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ABSTRACT 25 

In ecology, causal questions are ubiquitous, yet the literature describing systematic approaches to 26 

answering these questions is vast and fragmented across different traditions (e.g., randomization, 27 

structural equation modeling, convergent cross mapping). In our Perspective, we connect the 28 

causal assumptions, tasks, frameworks, and methods across these traditions, thereby providing a 29 

synthesis of the concepts and methodological advances for detecting and quantifying causal 30 

relationships in ecological systems. Through a newly developed workflow, we emphasize how 31 

ecologists’ choices among empirical approaches are guided by the pre-existing knowledge that 32 

ecologists have and the causal assumptions that ecologists are willing to make. 33 

 34 

1 CAUSALITY IN ECOLOGICAL STUDIES 35 

Ecology is centered around investigating causal relationships between living organisms 36 

and their environments. In ecology, as in many other scientific fields, causality is understood as a 37 

phenomenon where change in one variable (the “cause”) induces change (the “effect”) in another 38 

variable1–4. Thus, a causal relationship between 𝑋 and 𝑌 exists if a perturbation in the cause 𝑋 39 

produces a change in the responding variable 𝑌4,5, potentially through the perturbations of 40 

intermediary variables6,7. This “perturbation-based” definition of causality is the definition most 41 

familiar to scientists and philosophers4,8. 42 

Because of a strong tradition of using manipulative experiments to establish causation, 43 

ecology has been shaped by two aphorisms: “correlation does not equal causation” and “causal 44 

claims can only be made from experiments.” The first aphorism oversimplifies the complexity of 45 

causal relationships and has been critiqued in the literature5,9,10 – correlation does not always 46 
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equal causation, but correlation can suggest a causal relationship (see Section 2). More 47 

importantly, the first aphorism does not imply the second: imperfectly designed experimental 48 

studies can mistakenly suggest causal relationships where none exist, and causation can, in fact, 49 

be established through well-designed observational studies11–13. Natural history approaches, for 50 

instance, have long been used to establish credible causal claims (e.g., sea otters driving trophic 51 

cascades in subtidal communities14,15). Recently, interest in observational approaches has 52 

grown16,17 due to the economic, ethical, and logistical challenges of manipulating ecological 53 

variables18 and the limitations of experiments in capturing complex, large-scale causal 54 

relationships in nature19. Observational data, particularly from multiple locations and time points, 55 

are increasingly valued for complementing experiments and supporting more generalizable 56 

causal claims19–21. 57 

To formalize the requirements for making causal claims from experimental and 58 

observational data, scholars in various fields have made substantial advances in mathematical 59 

and statistical tools over the past 50 years12,22–28. Applications of these advances have changed 60 

how we think about scientific topics such as environmental and genetic causes of disease29–31, 61 

military veterans’ health32, criminology33,34, and education35,36, and have influenced policies on 62 

air pollution37,38 and carcinogens39. These same advances are increasingly being proposed by 63 

ecologists to investigate causal questions using observational9,27,40–49 and experimental data50–52. 64 

Yet the way in which these advances relate to each other is not readily apparent from the 65 

published literature. For example, what are the conceptual connections between studies that use 66 

experimental designs and studies that use convergent cross mapping algorithms? Published 67 

reviews typically focus on one set of approaches at a time (e.g. quasi-experimental designs, 68 
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structural causal models, dynamical systems)27,41,44,53,54, which makes it difficult for ecologists to 69 

understand how, or if, the seemingly disparate approaches are related. 70 

In this Perspective, we connection the assumptions, tasks, frameworks, and methods 71 

across these approaches, thereby providing a synthesis of the concepts and methodological 72 

advances for detecting and quantifying causal relationships in ecological systems. When 73 

answering a causal question, we must first identify the appropriate causal task: either causal 74 

discovery, which focuses on detecting whether causal relationships are likely to exist between 75 

variables in a system, or causal inference, which focuses on quantifying the direction and 76 

magnitude of causal relationships without bias. To accomplish these tasks, we employ causal 77 

frameworks, such as the structural causal model framework12, the potential outcomes 78 

framework25, or the dynamical systems causality framework55,56, which formally define causal 79 

relationships and specify the assumptions that must be satisfied to accurately detect or quantify 80 

causal relationships from data. These frameworks then guide the selection of causal methods, 81 

that is, study designs and algorithms, which are used to operationalize these assumptions and 82 

establish the conditions necessary to make causal claims. To outline the process of navigating 83 

tasks, frameworks, and methods, we created a workflow for answering causal questions in 84 

ecological research. To provide further readings and software to implement the ideas in the 85 

Perspective, we provide comprehensive Supplemental Information (SI). 86 

Throughout our Perspective, we highlight how well-articulated causal assumptions are 87 

the “glue” that unifies the myriad approaches to answering causal questions in ecology. These 88 

assumptions facilitate transparent discussions about the adequacy of study designs and 89 

algorithms that help scholars move from observations of statistical dependence in data to claims 90 

about causal relationships in ecological systems.  91 
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2 USING ASSUMPTIONS TO MOVE FROM CORRELATION TO CAUSATION  92 

Data never “speak” by themselves. To derive meaningful causal insights from data, we 93 

must rely on well-defined hypotheses, statistical models grounded in ecological theory, and both 94 

testable and untestable assumptions57–59. The importance of hypotheses, appropriate statistical 95 

models, and statistical assumptions is well known in ecology.  96 

Less well known is the importance of causal assumptions that allow researchers to go 97 

from making claims about correlations to making claims about causation. Unlike most statistical 98 

assumptions, causal assumptions are typically untestable; that is, causal assumptions cannot be 99 

verified from data, even unlimited data. For example, experimentalists assume that 100 

randomization of a treatment ensures that any differences in outcomes across the randomized 101 

groups can only be attributed to either the treatment or sampling variability50. Yet, 102 

experimentalists cannot verify this assumption. Causal assumptions, when combined with 103 

principles of probability theory and statistical dependence, allow us to make causal claims from 104 

data. The formalization of these assumptions is one of the most important scientific advances for 105 

answering causal research questions26,28,58. For more details on the contrast between statistical 106 

and causal assumptions, see SI Section 1. 107 

Causal assumptions, in tandem with statistical assumptions about the data structure, 108 

establish when statistical dependence can be interpreted as evidence for the perturbation-based 109 

notion of causality12,25,27,60. In ecology, a commonly used measure of statistical dependence is 110 

correlation, which describes the linear similarity between two sets of observations. Consider a 111 

scenario in which we seek to determine whether, or by how much, variation in abundance of 112 

aphid predators (e.g., ladybird beetles) (𝑋) changes the abundance of aphids (𝑌).  If our 113 

knowledge about the probability of aphid abundance changes after learning something about 114 
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ladybird beetle abundance, then ladybird beetle abundance and aphid abundance are statistically 115 

dependent. This dependence forms the starting point for investigating potential causal 116 

relationships between two variables. 117 

Statistical dependence is linked to causality through the Common Cause Principle61, 118 

which states that if a statistical dependence exists between two variables 𝑋 and 𝑌, then at least 119 

one of the following is true: 𝑋 causes 𝑌, 𝑌 causes 𝑋, or 𝑋 and 𝑌 are both caused by a third 120 

variable 𝐶 (Fig. 1). The presence of correlation can thus be mapped to the potential presence of a 121 

causal relationship. The lack of correlation, however, does not necessarily rule out statistical 122 

dependence or causality, as correlation is just one possible measure of dependence between two 123 

variables. 124 

 125 

Fig. 1. Statistical dependence implies three possible causal relationships: 𝑋 causes 𝑌, 𝑌 causes 𝑋, 126 

or 𝑋 and 𝑌 are caused by a common variable 𝐶. All three relationships can exist simultaneously 127 

in many contexts (indicated by the dashed grey arrows). Causal assumptions aim to eliminate the 128 

third possibility because the presence of 𝐶 introduces additional statistical dependence between 129 

𝑋 and 𝑌 that is not due to any direct causal relationship. 130 

 131 
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In many causal analyses, eliminating the possibility that a third variable 𝐶 causes both 𝑋 132 

and 𝑌 is a priority, because we wish to distinguish variables with direct causal links from those 133 

that are not causally influencing each other (i.e., we seek to eliminate non-causal, rival 134 

explanations for statistical dependencies). For example, in Fig. 2 broad-spectrum pesticide use 135 

(𝐶) affects ladybird beetle abundance (𝑋) and earthworm abundance (𝑌2). However, ladybird 136 

beetle abundance does not influence earthworm abundance, nor vice versa. In this case, any 137 

observed statistical dependence between 𝑋 and 𝑌2 is entirely attributable to their common cause 138 

𝐶. 139 
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 140 

Fig. 2. Illustration of the Common Cause Principle in an ecological system where abundance of 141 

ladybird beetles, aphids, and earthworms are statistically dependent but not necessarily causally 142 

related. Blue arrows represent directional causal relationships, and red dashed lines represent 143 

statistical dependence but not causal relationships.  144 

 145 

To eliminate these “common causes” (a.k.a., “confounding variables” or “confounders”), 146 

researchers make three assumptions: the Causal Sufficiency Assumption28, the Causal Markov 147 
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Condition61–63, and the Causal Faithfulness Assumption28 (Box 1). The combination of these 148 

three untestable assumptions allows us to distinguish direct causal relationships between 149 

variables from dependence between variables induced by a common cause. By including all 150 

common causes in a model describing the relationship between 𝑋 and 𝑌 (A1 in Box 1), we can 151 

eliminate the portion of the dependence attributable to shared causes 𝑪 (A2). We can then 152 

interpret the remaining statistical independencies as evidence of no causal relationship between 153 

the variables (A3), while any remaining statistical dependence implies the possibility of a direct 154 

causal relationship.  155 

For example, if pesticide use (𝐶) is a common cause of both ladybird beetle abundance 156 

(𝑋) and aphid abundance (𝑌), then we should include pesticide use in a model of the relationship 157 

between ladybird beetle abundance and aphid abundance (Fig. 2). If pesticide use is the only 158 

common cause and, after conditioning on it, ladybird beetle abundance is statistically 159 

independent of aphid abundance (i.e., they are conditionally independent), then, under the three 160 

causal assumptions, we can infer that no causal relationship between ladybird beetle abundance 161 

and aphid abundance exists. Conversely, if ladybird beetle abundance and aphid abundance are 162 

not independent conditional on pesticide use, then a causal relationship between ladybird beetle 163 

abundance and aphid abundance may exist (i.e., a lack of conditional independence simply 164 

means we cannot rule out a causal relationship, but it does not provide definitive evidence of 165 

causation). 166 

The three causal assumptions required to connect statistical dependence to causal 167 

dependence – the Causal Sufficiency Assumption, Causal Markov Assumption, and Causal 168 

Faithfulness Assumption – are the foundation upon which causal claims are made from 169 

experimental and observational data. These causal assumptions allow us to differentiate the 170 
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causal dependencies between two variables from the non-causal dependencies created by 171 

confounding variables.   172 
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 173 

Box 1. Three fundamental causal assumptions 

For these assumptions, we define two variables 𝑋 and 𝑌 as statistically dependent if the 

probability that 𝑌 takes a specific value given that 𝑋 has taken a specific value is different 

from the probability that 𝑌 takes a specific value without any information about the value 

that 𝑋 has taken. In other words, if 𝑋 and 𝑌 are statistically dependent, knowing something 

about 𝑋 changes what is known about the probability of 𝑌. 

A1. Causal Sufficiency52 (a.k.a., the “no unmeasured confounding” assumption55–57), 

requires that we observe all variables in a set 𝑪 that causally influence any pairs of 

variables 𝑋 and 𝑌, and we include 𝑪 in our model that describes the relationship 

between 𝑋 and 𝑌, thus ensuring that no confounding variables are unobserved.  

A2. The Causal Markov Condition54,58,59 states that if a pair of variables 𝑋 and 𝑌 are 

statistically dependent solely because both are caused by a common variable 𝐶, and if 

we control for 𝐶 by including it in our model, then 𝑋 and 𝑌 become conditionally 

independent given 𝐶.  

A3. Causal Faithfulness52, stated very loosely, declares that statistical independence 

(conditional or unconditional) between a pair of variables 𝑋 and 𝑌 indicates the 

absence of a causal relationship between those variables.  

The combination of the Causal Markov Assumption (A2) and the Causal Faithfulness 

Assumption (A3) allows us to claim that if two variables, 𝑋 and 𝑌, are conditionally 

independent when 𝐶 is included in the model, then 𝑋 and 𝑌 are not causally related but 

instead are caused by a third common variable 𝐶. The Causal Sufficiency Assumption (A1) 

then ensures that we can distinguish causal relationships from dependence induced by a 

common cause if we include all possible confounders between variables in a model that 

describes the relationship between 𝑋 and 𝑌.  

