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Abstract  12 

Ecological dynamics are analyzed across multiple sites, times, and variables.  Here, we introduce 13 

the family of generalized graphical mixed models (GGMMs) and show that it extends structural 14 

equation, generalized additive, and generalized linear mixed models.  GGMMs represent 15 

ecological systems using a mathematical graph, where each analytic unit (node for each site-16 

time-variable) has a direct effect on other units via specified linear interactions (edges).  This 17 

graph is composed by combining elementary ecological relationships like ecological interactions, 18 

evolutionary trade-offs, time-lags, and spatial diffusion.  GGMMs are then expressed using 19 

simultaneous equations, efficiently estimated using Gaussian Markov random fields, and used 20 

for prediction, inference, and causal analysis.  We demonstrate GGMMs using three contrasting 21 

case studies: tracking cohorts in age-structured models; phylogenetic path analysis; and 22 

diffusion-enhanced spatio-temporal models.  We conclude that GGMMs connect ecological 23 
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theory with statistical models that are applied for inference, prediction, and causal analysis 24 

throughout ecology.   25 

 26 
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Introduction 30 

 Most ecological studies involve measuring, explaining, and predicting dynamics across 31 

multiple locations, times, and variables.  For example, global conservation involves essential 32 

biodiversity variables (measurement of biomass across sites, times, and species), where statistical 33 

models are then used to fill in missing elements in this three-coordinate array (Jetz et al., 2019).  34 

Alternatively, macroevolution and paleo-ecology seeks to identify how species traits change over 35 

time among species subject to extinction and speciation events (Hautmann, 2020).  Ecological 36 

subfields generally differ in how they discretize space, time, and variables, but these ordinates 37 

remain ubiquitous across ecology.   38 

 Ecologists then use these measurements across space, time, and variables for three distinct 39 

tasks:   40 

1. Inference, i.e., measuring the functions and parameters that give rise to ecological dynamics 41 

in observational and experimental systems, so that these parameters can then be compared 42 

with ecological theory or other measured values across space and time;  43 

2. Prediction, i.e., estimating the value for a system variable where it was not specifically 44 

measured, e.g., to allow biodiversity variables to be compared with target values; 45 

3. Causal analysis, i.e., estimating the value for a system variable under some hypothetical 46 

change, allowing policy makers to compare the likely outcome of different potential 47 

management strategies and better understand mechanisms of the system. 48 

These different tasks all involve some combination of experimental and observational studies, 49 

but an analysis suitable for one task may not be suitable for another (Levins, 1966).  For 50 

example, a predictive model will often not be suitable for causal analysis (Arif & MacNeil, 51 

2022), a model used to infer ecological parameters may explain a small proportion of predictive 52 



variance, and a model with good in-sample prediction may not provide any transferable inference 53 

about system parameters.   54 

 Given these contrasting goals, ecologists draw upon a large toolbox of mechanistic and 55 

statistical models.  However, we argue that most ecologists use some combination of generalized 56 

linear (mixed) models (GLMM), generalized additive models (GAM), and structural equation 57 

models (SEM) as their core toolbox for statistical analysis.  For example, GAMs are widely used 58 

for estimating habitat utilization (Miller, 2025), GLMMs are used to control for pseudo-59 

replication in the analysis of experimental designs (Bolker et al., 2009), and there is growing 60 

recognition that SEM (and variants like path analysis) have a distinct role for causal analysis 61 

(Grace, 2024).  This large toolbox of models allows analysts to choose the most appropriate 62 

method for their problem.  However, it also makes it harder for new researchers to identify what 63 

model is appropriate for their intended analysis, thereby raising “barriers to entry” for students 64 

and applied ecologists.   65 

 In this review, we therefore introduce a family of generalized graphical mixed models 66 

(GGMMs) that connects ecological theory with widely used statistical models.  A GGMM starts 67 

by defining a mathematical “graph,” where any combination of variables, times, and sites are 68 

defined as nodes (visualized as boxes), and nodes are then linked using edges (visualized as 69 

arrows) that represent linear structural interactions.  The edges are represented using a path 70 

matrix in a simultaneous equation, and the GGMM composes this path matrix from elementary 71 

ecological processes including spatial diffusion, time-lags, ecological interactions among 72 

species, or evolutionary trade-offs among traits.  The resulting GGM then includes GLMMs, 73 

GAMs, and SEM as nested submodels, and is useful for inference, prediction, and causal 74 

analysis.  We specifically emphasize two insights:  75 



1. Graphs can be expressed using a path matrix within a simultaneous equation, and efficiently 76 

fitted as a Gaussian Markov random field; 77 

2. Graphs can be constructed from elementary ecological relationships such as time-lags, spatial 78 

diffusion, evolutionary relatedness, and unstructured interactions.  The path matrix can then 79 

be constructed by summing across the statistical interaction (Kronecker product) of these 80 

different elementary relationships. 81 

We demonstrate these insights using three examples drawn from population dynamics, 82 

macroevolution, and movement ecology.   83 

Materials and Methods 84 

Graphs, simultaneous equations, and random fields 85 

We first introduce mathematical graphs including their construction, representation using 86 

simultaneous equations, and estimation using Gaussian Markov random fields.   87 

 As an illustrative example, we introduce the essential biogeographic variable 𝐁𝐁 measuring 88 

biomass 𝑏𝑏𝑠𝑠,𝑐𝑐,𝑡𝑡 at each site 𝑠𝑠 ∈ {1,2, … 𝑆𝑆}, species 𝑐𝑐 ∈ {1,2, … ,𝐶𝐶}, and time 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}.  89 

Assuming we have 𝑆𝑆 = 100 sites, 𝐶𝐶 = 100 species, and 𝑇𝑇 = 10 times, we obtain an array 𝐁𝐁 90 

containing 𝑆𝑆𝑇𝑇𝐶𝐶 = 100,000 measurements of biomass.  Ecologists are then interested in 91 

interactions among species, which might include nonlocal teleconnections (i.e., source-sink and 92 

predator avoidance behaviors) as well as both simultaneous and lagged effects (e.g., where 93 

species 𝑐𝑐1 in time 𝑡𝑡1 consumes juveniles and therefore has delayed impact on adult biomass for 94 

species 𝑐𝑐2 in time 𝑡𝑡2 = 𝑡𝑡1 + Δ𝑡𝑡).  In the limit, nonlocal and lagged interactions can result in 95 

approximately (𝑆𝑆𝐶𝐶𝑇𝑇)2/2 = 5 × 109 interactions (excluding interactions backwards in time) so 96 

we obtain a staggering number of potential interactions even using this relatively coarse 97 

discretization of space, time, and taxonomy.  We therefore seek some conceptually clear, 98 



computationally efficient, and statistically justified simplification for these nonlocal and lagged 99 

interactions.   100 

 A graphical model represents each element of response 𝐁𝐁 as a node (visualized as a box), and 101 

represents linear relationships as edges (visualized as arrows).  This can then be represented as a 102 

simultaneous equation: 103 

vec(𝐁𝐁) = 𝐏𝐏vec(𝐁𝐁) + vec(𝐄𝐄) 

vec(𝐄𝐄)~MVN(𝟎𝟎,𝐋𝐋𝑇𝑇𝐋𝐋) 

