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Abstract

Plasmids can accelerate host adaptation through horizontal gene transfer and are key members

of microbial communities. Plasmid infection dynamics are potentially affected by the inter-

play between the structures of host-plasmid and plasmid-plasmid interactions. However, how

the structures of these networks jointly affect plasmid transmission and community dynamics

remains unstudied. We used an agent-based model to simulate the dynamics of a multihost-

multiplasmid system in which we manipulated the structure of the ecological networks. The

interplay between network structures affects host coexistence, population composition, and plas-

mid prevalence. For instance, plasmid incompatibility and a modular host-plasmid network

promoted host coexistence. These effects were largely driven by the structure-induced dynamics

of the co-infected individuals in microbial populations. A combination of modeling and a lab

experiment further showed that the structure of the host-plasmid network determines plasmid

fate. This study demonstrates how interactions between multiple ecological networks affect the

dynamics and fate of infectious agents and their hosts. The structure of the ecological networks

within microbial communities therefore has implications for the evolutionary potential of these

communities.
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Introduction

Plasmids play a vital role in the eco-evolutionary dynamics of host communities. As extrachro-

mosomal, semi-autonomous, mobile genetic elements (MGEs), plasmids can spread among host

organisms, accelerating adaptation by transferring genes that confer advantageous traits such as

antibiotic resistance [1–3]. Plasmids can also impose fitness costs on their hosts, which emerge

from conflicts between chromosomal- and plasmid-encoded genes and the metabolic burdens of

plasmid gene expression [4,5]. However, these cost-benefit interactions between plasmids and

their hosts are deeply shaped by other microbiome interactions, such as plasmid co-infection and

host competition, which together influence plasmid dynamics and the coexistence of their con-

stituent hosts [6–12]. The impact of this interplay is often overlooked in studies of host-plasmid

community dynamics.

Plasmids can interact with multiple hosts as they transfer across populations, creating

patterns of host infection shaped by variation in within- and between-population conjuga-

tion rates, compatibility with host genetic backgrounds, and host anti-plasmid defense sys-

tems [13–15]. Plasmids can also compete with one another for hosts, using mechanisms such

as (in)compatibility groups, toxin-antitoxin systems, and plasmid-encoded defense systems to

exclude one another [16–22]. While some studies acknowledge the importance of multiple in-

teraction types, they focus on simplified systems, such as multihost-uniplasmid [7] or unihost-

biplasmid systems [8]. However, in nature, hosts and plasmids form complex structures of

interactions [23]. The few studies which consider multihost-multiplasmid systems omit or un-

derstate plasmid co-infection, focusing on a single interaction type [24–26]. As a result, little

is known about how the interplay of multiple interaction structures, specifically between host-

plasmid interactions and plasmid co-infection, shapes community dynamics and stability. This

gap in understanding hinders our ability to predict the assembly and evolutionary trajectories of

these communities, particularly their potential in genetic innovation and adaptation. Neverthe-

less, addressing it is challenging because it requires connecting multiple and complex interaction

types to dynamics.

The interplay of different interaction types can be studied using ecological networks, which

encode interactions (links) between multiple species (nodes). Ecological networks are valuable

tools for studying how network structure (i.e., the pattern in which interactions are distributed

across species) affects community dynamics and species coexistence [27,28]. Considering multiple

ecological networks allows us to study how distinct, interconnected networks affect community

dynamics [12,29–31]. However, there is a paucity in studies that explicitly link dynamics to

the interplay between networks, leading to a gap in our understanding of structure-dynamics in

complex ecological communities.

In this work, we use host-plasmid interactions to address this gap. We investigated how

host infection and plasmid compatibility networks jointly affect host and plasmid dynamics and

coexistence. While other interaction types exist (e.g., host-host interactions such as competi-

tion [7,32] and horizontal gene transfer (HGT) [24,33]), we focus on infection (a host-plasmid

interaction) and plasmid compatibility (a plasmid-plasmid-interaction, Fig. 1a) because these

interactions are significantly understudied in a network context despite being fundamental to

host-plasmid communities. We developed an agent-based model (ABM) (Fig. 1b) that incorpo-

rates the structure of both networks and simulates the dynamics of host and plasmid populations.

Our model omits perturbations that provide plasmids with advantages (e.g., antibiotics against

which plasmids can carry resistance genes), so that network structures can be compared within
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a homogeneous abiotic environment. While the model is broadly applicable to systems of hosts

and infectious agents, we focus on bacteria and plasmids throughout. We systematically vary

the structures of the infection and plasmid compatibility networks to examine their individual

and combined effects. Finally, we validate our model predictions using data from empirical

laboratory experiments.
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Figure 1: Model overview and experimental design. (a) The structures of the bacterial host-
plasmid infection network I (which plasmid infect which hosts; top row) and plasmid-plasmid compati-
bility network P (which plasmids are compatible with each other and can therefore co-reside in a host
individual; bottom row). The full structures serve as controls. We used a factorial experimental design
of the nine structure combinations. (b) Illustration of the five main events in the ABM (see Methods
for detailed model explanations). Dashed ovals indicate individual deaths. (c) An example of results
of infection dynamics with modular I and full P, including subpopulation dynamics (left), final relative
abundance of host populations of all replicates (middle), and the mean and SE of final plasmid prevalence
across replicates at the end (t = 20000 hours) of the simulation (right).

Results

Representing host-plasmid and plasmid-plasmid interactions using multiple

ecological networks

To investigate how the interplay between ecological networks shapes dynamics, coexistence, and

persistence within host-plasmid communities, we first defined typical structures for I, the host-

plasmid infection network and P, the plasmid-plasmid compatibility network. To understand

the relationship between network structure and dynamics in detail and from core principles, we

intentionally used small networks (Fig. 1a). While this choice was primarily conceptual, focusing

on tractability and interpretability, it also aligned with practical considerations, as simulating

larger networks becomes computationally prohibitive (see Model limitations in Methods).

Previous studies of host-MGE infection networks have focused on phages, but similar prin-

ciples can be used to represent host-plasmid interactions. Host-phage networks are bipartite
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(contain two distinct sets of entities), and often exhibit modular and nested structures [12,34,35]

(e.g., Fig. 1a, top row). Hence, for I we defined three possible structures: (1) ‘Full’, wherein

all hosts can host all plasmids, serving as a reference (control). (2) ‘Nested’, wherein specialist

plasmids interact with a subset of hosts with which more generalist plasmids interact [34–37].