The Causal Markov and Causal Faithfulness assumptions have formal definitions requiring 

technical notation that are beyond the scope of this article. For a full discussion of these 

assumptions, we refer the reader to Pearl (2000)23 and Spirtes and Zhang (2016)60. 
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3 SATISFYING CAUSAL ASSUMPTIONS WITH PRE-EXISTING KNOWLEDGE, 174 

STUDY DESIGNS, AND ALGORITHMS 175 

Given the restrictive and untestable nature of the three causal assumptions introduced in 176 

Section 2, ecologists may wonder whether causal claims can realistically be made from 177 

ecological data, since satisfying these assumptions requires building models that account for all 178 

confounders. Unlike models built for prediction or description, models built to make causal 179 

claims cannot be validated using goodness-of-fit or predictive accuracy metrics, as these metrics 180 

assess how well a model describes the observed data but do not evaluate how well the model 181 

satisfies the untestable assumptions required for making causal claims64,65 (for more details, see 182 

SI Section 2). In the following subsections, we describe how the foundations for satisfying causal 183 

assumptions are provided by pre-existing knowledge, study designs, and algorithms.  184 

 185 

3.1 Pre-existing knowledge 186 

To satisfy the three causal assumptions, pre-existing knowledge is essential59. We use pre-187 

existing knowledge to hypothesize causal relationships between variables by specifying the 188 

outcome(s) of interest (𝑌) and identifying potential causes (𝑋). We also use pre-existing 189 

knowledge to identify potential confounders and determine which confounders can be measured 190 

in a study43,66,67. The more pre-existing knowledge that we can apply towards satisfying causal 191 

assumptions, the more sophisticated the causal questions we can answer. 192 

Pre-existing knowledge can include general and domain-specific ecological theory, 193 

subject matter expertise, field experience, and findings from previous studies, including studies 194 

that use empirical approaches lacking causal interpretations (see SI Section 2). Because pre-195 
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existing knowledge is often complex and wide-ranging, we need succinct and straightforward 196 

ways to summarize it. In Section 5, we describe two common tools for organizing our 197 

understanding of an ecological system (i.e., our ‘mechanistic knowledge’66). 198 

 199 

3.2 Study designs and algorithms 200 

Pre-existing knowledge is typically not sufficient to satisfy causal assumptions. For 201 

instance, even if we can identify all confounders with pre-existing knowledge, we are unlikely to 202 

be able to measure them all, which would be necessary to satisfy the Causal Sufficiency 203 

Assumption. However, study designs and algorithms provide us with the opportunity to address 204 

such challenges by relaxing one or more of the three causal assumptions in Section 2 in favor of 205 

equally untestable but (hopefully) more plausible causal assumptions.  206 

Experimental designs, for example, substitute the Causal Sufficiency Assumption with 207 

the assumption that treatment randomization eliminates the effects of unmeasured confounding 208 

variables25,68. Confounders are thus addressed through design rather than measurement. In non-209 

experimental studies, observational designs often relax the Causal Sufficiency Assumption 210 

through statistical techniques that define the minimum set of confounding variables that need to 211 

be observed to accomplish the desired causal task57,58,69, or through statistical techniques that 212 

allow researchers to pursue alternative research goals that reduce the number of confounders that 213 

must be measured (e.g., by defining alternative causal effects70,71). These statistical techniques 214 

and redefined research goals can also be used with experimental designs that face 215 

implementation challenges, such as when the experimental manipulation affects the outcome 216 

variable through other pathways (i.e., randomization is a confounder), or when post-217 

randomization observations are missing (i.e., attrition). We provide more details on both 218 
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experimental and observational study designs and algorithms for each of the causal tasks in 219 

Section 8. 220 

 221 

4 A WORKFLOW FOR ANSWERING CAUSAL QUESTIONS IN ECOLOGY 222 

We now present a comprehensive workflow that summarizes the key steps for conducting 223 

causal analyses (Fig. 3), with examples for each of the steps using two hypothetical ecological 224 

studies (Box 2). Our workflow illustrates how to systematically address causal questions in 225 

ecology.  226 

The workflow serves as a roadmap, starting with the description of the causal question 227 

and ending with the interpretation and validation of the results. Each step in the workflow 228 

represents a decision point where we take action to ensure our causal analysis is robust, 229 

transparent, and aligned with the assumptions necessary to make causal claims from statistical 230 

analyses of ecological data. The workflow is designed to be flexible, allowing ecologists to tailor 231 

their approach based on their pre-existing knowledge, data, and methodological preferences.  232 

To illustrate the workflow’s application to real-word ecological research, we use two 233 

example ecologists, an intertidal ecologist and a tiger ecologist. In Box 2, we summarize how 234 

each ecologist navigates the workflow. In Sections 5 through 8, we elaborate on each of the 235 

following workflow steps: 236 

1. Define the Causal Question and Summarize Pre-Existing Knowledge (Section 5): We 237 

must first define the causal research question with at least one outcome variable (𝑌) and 238 

one or more hypothesized causal variables (𝑋) (see SI Section 2 for differences between 239 

causal and non-causal questions in ecology). Then, to identify all confounding variables, 240 
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we must assess the corpus of pre-existing knowledge on the causes and outcomes of 241 

interest. We can summarize this knowledge using causal diagrams or thought 242 

experiments.  243 

2. Define the Causal Task (Section 6): When answering causal questions, we use pre-244 

existing knowledge to determine whether to pursue causal discovery or causal inference. 245 

Causal inference, which seeks to quantify the magnitudes of causal relationships, is 246 

feasible when we have sufficient pre-existing knowledge to be confident of the causal, 247 

outcome, and confounding variables and the directions of the causal relationships.  If this 248 

knowledge is insufficient, we can instead pursue causal discovery, which aims to detect 249 

the existence of causal relationships. 250 

3. Select Framework (Section 7): To clearly articulate the causal and statistical 251 

assumptions that must be satisfied for valid claims in either causal task, we can use one 252 

or more causal frameworks. The potential outcomes framework and the structural causal 253 

model framework are two common frameworks used for causal inference. For causal 254 

discovery, the structural causal model and dynamical systems causality frameworks are 255 

frequently used. 256 

4. Select Study Design or Algorithm, Collect Data and Apply Estimation Methods, 257 

Obtain Results, and Interpret Results (Section 8): For causal inference, study designs 258 

can be grouped into three categories: experimental designs, observational designs for 259 

measured confounders, and observational designs for unmeasured confounders. Within 260 

each of these categories, many methods exist, some of which are described in SI Table S6 261 

(e.g., regression adjustment72, propensity score matching45,73, and structural equation 262 

modeling9). For causal discovery, algorithms are used instead of study designs. These fall 263 
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into four categories: constraint-based, score-based, functional model-based, and 264 

dynamical systems causality-based. Some of the algorithms are described in SI Table S7 265 

(e.g., convergent cross mapping27, fast causal inference28, and greedy equivalency 266 

search74). Based on the requirements of the study design or algorithm, we then collect 267 

data and apply estimation methods to detect causal relationships or quantify causal 268 

effect(s). Afterwards, we interrogate the plausibility of the causal and statistical 269 

assumptions by identifying potential violations to the assumptions and exploring the 270 

implications of those violations for the conclusions. 271 

 272 

Although we present the workflow in a linear fashion, researchers will use it iteratively in two 273 

ways: (i) the results from one causal analysis will feed into future analyses in the form of pre-274 

existing knowledge66 (grey arrow in Fig. 3); and (ii) after taking actions at one step, researchers 275 

may need to return to previous steps before advancing in the workflow (e.g., reassessing the 276 

study design if data collection did not go as planned).  277 
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 278 

Fig. 3. A workflow that outlines the key steps and decisions for answering causal questions in 279 

ecological research. 280 
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 281 Box 2. Ecologists conducting causal analyses using the workflow in Fig. 3. 

“Define the Causal Question and Summarize Pre-Existing Knowledge” 

An intertidal ecologist seeks to quantify the change in 

bivalve abundance (𝑌) caused by floods (𝑋) through 

changes in nitrogen (𝑀1) and salinity (𝑀2) in intertidal 

zones at the mouth of an estuary. The ecologist 

summarizes knowledge about all confounders for each of 

the causal relationships of interest (i.e., floods on 

bivalves, floods on nitrogen, floods on salinity, nitrogen 

on bivalves, and salinity on bivalves). 

A tiger ecologist seeks to determine the ecological factors 

(𝑿) that encourage more visits or longer time (𝑌) spent in 

certain locations by tigers. The ecologist summarizes 

knowledge about confounders of the causal relationship 

between ecological factors and tiger occupancy (e.g., 

geographic and human factors). 

“Define the Causal Task” 

The intertidal ecologist has robust ecological theory and a 

significant collection of prior studies that identified the 

set of all confounding variables that could bias estimation 

of any one of the causal relationships of interest. Thus, 

the ecologist pursues causal inference.  

The tiger ecologist has theory and field observations to 

identify certain ecological factors that may influence tiger 

occupancy, but they do not have sufficient knowledge to 

identify all human and geographic confounding variables. 

Thus, the ecologist pursues causal discovery. 

“Select Framework” 

The intertidal ecologist prefers the structural causal 

model framework for its structural approach to reasoning 

about multiple causes jointly. 

The tiger ecologist prefers the dynamical systems 

causality (DC) framework for its focus on complex, 

evolving systems. 

“Select a Study Design or Algorithm” 

The intertidal ecologist selects an observational study 

design in which they measure and condition on all 

confounding variables. 

The tiger ecologist selects a DC-based algorithm. 

“Collect Data and Apply Estimation Methods” 

The intertidal ecologist collects observational cross-

sectional data on all causal, outcome, and confounding 

variables related to the causal relationships of interest and 

then fits a structural equation model. 

The tiger ecologist collects observational time series data 

for tiger occurrence, abundance of several prey species, 

poaching activity, and weather conditions at a series of 

locations and uses convergent cross mapping (CCM) to 

detect causal relationships between pairs of variables. 

“Obtain and Interpret Results” 

The intertidal ecologist obtains estimates of the causal 

effects of floods on bivalve abundance that arise though 

the changes in nitrogen and salinity. They perform a 

causal sensitivity analysis that quantifies how much the 

estimates change in the presence of an unmeasured 

confounding variable. 

The tiger ecologist obtains a network with detected 

causal relationships between pairs of variables. They 

perform a sensitivity analysis that shows how the 

detected causal relationships change when the CCM 

hyperparameter settings are changed. 
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5 SUMMARIZE PRE-EXISTING KNOWLEDGE 282 

One common conceptual tool for summarizing pre-existing knowledge is a causal 283 

diagram. Causal diagrams help us organize our pre-existing knowledge by visually mapping the 284 

presumed causal relationships among causes (𝑋), their outcomes (𝑌), and confounding variables 285 

(𝑪). The most widely-used type of causal diagram is the causal directed acyclic graph (causal 286 

DAG), which follows a set of formal rules that define how causal relationships must be 287 

encoded75. A causal DAG includes the focal variables of a study (i.e., the “cause” and the 288 