(1) 

where 𝐏𝐏 is the 𝐾𝐾 × 𝐾𝐾 path matrix where 𝐾𝐾 is the length of vec(𝐁𝐁), containing elements 𝜌𝜌𝑘𝑘2,𝑘𝑘1 104 

that measure the effect of variable 𝑘𝑘1 on 𝑘𝑘2 (directed edges).  Similarly, 𝐄𝐄 is the array of 105 

exogenous variation representing processes that are not explicitly represented in the modeled 106 

interactions and 𝐋𝐋𝑇𝑇𝐋𝐋 is the 𝐾𝐾 × 𝐾𝐾 covariance matrix for this unmodeled variation, represented 107 

using its square-root 𝐋𝐋 containing 𝜆𝜆𝑘𝑘2,𝑘𝑘1 (undirected edges).  In its graphical representation, the 108 

path matrix 𝐏𝐏 can then be visualized as one-headed arrows where 𝜌𝜌𝑘𝑘2,𝑘𝑘1 points from 𝑘𝑘1 to 𝑘𝑘2, 109 

and the exogenous variance 𝐋𝐋 as two-headed arrows where 𝜆𝜆𝑘𝑘2,𝑘𝑘1 connects 𝑘𝑘1 and 𝑘𝑘2.  This “box 110 

and arrow” visualization is widely used in path analysis (Wright, 1921), and we discuss the 111 

connections to causal modelling in a later section.   112 

 This simultaneous equation (and associated graphical representation) can be rearranged as a 113 

Gaussian Markov random field (GMRF), where vec(𝐁𝐁) follows a multivariate normal 114 

distribution such that the inverse covariance (“precision”) matrix can be constructed directly: 115 

vec(𝐁𝐁)~MVN(𝟎𝟎,𝐐𝐐−1) 

𝐐𝐐 = (𝐈𝐈 − 𝐏𝐏𝑇𝑇)(𝐋𝐋𝑇𝑇𝐋𝐋)−𝟏𝟏(𝐈𝐈 − 𝐏𝐏) 

(2) 

The probability density in the first line can be computed efficiently as long as path matrix 𝐏𝐏 and 116 

exogenous variation 𝐋𝐋 are sparse, i.e., species primarily interact with a constrained set of other 117 



species, within a localized neighborhood, and where interactions occur simultaneously or over a 118 

reduced set of lags (see Supplementary Materials 1 for more details).   119 

 To identify parameters in 𝐏𝐏 and 𝐋𝐋, we also require them to have constraints where e.g., 120 

species interactions might be stationary across space and/or time.  These constraints show up 121 

where element 𝑞𝑞𝑘𝑘2,𝑘𝑘1 of precision 𝐐𝐐 will be equal to 𝑞𝑞𝑘𝑘4,𝑘𝑘3 for other sites, times, or variables.  122 

We summarize four common graphs here (see Fig. 1), where each corresponds to a simultaneous 123 

equation and an associated path matrix 𝐏𝐏 that is common in ecological analysis: 124 

1. Time-lagged dynamics:  Variable 𝑏𝑏𝑡𝑡 is often predicted from its preceding value 𝑏𝑏𝑡𝑡−1, such 125 

that 𝜌𝜌𝑡𝑡2,𝑡𝑡1 = 1 if 𝑡𝑡2 = 𝑡𝑡1 + 1 and 0 otherwise.  This results in a sparse lag-1 matrix 𝐏𝐏lag1, and 126 

a lag-2 matrix arises as 𝐏𝐏lag2 = 𝐏𝐏lag12, and so on; 127 

2. Diffusive dynamics:  Ecological variables are often more similar when they are close together 128 

(Tobler, 1970), and this spatial autocorrelation can arise as animals or their physical habitat 129 

undergoes diffusion (Lindgren et al., 2011).  In two-dimensions and discretizing space into 130 

square grid cells, a location 𝐬𝐬 = (𝑥𝑥,𝑦𝑦) affects its four neighbors {(𝑥𝑥,𝑦𝑦 + 1), (𝑥𝑥 +131 

1, 𝑦𝑦), (𝑥𝑥,𝑦𝑦 − 1), (𝑥𝑥 − 1,𝑦𝑦)} such that each row of 𝐏𝐏diffusion is nonzero for only four elements 132 

and it represents the “weight matrix” in a simultaneous autoregressive spatial model (Ver 133 

Hoef et al., 2018).  Alternatively, metapopulation and metacommunity models often 134 

discretize space into habitat patches (e.g., Hanski et al., 1994), and spatial adjacency and 135 

diffusion (and resulting spatial autocorrelation) can also be defined in this context; 136 

3. Evolutionary dynamics:  Ecologists often study evolutionary dynamics along a lineage (a 137 

phylogeny for species or a pedigree for individuals).  A phylogeny is often represented as a 138 

tree, wherein a parent taxon will split into two descendants and the evolutionary path matrix 139 

𝐏𝐏phylogeny is nonzero for each pair of descendant (row) and ancestor (column).  Genetic drift 140 



occurring within a quadratic fitness landscape will result in a stabilizing selection towards the 141 

fitness peak (Lande, 1976);   142 

4. Interactive dynamics:  Finally, ecologists are often interested in structural linkages among 143 

variables.  For example, a trophic cascade arises from two negative linkages 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 →144 

𝐶𝐶𝑃𝑃𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 and 𝐶𝐶𝑃𝑃𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑃𝑃𝑃𝑃, where the product of these two negative direct 145 

effects results in a positive indirect effect from predators to producers.  Interactions can then 146 

be used to construct the path matrix 𝐏𝐏interaction with whatever pattern is hypothesized; 147 

These elementary relationships can then be combined to structure a larger multivariate model.  148 

For example, an analyst might specify interactive dynamics where predator 𝑋𝑋 affects prey 𝑌𝑌 and 149 

prey 𝑌𝑌 affects consumer 𝑍𝑍 (Graph-4 above) and where all taxa exhibit spatial diffusion (Graph-150 

2).  This involves two interactions 𝜌𝜌𝑋𝑋→𝑌𝑌 and 𝜌𝜌𝑌𝑌→𝑍𝑍 in 3 × 3 matrices 𝐏𝐏X→Y and 𝐏𝐏Y→Z where 151 

𝐏𝐏interaction = 𝐏𝐏X→Y + 𝐏𝐏Y→Z, and an 𝑆𝑆 × 𝑆𝑆 matrix 𝐏𝐏diffusion, where the joint path matrix is: 152 

𝐏𝐏joint = 𝐏𝐏X→Y ⊗ 𝐏𝐏diffusion�����������
diffusive effect of

predator on consumer

+ 𝐏𝐏Y→Z ⊗ 𝐏𝐏diffusion�����������
diffusive effect of

consumer on producer

 (3) 

where 𝐂𝐂 = 𝐀𝐀⊗𝐁𝐁 is the Kronecker product of two matrices, such that resulting matrix 𝐂𝐂 has 153 

dimensions 𝑃𝑃1𝑏𝑏1 × 𝑃𝑃2𝑏𝑏2 when matrix 𝐀𝐀 has dimension 𝑃𝑃1 × 𝑃𝑃2 and matrix 𝐁𝐁 has dimension 154 

𝑏𝑏1 × 𝑏𝑏2.  Therefore, 𝐏𝐏joint is the 3𝑆𝑆 × 3𝑆𝑆 matrix arising from three parameters (two interactions 155 

and one diffusion rate), given that interaction matrix are 3 × 3 and 𝐏𝐏diffusion has dimension 156 

