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ABSTRACT 26 

In ecology, causal questions are ubiquitous, yet the literature describing systematic approaches to 27 

answering these questions is vast and fragmented across different traditions (e.g., randomization, 28 

structural equation modeling, convergent cross mapping). In our Perspective, we connect the 29 

causal assumptions, tasks, frameworks, and methods across these traditions, thereby providing a 30 

synthesis of the concepts and methodological advances for detecting and quantifying causal 31 

relationships in ecological systems. Through a newly developed workflow, we emphasize how 32 

ecologists’ choices among empirical approaches are guided by the pre-existing knowledge that 33 

ecologists have and the causal assumptions that ecologists are willing to make. 34 

 35 

1 CAUSALITY IN ECOLOGICAL STUDIES 36 

Ecology is centered around investigating causal relationships between living organisms 37 

and their environments. In ecology, as in many other scientific fields, causality is understood as a 38 

phenomenon where change in one variable (the “cause”) induces change (the “effect”) in another 39 

variable1–4. Thus, a causal relationship between 𝑋 and 𝑌 exists if a perturbation in the cause 𝑋 40 

produces a change in the responding variable 𝑌4,5, potentially through the perturbations of 41 

intermediary variables6,7. This “perturbation-based” definition of causality is the definition most 42 

familiar to scientists and philosophers4,8. 43 

Because of a strong tradition of using manipulative experiments to establish causation, 44 

ecology has been shaped by two aphorisms: “correlation does not equal causation” and “causal 45 

claims can only be made from experiments.” The first aphorism oversimplifies the complexity of 46 

causal relationships and has been critiqued in the literature5,9,10 – correlation does not always 47 
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equal causation, but correlation can suggest a causal relationship (see Section 2). More 48 

importantly, the first aphorism does not imply the second: imperfectly designed experimental 49 

studies can mistakenly suggest causal relationships where none exist, and causation can, in fact, 50 

be established through well-designed observational studies11–13. Natural history approaches, for 51 

instance, have long been used to establish credible causal claims (e.g., sea otters driving trophic 52 

cascades in subtidal communities14,15). Recently, interest in observational approaches has 53 

grown16,17 due to the economic, ethical, and logistical challenges of manipulating ecological 54 

variables18 and the limitations of experiments in capturing complex, large-scale causal 55 

relationships in nature19. Observational data, particularly from multiple locations and time points, 56 

are increasingly valued for complementing experiments and supporting more generalizable 57 

causal claims19–21. 58 

To formalize the requirements for making causal claims from experimental and 59 

observational data, scholars in various fields have made substantial advances in mathematical 60 

and statistical tools over the past 50 years12,22–28. Applications of these advances have changed 61 

how we think about scientific topics such as environmental and genetic causes of disease29–31, 62 

military veterans’ health32, criminology33,34, and education35,36, and have influenced policies on 63 

air pollution37,38 and carcinogens39. These same advances are increasingly being proposed by 64 

ecologists to investigate causal questions using observational9,27,40–49 and experimental data50–52.  65 

Yet the way in which these advances relate to each other is not readily apparent from the 66 

published literature. For example, what are the conceptual connections between studies that use 67 

experimental designs and studies that use convergent cross mapping algorithms? Published 68 

reviews typically focus on one set of approaches at a time (e.g., quasi-experimental designs, 69 
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structural causal models, dynamical systems)27,41,44,53,54, which makes it difficult for ecologists to 70 

understand how, or if, the seemingly disparate approaches are related. 71 

In this Perspective, we connect the assumptions, tasks, frameworks, and methods across 72 

these approaches, thereby providing a synthesis of the concepts and methodological advances for 73 

detecting and quantifying causal relationships in ecological systems. When answering a causal 74 

question, we must first identify the appropriate causal task: either causal discovery, which 75 

focuses on detecting whether causal relationships are likely to exist between variables in a 76 

system, or causal inference, which focuses on quantifying the direction and magnitude of causal 77 

relationships without bias. To accomplish these tasks, we employ causal frameworks, such as the 78 

structural causal model framework12, the potential outcomes framework25, or the dynamical 79 

systems causality framework55,56, which formally define causal relationships and specify the 80 

assumptions that must be satisfied to accurately detect or quantify causal relationships from data. 81 

These frameworks then guide the selection of causal methods, that is, study designs and 82 

algorithms, which are used to operationalize these assumptions and establish the conditions 83 

necessary to make causal claims. To outline the process of navigating tasks, frameworks, and 84 

methods, we created a workflow of best practices for answering causal questions in ecological 85 

research. To provide further readings and software to implement the ideas in the Perspective, we 86 

provide comprehensive Supplemental Information. 87 

Throughout our Perspective, we highlight how well-articulated causal assumptions are 88 

the “glue” that unifies the myriad approaches to answering causal questions in ecology. These 89 

assumptions, together with the research question, shape every decision in the workflow – guiding 90 

which pre-existing knowledge is relevant, which causal task is pursued, and which study design 91 

or algorithm is implemented. Because understanding these assumptions is a prerequisite for 92 
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using the workflow, we provide a clear articulation of the fundamental causal assumptions 93 

required to move from correlation to causation. These assumptions also facilitate transparent 94 

discussions about the adequacy of the study designs and algorithms that help scholars move from 95 

observations of statistical dependence in data to claims about causal relationships in ecological 96 

systems.  97 

2 USING ASSUMPTIONS TO MOVE FROM CORRELATION TO CAUSATION  98 

Data never “speak” by themselves. To derive meaningful causal insights from data, we 99 

must rely on well-defined hypotheses, statistical models grounded in ecological theory, and both 100 

testable and untestable assumptions57–59. The importance of hypotheses, appropriate statistical 101 

models, and statistical assumptions is well known in ecology.  102 

Less well known is the importance of causal assumptions that allow researchers to go 103 

from making claims about correlations to making claims about causation. Unlike most statistical 104 

assumptions, causal assumptions are typically untestable; that is, causal assumptions cannot be 105 

verified from data, even unlimited data. For example, experimentalists assume that 106 

randomization of a treatment ensures that any differences in outcomes across the randomized 107 

groups can only be attributed to the treatment or sampling variability50. Yet, this assumption 108 

cannot be verified. Causal assumptions, when combined with principles of probability theory and 109 

statistical dependence, allow us to make causal claims from data. The formalization of these 110 

assumptions is one of the most important scientific advances for answering causal 111 

questions26,28,58. For more details on the contrast between statistical and causal assumptions, see 112 

Supplementary Note 1. 113 
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Causal assumptions, in tandem with statistical assumptions about the data structure, 114 

establish when statistical dependence can be interpreted as evidence for the perturbation-based 115 

notion of causality12,25,27,60. Consider a scenario in which we seek to determine whether, or by 116 

how much, variation in the abundance of aphid predators (e.g., ladybird beetles) (𝑋) changes 117 

aphid abundance (𝑌).  If our knowledge about the probability of aphid abundance changes after 118 

learning something about ladybird beetle abundance, then the two variables are statistically 119 

dependent. This dependence forms the starting point for using data to investigate potential causal 120 

relationships between two variables. 121 

Statistical dependence is linked to causality through the Common Cause Principle61, 122 

which states that if a statistical dependence exists between two variables 𝑋 and 𝑌, then at least 123 

one of the following is true: 𝑋 causes 𝑌, 𝑌 causes 𝑋, or 𝑋 and 𝑌 are both caused by a third 124 

variable 𝐶 (Fig. 1). In ecology, a commonly used measure of statistical dependence is 125 

correlation, which describes the linear similarity between two sets of observations. The presence 126 

of correlation can therefore signal a causal relationship. The lack of correlation, however, does 127 

not necessarily rule out statistical dependence or causality, as correlation is just one possible 128 

measure of dependence between two variables. 129 

 130 

Fig. 1. Statistical dependence implies three possible causal relationships: 𝑋 causes 𝑌, 𝑌 causes 𝑋, 131 

or 𝑋 and 𝑌 are caused by a common variable 𝐶. All three relationships can exist simultaneously 132 
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in many contexts (indicated by the dashed grey arrows). Causal assumptions aim to eliminate the 133 

third possibility because the presence of 𝐶 introduces additional statistical dependence between 134 

𝑋 and 𝑌 that is not due to any direct causal relationship. 135 

 136 

In causal analyses, we wish to distinguish variables with direct causal links from those 137 

that are not causally influencing each other. Thus, eliminating the possibility that a third variable 138 

𝐶 causes both 𝑋 and 𝑌 is often a priority (i.e., we seek to eliminate non-causal, rival explanations 139 

for statistical dependencies). For example, in Fig. 2 broad-spectrum pesticide use affects ladybird 140 

beetle abundance and earthworm abundance. However, beetle abundance does not influence 141 

earthworm abundance, nor vice versa. In this case, any observed statistical dependence between 142 

beetle abundance (𝑋) and earthworm abundance (𝑌) is entirely attributable to their common 143 

cause, pesticide use (𝐶). 144 
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 145 

Fig. 2. Illustration of the Common Cause Principle in an ecological system where abundance of 146 

ladybird beetles, aphids, and earthworms are statistically dependent but not necessarily causally 147 

related. Solid arrows represent directional causal relationships, and dashed lines represent 148 

statistical dependence but not causal relationships.  149 

 150 

To eliminate these “common causes” (a.k.a., “confounding variables” or “confounders”), 151 

researchers make three assumptions: the Causal Sufficiency Assumption28, the Causal Markov 152 
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Condition61–63, and the Causal Faithfulness Assumption28 (Box 1). Together, these untestable 153 

assumptions allow us to distinguish direct causal relationships between variables from 154 

dependence between variables induced by a common cause. By including all common causes in 155 

a model of the relationship between 𝑋 and 𝑌 (A1 in Box 1), we can eliminate the portion of 156 

dependence due to those common causes 𝑪 (A2). Any remaining statistical independencies can 157 

be interpreted as evidence of no causal relationship between the variables (A3), while any 158 

remaining dependence implies the possibility of a direct causal relationship.  159 

For example, if pesticide use is a common cause of both ladybird beetle abundance and 160 

aphid abundance, then we should include pesticide use in a model of the relationship between 161 

ladybird beetle abundance and aphid abundance (Fig. 2). If pesticide use is the only common 162 

cause and, after conditioning on it, beetle abundance is statistically independent of aphid 163 

abundance (i.e., they are conditionally independent), then, under the three causal assumptions, 164 

we can infer that no causal relationship exists between them. Conversely, if beetle abundance and 165 

aphid abundance are not independent conditional on pesticide use, then a causal relationship 166 

between beetle abundance and aphid abundance may exist (i.e., a lack of conditional 167 

independence means we cannot rule out a causal relationship, but it does not provide definitive 168 

evidence of causation). 169 

The three causal assumptions required to connect statistical dependence to causal 170 

dependence – Causal Sufficiency, Causal Markov Condition, and Causal Faithfulness – are the 171 

foundation upon which causal claims are made from experimental and observational data. These 172 

causal assumptions allow us to differentiate the causal dependencies between two variables from 173 

the non-causal dependencies created by confounding variables.   174 
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 175 

Box 1. Three fundamental causal assumptions 

For these assumptions, we define two variables 𝑋 and 𝑌 as statistically dependent if the 

probability that 𝑌 takes a specific value given that 𝑋 has taken a specific value is different 

from the probability that 𝑌 takes a specific value without any information about the value 

that 𝑋 has taken (i.e., 𝑃(𝑌|𝑋) ≠ 𝑃(𝑌)). In other words, if 𝑋 and 𝑌 are statistically dependent, 

knowing something about 𝑋 changes what is known about the probability of 𝑌. 

A1. Causal Sufficiency52 (a.k.a., the “no unmeasured confounding” assumption55–57), 

requires that we observe all variables in a set 𝑪 that causally influence any pairs of 

variables 𝑋 and 𝑌, and we include 𝑪 in our model that describes the relationship 

between 𝑋 and 𝑌, thus ensuring that no confounding variables are unobserved.  

A2. The Causal Markov Condition54,58,59 states that if a pair of variables 𝑋 and 𝑌 are 

statistically dependent solely because both are caused by a common variable 𝐶, and if 

we control for 𝐶 by including it in our model, then 𝑋 and 𝑌 become conditionally 

independent given 𝐶.  

A3. Causal Faithfulness52, stated very loosely, declares that statistical independence 

(conditional or unconditional) between a pair of variables 𝑋 and 𝑌 indicates the 

absence of a causal relationship between those variables.  

The combination of the Causal Markov Assumption (A2) and the Causal Faithfulness 

Assumption (A3) allows us to claim that if two variables, 𝑋 and 𝑌, are conditionally 

independent when 𝐶 is included in the model, then 𝑋 and 𝑌 are not causally related but 

instead are caused by a third common variable 𝐶. The Causal Sufficiency Assumption (A1) 

then ensures that we can distinguish causal relationships from dependence induced by a 

common cause if we include all possible confounders between variables in a model that 

describes the relationship between 𝑋 and 𝑌.  

The Causal Markov and Causal Faithfulness assumptions have formal definitions requiring 

technical notation that are beyond the scope of this article. For a full discussion of these 

assumptions, we refer the reader to Pearl23 and Spirtes and Zhang60. 
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3 SATISFYING CAUSAL ASSUMPTIONS WITH PRE-EXISTING KNOWLEDGE, 176 

STUDY DESIGNS, AND ALGORITHMS 177 

Given the restrictive and untestable nature of the three causal assumptions introduced in 178 

Section 2, ecologists may wonder whether causal claims can realistically be made from 179 

ecological data, since satisfying these assumptions requires building models that account for all 180 

confounders. Unlike models built for prediction or description, models built to make causal 181 

claims cannot be validated using goodness-of-fit or predictive accuracy metrics, as these metrics 182 

assess how well a model describes the observed data but do not evaluate how well the model 183 

satisfies the untestable assumptions required for making causal claims64,65 (for more details, see 184 

Supplementary Note 2). In the following subsections, we describe how the foundations for 185 

satisfying causal assumptions are provided by pre-existing knowledge, study designs, and 186 

algorithms.  187 

 188 

3.1 Pre-existing knowledge 189 

To determine if the three causal assumptions can be satisfied in a specific study context, 190 

pre-existing knowledge is essential59. Pre-existing knowledge guides us in our efforts to identify 191 

potential confounders and other potential factors that produce variation in the causal variable(s) 192 

(Section 5). It helps us determine which confounders can be measured43,66,67 and which are likely 193 

unobservable, a determination that guides the choice of study designs or algorithms (see Section 194 

3.2). Pre-existing knowledge can also be used to detect or rule out the presence of uncontrolled 195 

confounders through, for example, falsification tests (see Section 8). The more pre-existing 196 

knowledge to which we have access, the stronger the causal claims that we can make from an 197 
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analysis of data (i.e., the more plausibly we can eliminate non-causal, rival explanations for 198 

statistical dependencies). 199 

Pre-existing knowledge can include general and domain-specific ecological theory, 200 

subject matter expertise, field experience, and findings from other studies, including studies that 201 

use empirical approaches lacking causal interpretations (see Supplementary Note 2). Because 202 

pre-existing knowledge is often complex and wide-ranging, we need succinct and 203 

straightforward ways to summarize it. In Section 5, we describe two common tools for 204 

organizing our understanding of an ecological system (i.e., our ‘mechanistic knowledge’67). 205 

 206 

3.2 Study designs and algorithms 207 

Pre-existing knowledge is typically not sufficient to satisfy causal assumptions. For 208 

instance, even if we can identify all confounders with pre-existing knowledge, we are unlikely to 209 

be able to measure them all, which would be necessary to satisfy the Causal Sufficiency 210 

Assumption. However, study designs and algorithms provide us with the opportunity to address 211 

such challenges by relaxing one or more of the three causal assumptions in Section 2 in favor of 212 

equally untestable but (hopefully) more plausible causal assumptions.  213 

Experimental designs, for example, substitute the Causal Sufficiency Assumption with 214 

the assumption that treatment randomization eliminates the effects of unmeasured confounding 215 

variables25,68. Confounders are thus addressed through design rather than measurement. In non-216 

experimental studies, observational designs often relax the Causal Sufficiency Assumption 217 

through statistical techniques that define the minimum set of confounding variables that need to 218 

be observed to accomplish the desired causal task57,58,69, or through statistical techniques that 219 
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allow researchers to pursue alternative research goals that reduce the number of confounders that 220 

must be measured (e.g., by defining alternative causal effects70,71 or by detecting and accounting 221 

for possible unmeasured confounders53). These statistical techniques and redefined research 222 

goals can also be used with experimental designs that face implementation challenges, such as 223 

when the experimental manipulation affects the outcome variable through other pathways (i.e., 224 

randomization is a confounder), or when post-randomization observations are missing (i.e., 225 

attrition). We provide more details on both experimental and observational study designs and 226 

algorithms in Section 8. 227 

 228 

4 A WORKFLOW FOR ANSWERING CAUSAL QUESTIONS IN ECOLOGY 229 

We present a comprehensive workflow that summarizes the best practices for 230 

systematically addressing causal questions in ecology (Fig. 3). The workflow serves as a 231 

roadmap, beginning with the causal question and ending with the interpretation and validation of 232 

results. Each step in the workflow marks a decision point that reflects a best-practice principle 233 

that ensures our causal research is robust, transparent, and aligned with the assumptions 234 

necessary to make causal claims from statistical analyses of ecological data. The workflow is 235 

designed to be flexible, so ecologists can adapt it to their pre-existing knowledge, data, and 236 

preferred methods.  237 

Here, we summarize the workflow steps, and we elaborate on them in Sections 5 through 238 

8: 239 

1. Define the Causal Question and Summarize Pre-Existing Knowledge (Section 5): 240 

Before any data are collected or examined, develop a clear, testable causal hypothesis 241 
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and describe all potential confounders. 242 