“outcome” variables), along with all suspected common causes (i.e. confounders) between the 289 

focal variables. Directed edges (arrows) between variables indicate that unidirectional causal 290 

relationships are presumed to exist, and the absence of an arrow between two variables reflects a 291 

strong assumption that a causal relationship does not exist12. Causal DAGs, which must include 292 

all potential confounders of presumed causal relationships, enable us to identify the confounding 293 

variables we need to address with an experimental or statistical technique. Thus, causal DAGs 294 

should be constructed at the beginning of a study, before data are collected and the specific study 295 

design or algorithm is chosen. 296 

Some ecologists will be familiar with the structural equation model (SEM) diagram9, 297 

which can be interpreted as a causal DAG when its structure represents only unidirectional 298 

relationships and explicitly encodes assumptions about causal relationships, including all 299 

relevant confounders76,77. SEM diagrams also include additional parametric assumptions and are 300 

purpose-built for SEM analyses76, whereas causal DAGs, which require no assumptions about 301 

the functional forms of causal relationships between variables, can be used in any type of causal 302 

analysis.  303 
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Another conceptual tool for summarizing pre-existing knowledge is a thought experiment 304 

in which researchers consider how a hypothetical ideal randomized controlled trial (RCT) – often 305 

termed a “target trial”78,79 – would be designed to answer their causal research question25. By 306 

comparing the ideal (target) trial with the actual data generating process, we can identify 307 

discrepancies that may lead to bias through confounding variables that distort the observed 308 

relationship between the causal variable and the outcome. Formulating such a target trial forces 309 

us to articulate all the key components of an ideal RCT and then systematically determine which 310 

of these components may be absent or imperfect in our study. In doing so, it becomes clearer 311 

which variables, including potential confounders, should be adjusted for to emulate the 312 

conditions of an ideal experiment. Just as drawing causal DAGs helps visualize the network of 313 

causal relationships and identify confounders, formulating these thought experiments provides a 314 

concrete tool for planning rigorous study designs (i.e., the thought experiment forces us to ask 315 

the question, “Where does the variation in the causal variable come from?” a.k.a., “What is the 316 

treatment assignment mechanism?”). For resources that describe how to draw causal DAGs or 317 

develop thought experiments for studies, see SI Section 3. 318 

 319 

6 DEFINE THE CAUSAL TASK – CAUSAL DISCOVERY OR CAUSAL INFERENCE 320 

In deciding the most appropriate causal task for a research question, we must carefully 321 

consider the gap between available knowledge and the knowledge that would be required to 322 

plausibly satisfy causal assumptions. When pre-existing knowledge is extensive, we may pursue 323 

the task of causal inference. When pre-existing knowledge is limited, we may instead pursue 324 

causal discovery. Although the dividing lines between these two tasks is not as clearcut as 325 
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implied in our workflow (i.e., causal research lies on a continuum rather than in one of two 326 

camps), the contrast between their goals is illuminating for understanding how each task draws 327 

on pre-existing knowledge. 328 

The goal of causal inference is to quantify the magnitudes of causal effects, either under 329 

a range of typical conditions or under specific interventions (e.g., new management policies, 330 

abrupt ecological changes). Causal inference requires substantial pre-existing knowledge about 331 

which variables act as causes, outcomes, and confounders, as well as the directions of causal 332 

processes (“high” pre-existing knowledge in Fig. 3). Quantifying multiple causal effects within 333 

an ecological system is even more challenging because sufficient pre-existing knowledge must 334 

exist to satisfy the required causal assumptions for every pair of cause-outcome variables.  335 

 When quantifying causal effects, defining the specific effect(s) of interest is important for 336 

connecting theoretical quantities to data. Different causal effects require different variations of 337 

the causal assumptions80. Ecologists are often interested in the average effect of 𝑋 on 𝑌 across all 338 

observations, that is, the average change in the outcome 𝑌 per unit change in 𝑋. However, other 339 

effects may also be relevant, such as mediation effects81 (effects of intermediary variables 340 

between a cause and its outcome) or effects for subgroups82 (e.g., the average effect of 𝑋 on 𝑌 341 

only for observations which experienced specific values of 𝑋). Moreover, some causal effects 342 

may be preferred because the causal assumptions for these effects can be more plausibly satisfied 343 

for a study (e.g., complier average causal effects, local average treatment effects, etc.).  344 

In contrast to causal inference, causal discovery aims to detect or “learn” causal 345 

relationships among measured variables. Although causal discovery requires causal assumptions, 346 

they are less restrictive than they are in causal inference, and thus, less pre-existing knowledge is 347 

required (“low” pre-existing knowledge in Fig. 3). While causal discovery methods offer 348 
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flexibility in investigating causal questions with limited pre-existing knowledge, this advantage 349 

comes with the trade-off of potentially less precise or less certain conclusions about causal 350 

relationships. Causal discovery is therefore primarily valuable for generating more knowledge to 351 

guide subsequent studies.  352 

To detect causal relationships, causal discovery involves defining an initial causal 353 

diagram (see Section 5) and refining it with statistical evidence from data. One strategy begins 354 

with a causal diagram that assumes causal relationships exist among all variables. Statistical 355 

independence tests are then systematically applied to eliminate connections between variables 356 

where evidence of a causal relationship is not supported by the data53. Another strategy starts 357 

with a causal diagram that assumes no causal connections among variables and iteratively adds 358 

them where statistical evidence suggests a potential causal relationship83. This second strategy is 359 

particularly amenable to incorporating pre-existing knowledge by allowing researchers to specify 360 

relationships that should be included or excluded from the outset. Both strategies rely on 361 

variations of the three causal assumptions introduced in Section 2 and aim to produce a refined 362 

causal diagram that reflects only the causal relationships consistent with the observed data and 363 

the underlying assumptions.  364 

 365 

7 SELECT A CAUSAL FRAMEWORK 366 

Causal frameworks structure how causal assumptions are represented for a given task, 367 

ensuring consistency between study design/algorithm, data collection, and estimation procedures.  368 

 369 
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7.1 Causal frameworks for causal inference  370 

For causal inference, assumptions and estimation procedures are expressed using one of 371 

three causal frameworks: the structural causal model (SCM) framework; the Neyman-Rubin 372 

causal model, also commonly known as the potential outcomes (PO) framework; and the 373 

decision-theoretic framework22. While we focus on the SCM and PO frameworks, readers 374 

interested in the decision-theoretic framework can refer to Dawid (2000)22 and Dawid (2012)84.  375 

The choice of framework is primarily based on researcher preferences, as the PO and 376 

SCM frameworks have been shown to be logically and mathematically equivalent85–87. The PO 377 

framework may appeal to experimentalists because it expresses causal assumptions by 378 

approximating the conditions that most accurately represent an idealized “gold standard” 379 

randomized controlled experiment. Alternatively, researchers who primarily model ecological 380 

systems as collections of simultaneously interacting variables may prefer the SCM framework, 381 

which represents systems as causal DAGs. Structural equation modeling, when used to make 382 

causal claims under the necessary causal assumptions9,46, is a subset of the SCM framework77,88.  383 

Formalizations of the causal assumptions for causal inference as expressed using the PO 384 

framework and the SCM framework are described in SI Section 4 and Box S1. Resources for 385 

learning more about the core concepts of the PO and SCM frameworks can be found in SI 386 

Section 5.  387 

 388 

7.2 Causal frameworks for causal discovery  389 

For causal discovery, the assumptions and estimation procedures are expressed using 390 

either the SCM framework or the dynamical systems causality (DC) framework55,56. Causal 391 
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discovery using the SCM framework is well-suited for ecological systems with multiple 392 

interacting variables, where causal relationships are expected to be stable across observations. 393 

SCM-based causal discovery algorithms also allow researchers to incorporate pre-existing 394 

knowledge by specifying constraints on potential causal relationships, making them particularly 395 

useful for exploratory studies where some causal relationships are known or hypothesized. In 396 

contrast, the DC framework may be more suitable for complex dynamic systems where causal 397 

effects unfold over time and cannot be represented as static combinations of causative factors. 398 

DC-based algorithms typically use time series data to infer causal relationships by testing 399 

whether knowledge of once variable’s past improves the ability to anticipate changes in another 400 

variable. Measures of improvement span changes in predictability or statistical dependence, 401 

including those captured by information-theoretic measures83,89.  402 

SCM-based causal discovery algorithms generally begin with a causal diagram that 403 

assumes relationships between all variables in the data, and then they iteratively test for 404 

statistical independence between pairs of variables. Edges are removed where statistical 405 

independence is found, refining the causal diagram to represent only causal relationships 406 

consistent with the statistical independencies reflected in the data53. In contrast, DC-based 407 

algorithms typically start with no assumed causal relationships among variables, and test whether 408 

statistical dependence between each pair of variables in each direction (𝑋 → 𝑌 and 𝑌 → 𝑋) are 409 

significantly different from white noise or null hypothesis models83,90. If the dependence meets 410 

the threshold for significance (typically, α = 0.05) in only one of the directions, say 𝑋 → 𝑌, then 411 

asymmetric coupling is detected, indicating a causal information flow from 𝑋 (the driving 412 

system) to 𝑌 (the response system). The strength of the causal relationship is then estimated 413 

using a distance metric56,83. In both the SCM and DC frameworks, multiple causal diagrams can 414 
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be consistent with the same structure of statistical dependencies in data, but pre-existing 415 

knowledge can refine the causal diagrams by constraining what relationships are possible.   416 

Formalizations of the causal assumptions for causal discovery as expressed using the 417 

SCM framework and the DC framework are described in SI Section 4 and Box S2. Resources for 418 

learning more about the core concepts of the SCM and DC frameworks can be found in SI 419 

Section 5.   420 

 421 

8 SELECT A STUDY DESIGN OR ALGORITHM, APPLY ESTIMATION METHODS, 422 

OBTAIN RESULTS, AND INTERPRET RESULTS 423 

Study designs for causal inference and algorithms for causal discovery provide structured 424 

approaches for satisfying or relaxing the untestable causal assumptions through decisions about 425 

the data and analysis (i.e., designs and algorithms operationalize causal frameworks). Designs 426 

and algorithms also lead us to appropriate methods for estimation and interpretation of the 427 

results.   428 

This section provides an overview of key study designs for causal inference and 429 

algorithms for causal discovery. The details and applications of each approach are beyond the 430 

scope of this Perspective, but in SI Section 6 we provide resources, including guidance on 431 

implementation and relevant software packages. While we focus on foundational study designs 432 

and algorithms, we summarize in SI Section 7 some advanced methods, including those that 433 

integrate machine learning techniques into their estimation procedures, which are rapidly 434 

emerging and may offer new opportunities for ecological research. 435 

 436 
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8.1 Study designs for causal inference 437 

Study designs for causal inference fall into three categories: (1) experimental designs that 438 

aim to minimize confounding from both measured and unmeasured variables through 439 

manipulation of the causal variable, (2) observational designs that explicitly identify and control 440 

for measured confounders, and (3) observational designs that eliminate unmeasured, and 441 

potentially unknown, confounding by leveraging external sources of variation (specific designs 442 

from these three categories are listed in SI Table S6).  443 

Experimental designs (e.g., randomized controlled trials50 and factorial designs91) are 444 

often well-suited for causal inference because they provide a structured approach for directly 445 

manipulating the causal variable and defining the temporal order of cause and effect. Through 446 

strategies like randomization, we aim to control or eliminate the effects of confounding variables, 447 

providing justification for causal claims. However, suboptimal decisions in the design and 448 

analysis of experiments can produce invalid causal conclusions92, and even well-designed 449 

experiments may face challenges93, such as non-compliance or non-random dropout. Moreover, 450 

in ecology, experiments may be prohibitively expensive at the scales needed to detect causal 451 

effects, or they may distort natural ecological conditions94, making them impractical or 452 

unrepresentative.  453 

When experiments are infeasible, impractical, or unethical, observational designs for 454 

measured and unmeasured confounders are available. Advances in causal approaches for 455 

observational studies provide statistical techniques to satisfy causal assumptions without 456 

experimental manipulation12,22,25,75,95. Observational designs for measured confounders (e.g., 457 

regression adjustment72, propensity score matching73, and structural equation modeling9) rely on 458 

measuring all confounding variables. When measuring, or even knowing, all relevant 459 
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confounders is not feasible, we can use observational designs for unmeasured confounders (e.g., 460 

before-after-control-impact96and multilevel modeling with fixed effects97). These designs relax 461 

the causal sufficiency assumption of no unmeasured confounders by replacing it with 462 

assumptions about the structure of unmeasured confounders, typically informed by pre-existing 463 

knowledge. These designs then use statistical techniques to represent the influence of 464 

confounders based on their assumed structure, without needing to directly measure the 465 

confounders.  466 

Experimental and observational designs can be implemented using either cross-sectional 467 

or longitudinal data. However, strong assumptions about temporal ordering (cause must precede 468 

its outcome) and stable effects over time are required to quantify causal effects using cross-469 

sectional data. Once data are collected, we can quantify the causal effect of interest using a range 470 

of estimation methods (“Collect Data and Apply Estimation Methods” and “Obtain Results” in 471 

Fig. 3). Many estimation methods are available to implement a chosen study design, each 472 

providing a different statistical approach for estimating the causal effect of interest98,99. 473 

 After estimating a causal effect, we must then interrogate the plausibility of the causal 474 

assumptions underlying the study design and explore the implications of violations to these 475 

assumptions (“Interpret Results” in Fig. 3). One common approach for assessing the implications 476 

of violations is to perform causal sensitivity analyses, which quantify how an estimated effect 477 

would change in the presence of unaddressed confounding. Many sensitivity analysis techniques 478 

are available for a variety of causal inference methods100–104, including SEM105. An alternative 479 

approach to interrogating the plausibility of causal assumptions involves detecting under-480 

adjustment of confounding variables by drawing on pre-existing knowledge to formulate tests of 481 

known effects11,106,107 (e.g., falsification or placebo tests). We must also consider how other 482 
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forms of bias108,109, including selection bias110,111 and measurement bias112–114, may influence the 483 

estimated effects and the robustness of our conclusions. 484 

 485 

8.2 Algorithms for causal discovery 486 

Algorithms for causal discovery fall into four categories: DC-based algorithms and three 487 

types of SCM-based algorithms, which are called constraint-based, score-based, and functional 488 

model-based algorithms (specific algorithms from these four categories are listed in SI Table S6). 489 