𝑆𝑆 × 𝑆𝑆.   157 

 To further illustrate, we next introduce how these simultaneous equations (and associated 158 

graphs) arise naturally in ecological analyses. 159 

Case study 1:  Tracking cohorts in age-structured demographics 160 



As a first example, ecologists are often interested in predicting abundance at age 𝐶𝐶𝑎𝑎,𝑡𝑡 for 𝐴𝐴 ages 161 

and 𝑇𝑇 years, which arises via survival from the preceding age and year 𝐶𝐶𝑎𝑎−1,𝑡𝑡−1.  However, 𝐶𝐶𝑎𝑎,𝑡𝑡 162 

might vary for all ages in a single year and therefore be predicted from 𝐶𝐶𝑎𝑎−1,𝑡𝑡, or it might be 163 

affected by changes in survey availability for an age that is consistent across years (i.e., 164 

predictable from 𝐶𝐶𝑎𝑎,𝑡𝑡−1).  We therefore explore a model with three interactions, arising from a 165 

lag-1 process among years and a separate lag-1 process among ages which we call 𝐆𝐆Year and 166 

𝐆𝐆Age, respectively, to distinguish the two versions of the lag-1 matrix 𝐏𝐏lag1: 167 

𝐏𝐏joint = 𝜌𝜌1�𝐆𝐆Age ⊗ 𝐈𝐈Year������������
𝑛𝑛𝑎𝑎−1,𝑡𝑡→𝑛𝑛𝑎𝑎,𝑡𝑡

+ 𝜌𝜌2�𝐈𝐈Age ⊗ 𝐆𝐆Year������������
𝑛𝑛𝑎𝑎,𝑡𝑡−1→𝑛𝑛𝑎𝑎,𝑡𝑡

+ 𝜌𝜌3�𝐆𝐆Age ⊗ 𝐆𝐆Year��������������
𝑛𝑛𝑎𝑎−1,𝑡𝑡−1→𝑛𝑛𝑎𝑎,𝑡𝑡

 (4) 

where 𝐆𝐆Age is the 𝐴𝐴 × 𝐴𝐴 lag-1 matrix 𝐏𝐏lag1 among 𝐴𝐴 ages, 𝐈𝐈Age is the 𝐴𝐴 × 𝐴𝐴 identity matrix, and 168 

𝐆𝐆Year and 𝐈𝐈Year are the corresponding 𝑇𝑇 × 𝑇𝑇 lag-1 and identity matrices across years (see 169 

Supplementary Materials 2 for more details).  We fit this model to proportional abundance-at-age 170 

for rex sole in the Gulf of Alaska, which was sampled intermittently from 1992-2022 171 

(McGilliard, 2024).  We specify a log-linked Tweedie distribution for measurement errors, and 172 

fit the model using package tinyVAST (Thorson et al., 2025) in the R statistical environment.  We 173 

then use 10-fold crossvalidation to compare parsimony among the eight models arising from 174 

estimating or fixing at zero the three parameters {𝜌𝜌1,𝜌𝜌2,𝜌𝜌3} from Eq. 4, and representing the 175 

relative importance of within-cohort, within-year, and within-age drivers for observed 176 

abundance-at-age.   177 

Case study 2: Phylogenetic trait imputation with varying stabilization rates 178 

Ecologists also study how traits covary among natural populations, seeking to identify trade-offs 179 

that arise from adaptation to shared evolutionary constraints.  Recent research has developed 180 

phylogenetic structural equation models from the Kronecker product of a single evolutionary 181 



matrix that is shared across traits (Thorson et al., 2023), but this does not allow different traits to 182 

have different rates of stabilizing selection.  We therefore present a novel extension, where we 183 

calculate the joint precision from a simultaneous equation that includes phylogenetic path matrix 184 

𝐏𝐏phylogeny and an interaction matrix 𝐏𝐏interaction.  This results in joint precision: 185 

𝐐𝐐joint = �𝐈𝐈 − 𝐏𝐏joint𝑇𝑇 �𝐐𝐐phylogeny�𝐈𝐈 − 𝐏𝐏joint� (5) 

Where 𝐏𝐏joint = 𝐈𝐈 ⊗ 𝐏𝐏interaction, 𝐏𝐏interaction is the 𝐶𝐶 × 𝐶𝐶 matrix of interactions among traits, and 186 

𝐈𝐈 is the 𝑆𝑆 × 𝑆𝑆 identity matrix, and 𝐐𝐐phylogeny is the block-diagonal matrix of evolutionary 187 

precisions for each trait (see Supplementary Materials 3 for more details).   188 

 To illustrate, we download three traits from PanTHERIA (Jones et al., 2009), representing 189 

specific metabolic rate (mL O2 / g), adult body mass (g), and home range size (km2).  Body size 190 

has the highest proportion of data (3340 measurements), while other traits have fewer 191 

measurements (Supplementary Materials 5, Table S1).  We specify a phylogenetic structural 192 

equation model with two interactions log(size) → log(metabolism) and log(size) →193 

log(range).  We also estimate the Ornstein-Uhlenbeck (OU) parameter 𝜃𝜃𝑐𝑐 for each trait, used to 194 

calculate:  195 

𝐐𝐐phylogeny = �
𝐐𝐐1 0 0
0 𝐐𝐐2 0
0 0 𝐐𝐐3

� 
(6) 

Where 𝐐𝐐1, 𝐐𝐐2, and 𝐐𝐐3 are the evolutionary precisions matrices given OU parameters 𝜃𝜃1, 𝜃𝜃2, and 196 

𝜃𝜃3 for log-size, log-metabolism, and log-range respectively.  We fit this model using a dated 197 

phylogeny across 5,911 mammal species and 185 million years of evolutionary history (Upham 198 

et al., 2019), where 𝐏𝐏phylogeny,j is the 11821 × 11821 matrix across all tips and ancestral nodes. 199 

Example 3:  Diffusion-enhanced spatio-temporal models 200 



Finally, ecologists have a long-running interest in invasive species including the trajectory and 201 

rate for expanding range edges.  Spatial statisticians have developed non-separable spatio-202 

temporal models that incorporate diffusive dynamics (Lindgren et al., 2023), but these see little 203 

use in ecology to date.  Here, we present a novel demonstration that graphical models can 204 

represent both separable and diffusion-enhanced spatio-temporal dynamics using an additive 205 

path matrix, resulting from a lag-1 matrix 𝐏𝐏lag1 in time and a spatial diffusion matrix 𝐏𝐏diffusion: 206 

𝐏𝐏joint = 𝜌𝜌1(𝐈𝐈time ⊗ 𝐏𝐏diffusion)���������������
𝑑𝑑𝑠𝑠,𝑡𝑡→𝑑𝑑𝑠𝑠+1,𝑡𝑡

+ 𝜌𝜌2�𝐏𝐏lag1 ⊗ 𝐈𝐈space��������������
𝑑𝑑𝑠𝑠,𝑡𝑡→𝑑𝑑𝑠𝑠,𝑡𝑡+1

+ 𝜌𝜌3�𝐏𝐏lag1 ⊗ 𝐏𝐏diffusion����������������
𝑑𝑑𝑠𝑠,𝑡𝑡→𝑑𝑑𝑠𝑠+1,𝑡𝑡+1

 (7) 

We demonstrate this using a deterministic simulation by visualizing the density matrix 𝐃𝐃 207 

resulting from diffusive dynamics vec(𝐃𝐃) = �𝐈𝐈 − 𝐏𝐏joint�
−1

vec(𝐄𝐄), where vec(𝐄𝐄) is an indicator 208 

vector such that 𝐄𝐄𝑠𝑠center,1 = 1 for location 𝑠𝑠center at the center of the spatial domain in time 𝑡𝑡 =209 