We first define the causal research question with at least one outcome variable (𝑌) and 243 

one or more hypothesized causal variables (𝑋) (see Supplementary Note 2 for differences 244 

between causal and non-causal questions in ecology). Then, to identify all confounding 245 

variables, we assess the corpus of pre-existing knowledge on the causes and outcomes of 246 

interest. We can summarize this knowledge using causal diagrams or thought 247 

experiments.  248 

2. Define the Causal Task (Section 6): Choose a causal task that matches the study’s 249 

causal question and the depth of available prior knowledge. 250 

When answering causal questions, we use pre-existing knowledge to determine whether 251 

to pursue causal discovery or causal inference. Causal inference, which seeks to quantify 252 

the magnitudes of causal relationships, is feasible when we have sufficient pre-existing 253 

knowledge to be confident of the causal, outcome, and confounding variables and the 254 

directions of the causal relationships.  If this knowledge is insufficient, we can instead 255 

pursue causal discovery, which aims to detect the existence and direction of causal 256 

relationships. 257 

3. Select Framework (Section 7): Adopt a formal causal framework through which causal 258 

assumptions can be explicitly articulated, tested, and communicated. 259 

To clearly articulate the causal and statistical assumptions that must be satisfied for valid 260 

claims in either causal task, we can use one or more causal frameworks. The potential 261 

outcomes framework and the structural causal model framework are two common 262 

frameworks used for causal inference. For causal discovery, the structural causal model 263 

and dynamical systems causality frameworks are frequently used. 264 
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4. Select Study Design or Algorithm, Collect Data and Apply Estimation Methods, 265 

Obtain Results, and Interpret Results (Section 8): Select a study design or algorithm 266 

that aligns with the study’s articulated causal assumptions, and then rigorously assess the 267 

plausibility of those assumptions and implications of violations to those assumptions 268 

when drawing conclusions. 269 

For causal inference, study designs can be grouped into three categories: experimental 270 

designs, observational designs for measured confounders, and observational designs for 271 

unmeasured confounders. Within these categories, many approaches exist, (e.g., 272 

regression adjustment72, propensity score matching45,73, and structural equation 273 

modeling9). For causal discovery, algorithms are used instead of study designs. These fall 274 

into four categories: constraint-based, score-based, functional model-based, and 275 

dynamical systems causality-based. Within these categories, many algorithms are 276 

available (e.g., convergent cross mapping27, fast causal inference28, and greedy 277 

equivalency search74). Based on the requirements of the study design or algorithm, we 278 

then collect data and apply estimation methods to detect causal relationships or quantify 279 

causal effect(s). Afterwards, we interrogate the plausibility of the causal and statistical 280 

assumptions by identifying potential violations to the assumptions and exploring the 281 

implications of those violations for the conclusions. 282 

 283 

To illustrate the workflow’s application to real-word ecological research, we use two 284 

example ecologists, an intertidal ecologist and a tiger ecologist. In Box 2, we summarize how 285 

each ecologist navigates the workflow.  286 
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Although we present the workflow in a linear fashion, researchers can use it iteratively in 287 

two ways: (i) the results from one causal analysis will feed into future analyses in the form of 288 

pre-existing knowledge67 (grey arrow in Fig. 3); and (ii) after taking actions at one step, 289 

researchers may need to return to previous steps before advancing in the workflow (e.g., refining 290 

the causal question if prior knowledge is insufficient; reassessing the study design if data 291 

collection did not go as planned).  292 
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 293 

Fig. 3. A best-practice workflow that outlines the key steps and decisions for answering causal 294 

questions in ecological research. 295 
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 296 Box 2. Ecologists conducting causal research using the best-practice workflow in Fig. 3. 

“Define the Causal Question and Summarize Pre-Existing Knowledge” 

An intertidal ecologist seeks to quantify the change in 

bivalve abundance (𝑌) caused by floods (𝑋) through 

changes in nitrogen (𝑀1) and salinity (𝑀2) in intertidal 

zones at the mouth of an estuary. The ecologist 

summarizes knowledge about all confounders for each of 

the causal relationships of interest (i.e., floods on 

bivalves, floods on nitrogen, floods on salinity, nitrogen 

on bivalves, and salinity on bivalves). 

A tiger ecologist seeks to determine the ecological factors 

(𝑿) that encourage tigers to make more visits or spend 

more time (𝑌) in certain locations. The ecologist 

summarizes knowledge about confounders of the causal 

relationship between ecological factors and tiger 

occupancy (e.g., geographic and human factors). 

“Define the Causal Task” 

The intertidal ecologist has robust ecological theory and a 

large collection of prior studies to identify the full set of 

confounders that could bias estimation of any one of the 

causal relationships of interest. Thus, the ecologist 

decides to pursue causal inference.  

The tiger ecologist has theory and field observations to 

identify some ecological factors that may influence tiger 

occupancy, but they do not have sufficient knowledge to 

identify all human and geographic confounders. Thus, the 

ecologist decides to pursue causal discovery. 

“Select Framework” 

The intertidal ecologist adopts the structural causal model 

framework, which they prefer for its structural approach 

to reasoning about multiple causes jointly. 

The tiger ecologist adopts the dynamical systems 

causality (DC) framework to accommodate the complex 

and evolving dynamics of their study system. 

“Select Study Design or Algorithm” 

The intertidal ecologist selects an observational study 

design in which they measure and condition on all 

confounders. 

The tiger ecologist selects a DC-based algorithm 

appropriate for causal discovery when many confounders 

are unmeasured. 

“Collect Data and Apply Estimation Methods” 

The intertidal ecologist collects observational cross-

sectional data on all causal, outcome, and confounding 

variables related to the causal relationships of interest and 

then fits a structural equation model to quantify the 

causal relationships of interest. 

The tiger ecologist collects observational time series data 

for tiger occurrence, abundance of prey species, poaching 

activity, and weather conditions at a series of locations 

and uses convergent cross mapping (CCM) to detect 

causal relationships between pairs of variables. 

“Obtain and Interpret Results” 

The intertidal ecologist obtains estimates of the causal 

effects of floods on bivalve abundance that arise though 

the changes in nitrogen and salinity. They perform a 

causal sensitivity analysis that quantifies how much the 

estimates change in the presence of an unmeasured 

confounder. 

The tiger ecologist obtains a network with detected 

causal relationships between pairs of variables. They 

perform a sensitivity analysis that shows how the 

detected causal relationships change when the CCM 

hyperparameter settings are changed. 
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 297 

5 SUMMARIZE PRE-EXISTING KNOWLEDGE 298 

One common conceptual tool for summarizing pre-existing knowledge is a causal 299 

diagram. Causal diagrams help us organize our pre-existing knowledge by visually mapping the 300 

presumed causal relationships among causes (𝑋), their outcomes (𝑌), and confounders (𝑪). The 301 

most widely-used causal diagram is the causal directed acyclic graph (causal DAG), which 302 

follows a set of formal rules that define how causal relationships must be encoded75. A causal 303 

DAG includes the focal variables of a study (i.e., the “cause” and the “outcome” variables), 304 

along with all suspected common causes (i.e., confounders) between the focal variables. Directed 305 

edges (arrows) between variables indicate that unidirectional causal relationships are presumed 306 

to exist, and the absence of an arrow between two variables reflects a strong assumption that a 307 

causal relationship does not exist12. Causal DAGs, which must include all potential confounders 308 

of presumed causal relationships, enable us to identify the confounders we need to address with 309 

experimental or statistical techniques. Thus, causal DAGs should be constructed at the beginning 310 

of a study, before data are collected and the specific study design or algorithm is chosen. 311 

Some ecologists will be familiar with the structural equation model (SEM) diagram9, 312 

which can be interpreted as a causal DAG when its structure represents only unidirectional 313 

relationships and explicitly encodes assumptions about causal relationships, including all 314 

relevant confounders76,77. SEM diagrams also include additional parametric assumptions and are 315 

purpose-built for SEM analyses76, whereas causal DAGs, which require no assumptions about 316 

the functional forms of causal relationships, can be used in any type of causal analysis.  317 
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Another conceptual tool for summarizing pre-existing knowledge is a thought experiment 318 

in which researchers consider how they would conduct a hypothetical ideal randomized 319 

controlled trial (RCT) – often termed a “target trial”78,79 – to answer their causal research 320 

question25. By comparing the ideal (target) trial with the actual data generating process, we can 321 

identify discrepancies that may lead to bias through confounding variables that distort the 322 

observed relationship between the causal variable and the outcome. Formulating such a target 323 

trial forces us to articulate all the key components of an ideal RCT and then systematically 324 

determine which of these components may be absent or imperfect in our study. In doing so, it 325 

becomes clearer which variables, including potential confounders, should be accounted for in the 326 

analysis to emulate the conditions of an ideal experiment. Just as drawing causal DAGs helps 327 

visualize the network of causal relationships and identify confounders, formulating these thought 328 

experiments provides a concrete tool for planning rigorous study designs (i.e., the thought 329 

experiment forces us to ask the question, “Where does the variation in the causal variable come 330 

from?” or, equivalently, “What is the treatment assignment mechanism?”). For resources that 331 

describe how to draw causal DAGs or develop RCT thought experiments for studies, see 332 

Supplementary Note 3. 333 

 334 

6 DEFINE THE CAUSAL TASK – CAUSAL DISCOVERY OR CAUSAL INFERENCE 335 

In choosing the most appropriate causal task for a research question, we must carefully 336 

consider the gap between available knowledge and the knowledge that would be required to 337 

plausibly satisfy causal assumptions. When pre-existing knowledge is extensive, we may pursue 338 

the task of causal inference. When pre-existing knowledge is limited, we may instead pursue 339 
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causal discovery. Although the dividing lines between these two tasks are not as clearcut as 340 

implied in our workflow (i.e., causal research lies on a continuum rather than in one of two 341 

camps), the contrast between their goals is illuminating for understanding how each task draws 342 

on pre-existing knowledge. 343 

The goal of causal inference is to quantify the magnitudes of causal effects, such as the 344 

effect of a change in temperature of one degree on wildlife mortality or the effect of the 345 

introduction of a wildfire suppression program on tree species composition. Causal inference 346 

requires substantial pre-existing knowledge about which variables act as causes, outcomes, and 347 

confounders, as well as the directions of causal processes (“high” pre-existing knowledge in Fig. 348 

3). Quantifying multiple causal effects within an ecological system is even more challenging 349 

because sufficient pre-existing knowledge must exist to satisfy the required causal assumptions 350 

for every pair of cause-outcome variables.  351 

 To quantify causal effects, all causal strategies begin by defining the specific effect(s) of 352 

interest that connects theoretical quantities to data. Different causal effects require different 353 

variations of the causal assumptions80. Ecologists are often interested in the average effect of 𝑋 354 

on 𝑌 across all observations, that is, the average change in the outcome 𝑌 per unit change in 𝑋. 355 

However, other effects may also be relevant, such as average effects for subgroups81 and 356 

mediation effects82 (effects of intermediary variables between a cause and its outcome). 357 

Moreover, some causal effects may be preferred because the causal assumptions for these effects 358 

can be more plausibly satisfied for a study (e.g., complier average causal effects, local average 359 

treatment effects, etc.).  360 

In contrast to causal inference, causal discovery aims to detect or “learn” causal 361 

relationships among measured variables, such as whether there is a causal relationship between 362 
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sardine and anchovy populations and in what direction(s). Although causal discovery requires 363 

causal assumptions, the assumptions are less restrictive than they are in causal inference, and 364 

thus, less pre-existing knowledge is required (“low” pre-existing knowledge in Fig. 3). While 365 

causal discovery methods offer flexibility in investigating causal questions with limited pre-366 

existing knowledge, this advantage comes with the trade-off of potentially less precise or less 367 

certain conclusions about causal relationships. Causal discovery is therefore primarily valuable 368 

for generating more knowledge to guide subsequent studies.  369 

To detect causal relationships, all causal discovery strategies begin by defining an initial 370 

causal diagram (see Section 5) and then refining it with statistical evidence from data. One 371 

strategy begins with a causal diagram that assumes causal relationships exist among all variables. 372 

Statistical independence tests are then systematically applied to eliminate connections between 373 

variables where evidence of a causal relationship is not supported by the data53. Another strategy 374 

starts with a causal diagram that assumes no causal connections among variables and iteratively 375 

adds them where statistical evidence suggests a potential causal relationship83. Both strategies 376 

rely on variations of the three causal assumptions introduced in Section 2 and aim to produce a 377 

refined causal diagram that reflects only the causal relationships consistent with the observed 378 

data and the underlying assumptions.  379 

 380 
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7 SELECT A CAUSAL FRAMEWORK 381 

Both causal inference and causal discovery rely on untestable causal assumptions 382 

(Section 2) that allow researchers to interpret statistical patterns as evidence of causation. Causal 383 

frameworks structure how these causal assumptions are represented for a given task, ensuring 384 

consistency among study design/algorithm, data collection, and estimation procedures.  385 

 386 

7.1 Causal frameworks for causal inference  387 

For causal inference, assumptions and estimation procedures are expressed using one of 388 

three causal frameworks: the Neyman-Rubin causal model, also commonly known as the 389 

potential outcomes (PO) framework; the structural causal model (SCM) framework; and the 390 

decision-theoretic framework22. We focus on the PO and SCM frameworks, but readers 391 

interested in the decision-theoretic framework can refer to Dawid (2000)22 and Dawid (2012)84.  392 

The choice of framework is primarily based on researcher preferences, as the PO and 393 

SCM frameworks have been shown to be logically and mathematically equivalent85–87. The PO 394 

framework may appeal to experimentalists because it expresses causal assumptions by 395 

approximating the conditions that most accurately represent an idealized “gold standard” 396 

randomized controlled experiment. Alternatively, researchers who primarily model ecological 397 

systems as collections of simultaneously interacting variables may prefer the SCM framework, 398 

which represents systems as causal DAGs. Structural equation modeling, when used to make 399 

causal claims under causal assumptions9,46, is a subset of the SCM framework77,88.  400 
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The ways in which the PO and SCM frameworks express causal assumptions for causal 401 

inference are described in Supplementary Note 4 and Box S1. Resources for learning more about 402 

the core concepts of the PO and SCM frameworks can be found in Supplementary Note 5.  403 

 404 

7.2 Causal frameworks for causal discovery  405 

For causal discovery, the assumptions and estimation procedures are expressed using 406 

either the SCM framework or the dynamical systems causality (DC) framework55,56. Causal 407 

discovery using the SCM framework is well-suited for ecological systems with multiple 408 

interacting variables, where causal relationships are expected to be stable across observations. 409 

SCM-based causal discovery algorithms also allow researchers to incorporate pre-existing 410 

knowledge by specifying constraints on potential causal relationships, making them particularly 411 

useful for exploratory studies where some causal relationships are known or hypothesized. In 412 

contrast, the DC framework may be more suitable for complex dynamic systems where causal 413 

effects unfold over time and cannot be represented as static combinations of causes. DC-based 414 

algorithms typically use time series data to infer causal relationships by testing whether 415 

knowledge of one variable’s past improves the ability to anticipate changes in another variable. 416 

Measures of improvement are typically comprised of changes in predictability or statistical 417 

dependence, including those estimated by information-theoretic measures83,89. In both the SCM 418 

and DC frameworks, multiple causal diagrams can be consistent with the same structure of 419 

statistical dependencies in data, but pre-existing knowledge can refine the causal diagrams by 420 

constraining what relationships are possible.    421 
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The ways in which the SCM and DC frameworks express causal assumptions for causal 422 

discovery are described in Supplementary Note 4 and Box S2. Resources for learning more about 423 

the core concepts of the SCM and DC frameworks can be found in Supplementary Note 5.   424 

 425 

8 SELECT A STUDY DESIGN OR ALGORITHM, APPLY ESTIMATION METHODS, 426 

OBTAIN RESULTS, AND INTERPRET RESULTS 427 

Study designs for causal inference and algorithms for causal discovery provide structured 428 

approaches for satisfying or relaxing the untestable causal assumptions through decisions about 429 

the data and analysis (i.e., designs and algorithms operationalize causal frameworks). Designs 430 

and algorithms also lead us to appropriate methods for estimation and interpretation of the 431 

results.   432 

This section provides an overview of key study designs and algorithms. Their details and 433 

applications are beyond the scope of this Perspective, but in Supplementary Note 6 we provide 434 

resources, including guidance on implementation and relevant software packages. While we 435 

focus on foundational study designs and algorithms, we summarize in Supplementary Note 7 436 

some advanced approaches, including those that integrate machine learning techniques, which 437 

are rapidly emerging and may offer new opportunities for causal research in ecology. 438 

 439 

8.1 Study designs for causal inference 440 

Study designs for causal inference fall into three categories: (1) experimental designs that 441 

aim to minimize confounding from both measured and unmeasured variables through 442 
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manipulation of the causal variable, (2) observational designs that explicitly identify and control 443 

for measured confounders, and (3) observational designs that eliminate unmeasured, and 444 

potentially unknown, confounding by leveraging external sources of variation. Representative 445 

approaches from these three categories are listed in Table 1 (references, applications, and 446 

available software implementations are provided in Table S6).  447 

 448 

Table 1. Descriptions of study designs for causal inference.  449 

Category Representative Approachesa Description 

Experimental 

designs 

Randomized Controlled 

Trials 

Randomly assign units, or clusters of units, to 

treatment or control groups, which can address 

all confounders across groups (“all” = both 

measurable and unmeasurable confounders). 

Factorial Designs Randomly assign units to combinations of 

treatments, which can address all confounders 

across all treatment combinations (interactions). 

Crossover Trials Assign units to treatment and control conditions 

in a random sequence, which can address all 

confounders by allowing each unit to serve as 

its own control. 

Observational 

Designs: 

Controlling 

measured 

confounders 

Regression Adjustment Reweight observations using regression models, 

which can address measured confounders 

across groups exposed to different values of a 

cause (“cause” = a causal variable). 

Multi-level Modeling with 

Mixed Effects  

Reweight observations using regression models, 

which can address measured confounders 

(“fixed effects”) across groups exposed to 

different values of a cause. 

Structural Equation Modeling  Reweight observations using systems of 

regression models, which can address measured 

confounders across groups exposed to different 

values of a cause.b 

Marginal Structural 

Modelingc 

Reweight observations over time using regression 

models, which can address measured 

confounders across groups exposed to different 

values of a cause when those values vary over 
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time and confounders may be affected by past 

values of the cause. 

Subgroup (Stratified) 

Analysis 

Reweight observations by grouping units into 

subgroups made during study design (e.g., 

stratified sampling) or analysis (e.g., subgroup 

comparisons), which can address measured 

confounders across groups exposed to different 

values of a cause. 