Nestedness describes a hierarchical structure, and can arise if there is a trade-off between in-

fecting multiple hosts and adapting to each host species [12,35,37] that leads to the evolution

of a narrower host range. (3) ‘Modular’, wherein plasmid-host interactions form three distinct

modules: two peripheral modules of hosts that infected by distinct subsets of plasmids, and a

bridge module where hosts can host a subset of plasmids from each of the peripheral modules

(Fig. 1a, top row). Host H2 and plasmids P2 and P3 in the bridge module are termed the bridge

host and bridge plasmids. Modularity can arise from a phylogenetic HGT barrier, where HGT

occurs more often between closely related species [38,39]. In our case, a modular structure arises

when the bridge host is phylogenetically intermediate between the peripheral hosts, or when it

lacks specific defenses to protect it from plasmid spillover from the peripheral hosts. Nestedness

and modularity are signatures of host-MGE coevolution, where trade-offs between fitness and

niche breadth result in specialization [12,35,37].

Plasmid-plasmid interactions can be represented as unipartite networks where nodes are plas-

mids and links indicate plasmid compatibility. Hence, two linked plasmids can co-reside in the

same host (e.g., Fig. 1a, bottom row). While the structure of plasmid compatibility network P

has received little attention, we defined three structures, based on theories in disease and com-

munity ecology: (1) ‘Full’, wherein all plasmids are compatible, serving as a reference (control).

(2) ‘Modular’, wherein plasmids in the module are compatible with each other. Modularity can

arise if the plasmids form (in)compatibility groups [18,20]. (3) ‘Hub’, wherein a sole hub plasmid

is the only one compatible with others, while non-hub plasmids have few interactions and can

co-reside with only a limited set of plasmids. Hub structures can arise from differences in plas-

mid traits that allow some plasmids to be widely compatible with each other or to complement

each other functionally, similar to generalist parasites in disease ecology [40–43]. Notably, hub

structures could lead to a disproportionately high prevalence of a few plasmids that may carry

genes such as those conferring antimicrobial resistance.

The model links host-plasmid dynamics with network structures

To understand how network structures affect population dynamics, we developed an agent-

based model (ABM) that incorporates five demographic and stochastic events: growth, death,

plasmid loss by segregation, competition between hosts, and plasmid transmission by conjugation

(Fig. 1b). We employed a 3× 3 factorial experimental design of the I and P structures. In each

experiment we tracked the quantity Hi,p, which is the abundance of a microbial host population

i that can be infected with a combination of plasmids, forming subpopulations with a plasmid

profile p (Fig. 1c). We included three hosts (H1-3) and four plasmids (P1-4). We used a binary

notation system to describe the plasmid profile of each host subpopulation. For example, the

total population abundance Hi =
∑

pHi,p of a host i might be split into two subpopulations

0000 and 0011. The first subpopulation is plasmid-free and the second is infected with plasmids

P3 and P4.

To focus on the effects of network structure, we assumed that all plasmids and host popula-

tions have identical traits (e.g., growth and death rates, conjugation rates). That is, host and

plasmid types differ only in their niches (node position) in the interaction networks. We modeled

host competition for a shared limiting resource by applying community-level density-dependent
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growth (i.e. a community-wide carrying capacity) [44]. As such, we focus on cases where plas-

mids are costly, and do not consider the possible effects of perturbations. This choice allows us

to isolate the structural effects on plasmid persistence and community dynamics from the effects

of positive selection for plasmid-encoded traits. While plasmids often provide valuable traits

enabling hosts to adapt to changes in the environment, understanding the maintenance of traits

and the impact of plasmids in the absence of positive selection is important for assessing the

resilience of communities to future perturbations, and plasmids have been shown to persist even

in the absence of positive selection [10,17,45]. Therefore, the perturbation-free results we ob-

tained enable a broad theoretical development regarding most infectious agents, which generally

do not provide advantages to their hosts.

For each experiment, we calculated: (1) relative host abundance: the relative abundance of

each host population out of the total community abundance; (2) plasmid prevalence: the fraction

of host individuals across all populations which are infected with the plasmid; (3) host population

composition: the proportions of subpopulations, each defined by a plasmid profile, within the

host population; (4) host coexistence probability: the proportion of simulation replicates in

which hosts coexisted at any given time point.

Plasmid compatibility network structure promotes host coexistence

To understand the impact of the plasmid compatibility network P on community dynamics, we

compared community dynamics under various structures of P while retaining a full infection

network I. Under full I and full P, only one host population survived (Fig. 2b(i), Fig. S1). The

identity of the host varied stochastically across replicate simulations, and the overall probability

of a specific host surviving was about 1/3, as expected. Throughout the simulation, the prob-

ability of host coexistence rapidly decreased to zero (Fig. 2b(i)). The host coexistence pattern

was driven by neutrality and demographic stochasticity that eventually caused extinction, as

well as by the high proportion of subpopulations infected by all four plasmids that induced

multiplicative costs and sped up extinction (Fig. 2d(i); Fig. S2). These heavily infected sub-

populations acted as main plasmid donors, continually re-infecting available hosts. At the final

time point, all subpopulations (i.e., all possible plasmid profiles) of the surviving hosts were still

present, and population composition was the same regardless of which specific host survived

(Fig. 2d(i)). The four plasmids reached the same prevalence, infecting slightly more than half

of the individuals of the sole surviving host (Fig. 2c(i)). This plasmid prevalence pattern was

driven by all host individuals infected by one or multiple plasmids.

Introducing structure to plasmid compatibility drastically affected host coexistence patterns.

When P had a modular or hub structure, one host population still out-competed the other two

by the end of the simulation, but the process took up to 3 times longer (Fig. 2b). The average

prevalence of the plasmids was similar to each other under each P structure, except for P1

infecting 100 % of its hosts as the hub plasmid (Fig. 2c(ii-iii)). We found a possible explanation

for the prolonged host coexistence and the plasmid prevalence patterns by comparing the final

population compositions to the full P experiment (Fig. 2d). Infections with four plasmids were

highly costly therefore accelerating extinction. In contrast to a full P, under modular or hub

P, no host subpopulation could be infected with all four plasmids. Instead, the surviving host

population in each replicate simulation was comprised solely of subpopulations infected by two

plasmids (either the two plasmids that shared a module, or the hub plasmid and one other;

Fig. 2d(ii-iii)). Structure in the plasmid compatibility network P could therefore alter host

dynamics through plasmid cost and patterns of conjugation. While all of the communities

5



ultimately collapsed to a single host population over the course of the simulations owing to the

strict competition between hosts, P structures qualitatively altered plasmid fates and prolonged

the period of host coexistence. In a natural community, these dynamic outcomes would provide

greater opportunities for host and plasmid evolution.
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Figure 2: The effect of structure in the plasmid compatibility network P under a full
infection network I. Columns i, ii, and iii represent different P structures. (a) Illustration of the
different structures. (b) The dynamics of coexistence probability of host populations. (c) Mean and SE
of final plasmid prevalence across all replicates. (d) Final host population composition, averaged across
replicates in which that host population survived (only populations surviving in > 5 replicates were
considered). Profiles represent the host subpopulations (e.g., the profile 1000 represents a subpopulation
hosting only P1).