1 and 𝐄𝐄𝑠𝑠,𝑡𝑡 = 0 elsewhere.  We visualize this diffusive process over a square spatial domain 210 

discretized into 21 rows and 21 columns (𝑆𝑆 = 441 square grid cells) and 𝑇𝑇 = 3 times, while 211 

fixing 𝜌𝜌1 = 0.8 and 𝜌𝜌2 = 0.1, and varying the value of 𝜌𝜌3.  Diffusive dynamics are expected to 212 

result in a linear increase in the mean-square displacement for the utilization distribution over 213 

time (see Supplementary Materials 4 for more details).   214 

Results 215 

 In the GGMM fitting to proportional abundance-at-age for rex sole in the Gulf of Alaska, 10-216 

fold cross-validation indicates that the model with interactions along cohorts (𝜌𝜌1 = 𝐶𝐶𝑎𝑎,𝑡𝑡 →217 

𝐶𝐶𝑎𝑎+1,𝑡𝑡+1) and along years (𝜌𝜌2 = 𝐶𝐶𝑎𝑎,𝑡𝑡 → 𝐶𝐶𝑎𝑎,𝑡𝑡+1) has lowest predictive error (Supplementary 218 

Materials 5, Table S2).  The fitted model (Fig. 2) estimates that cohort effects (𝜌𝜌1 = 0.73) are 219 

substantially stronger than year effects (𝜌𝜌2 = 0.3), and strong cohorts are also visually apparent 220 

starting at age-7 around 2005 and again in 2011, and progress visually through subsequent ages 221 



and years.  Leave-year-out cross-validation (Supplementary Materials 5, Fig. S1) confirms that 222 

including these interactions can result in skillful predictions for years without direct 223 

measurements.   224 

 The GGMM estimating interactions among adult body size [ln(𝑔𝑔)], specific metabolic rate 225 

[ln(𝐶𝐶𝑚𝑚 02
𝑔𝑔

)], and range size [ln(𝑘𝑘𝐶𝐶2)] for 5,911 mammal species over 185 million years (Fig. 3) 226 

estimates a isometric (𝜌𝜌 = 1.00) scaling of range size with adult body size, and an allometric 227 

(𝜌𝜌 = 0.69) scaling of metabolic rate with body size.  Additionally, it estimates weakest 228 

stabilizing selection for body size, with a nearly 20% correlation between two species separated 229 

by 150 million years of divergent evolution.  By contrast, range size has strongest stabilizing 230 

selection, where 20% correlation arises at approximately 25 million years of divergence.  Finally, 231 

specific metabolism has an intermediate strength for stabilizing selection (20% correlation at 60 232 

million years). 233 

 Finally, the GGMM for diffusion-enhanced spatio-temporal dynamics (Fig. 4) shows that 234 

diffusion arises simply from interactions across time (𝐶𝐶𝑠𝑠,𝑡𝑡 → 𝐶𝐶𝑠𝑠,𝑡𝑡+1 using 𝜌𝜌time) and interactions 235 

across spatial neighbors (𝐶𝐶𝑠𝑠,𝑡𝑡 → 𝐶𝐶𝑠𝑠+1,𝑡𝑡 using 𝜌𝜌space) (Fig. 4 top row).  In this scenario, mean-236 

squared displacement (MSD) shows a close-to-linear increases over time with rate 𝜌𝜌space, as 237 

expected given diffusive dynamics (where the departure from a linear increases arises from 238 

spatial boundary effects).  The model then reverts to separable spatio-temporal dynamics when 239 

adding a parameter lagged spatial effect (𝐶𝐶𝑠𝑠,𝑡𝑡 → 𝐶𝐶𝑠𝑠+1,𝑡𝑡+1 using 𝜌𝜌spacetime) and fixing 240 

𝜌𝜌spacetime = −𝜌𝜌space𝜌𝜌time (Fig. 4 bottom row).  Finally,  intermediate dynamics arise when 241 

−𝜌𝜌space𝜌𝜌time < 𝜌𝜌spacetime < 0.  For example, when 𝜌𝜌spacetime < 0 = −0.5𝜌𝜌space𝜌𝜌time the 242 

MSD starts at 0.1 but then increases 0.05 per time-interval (Fig. 4 middle row).  Importantly, 243 



𝜌𝜌spacetime allows for a continuous bridge between two ecological hypotheses, where a hotspot 244 

remains stationary or diffuses outwards over time.   245 

Discussion 246 

We introduced the family of generalized graphical mixed models (GGMMs), which represent 247 

variables as nodes and interactions as edges and are efficiently fitted as a Gaussian Markov 248 

random field.  In particular, ecological variables are often indexed by space, time, and category 249 

(e.g., species or age).  Ecological interactions are specified by combining several elementary 250 

graphical structures representing time-lags, phylogenetic relatedness, spatial diffusion, ecological 251 

interactions among species, or evolutionary trade-offs among species traits.  Using three varied 252 

case-studies, we specifically showed that interactions among elementary graphical structures can 253 

represent population dynamics (age structure), evolutionary dynamics (stabilizing selection 254 

among traits), and movement dynamics (diffusion-enhanced spatio-temporal variation).  This 255 

then yielded novel insights, e.g., that stabilizing selection is stronger for adult home range than 256 

body size within the mammal lineage.   257 

 As shown in our third case study (diffusion-enhanced spatio-temporal models), GGMMs can 258 

be used as a spatial smoother similar to generalized additive models (GAMs).  In particular, the 259 

diffusion-enhanced spatio-temporal model constructs a set of local basis functions from 260 

structural parameters representing spatial diffusion, temporal autocorrelation, and the space-time 261 

interaction (see Fig. 4).  A basis function is constructed for every combination of space and time, 262 

and summing across the estimated response to these basis functions constructs a piecewise 263 

smooth function similar to a smoothing spline.  Previous research has already discussed the 264 

connection between GAMs and spatial GLMMs (Miller, 2025), while other research has derived 265 

a spatial smoother from diffusive movement (Lindgren et al., 2011).  However, GGMMs extend 266 



this literature by deriving a spatio-temporal smoother from ecological interpretable parameters 267 

where, e.g., the space-time interaction parameter 𝜌𝜌3 determines whether spatial hotspots 268 

propagate outwards in space over time.   269 

 Similarly, there is growing interest in using structural causal models to re-interpret a wide 270 

range of ecological analyses (Arif & MacNeil, 2022; Byrnes & Dee, 2025; Grace, 2024).  271 

Usefully, GGMMs predict the covariance across space, time, and categories by constructing the 272 

path matrix as the sum across structural interaction like spatial diffusion, time-lags, and 273 

interactions among species.  Therefore, GGMMs can be used in the causal modelling workflow, 274 

i.e., developing a graph from scientific knowledge, validating it by determining whether it is 275 

consistent with available data, and subsequently using it to compute direct and indirect effects 276 

(summarizing Fig. 2 from Arif & MacNeil, 2023).  Usefully, GGMMs allow us to compute 277 

causal effects that occur in some spatial and temporal neighborhood, e.g., how a change in 278 

density for one species affects other species at nearby sites or after a time-lag (Leibold et al., 279 