Covariate and Propensity 

Score Matching 

Reweight observations by matching units on their 

probability of being exposed to a specific value 

of the cause (propensity score matching) or on a 

metric of similarity in the values of 

confounders (e.g., Mahalanobis distance 

metric), which can address measured 

confounders across groups exposed to different 

values of a cause. Inverse propensity scores 

(i.e., Inverse Probability Weighting, IPW) can 

also be used as alternative weights in other 

approaches, like regression models. 

Observational 

Designs: 

Controlling 

unmeasured 

confounders 

Instrumental Variables Use a variable that affects the cause but has no 

direct effect on the outcome, which can address 

all unmeasured confounders for a subset of the 

units (units called “compliers”). 

Regressions Discontinuity 

Design  

Use a variable that, at specific values, creates 

discontinuous change in the value of a cause 

but has no effect on the outcome, which can 

address all unmeasured confounders for a 

subset of the units (units “near” the 

discontinuity value). 

Front-door Criterion Use measured variables that comprise all 

intermediate variables on the causal path 

between a cause and an outcome, which can 

address all unmeasured confounders across 

groups exposed to different values of a cause. 

Before-After-Control-Impactc Use within-unit, temporal variation in the cause 

within a subset of units, which can address 

unmeasured confounders that are constant 

across time or are varying at scales larger than 

the unit. The BACI approach is also known as 

Difference-in-Differences. Extensions exist, 

such as two-way fixed-effects and matrix 

completion methods. 

Multi-level Modeling with 

Fixed Effectsc 

Use within-unit, temporal variation in the cause 

within a subset of units, which can address 
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unmeasured confounders that are constant 

across time or are varying at scales larger than 

the unit. 

Synthetic Control Methodsc Construct synthetic control groups from a 

weighted combination of unexposed units, 

which can address unmeasured confounders 

across groups exposed to different values of a 

cause. 

Interrupted Time Series 

Analysisd 

Use a sudden change in a cause from a known 

source, which can address unmeasured 

confounders from pre-existing trends in the 

outcome.  

Principal Stratification Reweight observations by grouping units based 

on their potential values of a post-treatment 

variable (e.g., attrition), which addresses 

unmeasured confounders that operate through 

the post-treatment variable. 
a In practice, multiple approaches can be combined to more credibly satisfy causal assumptions. 
b With additional assumptions, SEMs can incorporate unobserved constructs (i.e., “latent variables”) 

which are inferred from measured variables. 
c Requires longitudinal data for which the value of the causal variable varies within and across units.  
d Requires longitudinal data for which the value of the causal variable varies within units. 

 450 

Experimental designs are often well-suited for causal inference because they provide a 451 

structured approach for directly manipulating the causal variable and defining the temporal order 452 

of cause and effect50,90. Through strategies like randomization, we aim to control or eliminate the 453 

effects of confounding variables, which provide justification for causal claims. However, 454 

suboptimal decisions in the design and analysis of experiments can produce invalid causal 455 

conclusions91, and even well-designed experiments may face challenges92, such as non-456 

compliance or non-random dropout. Moreover, in ecology, experiments may be prohibitively 457 

expensive at the scales needed to detect causal effects, or they may distort natural ecological 458 

conditions82, making them impractical or unrepresentative.  459 
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When experiments are infeasible, impractical, or unethical, observational designs for 460 

measured and unmeasured confounders are available. Advances in causal approaches for 461 

observational studies provide statistical techniques to satisfy causal assumptions without 462 

experimental manipulation12,22,25,75,93. Observational designs for measured confounders rely on 463 

measuring all confounding variables9,72,73. When measuring, or even knowing, all relevant 464 

confounders is not feasible, we can use observational designs for unmeasured confounders. 465 

These designs relax the causal sufficiency assumption of no unmeasured confounders by 466 

replacing it with assumptions about the structure of unmeasured confounders, typically informed 467 

by pre-existing knowledge. These designs then use statistical techniques to represent the 468 

influence of confounders based on their assumed structure94,95, without needing to directly 469 

measure the confounders.  470 

Experimental and observational designs can be implemented using either cross-sectional 471 

or longitudinal data. However, strong assumptions about temporal ordering (cause must precede 472 

its outcome) and stable effects over time are required to quantify causal effects using cross-473 

sectional data.  474 

Once data are collected, we can quantify the causal effect of interest using a range of 475 

estimation methods (“Collect Data and Apply Estimation Methods” and “Obtain Results” in Fig. 476 

3). Many estimation methods are available to implement a chosen study design, each providing a 477 

different statistical approach for estimating the causal effect of interest96,97. After estimating a 478 

causal effect, we must then interrogate the plausibility of the causal assumptions underlying the 479 

study design and explore the implications of violations to these assumptions (“Interpret Results” 480 

in Fig. 3). One common approach for assessing the implications of violations is to perform 481 

causal sensitivity analyses, which quantify how an estimated effect would change in the presence 482 
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of unaddressed confounding. Many sensitivity analysis techniques are available for a variety of 483 

causal inference methods98–102, including SEM103. An alternative approach to interrogating the 484 

plausibility of causal assumptions involves detecting under-adjustment of confounding variables 485 

by drawing on pre-existing knowledge to formulate tests of known effects11,104,105 (e.g., 486 

falsification or placebo tests). We must also consider how other forms of bias106,107, such as 487 

selection bias108,109 and measurement bias110–112, may influence the estimated effects and the 488 

robustness of our conclusions. 489 

 490 

8.2 Algorithms for causal discovery 491 

Algorithms for causal discovery fall into four categories: DC-based algorithms and three 492 

types of SCM-based algorithms, which are called constraint-based, score-based, and functional 493 

model-based algorithms. Representative algorithms from these four categories are listed in Table 494 

2 (references, applications, and available software implementations are provided in Table S7). 495 

DC-based methods are suited for dynamic systems and assess causal relationships based on 496 

predictability and information flow over time. Constraint-based methods use conditional 497 

independence tests to eliminate implausible causal relationships. Score-based methods evaluate 498 

possible graph configurations that represent causal interrelationships using a scoring criterion 499 

that captures how well the graph fits patterns of conditional independencies in the data. 500 

Functional model-based methods assume specific functional relationships between variables 501 

(e.g., linear or non-linear equations with noise) and infer causal direction by identifying which 502 

graph configuration satisfies those assumptions. 503 

 504 
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Table 2. Descriptions of algorithms for causal discovery. 505 

Category Representative Algorithms Description 

Constraint-based 

methods 

PC (Peter and Clark)  Uses repeated conditional independence tests to 

infer causal relationships from observed 

independencies in data, producing a set of 

causal graphs that represent possible causal 

relationships consistent with the data. 

FCI (Fast Causal Inference) Extends the PC algorithm to detect possible 

unmeasured confounders, producing a causal 

graph that reflects uncertainty about edges. 

PCMCI (Peter and Clark 

Momentary Conditional 

Independence) 

A time-series adaptation of PC that improves 

detection of causal effects in autocorrelated data 

by iteratively testing for conditional 

independencies among variables and their lags. 

Score-based 

methods 

GES (Greedy Equivalence 

Search) 

Searches for the best causal graph by iteratively 

adding or removing edges based on a scoring 

criterion, such as the Bayesian Information 

Criterion (BIC), balancing data fit and 

simplicity. 

GIES (Greedy Interventional 

Equivalence Search) 

An extension of GES that incorporates 

interventional data or assumptions to distinguish 

between equivalent causal graphs. 

FGES (Fast Greedy 

Equivalence Search) 

A variant of GES that uses a parallelized greedy 

approach to rapidly search for the optimal causal 

graph, making it suitable for high-dimensional 

datasets. 

Functional 

model-based 

methods 

LiNGAM (Linear Non-

Gaussian Acyclic Model)  

Identifies causal direction among variables by 

assuming linear relationships and non-Gaussian 

noise. 

ANM (Additive Noise 

Model) 

Assumes the outcome variable is an unknown 

function of the causal variable plus independent 

additive noise, which enables identification of 

causal direction in both linear and nonlinear 

settings. 

IGCI (Information 

Geometric Causal 

Inference) 

Determines causal direction by analyzing 

asymmetries in the joint distributions of cause-

effect pairs, without inherently controlling for or 

detecting unmeasured confounders or indirect 

causal effects. 

Dynamical 

systems 

Granger Causality (GC) Tests whether past values of one time series can 

predict future values of another, assuming linear 

relationships in time-series data. 
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causality (DC)-

based methods 

Information Theoretic (IT) 

Causality 

A class of nonparametric and model-based 

methods that infer direct causal relationships by 

quantifying how knowledge of one variable 

reduces uncertainty about the future states of 

another variable. Includes Transfer Entropy 

(TE) approaches. 

Convergent Cross Mapping 

(CCM) 

Uses state-space reconstruction to infer causal 

relationships in nonlinear systems by testing 

whether past states of the causal variable can 

reliably predict current states of another 

variable. 

Partial Cross Mapping 

(PCM) 

An extension of CCM that adjusts for potential 

unmeasured confounders to isolate direct causal 

relationships more accurately. 

 506 

Causal discovery algorithms have been developed to accommodate different data 507 

structures, with approaches often tailored to either longitudinal data or cross-sectional data. DC-508 

based methods require bivariate or multivariate time-series data (i.e., regularly spaced 509 

longitudinal data) to infer causal relationships through changes over time27,60. In contrast, SCM-510 

based algorithms can be applied to both cross-sectional and longitudinal data, but additional 511 

assumptions about temporal ordering (i.e., causes precede their outcomes) must be satisfied 512 

when using cross-sectional data28,74,113. As with causal inference, pre-existing knowledge can 513 

enhance results from SCM-based discovery methods by explicitly specifying certain 514 

relationships that should or should not be included in the causal diagram.  515 

Once candidate causal diagrams have been obtained (“Collect Data and Apply Estimation 516 

Methods” and “Obtain Results” in Fig. 3), we must assess whether the causal assumptions of the 517 

chosen discovery algorithm are plausible for the ecological system under study and explore the 518 

implications of violations to these assumptions (“Interpret Results” in Fig. 3). To assess the 519 

reliability of conclusions drawn from the causal discovery process and to evaluate the robustness 520 
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of the inferred causal relationships, sensitivity analyses that explore the stability of results across 521 

different parameter settings should be undertaken114. 522 

 523 

9 CHALLENGES AND OPPORTUNITIES 524 

Making valid causal claims from ecological data requires moving beyond analyses that 525 

use prediction- and association-focused models, which typically fail to represent the true 526 

underlying causal structures of ecological systems64,115,116. It instead requires satisfying or 527 

carefully relaxing the causal assumptions that allow observed statistical dependencies to be 528 

interpreted as evidence of causal relationships.  529 

The cornerstone of high-quality causal research is to deliberately and critically assess 530 

whether the requisite causal assumptions can be plausibly satisfied or relaxed given the available 531 

pre-existing knowledge, the selected causal task, and the chosen study design or algorithm. 532 

While this assessment may seem daunting, especially given the complexity of ecological 533 

systems, advances in causal methodologies have demonstrated how the strength of causal claims 534 

can be more transparently communicated (see Box 3).  535 
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 536 

 537 

 As causal methods evolve, new advances help us relax or probe untestable assumptions in 538 

challenging real-world settings, which expands the relevance and applicability of causal methods 539 

to the complexities of ecological systems. Ecologists are uniquely positioned not only to benefit 540 

from these advances, but also to contribute meaningfully to their development. Ecologists’ 541 

experiences with experimental study designs, multiscale complex systems, and the integration of 542 

biotic and abiotic processes offer valuable insights into widespread challenges in causal research, 543 

such as spatial interactions, downscaling, and unit-to-unit causation. 544 

By connecting the causal assumptions, tasks, frameworks, and methods that play essential 545 

roles in causal research, our workflow (Fig. 3) provides a set of best practices for investigating 546 

Box 3. Best practices for transparently communicating results from causal analyses in 

ecology. 

• Clearly state and justify all the causal assumptions required by the study design or 

algorithm.  

Studies that explicitly state and justify the assumptions underlying their causal claims 

allow subject matter experts to more effectively evaluate the credibility of these 

assumptions and use that evaluation to refine subsequent research. 

• Frankly discuss the most likely sources of violations in causal assumptions that could 

invalidate the conclusions. 

Transparency about potential unmeasured confounding variables or other violations to 

causal assumptions should be the norm in causal research. 

• Report how detected or quantified causal relationships change under the most plausible 

potential violations of causal and statistical assumptions. 

Perfectly satisfying causal assumptions is unlikely in any study, and thus an assessment of 

the robustness of conclusions to violations is an essential component of all high-quality 

studies (for examples, see Section 8). 
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causal questions in ecology. The workflow emphasizes the role of causal assumptions, which 547 

help us to formalize pre-existing knowledge, align the causal task with the research objective, 548 

and select a study design or algorithm that satisfies those assumptions and guides data collection 549 

and analysis. Thus, our workflow not only supports ecologists in conducting rigorous and 550 

transparent causal research, but it also facilitates cogent discussions about the potential for 551 

unresolved weaknesses in prior studies, which can motivate new studies. Through an iterative 552 

application of the workflow, we can enhance the accumulation and synthesis of ecological 553 

knowledge. 554 

As causal approaches become more accessible and adaptable, ecologists have an 555 

opportunity to refine long-standing questions, generate new theory, and develop credible causal 556 

explanations of the natural world. 557 

 558 

 559 

Acknowledgements 560 

This work emerged partly from discussions at the workshop “Causality in Ecology” in August 561 

21–23, 2023 in Baltimore, MD, USA. We thank Johns Hopkins University for funding and 562 

Rachel Pickett, Carter Polston, Kip Hinton, and Shang Jones for assistance in hosting the 563 

workshop. We thank Ashley E. Larsen for insightful discussions during the workshop and 564 

feedback on drafts of the paper. H.E.C and P.J.F. acknowledge funding support from USDA-565 

NIFA award 2023-67023-39033. 566 

 567 



 

 
 

36 

Author Contributions Statement 568 

H.E.C. led the paper. H.E.C, L.E.D and P.J.F co-organized, and P.J.F. funded, the workshop in 569 

which J.E.K.B., H.E.C., L.E.D., J.R.F., P.J.F., M-J.F., C.G., J.R. B.S., I.S., K.J.S., G.S., and 570 

B.vH. contributed to establishing the goals and emphases of the paper. H.E.C., L.E.D and P.J.F 571 

initiated the paper concept and framing. H.E.C. and P.J.F. wrote the main text. J.E.K.B., L.E.D., 572 

J.R.F., M-J.F., J.R. B.S., I.S., K.J.S., G.S., and B.vH. suggested edits to the drafts of the paper.  573 

H.E.C. conceived and wrote the Supplemental Information.574 



 

 
 

37 

REFERENCES 

1. Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W. & Uller, T. Cause and Effect in 

Biology Revisited: Is Mayr’s Proximate-Ultimate Dichotomy Still Useful? Science 334, 

1512–1516 (2011). 

2. Mayr, E. Cause and Effect in Biology. Science 134, 1501–1506 (1961). 

3. Woodward, J. Causation in biology: stability, specificity, and the choice of levels of 

explanation. Biol. Philos. 25, 287–318 (2010). 

4. Ben-Menahem, Y. Causation in Science. (Princeton University Press, 2018). 

5. Wagner, A. Causality in Complex Systems. Biol. Philos. 14, 83–101 (1999). 

6. Poliseli, L., Coutinho, J. G. E., Viana, B., Russo, F. & El-Hani, C. N. Philosophy of science 

in practice in ecological model building. Biol. Philos. 37, 21 (2022). 

7. Raerinne, J. Causal and Mechanistic Explanations in Ecology. Acta Biotheor. 59, 251–271 

(2011). 

8. Woodward, J. Making Things Happen: A Theory of Causal Explanation. (Oxford University 

Press, 2004). doi:10.1093/0195155270.001.0001. 

9. Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural 

Equations and Causal Inference with R. (Cambridge university press, Cambridge (GB), 

2016). 

10. Ross, L. N. Causes with material continuity. Biol. Philos. 36, 52 (2021). 

11. Rosenbaum, P. R. Known Effects. in Observational Studies 136–153 (Springer New York, 

New York, NY, 1995). doi:10.1007/978-1-4757-2443-1_5. 

12. Pearl, J. Causality: Models, Reasoning, and Inference. (Cambridge University Press, 

Cambridge, U.K. ; New York, 2009). 



 

 
 

38 

13. Dominici, F., Bargagli-Stoffi, F. J. & Mealli, F. From Controlled to Undisciplined Data: 

Estimating Causal Effects in the Era of Data Science Using a Potential Outcome Framework. 

Harv. Data Sci. Rev. (2021) doi:10.1162/99608f92.8102afed. 

14. Estes, J. A. & Palmisano, J. F. Sea Otters: Their Role in Structuring Nearshore Communities. 

Science 185, 1058–1060 (1974). 

15. Estes, J. E., Smith, N. S. & Palmisano, J. F. Sea Otter Predation and Community 

Organization in the Western Aleutian Islands, Alaska. Ecology 59, 822–833 (1978). 

16. Sagarin, R. & Pauchard, A. Observational approaches in ecology open new ground in a 

changing world. Front. Ecol. Environ. 8, 379–386 (2010). 

17. Sagarin, R. & Pauchard, A. Observation and Ecology: Broadening the Scope of Science to 

Understand a Complex World. (Island Press/Center for Resource Economics, Washington, 

DC, 2012). 

18. Benedetti-Cecchi, L. et al. Hybrid datasets: integrating observations with experiments in the 

era of macroecology and big data. Ecology 99, 2654–2666 (2018). 

19. De Boeck, H. J. et al. Global Change Experiments: Challenges and Opportunities. 

BioScience 65, 922–931 (2015). 

20. McCleery, R. et al. Uniting Experiments and Big Data to advance ecology and conservation. 

Trends Ecol. Evol. 38, 970–979 (2023). 

21. Wootten, T. & Pfister, C. The Motivation for and Context of Experiments in Ecology. in 

Experimental ecology: issues and perspectives (Oxford University Press, 1998). 