DC-based methods are suited for dynamic systems and assess causal interactions based on 490 

predictability and information flow over time. Constraint-based methods use conditional 491 

independence tests to eliminate implausible causal relationships. Score-based methods evaluate 492 

possible graphical structures using a scoring criterion that captures how well the graph fits 493 

patterns of conditional independencies in the data. Functional model-based methods assume 494 

specific functional relationships between variables (e.g., linear or non-linear equations with 495 

noise) and infer causal direction by identifying which graph configuration satisfies those 496 

assumptions. 497 

Causal discovery algorithms have been developed to accommodate different data 498 

structures, with approaches often tailored to either longitudinal data or cross-sectional data. DC-499 

based methods (e.g., Granger causality60 and convergent cross mapping [CCM]27) require 500 

bivariate or multivariate time-series data (i.e., regularly spaced longitudinal data) to infer causal 501 

relationships through changes over time. In contrast, SCM-based algorithms (e.g., Fast Causal 502 

Inference [FCI]28, Greedy Equivalency Search [GES]74, and Peter and Clark Momentary 503 

Conditional Independence [PCMCI]115) can be applied to both cross-sectional and longitudinal 504 
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data, but additional assumptions about temporal ordering (i.e., causes precede their outcomes) 505 

must be satisfied when using cross-sectional data. As with causal inference, pre-existing 506 

knowledge can enhance results from SCM-based discovery methods by explicitly specifying 507 

certain relationships that should or should not be included in the causal diagram.  508 

Once candidate causal diagrams have been obtained (“Collect Data and Apply Estimation 509 

Methods” and “Obtain Results” in Fig. 3), we must assess whether the causal assumptions of the 510 

chosen discovery algorithm are plausible for the ecological system under study and explore the 511 

implications of violations to these assumptions (“Interpret Results” in Fig. 3). To assess the 512 

reliability of conclusions drawn from the causal discovery process and to evaluate the robustness 513 

of the inferred causal relationships, sensitivity analyses that explore the stability of results across 514 

different hyperparameter settings should be undertaken116. 515 

 516 

9 CHALLENGES AND OPPORTUNITIES 517 

Making valid causal claims from ecological data requires moving beyond analyses that 518 

use prediction- and association-focused models, which typically fail to represent the true 519 

underlying causal structures of ecological systems64,117,118. It instead requires satisfying or 520 

carefully relaxing the causal assumptions that allow observed statistical dependencies to be 521 

interpreted as evidence of causal relationships. While this requirement may seem daunting, 522 

especially given the complexity of ecological systems, advances in causal methodologies have 523 

demonstrated how the quality and transparency of causal claims can be improved through clearer 524 

articulation of the causal assumptions, scrutiny of their plausibility, and attention to potential 525 

violations. For example, the intertidal ecologist who uses SEM to estimate causal effects and the 526 
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tiger ecologist who uses CCM to discover causal relationships (Box 2) would (i) clearly state all 527 

the causal assumptions required by their study design or algorithm; (ii) quantify the amount of 528 

unmeasured confounding that would be needed to overturn their causal claims, or, for discovery 529 

algorithms, report how detected causal relationships change under different hyperparameter 530 

settings; and (iii) frankly discuss potential unmeasured confounding variables or other violations 531 

to their causal assumptions that could invalidate their conclusions.  532 

By connecting the causal assumptions, tasks, frameworks, and methods that play essential 533 

roles in causal research, our workflow (Fig. 3) provides a structured approach for investigating 534 

causal questions in ecology. The workflow emphasizes the role of pre-existing knowledge, which 535 

helps us to align the causal task with the research objective, clarify assumptions through a causal 536 

framework, and select a study design or algorithm that satisfies those assumptions and guides 537 

data collection and analysis. Studies that explicitly state and justify the assumptions underlying 538 

their causal claims allow subject matter experts to evaluate the credibility of these assumptions 539 

and build on them more effectively. Thus, our workflow not only supports ecologists in 540 

conducting rigorous and transparent causal analyses, but it also facilitates cogent discussions 541 

about the potential for unresolved confounding in prior studies, which can motivate new studies. 542 

Through an iterative application of the workflow, we can enhance the accumulation and 543 

synthesis of ecological knowledge. 544 

As causal methods evolve, new advances focus on relaxing or probing untestable 545 

assumptions in challenging real-world settings, which expand the relevance and applicability of 546 

causal methods to the complexities of ecological systems. Ecologists are uniquely positioned not 547 

only to benefit from these advances in causal analysis, but also to contribute meaningfully to 548 

their development. Ecologists’ experience with experimental study designs, multiscale complex 549 
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systems, and the integration of biotic and abiotic processes offers valuable insights into 550 

widespread challenges in causal research, such as spatial interactions, downscaling, and unit-to-551 

unit causation. As causal approaches become more accessible and adaptable, ecologists have an 552 

opportunity to refine long-standing questions, generate new theory, and develop credible causal 553 

explanations of the natural world. 554 
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Supplementary Information 1 

1. Causal versus statistical assumptions 2 

As noted in the main text, causal and statistical assumptions are both necessary components of 3 

deriving valid causal interpretations from observed relationships in data (Stone, 1993). Although 4 

the distinctions between these two types of assumptions are not always clear cut in casual 5 

research, we find it useful to distinguish them in the following way. Statistical assumptions are 6 

formal conditions about the data and model structure that must be satisfied for valid 7 

characterizations of relationships between variables from statistical analyses. These assumptions 8 

are often testable from data. Causal assumptions are additional conditions that are required to 9 

infer causation from statistically dependent relationships and are typically untestable (Hernán et 10 

al., 2019). By “untestable”, we mean that these assumptions cannot be verified through statistical 11 

checks of data, even unlimited data, but instead must be justified using pre-existing knowledge. 12 

 Statistical assumptions commonly include assumptions about the probability distribution 13 

of random variables or observations, the specifications of relationships between variables, and 14 

conditions about data gathering or sampling (see Table S1). For example, they include 15 

assumptions about the functional relationships among variables (e.g., linearity, additivity) and 16 

about the probability distribution of random errors or observations (e.g., normality, independent 17 

and identically distributed random variables, constant variance). Statistical assumptions are 18 

encoded in the model structure; thus, they are often not described in applied data analyses.  19 

Unlike causal assumptions (see Section 2 of the main text and Table S1 below), many of 20 

the statistical assumptions underlying empirical analyses in ecology are testable – that is, the 21 

assumptions can be verified from available data – even if they are often untested by researchers 22 

conducting the analyses. There are, however, untestable statistical assumptions that are also 23 

necessary for model-based inference, and these assumptions overlap with the causal assumptions 24 

described in Section 2 and in Table S1. For example, the basis of the Causal Sufficiency 25 

Assumption is a ubiquitous statistical assumption that requires correct specification of the 26 

explanatory variables in a model, specifically the inclusion of all confounding variables and the 27 

omission of all irrelevant variables. This assumption cannot be directly verified from data (i.e., 28 

the assumption is untestable) and must be supported by background knowledge about the system 29 

being modeled. Violations to the assumption that explanatory variables have been correctly 30 

specified can result in omitted variable bias, overfitting, and simultaneity bias that negatively 31 

impact interpretability and generalizability of results. 32 

Other statistical considerations are also important for accurate conclusions from modeled 33 

data. These can include: ensuring sufficient statistical power to detect relationships between 34 

variables (Kimmel et al., 2023), decreasing measurement error or observational noise to better 35 

detect dependent relationships (Brown et al., 1990; Hyslop & Imbens, 2001), appropriately 36 

identifying and handling patterns of missingness (Little, 2021), and using robust statistics to 37 

accommodate a wider array of probability distributions and modest departures from model 38 

assumptions. While these considerations may not be viewed as statistical assumptions per se, 39 
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they play an important role in determining the credibility of quantitative evidence about 40 

ecological phenomena. 41 

The statistical and causal assumptions that are fundamental for making causal claims 42 

from ecological data are not tied to specific estimation approaches (e.g., frequentist versus 43 

Bayesian estimation). Many ecological studies emphasize the mode of estimation (mode of 44 

statistical inference) and overlook potential violations to causal and statistical assumptions that 45 

must be satisfied for valid inferences, but even minor violations can impair interpretability. Thus, 46 

extracting meaningful causal inferences from data in ecology requires both thoughtful 47 

construction of models and the scrutiny of the assumptions underlying these models (Burnham & 48 

Anderson, 2010). 49 

 50 

Table S1. Common statistical and causal assumptions required for valid causal inference from 51 

data.  52 

Statistical Assumptions Causal Assumptions 

Correct model specification 

- Model(s) include all relevant variables and no 
irrelevant variables. 

- Correctly specified functional forms of the 
relationships among variables (e.g., linearity, 
additivity). 

- No unmeasured or omitted confounding 
variables (Causal Sufficiency Assumption). 

- Causal relationships follow the Causal 
Markov Assumption and Causal Faithfulness 
Assumption. 

Random (unit-level) error conditions 

- Observations are independent and identically 
distributed (i.i.d.). 

- Random errors follow a specific probability 
distribution (e.g., Gaussian). 

- Random errors have constant variance 
(homoskedasticity). 

- Explanatory variables not correlated with 
random error. 

- Measurement error in explanatory variables 
is independent of the true values. 

- A unit’s treatment does not affect another 
unit’s outcome (i.e., “no interference”). 
Related to the statistical i.i.d. assumption: 
i.i.d. can be violated by the presence of 
interference, which implies a lack of 
independence across units (see Zhang et al., 
2023). 

Data-specific criteria 

- For time-series: Stationarity (constant mean 
and variance over time). 

- No perfect multicollinearity among 
explanatory variables. 

- No instantaneous causal effects (“no 
simultaneity”). 

- Every unit has a non-zero probability of 
receiving any level of treatment, conditional 
on covariates (i.e., “positivity” or “overlap”). 

53 
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2. Defining causal and non-causal research questions 54 

Describing and quantifying ecological phenomena often requires a model, which is a 55 

mathematical description of how ecologists presume that variables of interest interact with each 56 

other. The form of the model is typically determined by the objective of the research question, 57 

which we divide into five categories: making causal claims, making associational claims, making 58 

predictions, summarizing data through descriptive statistics, and testing logical reasoning of 59 

hypotheses via simulations (“Define Research Question” in Figure S1).  60 

Answering the first three types of questions requires statistical inference, which allows 61 

ecologists to learn information from observations using probability theory and use that 62 

information to make claims about relationships between variables, predict new information, and 63 

describe patterns in data (darker-shaded portion of the top box, to the left of the vertical dashed 64 

line in Figure S1). When sufficient data are not available or statistical inference is not suitable, 65 

mathematical modeling can be used to simulate hypothesized ecological interactions and check 66 

for logical fallacies (lighter-shaded portion of the top box, to the right of the vertical dashed line 67 

in Figure S1). Associational analyses, predictive models, or simulation-based approaches can 68 

also be useful for deriving knowledge that can contribute to future causal research questions 69 

(Figure S1 and Figure 3 in main text). 70 
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 71 

Figure S1. Decision tree for determining the type of analysis most appropriate for the research 72 

goal. Prediction-based model selection and forecasting, descriptive statistics, associational 73 

inference, and causal analyses use statistical inference, which separates them from approaches 74 

like simulation-based mathematical modeling. That separation is represented by the vertical 75 

dashed line that separates lighter and darker shaded regions of the top box. The bottom gradient 76 

box is also represented in the first box in the workflow of Fig. 3.77 
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A. Using data to derive claims about relationships between variables 78 

When causal interpretations of statistical models are desired, causal methodologies, a subset of 79 

statistical inference, allow ecologists to make causal claims about relationships between 80 

variables from data. However, as we make clear in Section S4, using statistical inference to make 81 

causal claims requires that the experimental or nonexperimental data collection and analyses 82 

satisfy many conditions (i.e., assumptions). We provide more details on the tasks that can be 83 

accomplished through causal studies and specific methods in Section 6.  84 

If causal claims are not desired, ecologists can draw on classical tools from statistical 85 

inference (Efron & Hastie, 2016; Holland, 1986; Nakagawa & Cuthill, 2007). These 86 

associational studies can also shape the formulation of causal research questions for subsequent 87 

studies. Many research questions have causal goals, but researchers will usually cast these 88 

questions as associational due to perceived limitations of statistical methodologies or concerns 89 

about misuse of their findings (Hernán, 2018; Jones & Schooling, 2018; Kezios & Hayes-Larson, 90 