A modular infection network supports hosts and plasmid diversity

Next, we investigated the impact of infection network I on community dynamics. While under

full I, each of the three host populations had an equal chance to out-compete the others in

each simulation, under nested I (hierarchical infections) the plasmid-specialist host H3 consis-

tently excluded the other two populations (Fig. 3b (i-ii)). As H3 could only be infected by

the host-generalist P1, the other plasmids were lost from the community (Fig. 3c(ii)). This

outcome resulted from the lower net fitness cost to H3 of being susceptible to only one plasmid

(Fig. 3d(ii)); Fig. S3). A nested infection network should therefore be unlikely to be maintained

without influence from external factors (see Discussion).
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In contrast, a modular I was the only structure which enabled host coexistence. The pe-

ripheral hosts H1 and H3 were both present at the end of the simulation, while the bridge host

H2 always went extinct (coexistence probability ≈ 0.4 vs. 0; Fig. 3b(iii); Fig. S4-Fig. S6). The

rapid extinction of H2 was explained by it being quickly co-infected by P2 and P3, thus bearing

a higher net fitness cost than populations H1 and H3 (otherwise it could survive, see column H2

in Fig. S7-Fig. S9). The bridge plasmids P2 and P3 had higher final prevalence than the pe-

ripheral plasmids P1 and P4 (Fig. 3c(iii)). P2 and P3 maintained higher prevalence throughout

the simulation because earlier in the simulation when H2 was still present, it acted as a source

and increased the rate at which H1 and H3 were infected by these bridge plasmids (Fig. S10).

The longer-term success of P2 and P3 after their source H2 became extinct is an example of the

long-term impact on communities caused by a transient, though unsuccessful population [46].

Overall, our results so far show that modular structures promote the maintenance of di-

versity. Specifically, we observed prolonged host coexistence with modular P, and stable host

coexistence with modular I. Communities with such structures are therefore more likely to pro-

duce evolutionary innovation. However, our model also predicts that the loss of the bridge host

H2 might impede plasmid evolution by restricting opportunities for recombination between the

bridge plasmids.
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Figure 3: The effect of structure in the infection network I under a full plasmid compatibility
network P. Rows i, ii, and iii represent different I structures. (a) Illustration of the structures of I.
(b) Final relative abundance of host populations. Each dot represents a replicate. Dots on the vertices
had no coexistence (i.e. only one population survived), while dots on the edges had coexistence of two
populations. For example, the green dot marked with a red circle in b(iii) represents a community with
relative abundances of 0.9 for H1, 0.1 for H2, and 0.0 for H3. (c) Mean and SE of final plasmid prevalence
across all replicates. (d) Final host population composition, averaged across replicates in which that host
population survived (only populations surviving in > 5 replicates were considered). Profiles represent
the host subpopulations (e.g., the profile 1000 represents a subpopulation hosting P1).
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Network structures can counteract the effects of one another

Up to this point, we explored structured I or P separately, while maintaining the other as a

fully-connected control. In natural communities, structures likely exist in both of these networks

simultaneously, so we next explored the interplay between the two. With a particular interest in

the biological relevance of a hub structure, we demonstrate the results from a modular I and a

hub P (see Fig. S1, S4, and S10 in Supplementary Figures for results from other combinations).

In contrast with full I, where the hub plasmid P1 reached fixation (Fig. 2c(iii)), under modular I

the hub plasmid P1 had a very low average final prevalence while P3 reached the highest average

prevalence (Fig. 4c).

These patterns resulted from the interaction between the structures of I and P: although

the hub plasmid P1 was compatible with the other three plasmids, the peripheral host H3 was

its only possible host (Fig. 4a). H3 could therefore be co-infected by P1 and P2. Under a full

P, the other peripheral host H1 could also be co-infected, but under a hub P this was no longer

possible. This structure led to a higher net fitness of H1 compared to H3, driven by the co-

infected subpopulation of H3. Consequently, H3 was less abundant than H1 on average across

simulations, thereby limiting the abundance of P1 (Fig. 4b, d; Fig. S9). In addition, while under

full P H2 always went extinct (Fig. 3b(iii)), under structured P it coexisted with host H3 in

some simulations (Fig. 4b). This is because under structured P host H2 was not susceptible to

the burden of co-infection (Fig. S9).

Overall, these results suggest that the infection network can counteract the effects of the

plasmid compatibility network, especially when both are structured. Moreover, we expect that

a hub plasmid compatibility structure—given as a boundary and initial condition that can be

pruned by community dynamics—is unlikely to be maintained when paired with a modular

infection structure, as a hub plasmid with a limited host range can rapidly reach low prevalence

and therefore be lost stochastically from the community.
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Figure 4: The joint effect of structured networks: modular I and hub P. (a) The modular
network structure of infection I and the hub network structure of plasmid compatibility P. (b) Final
relative abundance of host populations. Each dot represents a replicate. Dots on the vertices had no
coexistence (i.e., only one population survives), while dots on the edges had the coexistence of two
populations. For example, the green dot marked with a red circle represents a community with relative
abundances of 0.5 for H1, 0.5 for H2, and 0.0 for H3. (c) Mean and SE of final plasmid prevalence across
all replicates. (d) Final host population composition, averaged across replicates in which that host
population survived (only populations surviving in > 5 replicates were considered). Profiles represent
the host subpopulations (e.g., the profile 1000 represents a subpopulation hosting P1).

Infection network structure drives dynamics in an experimental system

To further investigate our theoretical predictions regarding the impact of a modular I structure

on the community, we used an empirical system we developed [47]. The system comprised three
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bacterial host populations and two plasmids distinguishable by their colony phenotypes. The

size of our empirical system was limited by the fluorescent labels available to track the plasmids.

The community consisted of Pseudomonas fluorescens SBW25 (bacterial host H1), Pseudomonas

putida KT2440 (H2), and Escherichia coli MG1655 (H3). The plasmids were the Pseudomonas-

specific, mercury-resistant plasmid pQBR57 (P1), and the antibiotic-resistant plasmid pKJK5

(P2) which, under the experimental conditions, was not able to conjugate into P. fluorescens

SBW25. The system therefore can be described with a modular I and a full P (Fig. 5a).