2004).  Spatial spillover and storage effects are important in determining species coexistence, 280 

and using GGMMs for causal inference to test modern coexistence theory seems like a fruitful 281 

direction for future research.   282 

 In summary, we see GGMMs as a useful avenue to integrate ecological theory (i.e., specific 283 

ecological interactions across space, time, and variables) with statistical estimation (hierarchical 284 

modelling tools).  They derive the predicted covariance across coordinates from elementary 285 

structural relationships, and this structural model can then be interpreted as a structural causal 286 

model when appropriate (i.e., if assumptions are based on theory and consistent with available 287 

data).  By providing a unified framework across ecological and evolutionary analyses, we hope 288 



that GGMMs will allow researchers to move more easily between predictive, inferential, and 289 

causal analyses.   290 
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Fig. 1 – Graphs (left column) representing common simplifying assumptions for ecological 308 

dynamics, and the path matrix 𝐏𝐏 (right column) in simultaneous equation 𝐲𝐲 = 𝐏𝐏𝐲𝐲 + 𝛜𝛜 that results 309 

from each graph (with grey box when 𝜌𝜌𝑖𝑖,𝑗𝑗 ≠ 0 corresponding to graph arrows, and white boxes 310 

where 𝜌𝜌𝑖𝑖,𝑗𝑗 = 0), showing first-order autoregressive dynamics (top row), spatial diffusion from a 311 

central location (𝑥𝑥,𝑦𝑦) when using square boxes to discretize a spatial domain in two dimensions 312 

with four adjacent grid cells (2nd row), a dated phylogeny (3rd row) showing ancestral nodes 313 

{𝑠𝑠5, 𝑠𝑠6, 𝑠𝑠7} and extant species {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4}, and interactions among four variables 𝐴𝐴 → 𝐵𝐵, 314 

𝐴𝐴 → 𝐶𝐶, 𝐵𝐵 → 𝐷𝐷, and 𝐶𝐶 → 𝐷𝐷 (4th row).   315 



 316 

  317 



Fig. 2 – The estimated interactions (top panel) when predicting proportional abundance at age 318 

𝐶𝐶𝑎𝑎,𝑡𝑡 for rex sole in the Gulf of Alaska showing the estimated effect of survival along a cohort 𝜌𝜌3 319 

and effects along a year 𝜌𝜌2 (see Eq. 4), as well as the observed 𝐶𝐶𝑎𝑎,𝑡𝑡 (middle panel) for each year 320 

(x-axis) and age (y-axis) showing low (purple) to high (yellow) values, and the estimated 𝐶𝐶𝑎𝑎,𝑡𝑡 321 

(bottom panel) including the estimated value for years with no direct sampling (white spaces in 322 

the middle panel).   323 

  324 



Fig. 3 – The estimated interaction (top panel) among three log-transformed traits (adult body 325 

mass [g], basal metabolic rate [mL O2 / hour], and range size [km2]) for 4999 mammal species 326 

(with 3340, 661, and 547 available measurements respectively), as well as the estimated 327 

correlation over time for residual patterns (bottom panel) showing the correlation (y-axis) over 328 

185 million years (x-axis) of evolutionary history for mammals 329 

 330 

 331 

  332 



Fig. 4 – Visualizing diffusion-enhanced spatio-temporal dynamics (top-row), intermediate 333 

dynamics (middle row), and non-diffusive (separable) spatio-temporal dynamics (bottom row), 334 

including the graph (1st column) linking a focal cell (𝑠𝑠, 𝑡𝑡) and adjacent cells in a given time (𝑠𝑠 +335 

1, 𝑡𝑡), the same cell in the next time (𝑠𝑠, 𝑡𝑡 + 1), or adjacent cells in the next time (𝑠𝑠 + 1, 𝑡𝑡 + 1).  336 

Nonseparable dynamics arise when 𝜌𝜌𝑠𝑠+1,𝑡𝑡+1 = −𝜌𝜌𝑠𝑠,𝑡𝑡+1𝜌𝜌𝑠𝑠+1,𝑡𝑡.  We also visualize resulting 337 

dynamics from a concentrated density (purple is 0 density, yellow is high density) in time 𝑡𝑡 = 1 338 

(2nd column), and how this density evolves in times 2 (3rd column) and 3 (4th column).  For each 339 

panel we also calculate the mean-squared displacement (MSD) as the variance of the density 340 

function.  Diffusive dynamics results in MSD increasing linearly over time, although the 341 

diffusive MSD in time-3 is slightly lower due to boundary effects.   342 

 343 



 344 
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Supplementary Materials 1:  Derivation of GMRF for simultaneous equation 413 

 414 

In the main text, we start with a simultaneous equation: 415 

𝐳𝐳 = 𝐏𝐏𝐳𝐳 + 𝛜𝛜 416 

𝛜𝛜~MVN(𝟎𝟎,𝐋𝐋𝑇𝑇𝐋𝐋) 417 

This can generalize a wide range of linear models including a linear regression.  For example, 418 

consider a simple linear model with response 𝑌𝑌 and predictor 𝑋𝑋: 419 

𝑌𝑌 = 𝜇𝜇Y + 𝛽𝛽𝑋𝑋 + 𝜖𝜖Y 420 

𝜖𝜖Y~Normal(0,𝜎𝜎Y2) 421 

We can then augment this with an expression for the predictor variable: 422 

𝑋𝑋 = 𝜇𝜇X + 𝜖𝜖X 423 

𝜖𝜖X~Normal(0,𝜎𝜎X2) 424 

We can the express this augmented linear model as a simultaneous equation, where 𝐳𝐳 =425 

(𝑋𝑋 − 𝜇𝜇X,𝑌𝑌 − 𝜇𝜇Y): 426 

𝐏𝐏 = �0 0
𝛽𝛽 0� 427 

And 𝛜𝛜 = (𝜖𝜖X, 𝜖𝜖Y), where: 428 

𝐋𝐋 = �𝜎𝜎X 0
0 𝜎𝜎Y

� 429 

It is easy to show that the simultaneous equation estimates identical parameters as the original 430 

linear model.   431 

 Extending this to a matrix response 𝐁𝐁, we obtain a larger simultaneous equation: 432 

vec(𝐁𝐁) = 𝐏𝐏vec(𝐁𝐁) + vec(𝐄𝐄) 433 

vec(𝐄𝐄)~MVN(𝟎𝟎,𝐋𝐋𝑇𝑇𝐋𝐋) 434 



We then subtract 𝐏𝐏vec(𝐁𝐁) from both sides of S1A and re-arrange to obtain: 435 

vec(𝐁𝐁)− 𝐏𝐏vec(𝐁𝐁) = vec(𝐄𝐄) 436 

(𝐈𝐈 − 𝐏𝐏)vec(𝐁𝐁) = vec(𝐄𝐄) 437 

We then multiply both sides by (𝐈𝐈 − 𝐏𝐏)−1 to obtain 438 

vec(𝐁𝐁) = (𝐈𝐈 − 𝐏𝐏)−1vec(𝐄𝐄) 439 

We note the property that if 𝑋𝑋~𝑁𝑁𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑁𝑁(0,𝜎𝜎X2) then 𝑃𝑃𝑋𝑋~𝑁𝑁𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑁𝑁(0,𝑃𝑃2𝜎𝜎X2).  The same property 440 

holds for vectors, where 𝐱𝐱~MVN(𝟎𝟎,𝚺𝚺) implies that 𝐌𝐌𝐱𝐱~MVN(𝟎𝟎,𝐌𝐌𝚺𝚺𝐌𝐌T).  Therefore, we can 441 

multiply (𝐈𝐈 − 𝐏𝐏)−1 into the covariance for the multivariate normal distribution for 442 

vec(𝐄𝐄)~MVN(𝟎𝟎,𝐋𝐋𝑇𝑇𝐋𝐋) to get: 443 

vec(𝐁𝐁)~MVN(𝟎𝟎, (𝐈𝐈 − 𝐏𝐏)−1𝐋𝐋𝑇𝑇𝐋𝐋(𝐈𝐈 − 𝐏𝐏𝑇𝑇)−1) 444 

Defining precision 𝐐𝐐 = 𝚺𝚺−1, we then obtain: 445 

vec(𝐁𝐁)~MVN(𝟎𝟎,𝐐𝐐−1) 446 

where: 447 

𝐐𝐐 = (𝐈𝐈 − 𝐏𝐏𝑇𝑇)(𝐋𝐋𝑇𝑇𝐋𝐋)−1(𝐈𝐈 − 𝐏𝐏) 448 

i.e, vec(𝐁𝐁) follows a multivariate normal distribution where we can construct the precision 449 

directly, and therefore is a Gaussian Markov random field.  Furthermore, if 𝐋𝐋𝑇𝑇𝐋𝐋 is diagonal, then 450 

