tree Seed Cut (with and without leave trees) (EA/RH/NFH) 
4141 Shelterwood Removal Cut (EA/NRH/FH) 
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4142 Seed-tree Final Cut (EA/NRH/FH) 
4143 Overstory Removal Cut (from advanced regeneration) (EA/RH/FH) 
4145 Shelterwood Removal Cut (w/ leave trees) (EA/NRH/FH) 
4146 Seed-tree Removal Cut (w/ leave trees) (EA/NRH/FH) 
4148 Shelterwood Staged Removal Cut (EA/NRH/NFH) 
4151 Single-tree Selection Cut (UA/RH/FH) 
4152 Group Selection Cut (UA/RH/FH) 
4162 Two-aged Coppice Cut (w/res) (2A/RH/FH) 
4175 Two-aged Patch Clearcut (w/res) (2A/RH/FH) 
4177 Two-aged Stand Clearcut (w/res) (2A/RH/FH) 
4183 Two-aged Seed-tree Seed and Removal Cut (w/res) (2A/RH/FH) 
4192 Two-aged Preparatory Cut (w/res) (2A/NRH/NFH) 
4193 Two-aged Shelterwood Establishment and Removal Cut (w/ res) (2A/RH/FH) 
4194 Two-aged Shelterwood Establishment Cut (w/res) (2A/RH/NFH) 
4196 Two-aged Shelterwood Final Removal Cut (w/res) (2A/NRH/FH) 
4210 Improvement Cut 
4211 Liberation Cut 
4220 Commercial Thin 
4231 Salvage Cut (intermediate treatment, not regeneration) 
4232 Sanitation Cut 
4241 Special Products Removal 
4242 Harvest Without Restocking 
4270 Permanent Land Clearing 
4455 Slashing - Pre-Site Preparation 
4471 Site Preparation for Planting - Burning 
4472 Site Preparation for Planting - Chemical 
4473 Site Preparation for Planting - Other 
4474 Site Preparation for Planting - Mechanical 
4475 Site Preparation for Planting - Manual 
4481 Site Preparation for Seeding - Burning 
4482 Site Preparation for Seeding - Chemical 
4483 Site Preparation for Seeding - Other 
4484 Site Preparation for Seeding - Mechanical 
4485 Site Preparation for Seeding - Manual 
4491 Site Preparation for Natural Regeneration - Burning 
4492 Site Preparation for Natural Regeneration - Chemical 
4493 Site Preparation for Natural Regeneration - Other 
4494 Site Preparation for Natural Regeneration - Mechanical 
4495 Site Preparation for Natural Regeneration - Manual 
4511 Tree Release and Weed 
4521 Precommercial Thin 
4530 Prune 
4541 Control of Understory Vegetation- Burning 
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6101 Wildlife Habitat Prescribed fire 
6103 Wildlife Habitat Precommercial thinning 
6104 Wildlife Habitat Regeneration cut 
6105 Wildlife Habitat Intermediate cut 
6106 Wildlife Habitat Chemical treatment 
6107 Wildlife Habitat Mechanical treatment 
6133 Wildlife Habitat Slash treatment 
6584 Anadromous Fish Thinning for Fish Habitat Improvement 
6684 Inland Fish Thinning for Fish Habitat Improvement 
7015 Site preparation for re-vegetation - prescribed fire 
7050 Natural regeneration - prescribed fire 
7065 Re-vegetation treatments - vegetation removal 
7067 Re-vegetation treatments - herbicides 
9008 Road Maintenance - Vegetation Reduction 
9400 Right of Way Maintenance 
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Table S.2. Summary of visual comparison of the 156 high canopy cover change clusters that did not 

overlap a FACTS fuels management polygons (within two years before to one year after the completion 

date or within three years after the award date when a completion date was not entered), and therefore not 

considered fuels management in our analysis of disturbance. Note that this analysis was limited to eight 

counties in the northern Sierra Nevada (~30% of the Sierra Nevada study area) to limit the occurrence of 

drought. While we don’t report the number of clusters in each category here, the proportions were similar 

to proportional areas. 