As variation in quantitative trait values better aligns with the empirical system, we re-

parameterized our model accordingly, using experimental measurements where possible (Ta-

ble S1-Table S4, Supplementary Methods and Tables). Specifically, we used unequal population

growth rates (H1 ≤ H2 < H3), infection rates (H1 = H2 < H3), and plasmid costs (P1 <

P2), and a heterogeneous interspecific competition network (H1 < H2 < H3). For computa-

tional tractability, we used lower values of community-wide carrying capacity (KABM = 105 vs

Kempirical = 109) and initial abundances (B0ABM = 3.3 × 103 vs B0empirical = 3.3 × 105 for

each population). These differences did not affect the qualitative dynamics, and we compared

empirical and model values in relative terms.

Following our theoretical results, we expected that under a modular I and a full P that the

bridge host H2 would be outcompeted by the peripheral hosts and go extinct, and that the

resulting community would be primarily composed of infected subpopulations (Fig. 3d(iii)). In

contrast to this prediction, H2 maintained a higher relative abundance than the peripheral host

H1 (Fig. 5b). The most abundant plasmid in the system was P2, following the high abundance

of its host (Fig. 5c). The differences between the theory and the experiment may be explained

by the heterogeneous growth rates, the interspecific competition network, and an increase in

the growth rate of the bridge host. Indeed, when these factors were considered in the model

(Table S1), the simulations qualitatively reflected the experimental results (Fig. 5b-e, Fig. S11).

The key insight of our model is that structure in the I and P networks affects community

dynamics. Having recapitulated the empirical results, we used the re-parameterized model to test

how the outcome would change given an unstructured infection network (full I; Fig. 5f). While

the host population dynamics remained unchanged (Fig. 5g), the subpopulation dynamics were

strikingly and qualitatively different. Specifically, the less costly plasmid P1 reached a higher

community-wide prevalence instead of P2 (Fig. 5h). This provided further support that network

structure is a key contributor to plasmid dynamics in natural systems.
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Figure 5: Empirical network structures and simulated population dynamics. (a) Empirical
infection network I (top) and plasmid compatibility network P (bottom) from the empirical system. (b)
Host population dynamics in the empirical system. (c) Infected subpopulation (plasmid) dynamics in the
empirical system. (d) Simulated host population dynamics using the empirical networks. (e) Simulated
infected subpopulation dynamics using the empirical networks. The empirical and modeling systems
show similar patterns for host (panel b vs panel d) and plasmid (panel c vs panel e) dynamics. (f) Full
infection network I used in simulation. (g) Simulated host population dynamics under the full infection
network. (h) Simulated infected subpopulation dynamics under the full infection network. Using a
full infection network (panel f) resulted in similar host population dynamics (panel g) but qualitatively
different plasmid dynamics (panel h). All abundances are relative to community size. Error bars represent
SE. The empirical observations had a sample size of 6, while the ABM simulations had a sample size of
300.

Discussion

Network structures underlying microbial interactions fundamentally shape community dynam-

ics, yet the interplay of distinct networks remains poorly understood. Our work highlights

how the combined effects of host-plasmid infection and plasmid-plasmid compatibility networks

determine microbial coexistence and plasmid prevalence, potentially shaping long-term evolu-

tionary trajectories. We show that a structured infection network exerts a stronger influence on

host and plasmid persistence than a structured compatibility network. However, compatibility

patterns still play a crucial role in shaping plasmid diversity and co-infection dynamics, which

in turn influence plasmid recombination and evolutionary innovation [3].

An important finding is that the infection network retains its modular structure more con-
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sistently when the plasmid compatibility network is also structured, underscoring a rarely con-

sidered mechanism: the interplay between structured networks itself enhances stability. This

observation reinforces the necessity of considering interactions between multiple networks when

investigating the ecology of infectious agents. Empirical studies support this idea, as structured

infection networks often co-occur with restricted plasmid transfer pathways, limiting the spread

of deleterious plasmids [26]. Moreover, our model-derived insight that plasmid compatibility

shapes host persistence finds support in studies where host-plasmid dynamics are influenced by

both direct host interactions and compatibility constraints [22]. Future empirical work should

aim to test whether structured plasmid compatibility networks similarly increase the stability

of community composition and function in natural microbial communities.

Our results indicate that a structured plasmid compatibility network alters host popula-

tion composition. Therefore, the structure of the compatibility network can determine plasmid

recombination potential [18]. Such structure-dynamics feedback can have implications for mul-

tidrug resistance, which emerges primarily through horizontal gene transfer between compatible

plasmids in the same host [48,49]. Empirical evidence suggests that MGEs can actively rewire

compatibility networks by interfering with competing elements [22], reinforcing our finding that

compatibility constraints limit the range of hosts a plasmid can inhabit, thereby shaping host-

plasmid interactions. Our results also indicate that plasmids are more likely to persist than

hosts under changing network structures if they can survive in a single surviving host popu-

lation. Thus, plasmids have substantial potential for evolution and host range expansion even

under reduced host diversity, mirroring real-world observations of broad-host-range plasmids [5].

Unlike compatibility networks, structured infection networks led to strong heterogeneity in

plasmid prevalence across plasmids and in co-infection across hosts. This was also supported

by the version of the model parameterized according to the experimental data, where the infec-

tion network structure qualitatively changes plasmid fates. In contrast to plasmid compatibility

networks, infection networks in our model were inherently unstable, frequently leading to host

extinction. This contrasts with natural systems, where modular and nested structures are com-

monly observed [34,36,50], suggesting stabilizing factors. Population-level trait heterogeneity

and positive epistasis in plasmid fitness costs [8,17] may mitigate destabilization, allowing struc-

tured networks to persist in nature. The asymmetry between host and plasmid dynamics arises

because altered plasmid compatibility can expose hosts to a high infection burden, leading to

their extinction, while changes in infection patterns are less likely to cause plasmid extinction

as long as a viable host remains.

Our study focused on a small and fixed system to isolate effects related to network structure.

Yet, in larger systems, functional redundancy and increased complexity of interactions could

dampen the effects of network interplay [51–53]. We further assumed uniform host traits as well

instead of introducing host diversity. While previous studies suggest that host heterogeneity

does not critically alter horizontal gene transfer patterns [24], incorporating host heterogeneity

could alter our predictions. Nevertheless, we note that parameterizing our model according to

empirical data did not qualitatively change the key result that structure alters plasmid dynamics.

Finally, we did not consider perturbations such as antibiotic stress, which—as shown in an

empirical experiment [47]—can shift host-MGE interactions from antagonistic to mutualistic.

While this allowed us to generate a theory that is generally relevant for infectious agents, future

research could integrate eco-evolutionary feedback and perturbations to capture these dynamical

aspects of host-plasmid communities.