𝐐𝐐 will have the same sparsity pattern as 𝐈𝐈 + 𝐏𝐏𝑇𝑇𝐏𝐏.   451 

 Expressing a simultaneous equation as GMRF is useful for two reasons: 452 

1. Evaluating the multivariate normal PDF:  Fitting a simultaneous equation requires 453 

evaluating the multivariate normal probability density function (MVN-PDF) for proposed 454 

values of parameters.  The MVN-PDF is: 455 

𝑓𝑓(𝐱𝐱|𝛍𝛍,𝚺𝚺) =
1

(2𝜋𝜋)𝑘𝑘/2 |𝚺𝚺−1|0.5𝑃𝑃−0.5(𝐱𝐱𝑇𝑇𝚺𝚺−1𝐱𝐱) 456 



Therefore, the covariance 𝚺𝚺 only ever appears via its inverse 𝐐𝐐, and if we can construct the 457 

precision directly then we can avoid computing any matrix inversion.   458 

2. Approximating the log-marginal likelihood:  In a mixed model, we must calculate the log-459 

likelihood of parameters 𝛉𝛉 given data 𝐲𝐲 while marginalizing across any random effects 𝐳𝐳: 460 

𝑓𝑓(𝛉𝛉;𝐲𝐲) = log � ℒ(𝛉𝛉, 𝐳𝐳; 𝐲𝐲)𝑃𝑃𝑑𝑑
𝑧𝑧

 461 

In the following, we approximate this using the Laplace approximation, which replaces the 462 

integral with a multivariate normal distribution with the same peak and curvature.  Curvature 463 

is approximated using the matrix of second derivatives with respect to random effects 464 

(termed the Hessian matrix 𝐇𝐇).  If each datum 𝑦𝑦𝑖𝑖 is calculated from fixed effects and (at 465 

most) a single random effect, then the Hessian matrix will have the same sparsity pattern as 466 

the precision 𝐐𝐐.  This then allows computation to skip calculating elements of the Hessian 467 

matrix used in the Laplace approximation.   468 

  469 



Supplementary Materials 2:  Model details for case study 1 470 

 471 

In our first case study, we fit a generalized graphical mixed model (GGMM) to 𝐴𝐴 × 𝑇𝑇 matrix 𝐍𝐍 472 

of abundance at age 𝐶𝐶𝑎𝑎,𝑡𝑡.  We specify a generalized linear model: 473 

𝐶𝐶𝑎𝑎,𝑡𝑡~Tweedie(𝜇𝜇𝑎𝑎,𝑡𝑡,𝜃𝜃,𝜓𝜓) 474 

Where Var�𝐶𝐶𝑎𝑎,𝑡𝑡� = 𝜃𝜃𝜇𝜇𝑎𝑎,𝑡𝑡
𝜓𝜓 , i.e., 𝜃𝜃 is the dispersion and 𝜓𝜓 controls the mean-variance relationship.  475 

The expected abundance-at-age 𝜇𝜇𝑎𝑎,𝑡𝑡 arises from a log-linked linear predictor: 476 

log�𝜇𝜇𝑎𝑎,𝑡𝑡� = 𝛽𝛽𝑎𝑎 + 𝜔𝜔𝑎𝑎,𝑡𝑡 477 

where 𝛽𝛽𝑎𝑎 is an annually varying intercept that represents average survey availability and the net 478 

effect of average age-specific survival, and 𝛿𝛿𝑎𝑎,𝑡𝑡 represents deviations around this long-term log-479 

abundance at age.   480 

As a graphical model, deviations 𝜔𝜔𝑎𝑎,𝑡𝑡 follow a simultaneous equation: 481 

vec(𝛀𝛀) = 𝐏𝐏vec(𝛀𝛀) + vec(𝐄𝐄) 482 

vec(𝐄𝐄)~MVN(𝟎𝟎,𝐋𝐋𝑇𝑇𝐋𝐋) 483 

where 𝐏𝐏 is the 𝐴𝐴𝑇𝑇 × 𝐴𝐴𝑇𝑇 path matrix and 𝐄𝐄 is exogenous variation with covariance 𝐋𝐋𝑇𝑇𝐋𝐋.  As 484 

stated in the main text: 485 

𝐏𝐏joint = 𝜌𝜌1�𝐆𝐆Age ⊗ 𝐈𝐈Year������������
𝑛𝑛𝑎𝑎−1,𝑡𝑡→𝑛𝑛𝑎𝑎,𝑡𝑡

+ 𝜌𝜌2�𝐈𝐈Age ⊗ 𝐆𝐆Year������������
𝑛𝑛𝑎𝑎,𝑡𝑡−1→𝑛𝑛𝑎𝑎,𝑡𝑡

+ 𝜌𝜌2�𝐆𝐆Age ⊗ 𝐆𝐆Year��������������
𝑛𝑛𝑎𝑎−1,𝑡𝑡−1→𝑛𝑛𝑎𝑎,𝑡𝑡

 486 

Where 𝐆𝐆Age is the 𝐴𝐴 × 𝐴𝐴 lag-1 matrix: 487 

𝐆𝐆Age =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 … 0 0
1 0 0 … 0 0
0 1 0 … 0 0
… … … … … …
0 0 0 … 0 0
0 0 0 … 1 0⎦

⎥
⎥
⎥
⎥
⎤

 488 



i.e., a banded matrix with 1s immediately below the diagonal and zero elsewhere, and 𝐆𝐆Year is 489 

the 𝑇𝑇 × 𝑇𝑇 lag-1 matrix with the same band-1 structure.  Finally, 𝐈𝐈Age is the 𝐴𝐴 × 𝐴𝐴 identity matrix 490 

and 𝐈𝐈Year is the 𝑇𝑇 × 𝑇𝑇 identity matrix.  We also specify the simplest structure for exogenous 491 

variation: 492 

𝐋𝐋 = σ�𝐈𝐈Age ⊗ 𝐈𝐈Year� 493 

Such that exogenous variance 𝐋𝐋𝑇𝑇𝐋𝐋 = σ2𝐈𝐈 is constant across ages and years.   494 

To visualize this more concretely, we walk through the example with two ages (𝐴𝐴 = 2) 495 

and three times (𝑇𝑇 = 3).  In this case: 496 

𝐆𝐆Age = �0 0
1 0� 497 

and: 498 

𝐆𝐆Year = �
0 0 0
1 0 0
0 1 0

� 499 

Where deviation 𝜔𝜔𝑎𝑎,𝑡𝑡 is modeled jointly as a 6 length vector vec(𝛀𝛀) =500 

(𝜔𝜔1,1,𝜔𝜔2,1,𝜔𝜔1,2,𝜔𝜔2,2,𝜔𝜔1,3,𝜔𝜔2,3).  We can therefore write out each component of the 6 × 6 path 501 

matrix 𝐏𝐏joint individually: 502 

𝜌𝜌1�𝐆𝐆Age ⊗ 𝐈𝐈Year������������
𝑛𝑛𝑎𝑎−1,𝑡𝑡→𝑛𝑛𝑎𝑎,𝑡𝑡

= 𝜌𝜌1 �
𝐆𝐆Age 0 0

0 𝐆𝐆Age 0
0 0 𝐆𝐆Age

� =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
𝜌𝜌1 0 0 0 0 0
0 0 0 0 0 0
0 0 𝜌𝜌1 0 0 0
0 0 0 0 0 0
0 0 0 0 𝜌𝜌1 0⎦