22. Dawid, P. Causal Inference without Counterfactuals. J. Am. Stat. Assoc. 95, 407–424 (2000). 

23. Holland, P. W. Statistics and Causal Inference. J. Am. Stat. Assoc. 81, 945–960 (1986). 



 

 
 

39 

24. Imbens, G. W. & Rubin, D. B. Causal Inference for Statistics, Social, and Biomedical 

Sciences: An Introduction. (Cambridge University Press, 2015). 

doi:10.1017/CBO9781139025751. 

25. Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized 

studies. J. Educ. Psychol. 66, 688–701 (1974). 

26. Rubin, D. B. Causal Inference Using Potential Outcomes: Design, Modeling, Decisions. J. 

Am. Stat. Assoc. 100, 322–331 (2005). 

27. Sugihara, G. et al. Detecting Causality in Complex Ecosystems. Science 338, 496–500 

(2012). 

28. Spirtes, P., Glymour, C. N. & Scheines, R. Causation, Prediction, and Search. (MIT Press, 

Cambridge, Mass, 2000). 

29. D’Onofrio, B. M. et al. Causal Inferences Regarding Prenatal Alcohol Exposure and 

Childhood Externalizing Problems. Arch. Gen. Psychiatry 64, 1296–1304 (2007). 

30. Pearce, N., Vandenbroucke, J. P. & Lawlor, D. A. Causal Inference in Environmental 

Epidemiology: Old and New Approaches. Epidemiology 30, 311–316 (2019). 

31. Pingault, J.-B. et al. Using genetic data to strengthen causal inference in observational 

research. Nat. Rev. Genet. 19, 566–580 (2018). 

32. White, R. F. et al. Recent research on Gulf War illness and other health problems in veterans 

of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex J. Devoted 

Study Nerv. Syst. Behav. 74, 449–475 (2016). 

33. Beck, B., Antonelli, J. & Piñeros, G. Effects of New York City’s Neighborhood Policing 

Policy. Police Q. 25, 470–496 (2022). 



 

 
 

40 

34. Wikström, P.-O. H. & Kroneberg, C. Analytic Criminology: Mechanisms and Methods in the 

Explanation of Crime and its Causes. Annu. Rev. Criminol. 5, 179–203 (2022). 

35. Jacob, B. A. & Lefgren, L. Remedial Education and Student Achievement: A Regression-

Discontinuity Analysis. Rev. Econ. Stat. 86, 226–244 (2004). 

36. Long, B. T. & Kurlaender, M. Do Community Colleges Provide a Viable Pathway to a 

Baccalaureate Degree? Educ. Eval. Policy Anal. 31, 30–53 (2009). 

37. Brewer, D., Dench, D. & Taylor, L. O. Advances in Causal Inference at the Intersection of 

Air Pollution and Health Outcomes. Annu. Rev. Resour. Econ. 15, 455–469 (2023). 

38. National Academies of Sciences, Engineering, and Medicine et al. Definition of Causality. in 

Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform 

National Ambient Air Quality Standard Reviews (National Academies Press (US), 

Washington (DC), 2022). 

39. International Agency for Research on Cancer. Non-ionizing Radiation, Part 2: 

Radiofrequency Electromagnetic Fields. in IARC monographs on the evaluation of 

carcinogenic risks to humans vol. 102 (IARC, Lyon, France, 2013). 

40. Yuan, A. E. & Shou, W. Data-driven causal analysis of observational biological time series. 

eLife 11, e72518 (2022). 

41. Arif, S. & MacNeil, M. A. Applying the structural causal model framework for observational 

causal inference in ecology. Ecol. Monogr. 93, e1554 (2022). 

42. Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental 

methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 

1–10 (2017). 



 

 
 

41 

43. Grace, J. B. & Irvine, K. M. Scientist’s guide to developing explanatory statistical models 

using causal analysis principles. Ecology 101, e02962 (2020). 

44. Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological 

studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019). 

45. Ramsey, D. S. L., Forsyth, David. M., Wright, E., McKay, M. & Westbrooke, I. Using 

propensity scores for causal inference in ecology: Options, considerations, and a case study. 

Methods Ecol. Evol. 10, 320–331 (2019). 

46. Grace, J. B., Scheiner, S. M. & Schoolmaster, Jr., D. R. Structural equation modeling: 

building and evaluating causal models. in Ecological Statistics (eds Fox, G. A., Negrete-

Yankelevich, S. & Sosa, V. J.) 168–199 (Oxford University PressOxford, 2015). 

doi:10.1093/acprof:oso/9780199672547.003.0009. 

47. Paul, W. L. A causal modelling approach to spatial and temporal confounding in 

environmental impact studies. Environmetrics 22, 626–638 (2011). 

48. Dee, L. E. et al. Clarifying the effect of biodiversity on productivity in natural ecosystems 

with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607 (2023). 

49. Siegel, K. J., Larsen, L., Stephens, C., Stewart, W. & Butsic, V. Quantifying drivers of 

change in social-ecological systems: land management impacts wildfire probability in forests 

of the western US. Reg. Environ. Change 22, 98 (2022). 

50. Kimmel, K., Dee, L. E., Avolio, M. L. & Ferraro, P. J. Causal assumptions and causal 

inference in ecological experiments. Trends Ecol. Evol. 36, 1141–1152 (2021). 

51. Rubin, D. B. For objective causal inference, design trumps analysis. Ann. Appl. Stat. 2, 

(2008). 



 

 
 

42 

52. Shadish, W. R., Cook, T. D. & Campbell, D. T. Experimental and Quasi-Experimental 

Designs for Generalized Causal Inference. (Houghton Mifflin, Boston, 2001). 

53. Glymour, C., Zhang, K. & Spirtes, P. Review of Causal Discovery Methods Based on 

Graphical Models. Front. Genet. 10, 524 (2019). 

54. Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 

10, 2553 (2019). 

55. Harnack, D., Laminski, E., Schünemann, M. & Pawelzik, K. R. Topological Causality in 

Dynamical Systems. Phys. Rev. Lett. 119, 098301 (2017). 

56. Shi, J., Chen, L. & Aihara, K. Embedding entropy: a nonlinear measure of dynamical 

causality. J. R. Soc. Interface 19, 20210766 (2022). 

57. Hernán, M. A. & Robins, J. M. Causal Inference: What If. (CRC Press, Boca Raton, 2025). 

58. Pearl, J. Causal inference in statistics: An overview. Stat. Surv. 3, (2009). 

59. Robins, J. M. & Wasserman, L. On the Impossibility of Inferring Causation from Association 

without Background Knowledge. in Computation, Causation, and Discovery (eds Cooper, G. 

F. & Glymour, C.) (The MIT Press, 1999). doi:10.7551/mitpress/2006.001.0001. 

60. Granger, C. W. J. Investigating Causal Relations by Econometric Models and Cross-spectral 

Methods. Econometrica 37, 424 (1969). 

61. Reichenbach, H. The Direction of Time. (University of California Press, Berkeley, 1956). 

62. Kiiveri, H. T., Speed, T. P. & Carlin, J. B. Recursive causal models. J. Aust. Math. Soc. Ser. 

Pure Math. Stat. 36, 30–52 (1984). 

63. Scheines, R. An Introduction to Causal Inference. (1997). 



 

 
 

43 

64. Addicott, E. T., Fenichel, E. P., Bradford, M. A., Pinsky, M. L. & Wood, S. A. Toward an 

improved understanding of causation in the ecological sciences. Front. Ecol. Environ. 20, 

474–480 (2022). 

65. Arif, S. & MacNeil, M. A. Predictive models aren’t for causal inference. Ecol. Lett. 25, 

1741–1745 (2022). 

66. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical 

Information-Theoretic Approach. (Springer, New York, NY, 2010). 

67. Grace, J. B. An integrative paradigm for building causal knowledge. Ecol. Monogr. 94, 

e1628 (2024). 

68. Greenland, S., Pearl, J. & Robins, J. M. Confounding and Collapsibility in Causal Inference. 

Stat. Sci. 14, (1999). 

69. Shpitser, I., VanderWeele, T. & Robins, J. M. On the validity of covariate adjustment for 

estimating causal effects. in Proceedings of the Twenty-Sixth Conference on Uncertainty in 

Artificial Intelligence 527–536 (AUAI Press, Arlington, Virginia, USA, 2010). 

doi:10.48550/arXiv.1203.3515. 

70. Imbens, G. W. & Angrist, J. D. Identification and Estimation of Local Average Treatment 

Effects. Econometrica 62, 467 (1994). 

71. Rosenbaum, P. R. Choice as an Alternative to Control in Observational Studies. Stat. Sci. 14, 

(1999). 

72. Causal inference using regression on the treatment variable. in Regression and Other Stories 

(eds Gelman, A., Hill, J. & Vehtari, A.) 363–382 (Cambridge University Press, Cambridge, 

2020). doi:10.1017/9781139161879.020. 



 

 
 

44 

73. Wiik, E. et al. Mechanisms and impacts of an incentive‐based conservation program with 

evidence from a randomized control trial. Conserv. Biol. 34, 1076–1088 (2020). 

74. Chickering, D. M. Optimal structure identification with greedy search. J Mach Learn Res 3, 

507–554 (2003). 

75. Pearl, J. Causal diagrams for empirical research. Biometrika 82, 669–688 (1995). 

76. Kunicki, Z. J., Smith, M. L. & Murray, E. J. A Primer on Structural Equation Model 

Diagrams and Directed Acyclic Graphs: When and How to Use Each in Psychological and 

Epidemiological Research. Adv. Methods Pract. Psychol. Sci. 6, 251524592311560 (2023). 

77. Pearl, J. The causal foundations of structural equation modeling. in Handbook of structural 

Equation Modeling 68–91 (The Guilford Press, New York,  NY,  US, 2012). 

78. Hernán, M. A., Wang, W. & Leaf, D. E. Target Trial Emulation: A Framework for Causal 

Inference From Observational Data. JAMA 328, 2446 (2022). 

79. Hernán, M. A., Dahabreh, I. J., Dickerman, B. A. & Swanson, S. A. The Target Trial 

Framework for Causal Inference From Observational Data: Why and When Is It Helpful? 

Ann. Intern. Med. (2025) doi:10.7326/ANNALS-24-01871. 

80. Lundberg, I., Johnson, R. & Stewart, B. M. What Is Your Estimand? Defining the Target 

Quantity Connects Statistical Evidence to Theory. Am. Sociol. Rev. 86, 532–565 (2021). 

81. Spake, R. et al. Understanding ‘it depends’ in ecology: a guide to hypothesising, visualising 

and interpreting statistical interactions. Biol. Rev. 98, 983–1002 (2023). 

82. Correia, H. E., Dee, L. E. & Ferraro, P. J. Designing causal mediation analyses to quantify 

intermediary processes in ecology. Biol. Rev. brv.70011 (2025) doi:10.1111/brv.70011. 

83. Paluš, M. From nonlinearity to causality: statistical testing and inference of physical 

mechanisms underlying complex dynamics. Contemp. Phys. 48, 307–348 (2007). 



 

 
 

45 

84. Dawid, P. The Decision‐Theoretic Approach to Causal Inference. in Wiley Series in 

Probability and Statistics (eds Berzuini, C., Dawid, P. & Bernardinelli, L.) 25–42 (Wiley, 

2012). doi:10.1002/9781119945710.ch4. 

85. Ibeling, D. & Icard, T. Comparing Causal Frameworks: Potential Outcomes, Structural 

Models, Graphs, and Abstractions. in Advances in Neural Information Processing Systems 

(eds Oh, A. et al.) vol. 36 80130–80141 (Curran Associates, Inc., 2023). 

86. Pearl, J. Graphical models, potential outcomes and causal inference: Comment on Linquist 

and Sobel. NeuroImage 58, 770–771 (2011). 

87. Weinberger, N. Comparing Rubin and Pearl’s causal modelling frameworks: a commentary 

on Markus (2021). Econ. Philos. 39, 485–493 (2023). 

88. Bollen, K. A. & Pearl, J. Eight Myths About Causality and Structural Equation Models. in 

Handbook of Causal Analysis for Social Research (ed. Morgan, S. L.) 301–328 (Springer 

Netherlands, Dordrecht, 2013). doi:10.1007/978-94-007-6094-3_15. 

89. Wiener, N. Modern Mathematics for Engineers. (McGraw-Hill, New York, 1956). 

90. Zhao, A. & Ding, P. Regression-based causal inference with factorial experiments: 

estimands, model specifications and design-based properties. Biometrika 109, 799–815 

(2022). 

91. Imai, K., King, G. & Stuart, E. A. Misunderstandings Between Experimentalists and 

Observationalists about Causal Inference. J. R. Stat. Soc. Ser. A Stat. Soc. 171, 481–502 

(2008). 

92. Bulbulia, J. A. Methods in causal inference. Part 4: confounding in experiments. Evol. Hum. 

Sci. 6, e43 (2024). 



 

 
 

46 

93. Rubin, D. B. Bayesian Inference for Causal Effects: The Role of Randomization. Ann. Stat. 

6, 34–58 (1978). 

94. Smokorowski, K. E. & Randall, R. G. Cautions on using the Before-After-Control-Impact 

design in environmental effects monitoring programs. FACETS 2, 212–232 (2017). 

95. Gelman, A. & Hill, J. Causal inference using multilevel models. in Data Analysis Using 

Regression and Multilevel/Hierarchical Models 503–512 (Cambridge University Press, 

2006). doi:10.1017/CBO9780511790942. 

96. Cousineau, M., Verter, V., Murphy, S. A. & Pineau, J. Estimating causal effects with 

optimization-based methods: A review and empirical comparison. Eur. J. Oper. Res. 304, 

367–380 (2023). 

97. Igelström, E. et al. Causal inference and effect estimation using observational data. J. 

Epidemiol. Community Health 76, 960 (2022). 

98. Huang, M. Y. Sensitivity analysis for the generalization of experimental results. J. R. Stat. 

Soc. Ser. A Stat. Soc. qnae012 (2024) doi:10.1093/jrsssa/qnae012. 

99. Rosenbaum, P. R. Sensitivity to Hidden Bias. in Observational Studies 105–170 (Springer 

New York, New York, NY, 1995). doi:10.1007/978-1-4757-2443-1_5. 

100. Shen, C., Li, X., Li, L. & Were, M. C. Sensitivity analysis for causal inference using inverse 

probability weighting. Biom. J. 53, 822–837 (2011). 

101. VanderWeele, T. J. & Arah, O. A. Bias Formulas for Sensitivity Analysis of Unmeasured 

Confounding for General Outcomes, Treatments, and Confounders. Epidemiology 22, 42–52 

(2011). 

102. Yadlowsky, S., Namkoong, H., Basu, S., Duchi, J. & Tian, L. Bounds on the conditional and 

average treatment effect with unobserved confounding factors. Ann. Stat. 50, (2022). 



 

 
 

47 

103. Sullivan, A. J. & VanderWeele, T. J. Bias and sensitivity analysis for unmeasured 

confounders in linear structural equation models. Preprint at 

https://doi.org/10.48550/ARXIV.2103.05775 (2021). 

104. Rosenbaum, P. R. The Role of Known Effects in Observational Studies. Biometrics 45, 557 

(1989). 

105. Rosenbaum, P. R. Sensitivity analyses informed by tests for bias in observational studies. 

Biometrics 79, 475–487 (2023). 

106. Rothman, K. J., Greenland, S. & Lash, T. L. Validity in Epidemiologic Studies. in Modern 

epidemiology 128–147 (Wolters Kluwer Health/Lippincott Williams & Wilkins, 

Philadelphia, 2008). 

107. Greenland, S. & Lash, T. L. Bias Analysis. in Modern epidemiology 128–147 (Wolters 

Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2008). 

108. Bareinboim, E., Tian, J. & Pearl, J. Recovering from Selection Bias in Causal and Statistical 

Inference. in Probabilistic and Causal Inference (eds Geffner, H., Dechter, R. & Halpern, J. 

Y.) 433–450 (ACM, New York, NY, USA, 2022). doi:10.1145/3501714.3501740. 

109. Hernán, M. A., Hernández-Díaz, S. & Robins, J. M. A Structural Approach to Selection 

Bias: Epidemiology 15, 615–625 (2004). 

110. Imai, K. & Yamamoto, T. Causal Inference with Differential Measurement Error: 

Nonparametric Identification and Sensitivity Analysis. Am. J. Polit. Sci. 54, 543–560 (2010). 

111. Pearl, J. On measurement bias in causal inference. in Proceedings of the Twenty-Sixth 

Conference on Uncertainty in Artificial Intelligence 425–432 (AUAI Press, Arlington, 

Virginia, USA, 2010). doi:10.48550/arXiv.1203.3504. 



 

 
 

48 

112. Valeri, L. Measurement Error in Causal Inference. in Handbook of measurement error (eds 

Yi, G. Y., Delaigle, A. & Gustafson, P.) (CRC Press, Boca Raton, 2022). 

113. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and 

quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 

(2019). 

114. Kummerfeld, E., Williams, L. & Ma, S. Power analysis for causal discovery. Int. J. Data 

Sci. Anal. 17, 289–304 (2024). 

115. Li, J., Liu, L., Le, T. D. & Liu, J. Accurate data-driven prediction does not mean high 

reproducibility. Nat. Mach. Intell. 2, 13–15 (2020). 

116. Tredennick, A. T., Hooker, G., Ellner, S. P. & Adler, P. B. A practical guide to selecting 

models for exploration, inference, and prediction in ecology. Ecology 102, e03336 (2021). 

 



 1 

Supplementary Information 

Supplementary Note 1: Causal versus statistical assumptions 

As noted in the main text, causal and statistical assumptions are both necessary components of 

deriving valid causal interpretations from observed relationships in data (Stone, 1993). Although 

the distinctions between these two types of assumptions are not always clear cut in casual 

research, we find it useful to distinguish them in the following way. Statistical assumptions are 

formal conditions about the data and model structure that must be satisfied for valid 

characterizations of relationships between variables from statistical analyses. These assumptions 

are often testable from data. Causal assumptions are additional conditions that are required to 

infer causation from statistically dependent relationships and are typically untestable (Hernán et 

al., 2019). By “untestable”, we mean that these assumptions cannot be verified through statistical 

checks of data, even unlimited data, but instead must be justified using pre-existing knowledge. 