An open question is how network structure evolves and persists. While the infection and com-
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patibility networks we modeled resemble those observed in microbial ecosystems [12,34,35,40–

43], we effectively treated them as boundary conditions within which links can change but nodes

themselves cannot evolve. In reality, network structures emerge via eco-evolutionary processes

[12,23,36] and host adaptation, immunity, and plasmid evolution likely shape infection network

structure [23,35]. Plasmid compatibility networks, although much less studied, likely evolve

through recombination [3] and mutations [54]. Adaptive defense mechanisms that mediate plas-

mid competition [21,22] may also influence compatibility constraints. Moreover, there may be

interacting evolutionary trajectories of the interacting networks, leading to multi-level selec-

tion. Future models could incorporate such evolutionary feedback, shifting from fixed boundary

conditions to dynamic, emergent structures.

In conclusion, our study provides a novel perspective on microbial ecology by explicitly

demonstrating that the interplay between host-plasmid infection and plasmid-plasmid compat-

ibility networks profoundly shapes community dynamics and evolutionary potential. Crucially,

we find that the interconnectedness of these ecological networks itself stabilizes host-plasmid

communities, underscoring the need to move beyond studying interaction types in isolation.

Beyond microbial ecology, these theoretical and modeling developments offer insights into com-

munity dynamics of infectious agents and their hosts.

Methods

Host-plasmid agent-based model

Entities

The entities (agents) of the ABM were host subpopulations. Each subpopulation of host i

contained a plasmid profile p. Each plasmid profile is a vector of elements 0 and 1, representing

the presence (1) or absence (0) of each plasmid in the subpopulation. Therefore, a community

with nb hosts and np plasmids had at most nb × 2np subpopulations. We defined Hi,p as the

abundance of a subpopulation, and Hi as the abundance of host i (Hi = Σ2np−1
p=0 Hi,p). For

simplicity, we assumed each plasmid had a single copy in each host individual. We present

an example for this notation in Table 1. Based on the plasmid profiles, we generated a list of

donors (the plasmid-infected subpopulations that can transmit plasmids to others), and for each

donor a list of recipients (the subpopulations that can receive plasmids from the donor) during

ABM initialization. The lists of donors and recipients were used to sample subpopulations that

undergo HGT and were updated during the simulations when new subpopulations emerged.

Table 1: Example of agent notation. In this example there are hosts (H1 and H2) and two plasmids (P1
and P2).

Host (i) Plasmid profile (p) Abundance (Hi,p)

1 [0,0] 10
1 [1,0] 5
1 [0,1] 0
1 [1,1] 0
2 [0,0] 10
2 [1,0] 5
2 [0,1] 0
2 [1,1] 0

12



Spatial and temporal scales

We did not consider a spatial structure. We used hour as the time unit, as most per-capita

rates are quantified with this unit in microbial studies. We used a 20000 hours time span

for the simulations of the theoretical part to ensure stable coexistence, and a 240 hours (10

days) time span for simulations supporting the lab experiment, which is ample for most host

populations/communities to reach carrying capacity in a lab environment [10].

Events

Five major events contributed to the dynamics of the entities: death, growth, segregation,

competition, and infection (Fig. 1b). In each death and competition event, the chosen agent

decreased its abundance by one. In each growth event, the chosen agent increased its abundance

by one. In each segregation event (i.e., growth with segregation error), we assumed plasmid

segregation fails, so the plasmid-free agent Hi,0 increased its abundance by one. With each

infection event, the chosen donor agent Hi,p infected a recipient agent Hk,q, turning it into a

transconjugant agentHk,r. As a result, the donor’s abundance remained the same, the recipient’s

abundance decreased by one, and the transconjugant’s abundance increased by one.

Parameters

Interaction networks We used an infection network and a plasmid compatibility network.

The infection network I was a binary incidence matrix that determined if the plasmid β (column)

can infect the host i (row). The plasmid compatibility network P was a symmetric binary

matrix that determined if two plasmids α and β can coexist within the agent individuals, with

the assumption that plasmids were self-incompatible (Pαβ = 0 ∀ α = β). We also assumed that

the hosts had equal strength of interspecific competition, and that HGT occurred both between

and within hosts.

Host and plasmid traits For the host, we used per capita growth rate ηi, per capita death

rate µi, and probability of segregation error ei. For the plasmids, we used plasmid cost on host

growth cα. We applied a community-wide carrying capacity K, limiting the sum of population

abundances. A complete list of parameters and their values is provided in Table 2

Table 2: Parameter values used in the simulations of the theoretical part. Parameter values were based on/taken
from [55].

Host traits H1 H2 H3

growth rate ηi 1 1 1
death rate µi 0.12 0.12 0.12
infection rate γi 10−5 10−5 10−5

segregation rate γi 10−8 10−8 10−8

community-wide carrying capacity K 20000 20000 20000
intraspecific competition coefficient aii 1 1 1
interspecific competition coefficient aij 0.01 0.01 0.01

Plasmid traits P1 P2 P3 P4

plasmid cost cα 0.3 0.3 0.3 0.3

Infection propensity When the infection event is chosen, we considered the propensities with

which transconjugants were generated given combinations of donors and recipients. Specifically,
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we used a three-dimensional infection propensity tensor Γ, with each dimension of size n
np

b

corresponding to all potential entities (subpopulations) Hi,p along the transconjugant, donor,

and recipient axes. We assumed that the more plasmids transmitted in an infection, the lower

the propensity. Thus, the elements (propensities) of Γ that met the infection conditions (Table 3)

were estimated following the power law:

Γk,r;i,p;k,q =
1

2ν−1
, (1)

Here, Γk,r;i,p;k,q represented the propensity of the recipient Hk,q, after receiving plasmid(s) from

donor Hi,p, to become transconjugant Bk,r. The parameter ν represented the number of plasmid

strains being transferred from the donor to the recipient. Other elements of Γ were treated as

0. We provide an example propensity tensor for a system with one host and two plasmids in

Fig. 6.

Table 3: Conditions for infection to occur.

Condition Content

1 Donor is plasmid-infected (p ̸= 0)
2 Donor has plasmid(s) that the recipient does not
3 Transferable plasmid(s) can infect the recipient (Iβi = 1)
4 Plasmids in the transconjugant can coexist (Pαβ = 1)
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Figure 6: An example for a propensity tensor. This example focuses on the dimension of the
recipient Hk=1,q=[0,0]. Element Γ1,[1,1];1,[1,1];1,[0,0] = 1/2 because there are two plasmids being transferred
from the donor Hi=1,p=[1,1] to the recipient Hk=1,q=[0,0], creating the transconjugant Hk=1,r=[1,1]. Each
column of the propensity tensor (i.e., with a given combination of donor and recipient) with at least one
element > 0 was then normalized to 1, ensuring the propensities of each column summed up to 1.