2018). Researchers also commonly draw causal-sounding conclusions (e.g., using terms like 91 

“drives” or “leads to”) from predictive or associational analyses (Haber et al., 2022; Han & 92 

Guyatt, 2020; Sargeant et al., 2022; Singer, 2022), thus overstating the evidence of causality by 93 

implying that the underlying causes have been properly isolated from unrelated or spurious 94 

associations (i.e., that alternative explanations for the observed associations have been ruled out). 95 

This tendency is now heavily ingrained in the scientific culture of many fields, but we strongly 96 

encourage ecologists to principally consider the goals behind their research questions before 97 

considering the methods that may be taken to achieve those goals.   98 

Alternatively, ecologists may instead wish to probe data for general patterns among 99 

variables by using statistical inference to explore or summarize the data (“Descriptive Statistics” 100 

in Figure S1). Approaches used to describe data are often included in studies aiming to make 101 

causal or associational claims, but descriptive statistics are not the primary source of evidence 102 

for making such claims. 103 

 104 

B. Not deriving claims about relationships among variables from data 105 

At times, ecologists may want to predict unobserved outcomes from new input data by using 106 

training data to optimize parameter estimation such that a set of input features predict output 107 

values that most closely match observed data output values in verification data (“Prediction-108 

Based Model Selection and Forecasting” in Figure S1). Predictive studies rely on procedures that 109 

emphasize model evaluation and selection through predictive performance, including model 110 

averaging that derives inferences from several plausible models (i.e., multi-model inference; 111 

Burnham & Anderson, 2010). Results from models selected for high prediction accuracy are 112 

often believed to produce more meaningful parameter estimates for inference than models with 113 

low prediction accuracy (Harrison et al., 2018), which has spurred the popularity of machine 114 

learning approaches touted to provide “data-driven” understandings of complex ecological 115 

processes (Christin et al., 2019; Olden et al., 2008). However, prediction models merely need to 116 

capture the rudimentary patterns and relationships in the data to produce highly accurate 117 
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predictions. Thus, models with high prediction accuracy often do not accurately represent the 118 

true underlying causal processes of the ecological system from which the data were generated, 119 

and thus they are usually not appropriate for making associational or causal claims (Addicott et 120 

al., 2022; J. Li et al., 2020; Tredennick et al., 2021). 121 

In other studies, ecologists may wish to simulate hypothesized relationships between 122 

variables using mathematical “proof-of-concept” models (sometimes called “mechanistic 123 

models”), which play an integral role in translating ecological theories and hypotheses into 124 

mathematical language (e.g., the Lokta-Volterra model; Baker et al., 2018; Marquet et al., 2014; 125 

Servedio et al., 2014). Numerical analysis of mathematical models allows ecologists to explore 126 

and refine hypotheses, examine a model’s internal consistency, and assess how well the model 127 

represents theoretical or empirical relationships. Additionally, data collected from experiments 128 

and field observations can be used to constrain model parameter values or to compare model 129 

output to naturally occurring patterns (Caldararu et al., 2023; Evans et al., 2013; Levins, 1966; 130 

Luo et al., 2011; Tredennick et al., 2021), but statistical inference is not the goal of such models. 131 

Although mathematical models, predictive models, associational studies, and descriptive 132 

statistics can all contribute to quantitative ecological knowledge and pre-existing knowledge for 133 

developing causal research questions (“Develop Knowledge and Theory” in Figure S1), current 134 

methodologies for making causal claims from data require principles of probability theory and 135 

statistical inference to be combined with the rigorous conditions for experimental and 136 

observational data collection and analysis defined by causal assumptions. Some researchers have 137 

argued that, under certain conditions, predictive models may also contribute to refining or 138 

corroborating causal hypotheses when results from predictive studies align with theoretical 139 

expectations (Nichols & Cooch, 2025). While consistent findings from predictive models may 140 

contribute to pre-existing or “mechanistic” ecological knowledge (Grace, 2024), particularly 141 

when supported by ecological theory and expert understanding, predictive performance alone is 142 

insufficient to justify causal claims. 143 

 144 
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3. Formally summarizing pre-existing knowledge 145 

Establishing the conditions for making valid causal claims from data is achieved by satisfying 146 

the causal assumptions that permit us to detect and quantify causal relationships using statistical 147 

dependence. A central task for ecologists interested in causal relationships is to carefully 148 

consider the study design, the potential variables to be included or not included in the model, and 149 

the data collection procedures. One of the fundamental conditions for valid statistical inference 150 

and interpretability of results is that the model correctly specifies the true underlying process 151 

from which the data were generated. Developing such a correctly specified model requires pre-152 

existing knowledge to identify potentially causative factors and potential pathways of influence 153 

through other interacting variables.  154 

The assumptions required for causal analyses highlight how causal tasks (i.e., causal 155 

discovery and causal inference) differ from non-causal tasks (e.g., prediction or association). 156 

Unlike non-causal analyses, causal tasks depend on pre-existing knowledge to construct and 157 

justify models for causal tasks (particularly for causal inference) that satisfy these untestable 158 

causal assumptions, rather than selecting the “best” model among several plausible models based 159 

on fit metrics that evaluate prediction performance. Even causal discovery is fine-tuned with pre-160 

existing knowledge, guiding algorithms to retain specific plausible relationships specified by the 161 

user’s pre-existing knowledge, and its results must be validated through further research.  162 

Proper model specification is crucial for valid causal conclusions (Burnham & Anderson, 163 

2010), thus more attention must be invested in the process of designing studies and building 164 

models using pre-existing knowledge to make causal claims from experimental and 165 

observational ecological studies. To formalizing pre-existing knowledge in causal analysis, 166 

researchers may use two widely used tools: directed acyclic graphs (DAGs) and thought 167 

experiments based on ideal randomized controlled trials (RCTs). These tools help define causal 168 

relationships and identify confounders that must be addressed to satisfy causal assumptions 169 

before any data are analyzed. Table S2 provides a guide to accessible and foundational 170 

references for learning how to apply these tools. 171 
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Table S2.  Key concepts and accessible references for creating and applying causal DAGs and 172 

thought experiments of hypothetical ideal RCTs for summarizing pre-existing knowledge. 173 

Concept Suggested Readings 

Basics of causal DAGs – What they are, variables 
to include, why they help in confounder 
identification 

Bulbulia, 2024a; Greenland et al., 1999a; Laubach 
et al., 2021; Shrier & Platt, 2008 

Drawing DAGs in practice – User‐friendly 
guidelines for causal DAGs in experimental and 
observational settings 

Arif & MacNeil, 2022; Textor et al., 2011 

Using thought experiments of hypothetical ideal 
RCTs (i.e., “target trials”) – How to use thought 
experiments to simulate an ideal experiment to 
find confounders 

Greenland, 2003; Hernán et al., 2022, 2025; 
Hernán & Robins, 2025, pp. 37–40; Morgan & 
Winship, 2015 (Ch. 1); Rubin, 1974 

Distinguishing confounders vs. colliders – 
Ensuring we do not control for the wrong 
variables 

Arif & Massey, 2023; Bulbulia, 2024a; Greenland, 
2003 

 174 

 175 

 176 
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4. Causal assumptions translated through causal frameworks 177 

Causal inference and causal discovery both rely on untestable assumptions that allow researchers 178 

to interpret statistical patterns as evidence of causation. Three foundational assumptions are 179 

shared across major causal frameworks: Causal Sufficiency, Causal Markov, and Causal 180 

Faithfulness. However, the way these assumptions are expressed, along with the specific 181 

terminology and extensions they involve, varies across causal frameworks. In this section, we 182 

show how different frameworks formalize these assumptions and illustrate the conceptual 183 

bridges between them. 184 

We focus on three widely used causal frameworks: the structural causal model (SCM) 185 

framework (Pearl, 2009), the potential outcomes (PO) framework (Rubin, 1974), and the 186 

dynamical systems causality (DC) framework (Harnack et al., 2017; J. Shi et al., 2022). A fourth 187 

not covered here – the decision-theoretic framework (Dawid, 2000, 2012) – also shares 188 

overlapping assumptions. Each framework uses its own notation and formalism to express the 189 

causal assumptions and structure causal reasoning. The PO and SCM frameworks are most 190 

common for causal inference, while the SCM and DC frameworks are commonly used for causal 191 

discovery.  192 

Theoretical work has established formal correspondences among several major causal 193 

frameworks. The PO and SCM frameworks have been shown to be theoretically equivalent 194 

(Imbens, 2020; Pearl, 2009), with modern formalizations demonstrating that every Rubin Causal 195 

Model from the PO framework can be represented as an abstraction of an SCM (Ibeling & Icard, 196 

2023). A measure-theoretic approach has also been proposed to generalize aspects of SCM and 197 

PO frameworks and address challenges like cycles, latent variables, and stochastic processes 198 

(Park et al., 2023). Causal properties of the decision-theoretic framework can be expressed 199 

through extended conditional independence assertions, aligning with the PO and SCM 200 

frameworks under specific conditions (Dawid, 2021, 2024; Pearl, 2022). Connections between 201 

the SCM and DC frameworks have also been developed, including approaches that extend SCMs 202 

to time-dependent settings and systems with feedback loops (Bongers et al., 2018, 2021) and 203 

approaches that link Granger causality (a DC-based approach) to SCMs by representing 204 

interventions and dynamic feedback processes (White et al., 2011; White & Chalak, 2009). 205 

Methods like transfer entropy, which is used in DC-based analyses, have similarly been related 206 

back to conditional independence structures central to SCMs (Runge et al., 2012). Commentaries 207 

have also highlighted key conceptual differences and areas of overlap between the PO, SCM, and 208 

DC frameworks (Lechner, 2010; Markus, 2021). While recent reviews (e.g., Vonk et al., 2023; 209 

Yuan & Shou, 2022) have discussed assumptions in causal discovery and causal inference 210 

broadly, here we systematically map how core causal assumptions translate across SCM, PO, and 211 

DC frameworks for causal inference and causal discovery. 212 

 In Box S1, we map the assumptions used for quantifying the average causal effect of 𝑋 213 

on 𝑌 in causal inference via the PO and SCM frameworks onto the three basic causal 214 
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assumptions. We also summarize two additional assumptions widely used in practice for causal 215 

inference. Together, these assumptions allow us to quantify causal effects without bias. For full 216 

details of PO assumptions for causal inference, see Hernán & Robins, 2025; for full details of 217 

SCM assumptions for causal inference, see Pearl, 2009 or Pearl, 2010. 218 

 For causal inference, the inclusion of all relevant confounding variables is necessary to 219 

satisfy the causal sufficiency assumption. However, this does not always require directly 220 

measuring every confounder. In both frameworks, design-based approaches and statistical 221 

techniques can be used to account for unmeasured confounding under certain conditions. Some 222 

frameworks, such as SCM, allow for adjustment using variables that are not direct confounders 223 

(e.g., descendants of common causes), provided that colliders and other bias-inducing paths are 224 

avoided that would otherwise introduce non-causal statistical dependencies (Pearl, 1995; Rohrer, 225 

2018).  226 

In Box S2, we map the assumptions used for causal discovery via the SCM and DC 227 

frameworks onto the three basic causal assumptions. We also summarize three additional 228 

assumptions commonly required in practice for causal discovery. For full details of SCM 229 

assumptions for causal discovery, see Glymour et al., 2019; for full details of DC assumptions 230 

for causal discovery, see J. Shi et al., 2022. For relationships between SCM and DC assumptions 231 

in causal discovery, see Runge, 2018. 232 

For causal discovery, causal assumptions are used to ensure the reliability of the causal 233 

structure inferred from data. SCM-based algorithms primarily rely on the Causal Markov and 234 

Causal Faithfulness assumptions, often alongside Causal Sufficiency and additional assumptions 235 

like acyclicity and i.i.d. sampling (Glymour et al., 2019). These assumptions can often be relaxed 236 

in more advanced approaches. DC-based algorithms often implicitly rely on the causal 237 

sufficiency assumption (Paluš, 2007; Runge, 2018), where all common causes are assumed to be 238 

measured or contained within the information of the measured variables (i.e., there are no 239 

unmeasured confounders, a.k.a., “hidden common causes”), and usually require separability, 240 

which is a consequence of the causal faithfulness assumption (Eichler, 2013; Peters et al., 2017; 241 

Runge, Nowack, et al., 2019; Spirtes et al., 2000). However, some DC-based causal discovery 242 

methods have been developed for non-separable systems (e.g., J. Shi et al., 2022) and for 243 

detecting and handling the presence of unmeasured confounders (e.g., Cai et al., 2023). 244 

Together, Boxes S1 and S2 provide a unique synthesis of how the three foundational 245 

causal assumptions are formalized and applied across diverse causal frameworks. By explicitly 246 

mapping the assumptions of each framework to these shared foundations, the Boxes serve as 247 

practical tools for clarifying how these assumptions support valid causal claims across different, 248 

and sometimes seemingly disparate, frameworks and causal tasks, thereby clarifying both their 249 

common foundations and distinct assumptions. 250 

 251 

 252 
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Box S1. Assumptions for causal inference 

Choice of framework 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Useful for those familiar with randomized experimental 

designs. Emphasizes addressing non‐causal dependencies 

(confounding) by leveraging specific experimental designs 

or imitating such scenarios via statistical techniques. 