⎥
⎥
⎥
⎥
⎤

 503 

and 504 

𝜌𝜌2�𝐈𝐈Age ⊗ 𝐆𝐆Year������������
𝑛𝑛𝑎𝑎,𝑡𝑡−1→𝑛𝑛𝑎𝑎,𝑡𝑡

= 𝜌𝜌2 �
0 0 0
𝐈𝐈Age 0 0

0 𝐈𝐈Age 0
� =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
0 0 0 0 0 0
𝜌𝜌2 0 0 0 0 0
0 𝜌𝜌2 0 0 0 0
0 0 𝜌𝜌2 0 0 0
0 0 0 𝜌𝜌2 0 0⎦

⎥
⎥
⎥
⎥
⎤

 505 



and 506 

𝜌𝜌3�𝐆𝐆Age ⊗ 𝐆𝐆Year��������������
𝑛𝑛𝑎𝑎−1,𝑡𝑡−1→𝑛𝑛𝑎𝑎,𝑡𝑡

= 𝜌𝜌3 �
0 0 0

𝐆𝐆Age 0 0
0 𝐆𝐆Age 0

� =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝜌𝜌3 0 0 0 0 0
0 0 0 0 0 0
0 0 𝜌𝜌3 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 507 

Such that 𝐏𝐏joint has the following structure: 508 

𝐏𝐏joint =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
𝜌𝜌1 0 0 0 0 0
𝜌𝜌2 0 0 0 0 0
𝜌𝜌3 𝜌𝜌2 𝜌𝜌1 0 0 0
0 0 𝜌𝜌2 0 0 0
0 0 𝜌𝜌3 𝜌𝜌2 𝜌𝜌1 0⎦

⎥
⎥
⎥
⎥
⎤

 509 

 510 
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 513 

In our second case study, we present a univariate Ornstein-Uhlenbeck process for evolution of a 514 

trait 𝛚𝛚, with value 𝜔𝜔𝑠𝑠 each location 𝑠𝑠 (tip or ancestral node) within a phylogenetic tree.  The 515 

univariate O-U process with unit variance defines the value 𝜔𝜔𝑠𝑠2 for a child taxon 𝑠𝑠2 conditional 516 

upon the value 𝜔𝜔𝑠𝑠1 for its parent 𝑠𝑠1: 517 

𝜔𝜔𝑠𝑠2~Normal�𝜌𝜌𝑠𝑠2𝜔𝜔𝑠𝑠1,𝜎𝜎𝑠𝑠2
2 � 518 

with partial correlation calculated from the evolutionary distance 𝑁𝑁𝑠𝑠2 between parent 𝑠𝑠1 and child 519 

𝑠𝑠2: 520 

𝜌𝜌𝑠𝑠2 = 𝑃𝑃−𝜃𝜃𝑙𝑙𝑠𝑠2  521 

and residual variance: 522 

𝜎𝜎𝑠𝑠2
2 =

1
2𝜃𝜃

�1 − 𝑃𝑃−2𝜃𝜃𝑙𝑙𝑠𝑠2� 523 

Alternatively, this unit-variance O-U process can be expressed as a simultaneous equation: 524 

𝐃𝐃𝛚𝛚 = 𝐏𝐏𝛚𝛚 + 𝛜𝛜 525 

𝛜𝛜~MVN(𝟎𝟎,𝐃𝐃) 526 

where the 𝑆𝑆 × 𝑆𝑆 path matrix 𝐏𝐏 is nonzero for parent-child pairs: 527 

𝜌𝜌𝑠𝑠2,𝑠𝑠1 = 2𝜃𝜃
𝑃𝑃−𝜃𝜃𝑙𝑙𝑠𝑠2

1 − 𝑃𝑃−2𝜃𝜃𝑙𝑙𝑠𝑠2
 528 

and the 𝑆𝑆 × 𝑆𝑆 matrix 𝐃𝐃 is diagonal: 529 

𝑃𝑃𝑠𝑠,𝑠𝑠 = 2𝜃𝜃 �
1 if 𝑠𝑠 is the root

1 +
𝑃𝑃−𝜃𝜃𝑙𝑙𝑠𝑠

1 − 𝑃𝑃−2𝜃𝜃𝑙𝑙𝑠𝑠
otherwise

 530 

where the root starts at the marginal variance of the O-U process and therefore (in a loose sense) 531 

has distance 𝑁𝑁𝑠𝑠2 → ∞ from its parent taxon (and a similar expression can be written for a random 532 



walk (“Brownian motion”) process.  We can therefore specify the 𝑆𝑆 length vector of traits in an 533 

O-U process as a Gaussian Markov random field: 534 

𝛚𝛚~MVN(𝟎𝟎,σ2𝐐𝐐−1) 535 

𝐐𝐐 = (𝐃𝐃 − 𝐏𝐏𝑇𝑇)𝐃𝐃−1(𝐃𝐃− 𝐏𝐏) 536 

Where 𝐏𝐏, 𝐃𝐃 and therefore 𝐐𝐐 depend upon the O-U parameter 𝜃𝜃, and σ2 is the variance of the O-537 

U process given that 𝐐𝐐 is defined to have unit variance. 538 

In the main text, we the fit a simultaneous equation for 𝑆𝑆 × 𝐶𝐶 trait matrix 𝐗𝐗 across 𝐶𝐶 = 3 539 

traits, 𝐱𝐱𝑠𝑠 = (𝑠𝑠𝑠𝑠𝑑𝑑𝑃𝑃,𝐶𝐶𝑃𝑃𝑡𝑡𝑃𝑃𝑏𝑏𝑃𝑃𝑁𝑁𝑠𝑠𝑠𝑠𝐶𝐶, 𝑃𝑃𝑃𝑃𝐶𝐶𝑔𝑔𝑃𝑃), where the O-U parameter 𝜃𝜃𝑐𝑐 also varies among traits: 540 

vec(𝐗𝐗) = 𝐏𝐏jointvec(𝐗𝐗) + vec(𝐄𝐄) 541 

𝐄𝐄~MVN�0,𝐐𝐐phylogeny
−1 � 542 

Where: 543 

𝐏𝐏joint = 𝐈𝐈 ⊗ 𝐏𝐏interaction 544 

𝐏𝐏interaction = �
0 0 0
𝜌𝜌1 0 0
𝜌𝜌2 0 0

� 545 

Where 𝜌𝜌1 is the impact of log-size on log-metabolism, and 𝜌𝜌2 is the impact of log-size on log-546 

range, and: 547 

𝐐𝐐phylogeny = �
𝜎𝜎1−2𝐐𝐐1 0 0

0 𝜎𝜎2−2𝐐𝐐2 0
0 0 𝜎𝜎2−2𝐐𝐐3

� 548 

And where 𝐐𝐐1, 𝐐𝐐2, and 𝐐𝐐3 are the O-U precisions given parameters 𝜃𝜃1, 𝜃𝜃2, and 𝜃𝜃3 for log-size, 549 

log-metabolism, and log-range, and 𝜎𝜎12, 𝜎𝜎22, and 𝜎𝜎32 are their estimated variances, respectively.  550 