 Statistical assumptions commonly include assumptions about the probability distribution 

of random variables or observations, the specifications of relationships between variables, and 

conditions about data gathering or sampling (see Table S1). For example, they include 

assumptions about the functional relationships among variables (e.g., linearity, additivity) and 

about the probability distribution of random errors or observations (e.g., normality, independent 

and identically distributed random variables, constant variance). Statistical assumptions are 

encoded in the model structure; thus, they are often not described in applied data analyses.  

Unlike causal assumptions (see Section 2 of the main text and Table S1 below), many of 

the statistical assumptions underlying empirical analyses in ecology are testable – that is, the 

assumptions can be verified from available data – even if they are often untested by researchers 

conducting the analyses. There are, however, untestable statistical assumptions that are also 

necessary for model-based inference, and these assumptions overlap with the causal assumptions 

described in Section 2 and in Table S1. For example, the basis of the Causal Sufficiency 

Assumption is a ubiquitous statistical assumption that requires correct specification of the 

explanatory variables in a model, specifically the inclusion of all confounding variables and the 

omission of all irrelevant variables. This assumption cannot be directly verified from data (i.e., 

the assumption is untestable) and must be supported by background knowledge about the system 

being modeled. Violations to the assumption that explanatory variables have been correctly 

specified can result in omitted variable bias, overfitting, and simultaneity bias that negatively 

impact interpretability and generalizability of results. 

Other statistical considerations are also important for accurate conclusions from modeled 

data. These can include: ensuring sufficient statistical power to detect relationships between 

variables (Kimmel et al., 2023), decreasing measurement error or observational noise to better 

detect dependent relationships (Brown et al., 1990; Hyslop & Imbens, 2001), appropriately 

identifying and handling patterns of missingness (Little, 2021), and using robust statistics to 

accommodate a wider array of probability distributions and modest departures from model 

assumptions. While these considerations may not be viewed as statistical assumptions per se, 
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they play an important role in determining the credibility of quantitative evidence about 

ecological phenomena. 

The statistical and causal assumptions that are fundamental for making causal claims 

from ecological data are not tied to specific estimation approaches (e.g., frequentist versus 

Bayesian estimation). Many ecological studies emphasize the mode of estimation (mode of 

statistical inference) and overlook potential violations to causal and statistical assumptions that 

must be satisfied for valid inferences, but even minor violations can impair interpretability. Thus, 

extracting meaningful causal inferences from data in ecology requires both thoughtful 

construction of models and the scrutiny of the assumptions underlying these models (Burnham & 

Anderson, 2010). 

 

Table S1. Common statistical and causal assumptions used for valid causal inference from data.  

Statistical Assumptions Causal Assumptions 

Correct model specification 

- Model(s) include all relevant variables and no 
irrelevant variables. 

- Functional forms of the relationships among 
variables are correctly specified (e.g., 
linearity, additivity). 

- Confounding variables are neither 
unmeasured or omitted (Causal Sufficiency 
Assumption). 

- Causal relationships follow the Causal 
Markov Assumption and Causal Faithfulness 
Assumption. 

Random (unit-level) error conditions 

- Observations are independent and identically 
distributed (i.i.d.). 

- Random errors follow a specific probability 
distribution (e.g., Gaussian). 

- Random errors have constant variance 
(homoskedasticity). 

- Explanatory variables not correlated with 
random error. 

- Measurement error in explanatory variables 
is independent of the true values. 

- A unit’s treatment does not affect another 
unit’s outcome (i.e., “no interference”). 
Related to the statistical i.i.d. assumption: 
i.i.d. can be violated by the presence of 
interference, which implies a lack of 
independence across units (see Zhang et al., 
2023). 

Data-specific criteria 

- For time-series: Stationarity (constant mean 
and variance over time). 

- No perfect multicollinearity among 
explanatory variables. 

- No instantaneous causal effects (“no 
simultaneity”). 

- Every unit has a non-zero probability of 
receiving any level of treatment, conditional 
on covariates (i.e., “positivity” or “overlap”). 
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Supplementary Note 2: Defining causal and non-causal research questions 

Describing and quantifying ecological phenomena often requires a model, which is a 

mathematical description of how ecologists presume that variables of interest interact with each 

other. The form of the model is typically determined by the objective of the research question, 

which we divide into five categories: making causal claims, making associational claims, making 

predictions, summarizing data through descriptive statistics, and testing logical reasoning of 

hypotheses via simulations (“Define Research Question” in Figure S1).  

Answering the first three types of questions requires statistical inference, which allows 

ecologists to learn information from observations using probability theory and use that 

information to make claims about relationships between variables, predict new information, and 

describe patterns in data (darker-shaded portion of the top box, to the left of the vertical dashed 

line in Figure S1). When sufficient data are not available or statistical inference is not suitable, 

mathematical modeling can be used to simulate hypothesized ecological interactions and check 

for logical fallacies (lighter-shaded portion of the top box, to the right of the vertical dashed line 

in Figure S1). Associational analyses, predictive models, or simulation-based approaches can 

also be useful for deriving knowledge that can contribute to future causal research questions 

(Figure S1 and Figure 3 in main text). 
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Figure S1. Decision tree for determining the type of analysis most appropriate for the research 

goal. Prediction-based model selection and forecasting, descriptive statistics, associational 

inference, and causal analyses use statistical inference, which separates them from approaches 

like simulation-based mathematical modeling. That separation is represented by the vertical 

dashed line that separates lighter and darker shaded regions of the top box. The bottom gradient 

box is also represented in the first box in the workflow of Fig. 3.



 5 

A. Using data to derive claims about relationships between variables 

When causal interpretations of statistical models are desired, causal methodologies, a subset of 

statistical inference, allow ecologists to make causal claims about relationships between 

variables from data. However, as we make clear in Section S4, using statistical inference to make 

causal claims requires that the experimental or nonexperimental data collection and analyses 

satisfy many conditions (i.e., assumptions). We provide more details on the tasks that can be 

accomplished through causal studies and specific methods in Section 6.  

If causal claims are not desired, ecologists can draw on classical tools from statistical 

inference (Efron & Hastie, 2016; Holland, 1986; Nakagawa & Cuthill, 2007). These 

associational studies can also shape the formulation of causal research questions for subsequent 

studies. Many research questions have causal goals, but researchers will usually cast these 

questions as associational due to perceived limitations of statistical methodologies or concerns 

about misuse of their findings (Hernán, 2018; Jones & Schooling, 2018; Kezios & Hayes-Larson, 

2018). Researchers also commonly draw causal-sounding conclusions (e.g., using terms like 

“drives” or “leads to”) from predictive or associational analyses (Haber et al., 2022; Han & 

Guyatt, 2020; Sargeant et al., 2022; Singer, 2022), thus overstating the evidence of causality by 

implying that the underlying causes have been properly isolated from unrelated or spurious 

associations (i.e., that alternative explanations for the observed associations have been ruled out). 

This tendency is now heavily ingrained in the scientific culture of many fields, but we strongly 

encourage ecologists to principally consider the goals behind their research questions before 

considering the methods that may be taken to achieve those goals.   

Alternatively, ecologists may instead wish to probe data for general patterns among 

variables by using statistical inference to explore or summarize the data (“Descriptive Statistics” 

in Figure S1). Approaches used to describe data are often included in studies aiming to make 

causal or associational claims, but descriptive statistics are not the primary source of evidence 

for making such claims. 

 

B. Not deriving claims about relationships among variables from data 

At times, ecologists may want to predict unobserved outcomes from new input data by using 

training data to optimize parameter estimation such that a set of input features predict output 

values that most closely match observed data output values in verification data (“Prediction-

Based Model Selection and Forecasting” in Figure S1). Predictive studies rely on procedures that 

emphasize model evaluation and selection through predictive performance, including model 

averaging that derives inferences from several plausible models (i.e., multi-model inference; 

Burnham & Anderson, 2010). Results from models selected for high prediction accuracy are 

often believed to produce more meaningful parameter estimates for inference than models with 

low prediction accuracy (Harrison et al., 2018), which has spurred the popularity of machine 

learning approaches touted to provide “data-driven” understandings of complex ecological 

processes (Christin et al., 2019; Olden et al., 2008). However, prediction models merely need to 

capture the rudimentary patterns and relationships in the data to produce highly accurate 
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predictions. Thus, models with high prediction accuracy often do not accurately represent the 

true underlying causal processes of the ecological system from which the data were generated, 

and thus they are usually not appropriate for making associational or causal claims (Addicott et 

al., 2022; J. Li et al., 2020; Tredennick et al., 2021). 

In other studies, ecologists may wish to simulate hypothesized relationships between 

variables using mathematical “proof-of-concept” models (sometimes called “mechanistic 

models”), which play an integral role in translating ecological theories and hypotheses into 

mathematical language (e.g., the Lokta-Volterra model; Baker et al., 2018; Marquet et al., 2014; 

Servedio et al., 2014). Numerical analysis of mathematical models allows ecologists to explore 

and refine hypotheses, examine a model’s internal consistency, and assess how well the model 

represents theoretical or empirical relationships. Additionally, data collected from experiments 

and field observations can be used to constrain model parameter values or to compare model 

output to naturally occurring patterns (Caldararu et al., 2023; Evans et al., 2013; Levins, 1966; 

Luo et al., 2011; Tredennick et al., 2021), but statistical inference is not the goal of such models. 

Although mathematical models, predictive models, associational studies, and descriptive 

statistics can all contribute to quantitative ecological knowledge and pre-existing knowledge for 

developing causal research questions (“Develop Knowledge and Theory” in Figure S1), current 

methodologies for making causal claims from data require principles of probability theory and 

statistical inference to be combined with the rigorous conditions for experimental and 

observational data collection and analysis defined by causal assumptions. Some researchers have 

argued that, under certain conditions, predictive models may also contribute to refining or 

corroborating causal hypotheses when results from predictive studies align with theoretical 

expectations (Nichols & Cooch, 2025). While consistent findings from predictive models may 

contribute to pre-existing or “mechanistic” ecological knowledge (Grace, 2024), particularly 

when supported by ecological theory and expert understanding, predictive performance alone is 

insufficient to justify causal claims. 
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Supplementary Note 3: Formally summarizing pre-existing knowledge 

Establishing the conditions for making valid causal claims from data is achieved by satisfying 

the causal assumptions that permit us to detect and quantify causal relationships using statistical 

dependence. A central task for ecologists interested in causal relationships is to carefully 

consider the study design, the potential variables to be included or not included in the model, and 

the data collection procedures. One of the fundamental conditions for valid statistical inference 

and interpretability of results is that the model correctly specifies the true underlying process 

from which the data were generated. Developing such a correctly specified model requires pre-

existing knowledge to identify potentially causative factors and potential pathways of influence 

through other interacting variables.  

The assumptions required for causal analyses highlight how causal tasks (i.e., causal 

discovery and causal inference) differ from non-causal tasks (e.g., prediction or association). 

Unlike non-causal analyses, causal tasks depend on pre-existing knowledge to construct and 

justify models for causal tasks (particularly for causal inference) that satisfy these untestable 

causal assumptions, rather than selecting the “best” model among several plausible models based 

on fit metrics that evaluate prediction performance. Even causal discovery is fine-tuned with pre-

existing knowledge, guiding algorithms to retain specific plausible relationships specified by the 

user’s pre-existing knowledge, and its results must be validated through further research.  

Proper model specification is crucial for valid causal conclusions (Burnham & Anderson, 

2010), thus more attention must be invested in the process of designing studies and building 

models using pre-existing knowledge to make causal claims from experimental and 

observational ecological studies. To formalize pre-existing knowledge in causal analysis, 

researchers may use two widely used tools: directed acyclic graphs (DAGs) and thought 

experiments based on ideal randomized controlled trials (RCTs). These tools help define causal 

relationships and identify confounders that must be addressed to satisfy causal assumptions 

before any data are analyzed. Table S2 provides a guide to accessible and foundational 

references for learning how to apply these tools. 
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Table S2.  Key concepts and accessible references for creating and applying causal DAGs and 

thought experiments of hypothetical ideal RCTs for summarizing pre-existing knowledge. 

Concept Suggested Readings 

Basics of causal DAGs – What they are, variables 
to include, why they help in confounder 
identification 

Bulbulia, 2024a; Greenland et al., 1999a; Laubach 
et al., 2021; Shrier & Platt, 2008 

Drawing DAGs in practice – User‐friendly 
guidelines for causal DAGs in experimental and 
observational settings 

Arif & MacNeil, 2022; Textor et al., 2011 

Using thought experiments of hypothetical ideal 
RCTs (i.e., “target trials”) – How to use thought 
experiments to simulate an ideal experiment to 
find confounders 

Greenland, 2003; Hernán et al., 2022, 2025; 
Hernán & Robins, 2025, pp. 37–40; Morgan & 
Winship, 2015 (Ch. 1); Rubin, 1974 

Distinguishing confounders vs. colliders – 
Ensuring we do not control for the wrong 
variables 

Arif & Massey, 2023; Bulbulia, 2024a; Greenland, 
2003 
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Supplementary Note 4: Causal assumptions translated through causal 

frameworks 

Causal inference and causal discovery both rely on the three fundamental assumptions (Section 

2) that allow researchers to interpret statistical patterns as evidence of causation: Causal 

Sufficiency, Causal Markov, and Causal Faithfulness. However, the way these assumptions are 

expressed, along with the specific terminology and extensions they involve, varies across causal 

frameworks. In this section, we show how different frameworks formalize these assumptions and 

illustrate the conceptual bridges between them. 

We focus on three widely used causal frameworks: the structural causal model (SCM) 

framework (Pearl, 2009), the potential outcomes (PO) framework (Rubin, 1974), and the 

dynamical systems causality (DC) framework (Harnack et al., 2017; J. Shi et al., 2022). A fourth 

not covered here – the decision-theoretic framework (Dawid, 2000, 2012) – also shares 

overlapping assumptions. Each framework uses its own notation and formalism to express the 

causal assumptions and structure causal reasoning. The PO and SCM frameworks are most 

common for causal inference, while the SCM and DC frameworks are commonly used for causal 

discovery.  

Theoretical work has established formal correspondences among several major causal 

frameworks. The PO and SCM frameworks have been shown to be theoretically equivalent 

(Imbens, 2020; Pearl, 2009), with modern formalizations demonstrating that every Rubin Causal 

Model from the PO framework can be represented as an abstraction of an SCM (Ibeling & Icard, 

2023). A measure-theoretic approach has also been proposed to generalize aspects of SCM and 

PO frameworks and address challenges like cycles, latent variables, and stochastic processes 

(Park et al., 2023). Causal properties of the decision-theoretic framework can be expressed 

through extended conditional independence assertions, aligning with the PO and SCM 

frameworks under specific conditions (Dawid, 2021, 2024; Pearl, 2022). Connections between 

the SCM and DC frameworks have also been developed, including approaches that extend SCMs 

to time-dependent settings and systems with feedback loops (Bongers et al., 2018, 2021) and 

approaches that link Granger causality (a DC-based approach) to SCMs by representing 

interventions and dynamic feedback processes (White et al., 2011; White & Chalak, 2009). 

Methods like transfer entropy, which is used in DC-based analyses, have similarly been related 

back to conditional independence structures central to SCMs (Runge et al., 2012). Commentaries 

have also highlighted key conceptual differences and areas of overlap between the PO, SCM, and 

DC frameworks (Lechner, 2010; Markus, 2021). While recent reviews (e.g., Vonk et al., 2023; 

Yuan & Shou, 2022) have discussed assumptions in causal discovery and causal inference 

broadly, here we systematically map how core causal assumptions translate across SCM, PO, and 

DC frameworks for causal inference and causal discovery. 

 In Box S1, we map the assumptions used for quantifying the average causal effect of 𝑋 

on 𝑌 in causal inference via the PO and SCM frameworks onto the three basic causal 
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assumptions. We also summarize two additional assumptions widely used in practice for causal 

inference. Together, these assumptions allow us to quantify causal effects without bias. For full 

details of PO assumptions for causal inference, see Hernán & Robins, 2025; for full details of 

SCM assumptions for causal inference, see Pearl, 2009 or Pearl, 2010. 

 For causal inference, the inclusion of all relevant confounding variables is necessary to 

satisfy the causal sufficiency assumption. However, this does not always require directly 

measuring every confounder. In both frameworks, design-based approaches and statistical 

techniques can be used to account for unmeasured confounding under certain conditions. Some 

frameworks, such as SCM, allow for adjustment using variables that are not direct confounders 

(e.g., descendants of common causes), provided that colliders and other bias-inducing paths are 

avoided that would otherwise introduce non-causal statistical dependencies (Pearl, 1995; Rohrer, 

2018).  

In Box S2, we map the assumptions used for causal discovery via the SCM and DC 

frameworks onto the three basic causal assumptions. We also summarize three additional 

assumptions commonly required in practice for causal discovery. For full details of SCM 

assumptions for causal discovery, see Glymour et al., 2019; for full details of DC assumptions 

for causal discovery, see J. Shi et al., 2022. For relationships between SCM and DC assumptions 

in causal discovery, see Runge, 2018. 

For causal discovery, causal assumptions are used to ensure the reliability of the causal 

structure inferred from data. SCM-based algorithms primarily rely on the Causal Markov and 

Causal Faithfulness assumptions, often alongside Causal Sufficiency and additional assumptions 

like acyclicity and i.i.d. sampling (Glymour et al., 2019). These assumptions can often be relaxed 

in more advanced approaches. DC-based algorithms often implicitly rely on the causal 

sufficiency assumption (Paluš, 2007; Runge, 2018), where all common causes are assumed to be 

measured or contained within the information of the measured variables (i.e., there are no 

unmeasured confounders, a.k.a., “hidden common causes”), and usually require separability, 

which is a consequence of the causal faithfulness assumption (Eichler, 2013; Peters et al., 2017; 

Runge, Nowack, et al., 2019; Spirtes et al., 2000). However, some DC-based causal discovery 

methods have been developed for non-separable systems (e.g., J. Shi et al., 2022) and for 

detecting and handling the presence of unmeasured confounders (e.g., Cai et al., 2023). 