Useful for those who think about multiple causes jointly 

(“all-cause models”). Emphasizes defining the minimal 

set of conditions under which causal effects can be 

identified and estimated. 

 254 

Causal assumptions 

A1.  Causal Sufficiency: All relevant confounders are measured (i.e., no unmeasured common causes). 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “No unmeasured confounders”, 

“ignorability”, or “exchangeability”†. 

Key Idea: Once we adjust for all relevant confounders, the 

probability of receiving any given exposure level does not 

depend on any common causes. Therefore, we must 

measure and adjust for (i.e., include in the model) all 

variables that influence both the exposure and the 

outcome (and any intermediary variables; see Correia et 

al., 2025). 

Also requires positivity – individual units are equally likely 

to be exposed to a specific value of a causal factor (see 

below). 

References: Hernán & Robins, 2025; Morgan & Winship, 

2015; Rosenbaum & Rubin, 1983 

Terminology: “All front-door and back‐door paths 

blocked”, or “no omitted common causes in the causal 

DAG”. 

Key Idea: All confounders identified by the front-door 

and back-door criteria (or additional criteria; see 

Maathuis & Colombo, 2015 and Shpitser & Pearl, 2008) 

are measured and adjusted for (e.g., included in the 

model). 

Also required consistency (the statistical property) – 

with infinite data, the estimated graph will converge to 

the true causal graph (see Pearl, 2009; Spirtes et al., 

2000). 

References: Greenland et al., 1999b; Pearl, 2009 

 

Terminology: “No interference”, “no spillover”, “no unit‐

to‐unit causation”, or “no interactions between units” (see 

Cox, 1958); part of Stable Unit Treatment Value 

Assumption (SUTVA) (see Rubin, 1980).  

Key Idea: One unit’s exposure does not affect another 

unit’s outcome. Real‐world systems often violate this 

assumption, requiring more complex methods (see 

Hudgens & Halloran 2008). 

References: Hudgens & Halloran, 2008; Rubin, 1978, 

1980 

Terminology: No spillover is implicitly assumed by SCM 

notation and causal DAGs. 

Key Idea: In a causal DAG, there are no edges from one 

unit’s exposure to another unit’s outcome, i.e., each 

unit’s outcome depends only on its own exposure. 

Systems that violate this assumption require multi‐unit 

DAGs or specialized methods (see Pearl, 2009). 

Part of assumption that units are independent and 

identically distributed (i.i.d.) assumption; see Zhang et al., 

2023. 

References: Pearl, 2009; Spirtes et al., 2000 
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A2. Causal Markov Condition: In a system with no cycles or feedback loops, any dependence between two variables 

that do not directly affect each other must come from a common cause influencing both. Once that common cause is 

accounted for, the two variables should no longer be dependent. 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “No feedback” or “no cyclic causation” (i.e., 

simultaneous causation) are implied by the potential 

outcome notation: the outcome 𝑌(𝑎) is measured after an 

exposure 𝐴 = 𝑎. The exposure and outcome are 

conditionally independent once we account for all 

confounding variables. 

Key Idea: Once we measure and adjust for any shared 

causes, any dependence between two variables that do not 

share a direct causal relationship should no longer remain. 

This also requires that the cause precede the effect, ruling 

out simultaneity.  

References: Hernán & Robins, 2025; Morgan & Winship, 

2015; Rubin, 1978 

Terminology: By definition, causal DAGs are acyclic; 

therefore, feedback loops or bidirectional arrows 

(simultaneous causation) are disallowed. Sometimes 

referred to as factorization or the local Markov property 

– each node is conditionally independent of its non‐

descendants, given its parents.  

Key Idea: Once we condition on the parents (common 

causes), the dependence between two variables that do 

not directly affect each other is “blocked”. Since arrows 

in causal DAGs flow in one direction, it is assumed there 

is no cyclic causation. 

References: Pearl, 2009; Spirtes et al., 2000 
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A3. Causal Faithfulness: If two variables are statistically independent even after adjusting for confounders, then there 

is no causal relationship between those variables. 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: Implicitly assumed that any true causal 

effect would manifest as a dependence after all 

confounders are adjusted for. 

Key Idea: If two variables remain independent after 

controlling for all relevant confounders, we assume it’s not 

due to a coincidence but instead conclude there is no 

causal relationship.  

References: Hernán & Robins, 2025; Morgan & Winship, 

2015 

Terminology: Explicitly called faithfulness or stability, in 

which the causal DAG encodes all conditional 

independences. If two variables are independent, there 

exists no causal path (i.e., no causal relationship) 

between those variables in the causal DAG. 

Key Idea: If two variables remain independent after 

conditioning on the variables that block any back‐door 

paths in a causal DAG, we assume this reflects a genuine 

absence of a causal relationship. 

References: Pearl, 2009; Spirtes et al., 2000; Wermuth 

& Lauritzen, 1990 

 257 
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Additional assumptions 

B1.  The exposure is well‐defined (i.e., no multiple versions of the treatment, such as different strains of a disease being 

categorized as a single exposure). That is, there must be no ambiguity about what the cause or exposure is. 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “Causal consistency” (not the same as the 

statistical property of consistency) or “well‐defined 

treatment” †; part of SUTVA (Rubin 1978, 1980). 

Key Idea: No ambiguous exposure or no multiple versions 

of a single cause. A cause or exposure must be identically 

represented across all units. 

References: Hernán & Robins, 2025; Rubin, 1978, 1980 

Terminology: A well-defined or unambiguous exposure 

is implied by the causal DAGs – the exposure must be 

unambiguous when declared as node in the causal DAG. 

Key Idea: The causal DAG must represent exactly one 

well‐specified cause or exposure. If we can declare the 

cause or exposure as one node, we are assuming that it 

is well‐defined. 

References: Pearl, 2009; Spirtes et al., 2000 
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B2. Among units that share the same values for the confounders, there must be some that are exposed and some that 

are not. In other words, the confounders must not perfectly predict the probability of exposure.* 

Potential Outcomes (PO) Framework Structural Causal Models (SCM) Framework 

Terminology: “Positivity”, “overlap”, or “common 

support”† 

Key Idea: For any given combination of confounder 

values, there must be a nonzero chance of receiving each 

exposure level.  

References: Hernán & Robins, 2025; Morgan & Winship, 

2015; Rosenbaum & Rubin, 1983 

Terminology: All exposure levels are sufficiently 

represented in the data is implied by representing the 

exposure as a node in the causal DAG. 

Key Idea: Even if the causal DAG is correctly specified, 

the data must exhibit variation in exposure for every 

configuration of confounders. 

References: Pearl, 2009; Spirtes et al., 2000 

 263 

†Causal consistency, positivity, and exchangeability make up the ‘identifiability conditions’ for causal effects. These conditions hold under 

idealized randomized experiments (see Kimmel et al., 2021). 

*Positivity is a statistical assumption rather than a purely causal assumption. It requires that our data exhibit variation in exposures across 

all relevant confounders. See Hernán & Robins, 2025; Morgan & Winship, 2015; Rosenbaum & Rubin, 1983. 

264 
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Box S2. Assumptions for causal discovery 

Choice of framework 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Useful for those who think about evolving states of systems 

over time; focuses on identifying causal relationships for 

dynamic or complex systems where long time series of 

observations are available, often under challenging 

scenarios (e.g., non-separability, high-dimensional 

nonlinearity). 

Useful for those who think about multiple causes jointly 

(“all-cause models”). Emphasizes defining the minimal 

set of conditions under which causal effects can be 

identified and estimated. 

 266 

Causal assumptions 

A1.  Causal Sufficiency: All relevant confounders are measured (i.e., no unmeasured common causes). 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: “All variables that drive the system are 

embedded in the reconstructed state space”, “no missing 

drivers”, or “intrinsic noise is not attributable to external 

disturbances or measurement errors”. 

Key Idea: Implicitly assumes the measured variables 

capture the main dynamic influences. If crucial state 

variables are omitted, apparent causal links can be 

spurious. 

References: Ding & Toulis, 2018; Harnack et al., 2017; 

Orava, 1973; Sun et al., 2015 

Terminology: “All relevant variables included”, or “no 

omitted common causes”. 

Key Idea: Discovery algorithms (e.g., PC, FCI) typically 

assume all major confounders are measured or the 

algorithm is adjusted to detect them.  

Also required consistency (the statistical property) – 

with infinite data, the estimated graph will converge to 

the true causal graph. 

References: Glymour et al., 2019; Peters et al., 2017; 

Spirtes et al., 2000 

Terminology: The observed time series fully capture the 

dynamics of the unit, with no external influences (i.e., no 

inter-unit interference). 

Key Idea: The dynamics of each unit are self-contained; the 

time series used for discovery must reflect the complete 

internal state of the system. If significant spillover exists, 

the predictive relationships used to infer causality may be 

confounded by external influences. 

References: Harnack et al., 2017; Orava, 1973 

Terminology: “No cross‐unit edges” or “independence 

of units” in causal DAGs. 

Key Idea: Each unit is independent – one unit’s 

exposure does not affect another unit’s outcome. 

Part of the i.i.d. assumption – units are independent and 

identically distributed (see Zhang et al. 2023). 

References: Glymour et al., 2019; Spirtes et al., 2000 
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A2. Causal Markov Condition: In a system with no cycles or feedback loops, any dependence between two variables 

that do not directly affect each other must come from a common cause influencing both. Once that common cause is 

accounted for, the two variables should no longer be dependent. 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: If two system components do not interact 

(directly or indirectly), their time series become 

conditionally independent (or uncorrelated) after 

controlling for the relevant state variables. 

Key Idea: In time‐lagged embedding, if variable 𝐴 does not 

help predict 𝐵 once the relevant lags of 𝐵 (and possibly 

other variables) are included, we treat them as causally 

disconnected. This also requires that the cause precede the 

outcome, ruling out simultaneity and cyclic causation (see 

below).  

References: Runge, Bathiany, et al., 2019; Sun et al., 2015 

Terminology: Sometimes referred to as factorization 

or the local Markov property – each variable is 

conditionally independent of its confounders given its 

direct causes.  

Key Idea: If two variables are conditionally 

independent given some conditioning set in the data, 

they are not connected by any path in the DAG (or are 

d‐separated). Implicitly assumes there is no 

simultaneity or cyclic causation (see below). 

References: Glymour et al., 2019; Peters et al., 2017; 

Spirtes et al., 2000 
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A3. Causal Faithfulness: If two variables are statistically independent even after adjusting for confounders, then there 

is no causal relationship between those variables. 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: Referred to as separability – the influence of 

measured confounding variables can be eliminated from 

the information contained in the effect variable’s temporal 

trajectory without changing the direct relationship between 

the cause and effect; thus, an observed temporal 

dependence implies the presence of a causal relationship. 

Key Idea: If two variables remain independent after 

controlling for all relevant confounders, we assume it’s not 

due to a coincidence but instead conclude there is no causal 

relationship.  

References: Paluš et al., 2018; Runge, Bathiany, et al., 

2019; Schreiber, 2000; Sun et al., 2015 

Terminology: Explicitly called faithfulness or stability, 

in which the causal DAG encodes all conditional 

independences. If two variables are statistically 

independent, there exists no causal path (i.e., no causal 

relationship) between those variables in the causal 

DAG. 

Key Idea: If two variables remain independent after 

conditioning on the confounders, we assume this 

reflects a genuine absence of a causal relationship. 