Rates

The dynamics of the subpopulations were based on a Lotka-Volterra model with infection-

recovery elements. In this model, each subpopulation had its per capita rate of events based

on strain and plasmid profile, and its total rates of events based on its per capita rates ×
abundance, which summed up to the total rate of events R. Below we define the equations

of subpopulation per capita rates (variables used in the equations are described in Table S5,

Supplementary Methods and Tables). We defined the subpopulation per capita death rate as

µi,p = µi (host-specific) and the per capita growth rate as

ηi,p = ηi
∏

α|pα ̸=0

(1− cα), (2)
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where the realized growth rate was the host-specific per capita growth rate, ηi, times the product

of the complements of the costs across plasmids hosted by the subpopulation. Therefore, we

assumed that the plasmid costs are not additive but multiplicative for the host. We defined the

subpopulation per capita segregation rate as

ωi,p = eiηi,p. (3)

We defined the competition matrix A, in which each cell aij is the effect of host j on the per-

capita growth rate of host i. As with other parameters, we used a uniform aij = 0.01 to ensure

that the community effects we get are not due to some random competitive advantage of one host

over another, but rather due to the structure of the networks. We applied a community-wide

carrying capacity K, and defined the subpopulation per capita competition rate as

ξi,p = ηi,p

∑
j

Hij
Hj

K

 . (4)

Here, Hij = aij + 1 for i ̸= j, and aij equals to 1 when i = j.

We defined the subpopulation per capita infection rate ϕi,p as

ϕi,p = γi,p
∑

Hi,p ∈ G, (5)

where γi,p is the per capita encounter rate between a donor (i.e., plasmid-hosting) and its re-

cipients, and was either host-specific for subpopulations hosting plasmid(s), or zero for the

plasmid-free subpopulations. G was the set of recipient subpopulations that could receive plas-

mid(s) from the donor subpopulation. While the mechanisms by which the donors and recipients

of plasmids meet could be complex [56], we assumed these mechanisms to be donor-dependent

and plasmid-profile-independent.

Simulations

We applied the Gillespie algorithm, which includes the following steps:

1. Initialize the system with variable inputs (including parameter values and initial subpop-

ulation abundances) (Table S6, Supplementary Methods and Tables), and set time t to

zero.

2. Calculate the total rate of the system R = RD +RG +RS +RC +RI , which is composed

of the total rates of death:

RD =
∑
i,p

µi,pHi,p, (6)

growth:

RG =
∑
i,p

ηi,pHi,p, (7)

segregation:

RS =
∑
i,p

ωi,pHi,p, (8)

competition:

RC =
∑
i,p

ξi,pHi,p, (9)
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and infection:

RI =
∑
i,p

ϕi,pHi,p (10)

.

3. Sample the length of a time step ∆t = X
R , where X was drawn from an exponential

distribution with a mean of 1.

4. Randomly sample an event, with weights proportional to the event’s weight out of the

total rate (RD/R,RG/R,RS/R,RC/R,RI/R)

5. Sample the agent(s). If the chosen event is not infection, randomly sample an agent

Hi,p, with weights according to the subpopulations’ event rates. If the chosen event is

infection, first sample a donor agent Hi,p from the plasmid-infected subpopulations, with

weights according to their infection rates. Then, sample a recipient agent Hk,q from the

recipient subpopulations that are vulnerable to the donor, with weights according to their

abundances. Finally, sample a transconjugant agent Hk,r, with weights according to the

propensity tensor Γ.

6. Execute the chosen event for the chosen agent(s), and update the simulation time (t′ =

t+∆t).

7. Move to step 3 until the simulation time meets the final time. Meanwhile, record the

subpopulation abundances when t is equal to or passes desired length of time set for

recording the system’s set (5 hours in our case).

8. When the simulation reaches the defined time limit t = 20000 or t at which the system

collapses (all host populations have zero abundance), write the data frame into the output

file in SQLite format. The output file was used for further analyses.

Model limitations

Although our model can simulate multihostmultiplasmid systems, it faces computational con-

straints as system complexity increases. As the number of host (nb) and plasmid populations (np)

increases, so does the time required to generate the infection propensity tensor (of size nb × 2np

in each of the three dimensions), and to initialize the system (e.g., generate lists of donors and

corresponding recipients) unless the interaction networks are extremely sparse. Because the

Gillespie algorithm is used, increasing system complexity and community-wide carrying capac-

ity inevitably raises the total event rate R. This, in turn, reduces the sampled time step in each

iteration, making it more time-consuming for the simulation to reach the final time (Fig. S13,

Supplementary Methods and Tables).

Experimental design of the theoretical part

We used a 3×3 factorial design of the combinations of I and P, which resulted in 9 experiments

(Table 4). Due to the stochastic nature of the ABM, we ran 300 replicates for each experiment,

each with a different seed for random sampling. To test how plasmids spread, we initiated

populations with a low abundance of monoplasmidic subpopulations (10) compared to plasmid-

free subpopulations (2000). We included all potential monoplasmidic subpopulations, so that

each plasmid already existed in focal hosts before it was acquired from other hosts.
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Table 4: Experimental design of the theoretical part.

Expt.(code) I P

1 (FF) full full
2 (FM) full modular
3 (FH) full hub
4 (NF) nested full
5 (NM) nested modular
6 (NH) nested hub
7 (MF) modular full
8 (MM) modular modular
9 (MH) modular hub

Lab experiment

We used data from the study by Schaal et al. [47], which contains a detailed description of

the experiment. Briefly, a community of three host bacteria (Pseudomonas fluorescens SBW25,

Pseudomonas putida KT2440, and Escherichia coli MG1655) and two plasmids (the mercury-

resistant pQBR57, and the antibiotic-resistant plasmid pKJK5) was cultured over five 48-hour

transfers (10 days) in shaken liquid medium. One host could be (co)-infected by both plasmids,

while the other two hosts could only be infected by one plasmid each (Fig. 5a). In this work,

we used the data only from the communities that did not experience environmental stress.

We used bacterial derivatives and fluorescent proteins to track different host populations and

plasmids, and applied a link-balanced initial community composition, where all populations

started with equal abundance, comprising of 50% plasmid-free subpopulation and 50% plasmid-

carrying subpopulations. We quantified population and subpopulation abundance on days 2, 6,

and 10, and summarized population and subpopulation dynamics.

Code availability

The code for ABM simulation, input generation, output analyses, and empirical data analysis

is available in the dedicated Github repository associated with this paper at: https://github.

com/HFSP-EcoNets/ABM_code.