Together, Boxes S1 and S2 provide a unique synthesis of how the three foundational 

causal assumptions are formalized and applied across diverse causal frameworks. By explicitly 

mapping the assumptions of each framework to these shared foundations, the Boxes serve as 

practical tools for clarifying how these assumptions support valid causal claims across different, 

and sometimes seemingly disparate, frameworks and causal tasks, thereby clarifying both their 

common foundations and distinct assumptions. 
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Box S1. Assumptions for causal inference 

Choice of framework 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Useful for those familiar with randomized experimental 

designs. Emphasizes addressing non‐causal dependencies 

(confounding) by leveraging specific experimental designs 

or imitating such scenarios via statistical techniques. 

Useful for those who think about multiple causes jointly 

(“all-cause models”). Emphasizes defining the minimal 

set of conditions under which causal effects can be 

identified and estimated. 

 

Causal assumptions 

A1.  Causal Sufficiency: All relevant confounders are measured (i.e., no unmeasured common causes). 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “No unmeasured confounders”, 

“ignorability”, or “exchangeability”†. 

Key Idea: Once we adjust for all relevant confounders, the 

probability of receiving any given exposure level does not 

depend on any common causes. Therefore, we must 

measure and adjust for (i.e., include in the model) all 

variables that influence both the exposure and the 

outcome (and any intermediary variables; see Correia et 

al., 2025). 

Also requires positivity – individual units are equally likely 

to be exposed to a specific value of a causal factor (see 

below). 

References: Hernán & Robins, 2025; Morgan & Winship, 

2015; Rosenbaum & Rubin, 1983 

Terminology: “All front-door and back‐door paths 

blocked”, or “no omitted common causes in the causal 

DAG”. 

Key Idea: All confounders identified by the front-door 

and back-door criteria (or additional criteria; see 

Maathuis & Colombo, 2015 and Shpitser & Pearl, 2008) 

are measured and adjusted for (e.g., included in the 

model). 

Also requires consistency (the statistical property) – with 

infinite data, the estimated graph will converge to the 

true causal graph (see Pearl, 2009; Spirtes et al., 2000). 

References: Greenland et al., 1999b; Pearl, 2009 

 

Terminology: “No interference”, “no spillover”, “no unit‐

to‐unit causation”, or “no interactions between units” (see 

Cox, 1958); part of Stable Unit Treatment Value 

Assumption (SUTVA) (see Rubin, 1980).  

Key Idea: One unit’s exposure does not affect another 

unit’s outcome. Real‐world systems often violate this 

assumption, requiring more complex methods (see 

Hudgens & Halloran 2008). 

References: Hudgens & Halloran, 2008; Rubin, 1978, 

1980 

Terminology: No spillover is implicitly assumed by SCM 

notation and causal DAGs. 

Key Idea: In a causal DAG, there are no edges from one 

unit’s exposure to another unit’s outcome, i.e., each 

unit’s outcome depends only on its own exposure. 

Systems that violate this assumption require multi‐unit 

DAGs or specialized methods (see Pearl, 2009). 

Part of assumption that units are independent and 

identically distributed (i.i.d.) assumption; see Zhang et al., 

2023. 

References: Pearl, 2009; Spirtes et al., 2000 
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A2. Causal Markov Condition: In a system with no cycles or feedback loops, any dependence between two variables 

that do not directly affect each other must come from a common cause influencing both. Once that common cause is 

accounted for, the two variables should no longer be dependent. 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “No feedback” or “no cyclic causation” (i.e., 

simultaneous causation) are implied by the potential 

outcome notation: the outcome 𝑌(𝑎) is measured after an 

exposure 𝐴 = 𝑎. The exposure and outcome are 

conditionally independent once we account for all 

confounding variables. 

Key Idea: Once we measure and adjust for any shared 

causes, any dependence between two variables that do not 

share a direct causal relationship should no longer remain. 

This also requires that the cause precede the effect, ruling 

out simultaneity.  

References: Hernán & Robins, 2025; Morgan & Winship, 

2015; Rubin, 1978 

Terminology: By definition, causal DAGs are acyclic; 

therefore, feedback loops or bidirectional arrows 

(simultaneous causation) are disallowed. Sometimes 

referred to as factorization or the local Markov property 

– each node is conditionally independent of its non‐

descendants, given its parents.  

Key Idea: Once we condition on the parents (common 

causes), the dependence between two variables that do 

not directly affect each other is “blocked”. Since arrows 

in causal DAGs flow in one direction, it is assumed there 

is no cyclic causation. 

References: Pearl, 2009; Spirtes et al., 2000 

 

A3. Causal Faithfulness: If two variables are statistically independent even after adjusting for confounders, then there 

is no causal relationship between those variables. 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: Implicitly assumed that any true causal 

effect would manifest as a dependence after all 

confounders are adjusted for. 

Key Idea: If two variables remain independent after 

controlling for all relevant confounders, we assume it’s not 

due to a coincidence but instead conclude there is no 

causal relationship.  

References: Hernán & Robins, 2025; Morgan & Winship, 

2015 

Terminology: Explicitly called faithfulness or stability, in 

which the causal DAG encodes all conditional 

independences. If two variables are independent, there 

exists no causal path (i.e., no causal relationship) 

between those variables in the causal DAG. 

Key Idea: If two variables remain independent after 

conditioning on the variables that block any back‐door 

paths in a causal DAG, we assume this reflects a genuine 

absence of a causal relationship. 

References: Pearl, 2009; Spirtes et al., 2000; Wermuth 

& Lauritzen, 1990 

 

 

 

 

 

Additional assumptions 
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B1.  The exposure is well‐defined (i.e., no multiple versions of the treatment, such as different strains of a disease being 

categorized as a single exposure). That is, there must be no ambiguity about what the cause or exposure is. 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “Causal consistency” (not the same as the 

statistical property of consistency) or “well‐defined 

treatment” †; part of SUTVA (Rubin 1978, 1980). 

Key Idea: No ambiguous exposure or no multiple versions 

of a single cause. A cause or exposure must be identically 

represented across all units. 

References: Hernán & Robins, 2025; Rubin, 1978, 1980 

Terminology: A well-defined or unambiguous exposure 

is implied by the causal DAGs – the exposure must be 

unambiguous when declared as node in the causal DAG. 

Key Idea: The causal DAG must represent exactly one 

well‐specified cause or exposure. If we can declare the 

cause or exposure as one node, we are assuming that it 

is well‐defined. 

References: Pearl, 2009; Spirtes et al., 2000 

 

B2. Among units that share the same values for the confounders, there must be some that are exposed and some that 

are not. In other words, the confounders must not perfectly predict the probability of exposure.* 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “Positivity”, “overlap”, or “common 

support”† 

Key Idea: For any given combination of confounder 

values, there must be a nonzero chance of receiving each 

exposure level.  

References: Hernán & Robins, 2025; Morgan & Winship, 

2015; Rosenbaum & Rubin, 1983 

Terminology: All exposure levels are sufficiently 

represented in the data is implied by representing the 

exposure as a node in the causal DAG. 

Key Idea: Even if the causal DAG is correctly specified, 

the data must exhibit variation in exposure for every 

configuration of confounders. 

References: Pearl, 2009; Spirtes et al., 2000 

 

†Causal consistency, positivity, and exchangeability make up the ‘identifiability conditions’ for causal effects. These conditions hold under 

idealized randomized experiments (see Kimmel et al., 2021). 

*Positivity is a statistical assumption rather than a purely causal assumption. It requires that our data exhibit variation in exposures across 

all relevant confounders. See Hernán & Robins, 2025; Morgan & Winship, 2015; Rosenbaum & Rubin, 1983. 
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Box S2. Assumptions for causal discovery 

Choice of framework 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Useful for those who think about evolving states of systems 

over time; focuses on identifying causal relationships for 

dynamic or complex systems where long time series of 

observations are available, often under challenging 

scenarios (e.g., non-separability, high-dimensional 

nonlinearity). 

Useful for those who think about multiple causes jointly 

(“all-cause models”). Emphasizes defining the minimal 

set of conditions under which causal effects can be 

identified and estimated. 

 

Causal assumptions 

A1.  Causal Sufficiency: All relevant confounders are measured (i.e., no unmeasured common causes). 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: “All variables that drive the system are 

embedded in the reconstructed state space”, “no missing 

drivers”, or “intrinsic noise is not attributable to external 

disturbances or measurement errors”. 

Key Idea: Implicitly assumes the measured variables 

capture the main dynamic influences. If crucial state 

variables are omitted, apparent causal links can be 

spurious. 

References: Ding & Toulis, 2018; Harnack et al., 2017; 

Orava, 1973; Sun et al., 2015 

Terminology: “All relevant variables included”, or “no 

omitted common causes”. 

Key Idea: Discovery algorithms (e.g., PC, FCI) typically 

assume all major confounders are measured or the 

algorithm is adjusted to detect them.  

Also required consistency (the statistical property) – 

with infinite data, the estimated graph will converge to 

the true causal graph. 

References: Glymour et al., 2019; Peters et al., 2017; 

Spirtes et al., 2000 

Terminology: The observed time series fully capture the 

dynamics of the unit, with no external influences (i.e., no 

inter-unit interference). 

Key Idea: The dynamics of each unit are self-contained; the 

time series used for discovery must reflect the complete 

internal state of the system. If significant spillover exists, 

the predictive relationships used to infer causality may be 

confounded by external influences. 

References: Harnack et al., 2017; Orava, 1973 

Terminology: “No cross‐unit edges” or “independence 

of units” in causal DAGs. 

Key Idea: Each unit is independent – one unit’s 

exposure does not affect another unit’s outcome. 

Part of the i.i.d. assumption – units are independent and 

identically distributed (see Zhang et al. 2023). 

References: Glymour et al., 2019; Spirtes et al., 2000 
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A2. Causal Markov Condition: In a system with no cycles or feedback loops, any dependence between two variables 

that do not directly affect each other must come from a common cause influencing both. Once that common cause is 

accounted for, the two variables should no longer be dependent. 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: If two system components do not interact 

(directly or indirectly), their time series become 

conditionally independent (or uncorrelated) after 

controlling for the relevant state variables. 

Key Idea: In time‐lagged embedding, if variable 𝐴 does not 

help predict 𝐵 once the relevant lags of 𝐵 (and possibly 

other variables) are included, we treat them as causally 

disconnected. This also requires that the cause precede the 

outcome, ruling out simultaneity and cyclic causation (see 

below).  

References: Runge, Bathiany, et al., 2019; Sun et al., 2015 

Terminology: Sometimes referred to as factorization 

or the local Markov property – each variable is 

conditionally independent of its confounders given its 

direct causes.  

Key Idea: If two variables are conditionally 

independent given some conditioning set in the data, 

they are not connected by any path in the DAG (or are 

d‐separated). Implicitly assumes there is no 

simultaneity or cyclic causation (see below). 

References: Glymour et al., 2019; Peters et al., 2017; 

Spirtes et al., 2000 

 

A3. Causal Faithfulness: If two variables are statistically independent even after adjusting for confounders, then there 

is no causal relationship between those variables. 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: Referred to as separability – the influence of 

measured confounding variables can be eliminated from 

the information contained in the effect variable’s temporal 

trajectory without changing the direct relationship between 

the cause and effect; thus, an observed temporal 

dependence implies the presence of a causal relationship. 

Key Idea: If two variables remain independent after 

controlling for all relevant confounders, we assume it’s not 

due to a coincidence but instead conclude there is no causal 

relationship.  

References: Paluš et al., 2018; Runge, Bathiany, et al., 

2019; Schreiber, 2000; Sun et al., 2015 

Terminology: Explicitly called faithfulness or stability, 

in which the causal DAG encodes all conditional 

independences. If two variables are statistically 

independent, there exists no causal path (i.e., no causal 

relationship) between those variables in the causal 

DAG. 

Key Idea: If two variables remain independent after 

conditioning on the confounders, we assume this 

reflects a genuine absence of a causal relationship. 

References: Glymour et al., 2019; Peters et al., 2017; 

Spirtes et al., 2000 
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Additional assumptions 

B1.  Cause precedes effect; no simultaneity and no feedback loops. 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: “Temporal ordering”, or “one variable’s state 

at the current time 𝑡 influences the other’s state at future 

time 𝑡 + ℓ”. 

Key Idea: The future state of a system is conditionally 

independent of its past states, given its present state (i.e., 

cause precede effects in time). 

References: Ding & Toulis, 2018; Paluš et al., 2018 

Terminology: “Acyclic”, “no bidirectional edges”, or 

“no feedback loops” implied in the causal DAG. 

Key Idea: Assumes no feedback loops or simultaneous 

causation exists in the data, since resultant causal DAGs 

are acyclic. 

References: Peters et al., 2017; Spirtes et al., 2000 

 

B2. Stationarity – the system’s behavior doesn’t change dramatically over time (i.e., overall distributional patterns such 

as mean and variance of causes and outcomes remain relatively constant over time). 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: The system's behavior does not change over 

time. 

Key Idea: Causal relationships remain consistent over time 

(dependencies should not fundamentally change or vanish). 

Also requires ergodicity – statistical properties (e.g., mean 

and variance) calculated from time series samples through 

the ergodic theorem do not change substantially over time. 

References: Harnack et al., 2017; McGoff et al., 2012; J. Shi 

et al., 2022 

Terminology: The conditional independencies among 

variables are consistent over time. 

Key Idea: The influence of a variable’s state at a 

previous time 𝑡 − ℓ on its state at the current time 𝑡 

remains consistent throughout the time series when 

controlling for the rest of the system’s state at the 

present time 𝑡. 

References: McGoff et al., 2012; Peters et al., 2017; 

Runge, Bathiany, et al., 2019 

 

 

 

 

 

 

 

 

 

B3. Sufficient variability within variables in the system so that differences in exposure and outcome can be reliably 

detected. 
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Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: Time series provide a faithful representation 

of the system’s dynamics. Additionally, many approaches 

require that states of the system (e.g., from time series 

data) can be represented as a low-dimensional attractive 

manifold.  

Key Idea: There must be enough dynamic variation in the 

observed data to reveal causal influences, and the 

measured variables must adequately reflect the system’s 

underlying states. 

References: Barański et al., 2020; Deyle & Sugihara, 2011; 

J. Shi et al., 2022; Takens, 1981 

Terminology: “Positivity” and “consistency”. 

Key Idea: Each variable (cause or outcome) exhibits 

enough variation to detect dependence (akin to 

positivity in causal inference). Also, each variable must 

be well‐defined, so that distinct real‐world processes 

aren’t lumped under one label (consistency). 

References: Glymour et al., 2019; Peters et al., 2017 
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Supplementary Note 5: Core concepts for each causal framework 

While assumptions define the foundation for making valid causal claims, each causal framework 

also introduces a range of concepts and tools that shape how researchers think about variables, 

causal relationships, and estimation. To help readers navigate these differences, we provide three 

tables (Tables S3–S5), one for each framework (PO, SCM, and DC, respectively), that highlight 

foundational concepts across the frameworks, along with seminal and accessible sources for 

further reading. These tables are designed as navigational tools for readers seeking intuitive or 

technical entry points into each framework, such as ignorability and causal estimands in the PO 

framework, d-separation and do-calculus in the SCM framework, and state space reconstruction 

and separability in the DC framework. Familiarity with these concepts is important for 

understanding how causal inference and causal discovery are framed and implemented within 

each framework’s structure. These frameworks are not mutually exclusive and can be 

complementary depending on the causal task and data characteristics. Researchers should 

familiarize themselves with each to determine which assumptions and tools best align with their 

research goals. 

 

Table S3. Key concepts and recommended references for understanding the potential outcomes 

(PO) framework. 

Concept Suggested Readings 

Fundamentals of the PO framework Holland, 1986; Rubin, 2005; Sobel, 2009 

Stable Unit Treatment Value Assumption 

(SUTVA) 

Sobel, 2006; VanderWeele & Hernán, 2013 

Ignorability Assumption (Unconfoundedness) Imbens, 2004; Rosenbaum & Rubin, 1983 

Positivity Assumption (Overlap Condition) Petersen et al., 2012; Westreich & Cole, 2010 

Confounding variables to control for in 

analyses 

Gelman et al., 2020; VanderWeele, 2019; 

VanderWeele & Shpitser, 2011 

Causal estimands: average treatment effect 

(ATE) and others 

Heiss, 2024; Imbens, 2004; Imbens & 

Angrist, 1994; Lipkovich et al., 2020; 

Wooldridge, 2010 (Ch. 21) 

Multiple versions of treatment and 

interference 

Hudgens & Halloran, 2008; Tchetgen 

Tchetgen & VanderWeele, 2012; 

VanderWeele & Hernán, 2013 
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Table S4. Key concepts and recommended references for understanding the structural causal 

models (SCM) framework. 

Concept Suggested Readings 

Fundamentals of the SCM framework Burnett & Blackwell, 2024; Cheng et al., 

2024; Petersen & van der Laan, 2014; 

Scheines, 1997 

Confounding variables to control for in 

analyses (d-separation; Back-door and 

Front-door Criteria) 

Arif & Massey, 2023; Bulbulia, 2024a; 

Elwert, 2013; Greenland, 2003; Morgan & 

Winship, 2015 (Ch. 4 & 10); Pearl, 2010 

Graphical rules for causal identification in 

graphs (do-calculus) 

Hayduk et al., 2003; Pearl, 2009 (Ch. 1 & 

11); Shpitser & Pearl, 2008; Tian & Pearl, 

2002 

Total and path-specific causal effects Bulbulia, 2024b; Pearl, 2009 (Ch. 3, 4, 7); 

VanderWeele, 2015d 

Model equivalence and Markov equivalence 

classes 

Andersson et al., 1997; Pearl, 2009 (Ch. 5) 

Causal graphs with unmeasured/latent 

variables 

Pearl, 2009 (Ch. 12) ; Richardson & Spirtes, 

2002 
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Table S5. Key concepts and recommended references for understanding the dynamical systems 

causality (DC) framework. 