This then results in joint precision: 551 

𝐐𝐐joint = �𝐈𝐈 − 𝐏𝐏joint𝑇𝑇 �𝐐𝐐phylogeny�𝐈𝐈 − 𝐏𝐏joint� 552 



  By defining 𝐏𝐏� = 𝐃𝐃−1𝐏𝐏, the evolutionary precision for the univariate Ornstein-Uhlenbeck 553 

process can instead be written as: 554 

𝐐𝐐 = �𝐈𝐈 − 𝐏𝐏�𝑇𝑇�𝐃𝐃�𝐈𝐈 − 𝐏𝐏�� 555 

We can then redefine an additive path matrix 𝐏𝐏�joint as: 556 

𝐏𝐏�joint = 𝜌𝜌1 ��𝐈𝐈 − 𝐏𝐏�metabolism�⊗ 𝐏𝐏size→metabolism�+ 𝜌𝜌2 ��𝐈𝐈 − 𝐏𝐏�range� ⊗ 𝐏𝐏size→range� + 557 

�𝐏𝐏�size ⊗ 𝐈𝐈size� + �𝐏𝐏�metabolism ⊗ 𝐈𝐈metabolism� + �𝐏𝐏�range ⊗ 𝐈𝐈range� 558 

And calculate the joint precision as: 559 

𝐐𝐐joint = �𝐈𝐈 − 𝐏𝐏�joint𝑇𝑇 �𝐃𝐃joint�𝐈𝐈 − 𝐏𝐏�joint� 560 

where: 561 

𝐃𝐃joint = �
𝜎𝜎1−2𝐃𝐃1 0 0

0 𝜎𝜎1−2𝐃𝐃2 0
0 0 𝜎𝜎3−2𝐃𝐃3

� 562 

We instead present Eq. 5 in the main text because we believe that it is more intuitive, but here we 563 

have showed that the joint precision could instead be presented as an additive path matrix.   564 
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 568 

In our third case study, we present a diffusion-enhanced spatio-temporal model using a square 569 

spatial domain that is discretized into 𝑆𝑆 square grid cells.  To do so, we first define 𝑆𝑆 × 𝑆𝑆 570 

adjacency matrix 𝐀𝐀 where 𝑃𝑃𝑠𝑠2,𝑠𝑠1 = 1 if cells 𝑠𝑠1 and 𝑠𝑠2 share an edge and zero otherwise (i.e., 571 

rook adjacency).  We then rescale this adjacency matrix to calculate the diffusion path matrix: 572 

𝐏𝐏diffusion = diag(𝐀𝐀𝟏𝟏)−1𝐀𝐀 − 𝐈𝐈 573 

Where 𝟏𝟏 is a 𝑆𝑆 length vector of ones, such that 𝐀𝐀𝟏𝟏 is the sum across rows of the adjacency 574 

matrix (i.e., number of neighbors for each location 𝑠𝑠1), and diag(𝐀𝐀𝟏𝟏)−1 is a diagonal matrix that 575 

rescales 𝐀𝐀 by the number of neighbors.  In summary, 𝐏𝐏diffusion is the adjacency matrix 576 

transformed such that each row sums to zero and has diagonal of −1, and it is analogous to the 577 

1st-order lag matrix where lag-n can be calculated as 𝐏𝐏diffusion
𝑛𝑛 , i.e., the lag-0 matrix is 578 

𝐏𝐏diffusion
0 = 𝐈𝐈 and the 2nd order diffusion matrix is 𝐏𝐏diffusion𝐏𝐏diffusion.   579 

We can then use this diffusive path matrix to define a diffusion-enhanced spatio-temporal 580 

process: 581 

𝐏𝐏joint = 𝜌𝜌1(𝐈𝐈time ⊗ 𝐏𝐏diffusion)���������������
𝑑𝑑𝑠𝑠,𝑡𝑡→𝑑𝑑𝑠𝑠+1,𝑡𝑡

+ 𝜌𝜌2�𝐏𝐏lag1 ⊗ 𝐈𝐈space��������������
𝑑𝑑𝑠𝑠,𝑡𝑡→𝑑𝑑𝑠𝑠,𝑡𝑡+1

+ 𝜌𝜌3�𝐏𝐏lag1 ⊗ 𝐏𝐏diffusion����������������
𝑑𝑑𝑠𝑠,𝑡𝑡→𝑑𝑑𝑠𝑠+1,𝑡𝑡+1

 582 

In the main text, we define this process over three times 𝑇𝑇 = 3, and calculate the 𝑆𝑆 × 𝑇𝑇 density 583 

matrix 𝐃𝐃 containing density 𝑃𝑃𝑠𝑠,𝑡𝑡 that results from an exogenous pulse experiment represented by 584 

an 𝑆𝑆 × 𝑇𝑇 matrix 𝐄𝐄, where 𝜖𝜖𝑠𝑠,𝑡𝑡 is one for the midpoint of the spatial domain when 𝑡𝑡 = 1 and zero 585 

otherwise.  We specifically visualize: 586 

vec(𝐃𝐃) = 𝐏𝐏jointvec(𝐄𝐄) 587 



corresponding to the diffusion across space and time resulting from density starting in a single 588 

midpoint cell in the first time.   589 
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 592 

 593 

Table S1 – Count of trait measurements available for each individual trait (along the diagonal) or 594 

any pair of traits (off-diagonal), from the 4999 species available in PanTHERIA that can be 595 

matched with the Vertlife phylogeny based on scientific binomial.   596 

 ln_metabolism ln_range ln_size 
ln_metabolism 547   
ln_range 233 661  
ln_size 547 658 3340 

 597 

 598 

 599 

Table S2 – Results from a simple-random 10-fold crossvalidation experiment for each of eight 600 

models for proportional abundance-at-age for rex sole in the Gulf of Alaska, arising from every 601 

combination of estimating three potential interaction parameters or fixing them at zero.  For each 602 

model, we list the interaction parameters included, the number of fixed effects, the 603 

crossvalidation root-mean-squared error, and the proportion of crossvalidation mean-squared 604 

error relative to the null model.  Note that each model includes 22 parameters in addition to the 605 

interactions:  an intercept for each age 𝑃𝑃 ∈ {2,3, … ,20}; the variance for exogenous variation in 606 

the graphical model; and the dispersion and power parameters for the Tweedie distribution for 607 

residual variation.   608 

Parameter included Number of 

parameters 

Cross-

validation 

RMSE 

Proportion of 

cross-validation 

variance explained 

Bin Year Cohort 



𝜌𝜌𝑎𝑎,𝑡𝑡

→ 𝜌𝜌𝑎𝑎+1,𝑡𝑡 

𝜌𝜌𝑎𝑎,𝑡𝑡

→ 𝜌𝜌𝑎𝑎,𝑡𝑡+1 

𝜌𝜌𝑎𝑎,𝑡𝑡

→ 𝜌𝜌𝑎𝑎+1,𝑡𝑡+1 

   22 0.046 0.00 

X   23 0.040 0.22 

 X  23 0.044 0.08 

  X 23 0.037 0.36 

X X  24 0.038 0.32 

 X X 24 0.034 0.46 

X  X 24 0.037 0.35 

X X X 25 0.037 0.35 

 609 

  610 



Fig. S1 – Observed (black bullets) and predicted (lines) proportional abundance-at-age (y-axis) 611 

for ages 2-20 (x-axis) in each year 1992-2022 (panels) for rex sole in the Gulf of Alaska, 612 

showing the prediction using all data (black line) or using a leave-year-out crossvalidation design 613 

(red line).  Note that the red and black lines are identical in years with no data (no black dots, 614 

e.g., 1993) because the leave-year-out crossvalidation still fits to all data for that year, and that 615 

the age-20 category includes all animals aged 20+.   616 

 617 

 618 