Data availability

Simulated data is available in the dedicated Github repository associated with this paper at:

https://github.com/HFSP-EcoNets/ABM_code. Empirical data is available in the dedicated

Github repository associated with the collaborative study by Schaal et al. [47].
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Supplementary Figures
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Figure S1: Relative abundance of populations at the end of the simulations (t = 20000 hours) at the
following network structures: full I x full P (FF), full I x modular P (FM), full I x hub P (FH), nested
I x full P (NF), nested I x modular P (NM), nested I x hub P (NH), modular I x full P (MF), modular
I x modular P (MM), and modular I x hub P (MH). Dots on the vertices represent no coexistence (i.e.
only one population survived), while dots on the edges represent the coexistence of two populations.
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Figure S2: Dynamics of subpopulation abundance (mean 1 SE) at full I x full P (FF). Note that the
number of replicates of a subpopulation at a given time point may vary across time, for it depends on
how many replicates still have that subpopulation at that time point. The K at y-axis represents carrying
capacity, while the K at x-axis represents 1000 (hours).
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Figure S3: Dynamics of subpopulation abundance (mean 1 SE) at nested I x full P (NF). Note that
the number of replicates of a subpopulation at a given time point may vary across time, for it depends
on how many replicates still have that subpopulation at that time point. The K at y-axis represents
carrying capacity, while the K at x-axis represents 1000 (hours).
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Figure S4: Dynamics of microbe coexistence of three populations (solid line) and two populations
(dashed line) at the end of the simulations (t = 20000 hours) at the following network structures: full I
x full P (FF), full I x modular P (FM), full I x hub P (FH), nested I x full P (NF), nested I x modular P
(NM), nested I x hub P (NH), modular I x full P (MF), modular I x modular P (MM), and modular I x
hub P (MH). The dynamics of microbe coexistence probability is calculated as the proportion of replicates
with complete(3-population)/partial(2-population) coexistence out of total number of replicates across
time. Time was only plotted to t = 10000 where all probabilities had dropped to zero. The K at x-axis
represents 1000 (hours).
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Figure S5: Dynamics of population abundance (a) and subpopualtion abundance (b) at modular I x full
P (MF) from replicate 21. Replicate 21 demonstrated the stable coexistence scenario where the plasmid-
free subpopulations of the peripheral hosts persisted. The K at y-axis represents carrying capacity, while
the K at x-axis represents 1000 (hours).
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Figure S6: Dynamics of population abundance (a) and subpopualtion abundance (b) at modular I x full
P (MF) from replicate 23. Replicate 23 demonstrated the unstable coexistence scenario where the plasmid-
free subpopulations of the peripheral hosts went extinct. When the plasmid-free subpopulations went
extinct, monoplasmidic subpopulations lost input from infection and quickly got co-infected, destabilizing
the oscillatory dynamics of the coexisting populations. The K at y-axis represents carrying capacity, while
the K at x-axis represents 1000 (hours).

27



B1 B2 B3

0K 10K 20K 0K 10K 20K 0K 10K 20K

0.00

0.25

0.50

0.75

Time

Ab
un

da
nc

e/
K

Profile
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

H1 H2 H3

Figure S7: Dynamics of subpopulation abundance (mean 1 SE) at modular I x full P (MF). Note that
the number of replicates of a subpopulation at a given time point may vary across time, for it depends
on how many replicates still have that subpopulation at that time point. The K at y-axis represents
carrying capacity, while the K at x-axis represents 1000 (hours).
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Figure S8: Dynamics of subpopulation abundance (mean 1 SE) at modular I x modular P (MM).
Note that the number of replicates of a subpopulation at a given time point may vary across time, for
it depends on how many replicates still have that subpopulation at that time point. The K at y-axis
represents carrying capacity, while the K at x-axis represents 1000 (hours).
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Figure S9: Dynamics of subpopulation abundance (mean 1 SE) at modular I x hub P (MH). Note that
the number of replicates of a subpopulation at a given time point may vary across time, for it depends
on how many replicates still have that subpopulation at that time point. The K at y-axis represents
carrying capacity, while the K at x-axis represents 1000 (hours).
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Figure S10: Dynamics of plasmid prevalence (mean 1 SE) at at the following network structures: full
I x full P (FF), full I x modular P (FM), full I x hub P (FH), nested I x full P (NF), nested I x modular
P (NM), nested I x hub P (NH), modular I x full P (MF), modular I x modular P (MM), and modular
I x hub P (MH). Time was only plotted to t = 10000 where equilibrium of plasmid prevalence had been
reached. The K at x-axis represents 1000 (hours).
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Figure S11: (a) The host population dynamics and (b) host subpopulation dynamics from the simu-
lations assuming no increase on the growth rate of the bridge host H2 under a modular I based on an
empirical system (Figure 5a, top row).
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Supplementary Methods and Tables

Below are the supplementary materials for the mathematical formalism of the ABM and parame-

ter settings for simulations based on empirical data. For original Julia and R scripts, input JSON

files, and output SQLite files, please visit: https://github.com/HFSP-EcoNets/ABM code.

S1 Parameters for the simulations based on empirical data

Table S1: Host-specific parameters. The net population growth rates were parameterized using the empirical
data fit to the standard form of logistic equation in the R package growthcurver (Sprouffske 2020), while the
population growth rates and death rates were arbitrarily assigned to match the net population growth rate. The
infection rates and competition coefficients were assigned in a relative magnitude in order to better match the
empirical subpopulation and population dynamics. The segregation rates and perturbation impact were arbitrarily
assigned and fixed to an extremely low value as these can be omitted. The community-wise carrying capacity was
arbitrarily assigned for computational efficiency. We later assumed an increase in the growth rate of the bridge
host (H2).

Host traits H1 H2 H3

growth rate ηi 0.1 0.15* 0.2
death rate µi 0.01 0.01 0.01
infection rate ϕi,p 5e-9 5e-9 5e-8
segregation rate ei 1e-8 1e-8 1e-8
competition coefficient on H1 a1i 1 0.02 0.03
competition coefficient on H2 a2i 5e-3 1 0.03
competition coefficient on H3 a3i 5e-3 0.02 1
perturbation impact ϵi 0 0.0 0.0
community-wise carrying capacity K 1e5 1e5 1e5

* Set to 0.1 under the assumption of no increase in the growth rate of H2.

Table S2: Plasmid-specific parameters. The plasmid costs were assigned in a relative magnitude based on
empirical monocultures of the infected bridge host population in order to better match the empirical subpopulation
and population dynamics. The plasmid resistance was arbitrarily assigned and fixed as these are irrelevant for
systems without perturbations.