Concept Suggested Readings 

Fundamentals of the DC framework Deyle & Sugihara, 2011; Harnack et al., 

2017; Runge, 2018; J. Shi et al., 2022; Yuan 

& Shou, 2022 

State space reconstruction (SSR) and attractor 

manifolds 

Cummins et al., 2015; Sauer et al., 1991; 

Takens, 1981 

Causality via predictability Paluš, 2007; Runge, 2018; Sugihara et al., 

2012 

Transfer entropy and information-theoretic 

causality 

Schreiber, 2000; Sun et al., 2015; Sun & 

Bollt, 2014 

Separability and causal faithfulness Eichler, 2013; Peters et al., 2017; Runge, 

Nowack, et al., 2019 

Confounding and hidden variables in time 

series 

De Brouwer et al., 2021; Eichler, 2013; Sun 

& Bollt, 2014 

Limitations in stochastic or weakly coupled 

systems 

Cobey & Baskerville, 2016; McCracken & 

Weigel, 2014 
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Supplementary Note 6: Study designs and algorithms for causal analyses  

Selecting a study design or algorithm is a critical step in implementing a causal analysis. 

Different designs and algorithms offer structured ways to satisfy or relax the untestable causal 

assumptions and must be chosen in light of the causal task, available data, and pre-existing 

knowledge. Some approaches are grounded in experimental control, while others rely on 

statistical adjustments or algorithmic structure learning to address confounding and identify 

causal relationships. 

To help readers explore available options, we provide a series of tables that group study 

designs and algorithms according to the type of causal task (inference or discovery) and whether 

they address measured or unmeasured confounding. Table S6 summarizes study designs for 

causal inference, including experimental designs, observational designs for measured 

confounders, and observational designs for unmeasured confounders. Table S7 summarizes 

algorithms for causal discovery, grouped by the causal framework and assumptions each 

algorithm relies on. These tables provide references for the method and its application, as well as 

software libraries available to implement the methods. Tables S6 and S7 are intended to serve as 

a reference for researchers selecting and comparing appropriate strategies for their study goals, 

system knowledge, and data constraints. For additional guidance on the selection of specific 

causal inference study designs and causal discovery algorithms for time-series data, see the flow 

chart in Figure 2 in Runge et al., 2023. 

Causal inference requires that all confounders be addressed (see Box S1), but this does 

not necessarily mean every confounder must be explicitly included in a model. Instead, 

confounding is typically handled using a combination of design-based approaches: directly 

controlling for measured confounders and employing statistical designs that reduce bias from 

unmeasured confounders (e.g., experimental randomization or statistical approaches that mimic 

randomization). 

If significant pre-existing knowledge is available and the goal is to obtain system-level 

understanding (i.e., to model the effects of all causes of an outcome), then SCM-based 

adjustment methods (e.g., Front-door and Back-door Criteria; see Pearl, 2009 and Arif & 

MacNeil, 2022) or structural equation modeling (SEM) may be appropriate approaches. While 

SCM-based adjustment methods typically target specific causal effects, SEM is often used to 

model entire systems of causal relationships simultaneously. However, this comes with tradeoffs: 

SEM requires more restrictive assumptions to support system-level causal interpretations (see 

Bollen & Pearl, 2013; Pearl, 2012).These tradeoffs underscore the need to carefully align the use 

of SEM with the level of pre-existing knowledge and assumptions that can be plausibly justified 

for the ecological system under study (Grace, 2024; Pearl, 2012; Shipley, 2016). In cases where 

unobserved variables are present, acyclic directed mixed graphs (ADMGs) can represent the 

same set of conditional independencies as a DAG. ADMGs also allow for bidirectional (i.e., 

double-headed) arrows, enabling representation of latent confounding. These graphs rely on an 
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extension of Pearl’s d-separation criterion, called m-separation (for details, see Richardson, 2003 

and Drton & Richardson, 2004).  

 While both SEM and SCM approaches rely on a causal graph to represent assumptions, 

they differ in how those assumptions are used. SCMs (Pearl, 2009) use the graph to derive 

conditions under which causal effects can be identified from data, often targeting specific effects 

of interest via tools such as the Back-door or Front-door criteria. In an SCM approach, the causal 

graph is used to ask, “Given this DAG, can I even estimate the causal effect of X on Y from 

observed data, and if so, how?” In contrast, SEMs as used in ecology (Grace et al., 2015; 

Shipley, 2016) typically assume the full system of causal relationships is known, and use the 

graph to specify a system of structural equations whose fit can be statistically tested (Kunicki et 

al., 2023). That is, for SEMs, the causal graph is used to ask, “Assuming this DAG is correct, do 

the observed data support it, and can I fit a model to estimate the effects I care about?” SEM-

based causal inference does not provide formal identification criteria to assess whether these 

effects can be uniquely determined from the data (Wang & Sobel, 2013), and estimation is 

typically linear, even when nonlinear terms are used. While some software implementations of 

SEM allow some nonlinear specifications (e.g., via generalized additive models), they estimate 

causal effects using path coefficients or smooth terms derived from model components 

(Lefcheck, 2016). Thus, SEMs rely more heavily on model specification and goodness-of-fit, 

whereas SCMs prioritize identifiability of causal effects under minimal assumptions (Pearl, 

1998). SEMs can yield unbiased causal effect estimates if the model includes all relevant 

confounders and is correctly specified; however, unlike SCM-based methods, they do not 

provide formal identification criteria to assess whether these conditions are met (Bollen & Pearl, 

2013; Markus, 2010; Wang & Sobel, 2013). This distinction highlights that while both 

approaches can be used for causal modeling, they support different inferential goals and require 

different standards of justification. 

Causal discovery approaches rely on algorithms, rather than study designs, to provide 

structured approaches for satisfying or relaxing untestable causal assumptions. SCM-based 

causal discovery algorithms generally begin with a causal diagram that assumes relationships 

among all variables in the data, and then they iteratively test for statistical independence between 

pairs of variables. Edges are removed where statistical independence is found, refining the causal 

diagram to represent only causal relationships consistent with the statistical independencies 

reflected in the data (Glymour et al., 2019). In contrast, DC-based algorithms typically start with 

no assumed causal relationships among variables, and test whether statistical dependence 

between each pair of variables in each direction (𝑋 → 𝑌 and 𝑌 → 𝑋) is significantly different 

from white noise or null hypothesis models (Paluš, 2007; Theiler et al., 1992). If the dependence 

meets the threshold for significance (typically, α = 0.05) in only one of the directions, say 𝑋 →

𝑌, then asymmetric coupling is detected, indicating a causal information flow from 𝑋 (the 

driving system) to 𝑌 (the response system). The strength of the causal relationship is then 

estimated using a distance metric (Paluš, 2007; J. Shi et al., 2022).
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Table S6. Study designs for causal inference, grouped by category. Each study design includes key references (including applications 

in ecology, where available), and links to available software and code. The resources and applications listed are not exhaustive – we 

prioritized accessible sources and informative, causally focused applications. 

Category Representative Approachesa Resources and Applications Software and packages1 

Experimental 

designs2 

Randomized Controlled 

Trials 

RCTs: 

Kim & DeVries, 2001; Kimmel et al., 

2021; Pynegar et al., 2021; 

Tilman et al., 2006; Weigel et al., 

2021; Wiik et al., 2020 

Cluster RCTs: 

Benitez et al., 2023; Branas et al., 

2018; Hemming & Taljaard, 2023; 

Schochet, 2013 

RCTs: 

experiment (R package; see https://cran.r-

project.org/package=experiment) 

RCT (R package; see https://cran.r-

project.org/package=RCT) 

ExpAn (Python library; see 

https://github.com/zalando/expan) 

Cluster RCTs:  

cvcrand (R package; see https://cran.r-

project.org/package=cvcrand) 

experiment (R package; see https://cran.r-

project.org/package=experiment) 

cluster_experiments (Python library; see 

https://github.com/david26694/cluster-

experiments) 

Factorial Designs Dasgupta et al., 2015; Jayewardene, 

2009; Kaspari et al., 2012; King & 

Tschinkel, 2008; Laube & Zotz, 

2003; Nicolaisen et al., 2014; 

Zhao & Ding, 2022 

GFD (R package; see https://cran.r-

project.org/package=GFD) 

fullfact (R package; see https://cran.r-

project.org/package=fullfact) 

DoE.base (R package; see https://cran.r-

project.org/package=DoE.base) 

pyDOE2 (Python library; see 

https://github.com/clicumu/pyDOE2) 

dexpy (Python library; see 

https://github.com/statease/dexpy) 

Crossover Trials Dı́az-Uriarte, 2002; Feinsinger et al., 

1991; Fergus et al., 2023; 

crossdes (R package; see https://cran.r-

project.org/package=crossdes) 

 
1 See also https://cran.r-project.org/view=CausalInference 
2 See also https://cran.r-project.org/view=ExperimentalDesign 

https://cran.r-project.org/package=experiment
https://cran.r-project.org/package=experiment
https://cran.r-project.org/package=RCT
https://cran.r-project.org/package=RCT
https://github.com/zalando/expan
https://cran.r-project.org/package=cvcrand
https://cran.r-project.org/package=cvcrand
https://cran.r-project.org/package=experiment
https://cran.r-project.org/package=experiment
https://github.com/david26694/cluster-experiments
https://github.com/david26694/cluster-experiments
https://cran.r-project.org/package=GFD
https://cran.r-project.org/package=GFD
https://cran.r-project.org/package=fullfact
https://cran.r-project.org/package=fullfact
https://cran.r-project.org/package=DoE.base
https://cran.r-project.org/package=DoE.base
https://github.com/clicumu/pyDOE2
https://github.com/statease/dexpy
https://cran.r-project.org/package=crossdes
https://cran.r-project.org/package=crossdes
https://cran.r-project.org/view=CausalInference
https://cran.r-project.org/view=ExperimentalDesign
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Jaakkola, 2003; Montesanto & 

Cividini, 2017; Ohrens et al., 

2019; Shahn et al., 2023; Treves 

et al., 2024 

CrossCarry (R package; https://cran.r-

project.org/package=CrossCarry)  

Crossover (R package; https://cran.r-

project.org/package=Crossover) 

Observational designs 

– controlling 

measured 

confounders 

Regression Adjustment Fieberg & Ditmer, 2012; Gelman et 

al., 2020; Moss et al., 2025; 

Nogueira et al., 2022; Simler-

Williamson & Germino, 2022 

R packages: Base R functions – lm(…), glm(…), 

etc. – or dedicated regression packages 

Python libraries: statsmodels, linearmodels, 

etc.  

Note: No dedicated packages or libraries – 

standard regression functions are used when 

confounders are explicitly specified in models 

used for causal interpretation. 

Multi-level Modeling with 

Mixed Effects 

Bingenheimer & Raudenbush, 

2004; Clough, 2012; Gelman, 

2006; Gelman & Hill, 2006 

lme4 (R package; see https://cran.r-

project.org/package=lme4) 

brms (R package; see https://cran.r-

project.org/package=brms) 

statsmodels (Python library; see 

https://www.statsmodels.org/) 

Bambi (Python library; see 

https://bambinos.github.io/bambi) 

 

Structural Equation 

Modeling (SEM)b,c 

Bollen & Pearl, 2013; Cronin & 

Schoolmaster, 2018; Grace et al., 

2015; Hatami, 2019; Pearl, 1998, 

2012; Saavedra et al., 2022 

pwSEMd (R package; see 

https://github.com/BillShipley/pwSEM) 

piecewiseSEMd (R package; see https://cran.r-

project.org/package=piecewiseSEM) 

lavaan (R package; see https://cran.r-

project.org/package=lavaan) 

semopy (Python library; see 

https://semopy.com) 

Marginal Structural 

Modeling (MSM)† 

Cole & Hernán, 2008; Hernán & 

Robins, 2025 (Ch. 12); Lei et al., 

2019; Mandujano Reyes et al., 

2025; Nandi et al., 2012; 

VanderWeele et al., 2011 

bayesmsm (R package; see 

https://github.com/Kuan-Liu-

Lab/bayesmsm) 

trajmsm (R package; see https://cran.r-

project.org/package=trajmsm) 

https://cran.r-project.org/package=CrossCarry
https://cran.r-project.org/package=CrossCarry
https://cran.r-project.org/package=Crossover
https://cran.r-project.org/package=Crossover
https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=brms
https://cran.r-project.org/package=brms
https://www.statsmodels.org/
https://bambinos.github.io/bambi
https://github.com/BillShipley/pwSEM
https://cran.r-project.org/package=piecewiseSEM
https://cran.r-project.org/package=piecewiseSEM
https://cran.r-project.org/package=lavaan
https://cran.r-project.org/package=lavaan
https://semopy.com/
https://github.com/Kuan-Liu-Lab/bayesmsm
https://github.com/Kuan-Liu-Lab/bayesmsm
https://cran.r-project.org/package=trajmsm
https://cran.r-project.org/package=trajmsm
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Subgroup (Stratified) 

Analysis 

Morgan & Winship, 2014; Oehri et 

al., 2020; Rosenbaum, 2002 

stdReg2 (R package; see https://cran.r-

project.org/package=stdReg2) 

stratamatch (R package; see https://cran.r-

project.org/package=stratamatch) 

Covariate and Propensity 

Score Matching 

Inverse Probability Weighting 

(IPW): 

Hernán & Robins, 2025 (Ch. 12); 

Nogueira et al., 2022; West et al., 

2022 

Propensity Score Matching 

(PSM): 

Butsic et al., 2017; Emmons et al., 

2024; Nogueira et al., 2022; 

Pearson et al., 2016; Siegel, 

Larsen, et al., 2022; Siegel, 

Macaulay, et al., 2022; Simler-

Williamson & Germino, 2022; 

West et al., 2022; Wiik et al., 2020 

IPW: 

ipw (R package; see https://cran.r-

project.org/package=ipw) 

twang (R package; see https://cran.r-

project.org/package=twang) 

WeightIt (R package; see https://cran.r-

project.org/package=WeightIt) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

PSM: 

Matching (R package; see https://cran.r-

project.org/package=Matching) 

MatchIt (R package; see https://cran.r-

project.org/package=MatchIt) 

CausalGPS (R package; see https://cran.r-

project.org/package=CausalGPS) and 

pycausalgps (Python library; see 

https://github.com/NSAPH-

Software/pycausalgps) 

psmpy (Python library; see 

https://pypi.org/project/psmpy) 

Back-door Criterion Arif et al., 2022; Arif & MacNeil, 

2022; Paul, 2011; Pearl, 2009; 

Schoolmaster et al., 2020; Stewart 

et al., 2023 

causaleffect (R package; see https://cran.r-

project.org/package=causaleffect) 

daggity (R package and Web interface; see 

https://dagitty.net) 

DoWhy (Python library; see https://py-

why.github.io/dowhy) 

Observational designs 

– controlling 

unmeasured 

confounders 

Instrumental Variables (IV) Butsic et al., 2017; Kendall, 2015; 

Larsen et al., 2019; MacDonald et 

al., 2019; MacDonald & Mordecai, 

2019 

ivreg (R package; see https://cran.r-

project.org/package=ivreg) 

AER (R package; see https://cran.r-

project.org/package=AER) 

https://cran.r-project.org/package=stdReg2
https://cran.r-project.org/package=stdReg2
https://cran.r-project.org/package=stratamatch
https://cran.r-project.org/package=stratamatch
https://cran.r-project.org/package=ipw
https://cran.r-project.org/package=ipw
https://cran.r-project.org/package=twang
https://cran.r-project.org/package=twang
https://cran.r-project.org/package=WeightIt
https://cran.r-project.org/package=WeightIt
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=Matching
https://cran.r-project.org/package=Matching
https://cran.r-project.org/package=MatchIt
https://cran.r-project.org/package=MatchIt
https://cran.r-project.org/package=CausalGPS
https://cran.r-project.org/package=CausalGPS
https://github.com/NSAPH-Software/pycausalgps
https://github.com/NSAPH-Software/pycausalgps
https://pypi.org/project/psmpy
https://cran.r-project.org/package=causaleffect
https://cran.r-project.org/package=causaleffect
https://dagitty.net/
https://py-why.github.io/dowhy
https://py-why.github.io/dowhy
https://cran.r-project.org/package=ivreg
https://cran.r-project.org/package=ivreg
https://cran.r-project.org/package=AER
https://cran.r-project.org/package=AER
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EconML (Python library; see 

https://github.com/py-why/econml) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Regressions Discontinuity 

Design (RDD) 

Butsic et al., 2017; Cook et al., 2008; 

Imbens & Lemieux, 2008; Larsen 

et al., 2019; Noack et al., 2022 

rdrobust (R package; see https://cran.r-

project.org/package=rdrobust) 

rddensity (R package; see https://cran.r-

project.org/package=rddensity) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Front-door Criterion Arif et al., 2022; Arif & MacNeil, 

2022; Paul, 2011; Pearl, 2009; 

Stewart et al., 2023 

causaleffect (R package; see https://cran.r-

project.org/package=causaleffect) 

daggity (R package and Web interface; see 

https://dagitty.net) 

fdtlme (R package; see 

https://github.com/annaguo-bios/fdtmle) 

DoWhy (Python library; see https://py-

why.github.io/dowhy) 

Before-After-Control-Impact 

(BACI)c  

BACI: 

Chevalier et al., 2019; Christie et al., 

2019; Comte et al., 2023; Ferraro 

et al., 2019; Kerr et al., 2019; Paul, 

2011; Pitcher et al., 2009; 

Smokorowski & Randall, 2017; 

Wauchope et al., 2021 

Difference-in-Differences (DiD): 

Butsic et al., 2017; Larsen et al., 

2019; Simler-Williamson & 

Germino, 2022 

BACI: 

Note: No dedicated packages for BACI designs –

analyses typically use mixed-effects models 

with an interaction term between Time 

(Before vs. After) and Treatment (Control vs. 

Impact) to estimate causal effects. 