 

 
Area (ha) Total 

Area (ha) 
Proportion 

 

 

2013 2015 2017 

Edge 6.4 18.1 1.7 26.2 3.6  
Fuels management outside FACTS 
polygon 

6.4 16.5 1.7 
24.7 

3.4 
 

Fuels management across USFS 
ownership 

0.0 1.6 0.0 1.6 0.2 

Drought 566.9 37.7 12.2 616.8 85.6  
Confirmed drought (apparent in NAIP) 393.8 4.3 1.4 399.5 55.5  
Presumed drought 173.1 33.4 10.8 217.3 30.2 

Open 35.8 0.0 0.0 35.8 5.0 

Wildfire 12.4 0.0 1.1 13.5 1.9 

Fuels management 25.2 1.0 1.6 27.8 3.9  
Mastication 4.5 0.0 0.0 4.5 0.6  
Forest fuels management 20.7 1.0 1.6 23.2 3.2 

Total 646.8 56.8 16.6 720.2 100.0 
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Figure S1. Decision tree for processing downloaded FACTS polygons into annual fuels management 

rasters. Note that we clipped all input data layers to the study area and ensured that they had the same 

projection as the MMI layers and that all rasters were snapped to the MMI raster grid (using a central 

study area tile). The ultimate data were exported as 30 m annual rasters where each fuels management 

polygon spanned 4 years and each treated pixel maintained the MMI value for that year to facilitate 

potential further splitting fuels management by activity intensity. 
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Figure S2. Examples of areas of 

different disturbance types, 

including wildfire (high and low-

moderate severity), fuels 

management, and other canopy 

loss, including from drought, 

insects, and disease. While the 

most intense fuels management and 

drought areas are apparent in the 

NAIP, the MMI shows a much 

broader range of canopy loss. 
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Figure S3. Mean MMI within FACTS 

polygons with different treatment activities. 

Note that for this analysis only treatments 

with a completion date were used, and the 

mean MMI from the maximum year from 2 

years before to 1 year after treatment 

completion was used. 
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Missing FACTS data subanalysis 

 

We explored an appropriate timeframe and method for fuels management polygons with missing 

completion dates in the FACTS database. The reason for a missing completion date could be due to a 

variety of factors, including: a) the activity had not been started, b) the activity had been started, but not 

completed, or c) the activity was completed, but never entered into the FACTS database.  

 

Methods 

First, we assessed the preponderance of fuels management activities between 2003 and 2024 without a 

completion date across time to be aware of how large this issue was for both older and more recently 

awarded activities. Next, we tried to determine whether we could use MMI to determine whether fuels 

management activities had begun. We did this by calculating the mean annual MMI within all completed 

fuels management polygons for each year from two years before completion to one year after (determined 

as an appropriate temporal envelope to capture the vast majority of canopy change from our analyses 

described earlier in this section). We recorded the maximum of these four values (“max mean MMI”) and 

plotted the frequency of different max mean MMI values. Finally, we visualized the elapsed time between 

the award and completion dates for all fuels management activities between 2003 and 2024 that had a 

completion date that was not identical to the award date. We also calculated the proportion of activities 

that listed a completion date identical to the award date. We reasoned that this analysis would help us 

decide on an appropriate duration to capture the majority of fuels management activity when a completion 

date was not available.  

 

Results 

While 19% of treatments had no reported completion date between 

2003-2024, older fuels management activity award dates were more 

likely to have a completion date entered into the FACTS database, 

whereas nearly half of polygons awarded more recently had with a 

blank completion date (Fig. S4a). Although there was a range of 

mean MMI values among completed fuels management polygons, 

50% had a mean MMI of 0 (Fig. S4b). Finally, when examining the 

duration between the award and completion dates for fuels 

management polygons, 65% had an identical award and completion 

date. Of those that did not have identical dates, the majority (87%) 

were completed within one year, and 97% were completed within 

four years (Fig. S4c). While four years does not hold particular 

significance, it matched the temporal span we had identified in the 

first paragraph of this section, as well as the lag period for both fire 

and drought (making all disturbance types comparable in the final 

disturbance analysis) and seemed a reasonable span.  

 

Figure S4. Panel a shows the proportion of FACTS fuels management 

polygons with a blank completion date field over time (using the year of 

the award date). Of fuels management activities with both an award and 

completion date between 2003 and 2024, panel b shows the frequency of 

mean MMI values within fuels management polygons (using the four-year 

temporal range and taking the maximum of annual mean MMI scores 

across the each polygon). Panel c shows the duration of time between the 

award and completion dates, though note that we removed any fuels 

management polygons from this panel if the award and completion dates 

were identical (66% of our original dataset). Also note that fewer than 8% 

of FACTS fuels management polygons had a duration > 4 years between 

award and completion. 
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Discussion 

While we were not able to determine whether fuels management entries in the FACTS database with a 

blank completion date had begun, it ultimately did not substantially change the overall area affected by 

fuels management because of other spatially and temporally overlapping fuels management areas. 

Although we did not include the most recent two years for our analysis (2023 and 2024, where nearly half 

of fuels management polygons had blank completion dates), we did not notice a widening between the 

two scenarios in our dataset for more recent years (as the proportion of entries without completion 

increased), and while additional errors may enter the dataset for more recent years, this risk appeared to 

be minimal. 