Plasmid traits P1 P2

plasmid cost cα 0.2 0.4
plasmid resistance ρα 0.7 0.7
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Table S3: Initial abundance of the plasmid-present system for a modular infection network I

Host i Plasmid profile p Abundance Hi,p

1 [0,0] 1650
1 [1,0] 1650
2 [0,0] 1650
2 [1,0] 550
2 [0,1] 550
2 [1,1] 550
3 [0,0] 1650
3 [0,1] 1650

Table S4: Initial abundance of the plasmid-present system for a full infection network I

Host i Plasmid profile p Abundance Hi,p

1 [0,0] 1650
1 [1,0] 550
1 [0,1] 550
1 [1,1] 550
2 [0,0] 1650
2 [1,0] 550
2 [0,1] 550
2 [1,1] 550
3 [0,0] 1650
3 [1,0] 550
3 [0,1] 550
3 [1,1] 550
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S2 Variable glossary

The variables (including constants and parameters) for the ABM are introduced in Table S5.

Table S5: Constants and parameters for the ABM

Variable Definition Type

t time float
tfinal time scale of the simulation float (h)
nb number of host populations in the system integer
np number of plasmids in the system integer
i, j, k host of the entity integer
p, q, r plasmid profile of the entity integer
α plasmid α integer
Hi,p entity and abundance of a host subpopulation integer
Hi abundance of host i integer
K community-wise carrying capacity of host float
ei probability of segregation error of host i float
µi per capita death rate of host i float
ηi per capita growth rate of host i float
ϕi,p per capita infection rate of host subpopulation Hi,p float
γi,p infection coefficient of host subpopulation Hi,p float
ρα resistance of plasmid α float
cα cost of plasmid α on host growth float
A host competition matrix matrix of floats
H HGT matrix matrix of floats
I infection matrix matrix of integers
P plasmid compatibility matrix matrix of integers
Γ propensity tensor of infection 3-D tensor of floats

S3 Subpopulation dynamics

The simplified dynamics of plasmid-infected and plasmid-free subpopulations are illustrated

in Figure S12. Each subpopulation experiences events that lead to an increase or decrease

in abundance at subpopulation-specific per capita rates. Note that for plasmid infection, the

infection rate only determines the frequency of infection events, while the rate-independent

propensity tensor Γ determines the propensity at which an individual of a given type of plasmid-

carrying subpopulation is produced. The equations and related parameters of the per capita

rates and the propensity tensor are described in Methods.

𝜂!,#
𝜙!,#;	𝛤

𝜉!,#𝜇!,# 𝜉!,#

𝜂!,#

𝜔!,#
𝜇!,#

Figure S12: Illustration of the dynamics of plasmid-carrying subpopulation (left box with a circle in it)
and plasmid-free subpopulation (right box). Colored arrows indicate abundance inflows/outflows from
the five events: growth (green), death (red), competition (purple), infection (orange), and segregation
(blue). Alongside each arrow lists the per capita rate of the event, with subscripts denoting host i and
plasmid profile p of the subpopulation.
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S4 Input and output

The raw simulation input is in JSON format and includes the variables described in Table S6.

The raw simulation output is in SQLite format and includes three tables. Table ”bsub-

abundance” is the table of host subpopulation dynamics. It includes time (t), subpopulation id

(subpop id), host id, plasmid profile (p profile), and sub-population abundances (abundance).

Table ”events” includes time (t), the accumulated number of growth events (growth), death

events (death), segregation events (segregation), competition events (competition), and in-

fection events (infection). Table ”meta” includes the general information about the simulation:

seed, key (the id of a simulation and output assigned by the experiment designer), job (the id

of the job generated by the HPC), start time, end time, and elapsed seconds.

Table S6: Variables for the ABM input

Condition Content Type (v(): vector of ())

t final t at which simulation ends float
t output the t interval after which state is recorded float
rng seed seed for the simulation null;float
n seeds the number of seed for the simulation integer; 1
n bstrains nb maximum number of host populations in the system integer
n pstrains np maximum number of plasmids in the system integer
n bsubstrains number of subpopulations at initial state integer
strain id for each substrain host id i of subpopulations integer
n ind bsubstrains abundance of subpopulations integer
p profile bsubstrains the plasmid profile p of subpopulations v(v(s) of binary element(s))
growth rate host-specific growth rate ηi v(float)
death rate host-specific death rate µi v(float)
carrying capacity K vinteger
infection rate host-specific infection coefficient γi v(float)
segregation error host-specific rate of segregation error ei v(float(s))
perturbation impact host-specific degradation coefficient ki vfloat/0 w/o perturbation
plasmid resistance plasmid-specific plasmid resistance ρα v(float)
plasmid cost plasmid-specific plasmid cost cα v(float)
A host competition matrix A v(v(float))
H host HGT matrix H v(v(integer))
I plasmid infection matrix I v(v(float(s)))
P plasmid compatibility matrix P v(v(float))
tensor file path to the JSON file of the propensity tensor character

S5 Complexity-dependent computational efficiency

To demonstrate how the system complexity limits the computational efficiency of our model, we

ran a model performance test across n-host-n-plasmid systems where n ranged from one to six.

Each n-host-n-plasmid system was initialized with n× (n+ 1) subpopulations, where each host

population had a plasmid-free subpopulation with 1000 individuals, and all potential single-

plasmid-carrying subpopulations with 100 individuals each. We fixed all the host and plasmid

traits across populations, applied the reference (full) structure for all interaction networks, and

increased the community-wide carrying capacity K linearly with the initial number of subpop-

ulations (Table S7). The elapsed time for the infection tensor Γ generation, initialization and

simulation substantially increased with system complexity (Fig. S13).
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Table S7: Constants and parameters for the model performance test

Variable Definition Value

tfinal time scale of the simulation 500
n number of host and plasmid populations in the system 1:6
K community-wise carrying capacity of host 1e4:2.1e5
ei probability of segregation error of host i e-8
µi per capita death rate of host i 0.015
ηi per capita growth rate of host i 1.0
γi,p infection coefficient of host subpopulation Hi,p 1e-4
ρα resistance of plasmid α 1.0
cα cost of plasmid α on host growth 0.02
A host competition matrix n× n matrix of 1s
H HGT matrix n× n matrix of 1s
I infection matrix n× n matrix of 1s
P plasmid compatibility matrix n× n matrix of 1s and off-diagonal 0s

log10(s) = 0.9724n - 3.1342

log10(s)  = 0.358n + 2.4411
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Figure S13: Elapse time of tensor generation, initialization and simulation across system complexity n,
i.e. the number of host and plasmid populations in the system.
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