DiD: 

did (R package; see https://cran.r-

project.org/package=did) 

fixest (R package; see https://cran.r-

project.org/package=fixest) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Multi-level Modeling with 

Fixed Effectsc 

Byrnes & Dee, 2025; Gelman & Hill, 

2006; Simler-Williamson & 

Germino, 2022 

fixest (R package; see https://cran.r-

project.org/package=fixest) 

lfe (R package; see https://cran.r-

project.org/package=lfe) 

https://github.com/py-why/econml
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=rdrobust
https://cran.r-project.org/package=rdrobust
https://cran.r-project.org/package=rddensity
https://cran.r-project.org/package=rddensity
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=causaleffect
https://cran.r-project.org/package=causaleffect
https://dagitty.net/
https://github.com/annaguo-bios/fdtmle
https://py-why.github.io/dowhy
https://py-why.github.io/dowhy
https://cran.r-project.org/package=did
https://cran.r-project.org/package=did
https://cran.r-project.org/package=fixest
https://cran.r-project.org/package=fixest
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=fixest
https://cran.r-project.org/package=fixest
https://cran.r-project.org/package=lfe
https://cran.r-project.org/package=lfe
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plm (R package; see https://cran.r-

project.org/package=plm) 

PyFixest (Python library; see 

https://github.com/py-

econometrics/pyfixest)  

Synthetic Control Methodsc Abadie et al., 2010; Fick et al., 2021; 

West et al., 2022; X. Wu et al., 

2023 

Synth (R package; see https://cran.r-

project.org/package=Synth) 

tidysynth (R package; see https://cran.r-

project.org/package=tidysynth) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Interrupted Time Series 

Analysisd 

Gilmour et al., 2006; Kontopantelis 

et al., 2015; Lopez Bernal et al., 

2016; Wauchope et al., 2021 

CausalImpact (R package; see 

https://github.com/google/CausalImpact) 

and CausalImpact (Python library; see 

https://pypi.org/project/causalimpact) 

segmented (R package; see https://cran.r-

project.org/package=segmented) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

a In practice, multiple approaches can be combined to more credibly satisfy causal assumptions.  
b With additional assumptions, SEMs can incorporate unobserved constructs (i.e., “latent variables”) which are inferred from measured 

variables. 
c Requires longitudinal data for which the value of the causal variable varies within and across units.  
d Requires longitudinal data for which the value of the causal variable varies within units. 

 

 

  

https://cran.r-project.org/package=plm
https://cran.r-project.org/package=plm
https://github.com/py-econometrics/pyfixest
https://github.com/py-econometrics/pyfixest
https://cran.r-project.org/package=Synth
https://cran.r-project.org/package=Synth
https://cran.r-project.org/package=tidysynth
https://cran.r-project.org/package=tidysynth
https://github.com/pymc-labs/CausalPy
https://github.com/google/CausalImpact
https://pypi.org/project/causalimpact
https://cran.r-project.org/package=segmented
https://cran.r-project.org/package=segmented
https://github.com/pymc-labs/CausalPy
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Table S7. Algorithms for causal discovery, grouped by category. Each algorithm includes key references (including applications in 

ecology, where available), and links to available software and code. 

Category Representative Algorithms Resources and Applications Software and packages 

Constraint-based 

methods 

PC (Peter and Clark)  Bystrova et al., 2024; Chu et al., 

2018; Ebert-Uphoff & Deng, 2012; 

Glymour et al., 2019; Kalisch et 

al., 2012; J. Li et al., 2015, pp. 9–

20; Spirtes et al., 2000 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

bnlearn (R package; see https://cran.r-

project.org/package=bnlearn and 

https://www.bnlearn.com) 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

pgmpy (Python library; see 

https://pgmpy.org) 

FCI (Fast Causal Inference) Bystrova et al., 2024; Glymour et al., 

2019; Kalisch et al., 2012; La 

Bastide-van Gemert et al., 2014; 

Mielke et al., 2022; Nogueira et 

al., 2022; Shen et al., 2020 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

PCMCI (Peter and Clark 

Momentary Conditional 

Independence) 

Docquier et al., 2024; Krich et al., 

2020; Nogueira et al., 2022; 

Runge, Nowack, et al., 2019; 

Tárraga et al., 2024 

Tigramite (Python library; see 

https://github.com/jakobrunge/tigramite) 

CausalFlow (Python library; see 

https://github.com/lcastri/causalflow) 

Score-based 

methods 

GES (Greedy Equivalence 

Search) 

Gong et al., 2025; La Bastide-van 

Gemert et al., 2014 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

pgmpy (Python package; see 

https://pgmpy.org/) 

https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=bnlearn
https://cran.r-project.org/package=bnlearn
https://www.bnlearn.com/
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://causal-learn.readthedocs.io/
https://pgmpy.org/
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://causal-learn.readthedocs.io/
https://github.com/jakobrunge/tigramite
https://github.com/lcastri/causalflow
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://pgmpy.org/
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causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

GIES (Greedy Interventional 

Equivalence Search) 

Hauser & Bühlmann, 2012; Shah et 

al., 2023 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

Causal Discovery Toolbox (Python library; see 

https://github.com/FenTechSolutions/Caus

alDiscoveryToolbox) 

gies (Python library; see 

https://github.com/juangamella/gies) 

FGES (Fast Greedy 

Equivalence Search) 

Kitson & Constantinou, 2021; 

Ramsey et al., 2017; Shen et al., 

2020 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

Functional model-

based methods 

LiNGAM (Linear Non-

Gaussian Acyclic Model) 

Ikeuchi et al., 2023; Kotoku et al., 

2020; Kurotani et al., 2024; 

Shimizu, 2014; Shimizu et al., 

2006, 2011 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

lingam (Python library; see 

https://github.com/cdt15/lingam) 

ANM (Additive Noise Model) Bühlmann et al., 2014; Mooij et al., 

2016; Peters et al., 2014; Song et 

al., 2022 

CANM (R package; see https://github.com/Jie-

Qiao/CANM) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

Causal Discovery Toolbox (Python library; see 

https://github.com/FenTechSolutions/Caus

alDiscoveryToolbox) 

lingam (Python library; see 

https://github.com/cdt15/lingam) 

IGCI (Information Geometric 

Causal Inference) 

Janzing et al., 2012; Mooij et al., 

2016; Song et al., 2022 

CANM (R package; see https://github.com/Jie-

Qiao/CANM) 

Causal Discovery Toolbox (Python library; see 

https://github.com/FenTechSolutions/Caus

alDiscoveryToolbox) 

IGCI (Python library; see 

https://github.com/amber0309/IGCI) 

https://causal-learn.readthedocs.io/
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/juangamella/gies
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://causal-learn.readthedocs.io/
https://github.com/cdt15/lingam
https://github.com/Jie-Qiao/CANM
https://github.com/Jie-Qiao/CANM
https://causal-learn.readthedocs.io/
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/cdt15/lingam
https://github.com/Jie-Qiao/CANM
https://github.com/Jie-Qiao/CANM
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/amber0309/IGCI
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Dynamical systems 

causality (DC)-

based methods 

Granger Causality (GC) Detto et al., 2012; Granger, 1969; 

Nogueira et al., 2022; Reygadas et 

al., 2020; Singh & Borrok, 2019; 

Yuan & Shou, 2022 

NlinTS (R package; see https://cran.r-

project.org/package=NlinTS) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

Information Theoretic (IT) 

Causality 

Benocci et al., 2025; Docquier et al., 

2024; Hmamouche, 2020; 

Schreiber, 2000; Sun et al., 2015; 

Sun & Bollt, 2014; Yang et al., 

2018 

NlinTS (R package; see https://cran.r-

project.org/package=NlinTS) 

copent (R package; see 

https://github.com/majianthu/copent) 

crossmapy (Python library; see 

https://github.com/PengTao-

HUST/crossmapy) 

IDTxl (Python library; see 

https://github.com/pwollstadt/IDTxl) 

Convergent Cross Mapping 

(CCM) 

Chang et al., 2017; Karakoç et al., 

2020; Kitayama et al., 2021; 

Matsuzaki et al., 2018; Nova et al., 

2021; Sugihara et al., 2012; Ushio 

et al., 2018; J. Wu et al., 2023; Ye 

et al., 2015; Yuan & Shou, 2022 

rEDM (R package) and pyEDM (Python 

library); see 

https://sugiharalab.github.io/EDM_Docume

ntation  

Partial Cross Mapping (PCM) Leng et al., 2020; Yongmei & Yulian, 

2024 

MATLAB code (see https://github.com/Partial-

Cross-Mapping) 

crossmapy (Python library; see 

https://github.com/PengTao-

HUST/crossmapy) 

https://cran.r-project.org/package=NlinTS
https://cran.r-project.org/package=NlinTS
https://causal-learn.readthedocs.io/
https://cran.r-project.org/package=NlinTS
https://cran.r-project.org/package=NlinTS
https://github.com/majianthu/copent
https://github.com/PengTao-HUST/crossmapy
https://github.com/PengTao-HUST/crossmapy
https://github.com/pwollstadt/IDTxl
https://sugiharalab.github.io/EDM_Documentation
https://sugiharalab.github.io/EDM_Documentation
https://github.com/Partial-Cross-Mapping
https://github.com/Partial-Cross-Mapping
https://github.com/PengTao-HUST/crossmapy
https://github.com/PengTao-HUST/crossmapy


 31 

Supplementary Note 7: Advanced methods for causal inference and causal discovery 

While many of the fundamental methods for causal discovery and causal inference have existed for 

several decades, the field of causal inference is continually evolving to incorporate novel statistical 

techniques and address increasingly complex data scenarios. For example, machine learning (ML) 

techniques are being integrated into methods for causal discovery and causal inference (Leist et al., 

2022). Causal discovery with ML approaches, such as deep causal learning algorithms, use neural 

approaches to learn causal networks from a combination of empirical data and prior causal knowledge 

(C. Li et al., 2024; Scherrer et al., 2021; Yu et al., 2019). ML models can also be used in causal 

inference, provided the model and covariates are specified to accurately represent the underlying causal 

process (Brand et al., 2023; Hernán & Robins, 2024; Huber, 2023). For example, causal forests estimate 

causal effects using random forests (Wager & Athey, 2018), while double/debiased ML methods, such 

as targeted maximum likelihood estimation (TLME) (van der Laan & Rubin, 2006), control for 

measured confounders using ML models that can capture complex nonlinear and high-dimensional 

patterns of confounding (Chernozhukov et al., 2018). We summarize some of these 

advanced methods for both causal discovery and causal inference in Table S8. 

It should be noted that not all ML approaches are appropriate for causal analyses (Pichler & 

Hartig, 2023). ML approaches are merely a class of models that, without pre-existing knowledge and 

assumptions, are purely intended for predictive tasks and are not appropriate for obtaining causal 

interpretations (Section S2). Thus, causal ML approaches still require the principles and assumptions 

linking statistical dependence to causal dependence (Section S4), and careful model building using pre-

existing knowledge about all relevant confounding variables is essential for these methods to detect and 

estimate causal effects without bias (Section S3).  
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Table S8. Advanced methods for causal discovery and causal inference, grouped by causal task. Each method includes a brief 

description, key references and links to relevant software and code. 

 Causal Task Representative Methods Resources and Applications Software and packages3 

Causal 

discovery 

Deep causal learning: Uses deep 

learning models (e.g., neural 

networks) to detect causal 

relationships in complex, high-

dimensional data, often 

incorporating pre-existing 

knowledge to improve accuracy. 

C. Li et al., 2024; Luo et al., 2020; Yu 

et al., 2019; K. Zheng et al., 2024 

DAG-GNN (Python code; see 

https://github.com/fishmoon1234/DAG-

GNN) 

DeFuSE (Python code; see 

https://github.com/chunlinli/defuse) 

Dagma (Python library; see 

https://github.com/kevinsbello/dagma) 

Causal representation learning: 

Learning disentangled latent 

representations that correspond to 

underlying causal variables and 

capture the structure of the data-

generating process. 

Ahuja et al., 2023; Brehmer et al., 

2022; Scholkopf et al., 2021 

Emei (Python library; see 

https://github.com/FrankTianTT/emei) 

DRL (Python code; see 

https://github.com/CausalRL/DRL) 

gCastle (Python library; see 

https://pypi.org/project/gcastle) 

Causal reinforcement learning: 

Incorporates causal assumptions 

or causal models into 

reinforcement learning (a machine 

learning approach where models 

learn by trying actions and 

observing which ones produce the 

best outcomes). 

Buesing et al., 2019; Wang et al., 

2021; Zeng et al., 2025; Zhu et al., 

2020 

CARL (Python code; see 

https://github.com/arquimides/carl) 

Note: No dedicated packages or libraries – 

most implementations of causal 

reinforcement learning are ad hoc in 

published papers or preprints. 

Invariant causal prediction: 

Identifies causal variables by 

selecting predictors whose 

statistical relationships with the 

outcome remain invariant across 

environments or experimental 

settings.  

Peters et al., 2016; Pfister et al., 

2019 

InvariantCausalPrediction (R package; see 

https://cran.r-

project.org/package=InvariantCausalPre

diction) 

causalicp (Python library; see 

https://github.com/juangamella/icp) 

 
3See also https://github.com/rguo12/awesome-causality-algorithms  

https://github.com/fishmoon1234/DAG-GNN
https://github.com/fishmoon1234/DAG-GNN
https://github.com/chunlinli/defuse
https://github.com/kevinsbello/dagma
https://github.com/FrankTianTT/emei
https://github.com/CausalRL/DRL
https://pypi.org/project/gcastle
https://github.com/arquimides/carl
https://cran.r-project.org/package=InvariantCausalPrediction
https://cran.r-project.org/package=InvariantCausalPrediction
https://cran.r-project.org/package=InvariantCausalPrediction
https://github.com/juangamella/icp
https://github.com/rguo12/awesome-causality-algorithms
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Causal 

inference 

Targeted Maximum Likelihood 

Estimation (TMLE): Semi-

parametric method that uses 

machine learning models for 

flexible outcome and treatment 

modeling, with a targeted 

correction step to ensure valid 

inference. 

Luque‐Fernandez et al., 2018; 

Schuler & Rose, 2017; van der 

Laan & Rubin, 2006 

tmle3 (R package; see 

https://tlverse.org/tmle3) 

causal-curve (Python library; see 

https://github.com/ronikobrosly/causal-

curve) 

Double/debiased machine 

learning: Uses machine learning to 

model outcomes and treatments 

separately, then combines them to 

estimate treatment effects while 

controlling for confounding in 

high-dimensional settings. 

Chernozhukov et al., 2018; Fink et 

al., 2023; B. Shi et al., 2024 

DoubleML (R package; see https://cran.r-

project.org/package=DoubleML) 

EconML (Python library; see 

https://github.com/py-why/econml) 

Causal forests: Uses ensembles of 

decision trees to estimate 

heterogeneous treatment effects 

while accounting for confounding. 

Athey et al., 2019; Athey & Wager, 

2019; Fink et al., 2023; Wager & 

Athey, 2018; Xie et al., 2012; L. 

Zheng & Yin, 2023 

grf (R package; see https://cran.r-

project.org/package=grf) 

EconML (Python library; see 

https://github.com/py-why/econml) 

Meta-learners for heterogeneous 

treatment effects (e.g., S-learner, 

T-learner, X-learner, and R-

learner): Use machine learning 

models to estimate heterogeneous 

treatment effects by modeling 

outcomes separately for different 

treatment levels, with a tradeoff 

between simple implementation 

and reduced reliability in inference. 

Jiang et al., 2021; Künzel et al., 2019; 

Nie & Wager, 2021; Salditt et al., 

2024 

rlearner (R package; see 

https://github.com/xnie/rlearner) 

EconML (Python library; see 

https://github.com/py-why/econml) 

CausalML (Python library; see 

https://github.com/uber/causalml) 

metalearners (Python library; see 

https://github.com/quantco/metalearne

rs) 

Causal inference using Bayesian 

machine learning: Estimate 

treatment effects using Bayesian 

machine learning models (e.g., 

Bayesian Additive Regression 

Trees [BART]) to capture nonlinear 

Green & Kern, 2012; Hahn et al., 

2020; J. Hill et al., 2020; J. L. Hill, 

2011; Zeldow et al., 2019 

bartCause (R package; see 

https://github.com/vdorie/bartCause) 

BCI Toolbox (Python library; see 

https://github.com/evans1112/bcitoolb

ox) 

https://tlverse.org/tmle3
https://github.com/ronikobrosly/causal-curve
https://github.com/ronikobrosly/causal-curve
https://cran.r-project.org/package=DoubleML
https://cran.r-project.org/package=DoubleML
https://github.com/py-why/econml
https://cran.r-project.org/package=grf
https://cran.r-project.org/package=grf
https://github.com/py-why/econml
https://github.com/xnie/rlearner
https://github.com/py-why/econml
https://github.com/uber/causalml
https://github.com/quantco/metalearners
https://github.com/quantco/metalearners
https://github.com/vdorie/bartCause
https://github.com/evans1112/bcitoolbox
https://github.com/evans1112/bcitoolbox


 34 

relationships and quantify 

uncertainty via posterior 

distributions. 

Counterfactual fairness: Defines 

fairness based on counterfactual 

comparisons across protected 

attributes using structural causal 

models, ensuring outcomes would 

remain the same in a hypothetical 

world where protected group 

membership had been different. 

Chiappa, 2019; Nabi & Shpitser, 

2018; Y. Wu et al., 2019 

EXOC (Python code; see 

https://github.com/CASE-Lab-

UMD/counterfactual_fairness_2025) 

Note: No dedicated packages or libraries – 

most implementations of counterfactual 

fairness are ad hoc in published papers or 

preprints. 

Causal data fusion: Combines data 

from different sources (e.g., 

observational and experimental) to 

estimate causal effects when no 

single dataset is sufficient, using 

assumptions encoded in 

transportability diagrams (causal 

diagrams that represent 

differences between data sources). 

Bareinboim & Pearl, 2016; Chau et 

al., 2021; Josey et al., 2022; Pearl 

& Bareinboim, 2014 

Note: Data fusion methods remain in 

development, thus general-purpose 

implementations are not currently widely 

available. Implementations of some data 

fusion concepts are available via a GUI at 

https://causalfusion.net. A Python library 

called Y0 (see https://github.com/y0-

causal-inference/y0) also implements 

some data fusion concepts (e.g., parsing 

transportability graphs). 

 

 

 

https://github.com/CASE-Lab-UMD/counterfactual_fairness_2025
https://github.com/CASE-Lab-UMD/counterfactual_fairness_2025
https://causalfusion.net/
https://github.com/y0-causal-inference/y0
https://github.com/y0-causal-inference/y0
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