References: Glymour et al., 2019; Peters et al., 2017; 

Spirtes et al., 2000 
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Additional assumptions 

B1.  Cause precedes effect; no simultaneity and no feedback loops. 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: “Temporal ordering”, or “one variable’s state 

at the current time 𝑡 influences the other’s state at future 

time 𝑡 + ℓ”. 

Key Idea: The future state of a system is conditionally 

independent of its past states, given its present state (i.e., 

cause precede effects in time). 

References: Ding & Toulis, 2018; Paluš et al., 2018 

Terminology: “Acyclic”, “no bidirectional edges”, or 

“no feedback loops” implied in the causal DAG. 

Key Idea: Assumes no feedback loops or simultaneous 

causation exists in the data, since resultant causal DAGs 

are acyclic. 

References: Peters et al., 2017; Spirtes et al., 2000 
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B2. Stationarity – the system’s behavior doesn’t change dramatically over time (i.e., overall distributional patterns such 

as mean and variance of causes and outcomes remain relatively constant over time). 

Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: The system's behavior does not change over 

time. 

Key Idea: Causal relationships remain consistent over time 

(dependencies should not fundamentally change or vanish). 

Also requires ergodicity – statistical properties (e.g., mean 

and variance) calculated from time series samples through 

the ergodic theorem do not change substantially over time. 

References: Harnack et al., 2017; McGoff et al., 2012; J. Shi 

et al., 2022 

Terminology: The conditional independencies among 

variables are consistent over time. 

Key Idea: The influence of a variable’s state at a 

previous time 𝑡 − ℓ on its state at the current time 𝑡 

remains consistent throughout the time series when 

controlling for the rest of the system’s state at the 

present time 𝑡. 

References: McGoff et al., 2012; Peters et al., 2017; 

Runge, Bathiany, et al., 2019 
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B3. Sufficient variability within variables in the system so that differences in exposure and outcome can be reliably 

detected. 
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Dynamical Systems Causality (DC) Framework Structural Causal Models (SCM) Framework 

Terminology: Time series provide a faithful representation 

of the system’s dynamics. Additionally, many approaches 

require that states of the system (e.g., from time series 

data) can be represented as a low-dimensional attractive 

manifold.  

Key Idea: There must be enough dynamic variation in the 

observed data to reveal causal influences, and the 

measured variables must adequately reflect the system’s 

underlying states. 

References: Barański et al., 2020; Deyle & Sugihara, 2011; 

J. Shi et al., 2022; Takens, 1981 

Terminology: “Positivity” and “consistency”. 

Key Idea: Each variable (cause or outcome) exhibits 

enough variation to detect dependence (akin to 

positivity in causal inference). Also, each variable must 

be well‐defined, so that distinct real‐world processes 

aren’t lumped under one label (consistency). 

References: Glymour et al., 2019; Peters et al., 2017 
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5. Core concepts for each causal framework 287 

While assumptions define the foundation for making valid causal claims, each causal framework 288 

also introduces a range of concepts and tools that shape how researchers think about variables, 289 

causal relationships, and estimation. To help readers navigate these differences, we provide three 290 

tables (Tables S3–S5), one for each framework (PO, SCM, and DC, respectively), that highlight 291 

foundational concepts across the frameworks, along with seminal and accessible sources for 292 

further reading. These tables are designed as navigational tools for readers seeking intuitive or 293 

technical entry points into each framework, such as ignorability and causal estimands in the PO 294 

framework, d-separation and do-calculus in the SCM framework, and state space reconstruction 295 

and separability in the DC framework. Familiarity with these concepts is important for 296 

understanding how causal inference and causal discovery are framed and implemented within 297 

each framework’s structure. These frameworks are not mutually exclusive and can be 298 

complementary depending on the causal task and data characteristics. Researchers should 299 

familiarize themselves with each to determine which assumptions and tools best align with their 300 

research goals. 301 

 302 

Table S3. Key concepts and recommended references for understanding the potential outcomes 303 

(PO) framework. 304 

Concept Suggested Readings 

Fundamentals of the PO framework Holland, 1986; Rubin, 2005; Sobel, 2009 

Stable Unit Treatment Value Assumption 

(SUTVA) 

Sobel, 2006; VanderWeele & Hernán, 2013 

Ignorability Assumption (Unconfoundedness) Imbens, 2004; Rosenbaum & Rubin, 1983 

Positivity Assumption (Overlap Condition) Petersen et al., 2012; Westreich & Cole, 2010 

Confounding variables to control for in 

analyses 

Gelman et al., 2020; VanderWeele, 2019; 

VanderWeele & Shpitser, 2011 

Causal estimands: average treatment effect 

(ATE) and others 

Heiss, 2024; Imbens, 2004; Imbens & 

Angrist, 1994; Lipkovich et al., 2020; 

Wooldridge, 2010 (Ch. 21) 

Multiple versions of treatment and 

interference 

Hudgens & Halloran, 2008; Tchetgen 

Tchetgen & VanderWeele, 2012; 

VanderWeele & Hernán, 2013 

 305 
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Table S4. Key concepts and recommended references for understanding the structural causal 306 

models (SCM) framework. 307 

Concept Suggested Readings 

Fundamentals of the SCM framework Burnett & Blackwell, 2024; Cheng et al., 

2024; Petersen & van der Laan, 2014; 

Scheines, 1997 

Confounding variables to control for in 

analyses (d-separation; Back-door and 

Front-door Criteria) 

Arif & Massey, 2023; Bulbulia, 2024a; 

Elwert, 2013; Greenland, 2003; Morgan & 

Winship, 2015 (Ch. 4 & 10); Pearl, 2010 

Graphical rules for causal identification in 

graphs (do-calculus) 

Hayduk et al., 2003; Pearl, 2009 (Ch. 1 & 

11); Shpitser & Pearl, 2008; Tian & Pearl, 

2002 

Total and path-specific causal effects Bulbulia, 2024b; Pearl, 2009 (Ch. 3, 4, 7); 

VanderWeele, 2015d 

Model equivalence and Markov equivalence 

classes 

Andersson et al., 1997; Pearl, 2009 (Ch. 5) 

Causal graphs with unmeasured/latent 

variables 

Pearl, 2009 (Ch. 12) ; Richardson & Spirtes, 

2002 

 308 
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Table S5. Key concepts and recommended references for understanding the dynamical systems 310 

causality (DC) framework. 311 

Concept Suggested Readings 

Fundamentals of the DC framework Deyle & Sugihara, 2011; Harnack et al., 

2017; Runge, 2018; J. Shi et al., 2022; Yuan 

& Shou, 2022 

State space reconstruction (SSR) and attractor 

manifolds 

Cummins et al., 2015; Sauer et al., 1991; 

Takens, 1981 

Causality via predictability Paluš, 2007; Runge, 2018; Sugihara et al., 

2012 

Transfer entropy and information-theoretic 

causality 

Schreiber, 2000; Sun et al., 2015; Sun & 

Bollt, 2014 

Separability and causal faithfulness Eichler, 2013; Peters et al., 2017; Runge, 

Nowack, et al., 2019 

Confounding and hidden variables in time 

series 

De Brouwer et al., 2021; Eichler, 2013; Sun 

& Bollt, 2014 

Limitations in stochastic or weakly coupled 

systems 

Cobey & Baskerville, 2016; McCracken & 

Weigel, 2014 

 312 
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6. Study designs and algorithms for causal analyses  314 

Selecting a study design or algorithm is a critical step in implementing a causal analysis. 315 

Different designs and algorithms offer structured ways to satisfy or relax the untestable causal 316 

assumptions and must be chosen in light of the causal task, available data, and pre-existing 317 

knowledge. Some approaches are grounded in experimental control, while others rely on 318 

statistical adjustments or algorithmic structure learning to address confounding and identify 319 

causal relationships. 320 

To help readers explore available options, we provide a series of tables that group study 321 

designs and algorithms according to the type of causal task (inference or discovery) and whether 322 

they address measured or unmeasured confounding. Table S6 summarizes study designs for 323 

causal inference, including experimental designs, observational designs for measured 324 

confounders, and observational designs for unmeasured confounders. Table S7 summarizes 325 

algorithms for causal discovery, grouped by the causal framework and assumptions each 326 

algorithm relies on. These tables are intended to serve as a reference for researchers selecting and 327 

comparing appropriate strategies for their study goals, system knowledge, and data constraints. 328 

For additional guidance on the selection of specific causal inference study designs and causal 329 

discovery algorithms, see the flow chart in Figure 2 in Runge et al., 2023. 330 

Causal inference requires that all confounders be addressed (see Box S1), but this does 331 

not necessarily mean every confounder must be explicitly included in a model. Instead, 332 

confounding is typically handled using a combination of design-based approaches: directly 333 

controlling for measured confounders and employing statistical designs that reduce bias from 334 

unmeasured confounders (e.g., experimental randomization or statistical approaches that mimic 335 

randomization). 336 

If significant pre-existing knowledge is available and the goal is to obtain system-level 337 

understanding (i.e., to model the effects of all causes of an outcome), then SCM-based 338 

adjustment methods (e.g., Front-door and Back-door Criteria; see Pearl, 2009 and Arif & 339 

MacNeil, 2022) or structural equation modeling (SEM) may be appropriate approaches. While 340 

SCM-based adjustment methods typically target specific causal effects, SEM is often used to 341 

model entire systems of causal relationships simultaneously. However, this comes with tradeoffs: 342 

SEM requires more restrictive assumptions in order to support system-level inferences. These 343 

tradeoffs underscore the need to carefully align the use of SEM with the level of pre-existing 344 

knowledge and assumptions that can be plausibly justified for the ecological system under study 345 

(Grace, 2024; Pearl, 2012; Shipley, 2016). In cases where unobserved variables are present, 346 

acyclic directed mixed graphs (ADMGs) can represent the same set of conditional 347 

independencies as a DAG. ADMGs also allow for bidirectional (i.e., double-headed) arrows, 348 

enabling representation of latent confounding. These graphs rely on an extension of Pearl’s d-349 

separation criterion, called m-separation (for details, see Richardson, 2003 and Drton & 350 

Richardson, 2004).  351 
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 While both SEM and SCM approaches rely on a causal graph to represent assumptions, 353 

they differ in how those assumptions are used. SCMs (Pearl, 2009) use the graph to derive 354 

conditions under which causal effects can be identified from data, often targeting specific effects 355 

of interest via tools such as the Back-door or Front-door criteria. In an SCM approach, the causal 356 

graph is used to ask, “Given this DAG, can I even estimate the causal effect of X on Y from 357 

observed data, and if so, how?” In contrast, SEMs as used in ecology (Grace et al., 2015; 358 

Shipley, 2016) typically assume the full system of causal relationships is known, and use the 359 

graph to specify a system of structural equations whose fit can be statistically tested. That is, for 360 

SEMs, the causal graph is used to ask, “Assuming this DAG is correct, do the observed data 361 

support it, and can I fit a model to estimate the effects I care about?” SEM-based causal 362 

inference does not involve formal identification theorems, and estimation is typically linear, even 363 

when nonlinear terms are used. Thus, SEMs rely more heavily on model specification and 364 

goodness-of-fit, whereas SCMs prioritize identifiability of causal effects under minimal 365 

assumptions (Pearl, 1998). SEMs can yield unbiased causal effect estimates if the model includes 366 

all relevant confounders and is correctly specified; however, unlike SCM-based methods, they do 367 

not provide formal identification criteria to assess whether these conditions are met (Bollen & 368 

Pearl, 2013; Markus, 2010; Wang & Sobel, 2013). This distinction highlights that while both 369 

approaches can be used for causal modeling, they support different inferential goals and require 370 

different standards of justification. 371 
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Table S6. Study designs for causal inference, grouped by category. Each study design includes a brief description, key references 372 

(including applications in ecology, where available), and links to available software and code. The resources and applications listed 373 

are not exhaustive – we prioritized accessible sources and informative, causally focused applications. 374 

Category Design Resources and Applications Software and packages1 

Experimental 

designs2 

Randomized Controlled 

Trial (RCT): Randomly 

assign units to treatment or 

control groups, helping to 

balance confounders across 

groups. 

Kim & DeVries, 2001; Kimmel et al., 

2021; Pynegar et al., 2021; 

Tilman et al., 2006; Weigel et al., 

2021; Wiik et al., 2020 

experiment (R package; see https://cran.r-

project.org/package=experiment) 

RCT (R package; see https://cran.r-

project.org/package=RCT) 

ExpAn (Python library; see 

https://github.com/zalando/expan) 

Factorial Design: Randomly 

assign units to multiple 

treatment combinations to 

test interactions and 

account for confounding of 

multiple causal variables. 

Dasgupta et al., 2015; Jayewardene, 

2009; Kaspari et al., 2012; King & 

Tschinkel, 2008; Laube & Zotz, 

2003; Nicolaisen et al., 2014; 

Zhao & Ding, 2022 

GFD (R package; see https://cran.r-

project.org/package=GFD) 

fullfact (R package; see https://cran.r-

project.org/package=fullfact) 

DoE.base (R package; see https://cran.r-

project.org/package=DoE.base) 

pyDOE2 (Python library; see 

https://github.com/clicumu/pyDOE2) 

dexpy (Python library; see 

https://github.com/statease/dexpy) 

Crossover Trial: Units 

receive multiple treatments 

in a random sequence, 

allowing each unit to serve 

as its own control and 

account for confounders 

that vary between units. 

Dı́az-Uriarte, 2002; Feinsinger et al., 

1991; Fergus et al., 2023; 

Jaakkola, 2003; Montesanto & 

Cividini, 2017; Ohrens et al., 

2019; Shahn et al., 2023; Treves 

et al., 2024 

crossdes (R package; see https://cran.r-

project.org/package=crossdes) 

CrossCarry (R package; https://cran.r-

project.org/package=CrossCarry)  

Crossover (R package; https://cran.r-

project.org/package=Crossover) 

Cluster Randomized Trial: 

Randomize groups instead 

of individual units to 

Benitez et al., 2023; Branas et al., 

2018; Hemming & Taljaard, 2023; 

Schochet, 2013 

cvcrand (R package; see https://cran.r-

project.org/package=cvcrand) 

experiment (R package; see https://cran.r-

project.org/package=experiment) 

 
1 See also https://cran.r-project.org/view=CausalInference 
2 See also https://cran.r-project.org/view=ExperimentalDesign 

https://cran.r-project.org/package=experiment
https://cran.r-project.org/package=experiment
https://cran.r-project.org/package=RCT
https://cran.r-project.org/package=RCT
https://github.com/zalando/expan
https://cran.r-project.org/package=GFD
https://cran.r-project.org/package=GFD
https://cran.r-project.org/package=fullfact
https://cran.r-project.org/package=fullfact
https://cran.r-project.org/package=DoE.base
https://cran.r-project.org/package=DoE.base
https://github.com/clicumu/pyDOE2
https://github.com/statease/dexpy
https://cran.r-project.org/package=crossdes
https://cran.r-project.org/package=crossdes
https://cran.r-project.org/package=CrossCarry
https://cran.r-project.org/package=CrossCarry
https://cran.r-project.org/package=Crossover
https://cran.r-project.org/package=Crossover
https://cran.r-project.org/package=cvcrand
https://cran.r-project.org/package=cvcrand
https://cran.r-project.org/package=experiment
https://cran.r-project.org/package=experiment
https://cran.r-project.org/view=CausalInference
https://cran.r-project.org/view=ExperimentalDesign
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account for group-level 

confounders. 

cluster_experiments (Python library; see 

https://github.com/david26694/cluster-

experiments) 

Observational designs 

– controlling 

measured 

confounders 

Regression Adjustment: 

Include confounders as 

covariates in the regression 

model describing the 

relationship of the causal 

variable on the outcome. 

Fieberg & Ditmer, 2012; Gelman et 

al., 2020; Moss et al., 2025; 

Nogueira et al., 2022; Simler-

Williamson & Germino, 2022 

R packages: Base R functions – lm(…), glm(…), 

etc. – or dedicated regression packages 

Python libraries: statsmodels, linearmodels, 

etc.  

Note: No dedicated packages or libraries – 

standard regression functions are used when 

confounders are explicitly specified in models 

used for causal interpretation. 

Stratification: Divide units 

into subgroups, either 

during study design (e.g., 

stratified sampling) or 

during analysis (e.g., 

subgroup comparisons), 

based on confounders, then 

compares those with similar 

confounders but different 

exposure levels. 

Morgan & Winship, 2014; Oehri et 

al., 2020; Rosenbaum, 2002 

stdReg2 (R package; see https://cran.r-

project.org/package=stdReg2) 

stratamatch (R package; see https://cran.r-

project.org/package=stratamatch) 

Inverse Probability 

Weighting (IPW)a: Weight 

units based on their 

probability of exposure to 

create a pseudo-population 

where confounders are 

balanced. 

Hernán & Robins, 2025 (Ch. 12); 

Nogueira et al., 2022; West et al., 

2022 

ipw (R package; see https://cran.r-

project.org/package=ipw) 

twang (R package; see https://cran.r-

project.org/package=twang) 

WeightIt (R package; see https://cran.r-

project.org/package=WeightIt) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Propensity Score Matching 

(PSM)a: Match units with 

similar probabilities of 

exposure based on observed 

confounders (propensity 

scores) to create treatment 

Butsic et al., 2017; Emmons et al., 

2024; Nogueira et al., 2022; 

Pearson et al., 2016; Siegel, 

Larsen, et al., 2022; Siegel, 

Macaulay, et al., 2022; Simler-

Matching (R package; see https://cran.r-

project.org/package=Matching) 

MatchIt (R package; see https://cran.r-

project.org/package=MatchIt) 

CausalGPS (R package; see https://cran.r-

project.org/package=CausalGPS) and 

https://github.com/david26694/cluster-experiments
https://github.com/david26694/cluster-experiments
https://cran.r-project.org/package=stdReg2
https://cran.r-project.org/package=stdReg2
https://cran.r-project.org/package=stratamatch
https://cran.r-project.org/package=stratamatch
https://cran.r-project.org/package=ipw
https://cran.r-project.org/package=ipw
https://cran.r-project.org/package=twang
https://cran.r-project.org/package=twang
https://cran.r-project.org/package=WeightIt
https://cran.r-project.org/package=WeightIt
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=Matching
https://cran.r-project.org/package=Matching
https://cran.r-project.org/package=MatchIt
https://cran.r-project.org/package=MatchIt
https://cran.r-project.org/package=CausalGPS
https://cran.r-project.org/package=CausalGPS
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and control groups with 

balanced covariate 

distributions. 

Williamson & Germino, 2022; 

West et al., 2022; Wiik et al., 2020 

pycausalgps (Python library; see 

https://github.com/NSAPH-

Software/pycausalgps) 

psmpy (Python library; see 

https://pypi.org/project/psmpy) 

Marginal Structural 

Modeling (MSM)†: Use 

weighting to adjust for time-

varying confounders when 

causal variables change over 

time. 

Cole & Hernán, 2008; Hernán & 

Robins, 2025 (Ch. 12); Lei et al., 

2019; Mandujano Reyes et al., 

2025; Nandi et al., 2012; 

VanderWeele et al., 2011 

bayesmsm (R package; see 

https://github.com/Kuan-Liu-

Lab/bayesmsm) 

trajmsm (R package; see https://cran.r-

project.org/package=trajmsm) 

Multi-level Modeling with 

Mixed Effects: Account for 

confounders from 

hierarchical data structures 

by including both fixed and 

random effects. 

Bingenheimer & Raudenbush, 

2004; Clough, 2012; Gelman, 

2006; Gelman & Hill, 2006 

lme4 (R package; see https://cran.r-

project.org/package=lme4) 

brms (R package; see https://cran.r-

project.org/package=brms) 

statsmodels (Python library; see 

https://www.statsmodels.org/) 

Bambi (Python library; see 

https://bambinos.github.io/bambi) 

 

Structural Causal Model 

(SCM)-based Back-door 

Criterion: Use causal 

diagrams to identify the 

minimal set of confounders 

that must be measured to 

enable unbiased estimation 

of causal effects. 

Arif et al., 2022; Arif & MacNeil, 

2022; Paul, 2011; Pearl, 2009; 

Schoolmaster et al., 2020; Stewart 

et al., 2023 

causaleffect (R package; see https://cran.r-

project.org/package=causaleffect) 

daggity (R package and Web interface; see 

https://dagitty.net) 

DoWhy (Python library; see https://py-

why.github.io/dowhy) 

Structural Equation 

Modeling (SEM)b,c: 

Simultaneously quantify 

multiple causal 

relationships by including 

measured confounders as 

covariates in linear models. 

Bollen & Pearl, 2013; Cronin & 

Schoolmaster, 2018; Grace et al., 

2015; Hatami, 2019; Pearl, 1998, 

2012; Saavedra et al., 2022 

pwSEMd (R package; see 

https://github.com/BillShipley/pwSEM) 

piecewiseSEMd (R package; see https://cran.r-

project.org/package=piecewiseSEM) 

lavaan (R package; see https://cran.r-

project.org/package=lavaan) 

https://github.com/NSAPH-Software/pycausalgps
https://github.com/NSAPH-Software/pycausalgps
https://pypi.org/project/psmpy
https://github.com/Kuan-Liu-Lab/bayesmsm
https://github.com/Kuan-Liu-Lab/bayesmsm
https://cran.r-project.org/package=trajmsm
https://cran.r-project.org/package=trajmsm
https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=brms
https://cran.r-project.org/package=brms
https://www.statsmodels.org/
https://bambinos.github.io/bambi
https://cran.r-project.org/package=causaleffect
https://cran.r-project.org/package=causaleffect
https://dagitty.net/
https://py-why.github.io/dowhy
https://py-why.github.io/dowhy
https://github.com/BillShipley/pwSEM
https://cran.r-project.org/package=piecewiseSEM
https://cran.r-project.org/package=piecewiseSEM
https://cran.r-project.org/package=lavaan
https://cran.r-project.org/package=lavaan
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semopy (Python library; see 

https://semopy.com) 

 

Observational designs 

– controlling 

unmeasured 

confounders 

Instrumental Variables (IV): 

Use a variable that 

influences the causal 

variable but not the 

outcome directly, to 

accounting for unmeasured 

confounders. 

Butsic et al., 2017; Kendall, 2015; 

Larsen et al., 2019; MacDonald et 

al., 2019; MacDonald & Mordecai, 

2019 

ivreg (R package; see https://cran.r-

project.org/package=ivreg) 

AER (R package; see https://cran.r-

project.org/package=AER) 

EconML (Python library; see 

https://github.com/py-why/econml) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Before-After-Control-Impact 

(BACI)e,f: Compare changes 

in the outcome before and 

after a shift in the causal 

variable, while using a 

control group to account for 

time-varying confounders.  

Chevalier et al., 2019; Christie et al., 

2019; Comte et al., 2023; Ferraro 

et al., 2019; Kerr et al., 2019; Paul, 

2011; Pitcher et al., 2009; 

Smokorowski & Randall, 2017; 

Wauchope et al., 2021 

R packages: lme4, glmmTMB, or other multi-

level modeling packages 

Python libraries: statsmodels, pingouin, or 

other packages supporting interaction terms 

in multi-level models  

Note: No dedicated packages for BACI designs –

analyses typically use mixed-effects models 

with an interaction term between Time 

(Before vs. After) and Treatment (Control vs. 

Impact) to estimate causal effects. 

Difference-in-Differences 

(DiD)†f: Compare changes in 

the outcome over time 

between units with and 

without a change in 

exposure, while accounting 

for time-invariant 

confounders. 

Butsic et al., 2017; Larsen et al., 

2019; Simler-Williamson & 

Germino, 2022 

did (R package; see https://cran.r-

project.org/package=did) 

fixest (R package; see https://cran.r-

project.org/package=fixest) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Regressions Discontinuity 

Design (RDD)f: Compare 

units just above and below a 

cutoff, assuming they are 

similar in all respects except 

exposure, to remove 

Butsic et al., 2017; Cook et al., 2008; 

Imbens & Lemieux, 2008; Larsen 

et al., 2019; Noack et al., 2022 

rdrobust (R package; see https://cran.r-

project.org/package=rdrobust) 

rddensity (R package; see https://cran.r-

project.org/package=rddensity) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

https://semopy.com/
https://cran.r-project.org/package=ivreg
https://cran.r-project.org/package=ivreg
https://cran.r-project.org/package=AER
https://cran.r-project.org/package=AER
https://github.com/py-why/econml
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=did
https://cran.r-project.org/package=did
https://cran.r-project.org/package=fixest
https://cran.r-project.org/package=fixest
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=rdrobust
https://cran.r-project.org/package=rdrobust
https://cran.r-project.org/package=rddensity
https://cran.r-project.org/package=rddensity
https://github.com/pymc-labs/CausalPy
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confounding from variables 

that do not shift abruptly at 

the threshold. 

Synthetic Control Methods†: 

Construct a synthetic 

control group from a 

weighted combination of 

unexposed units to 

approximate an exposed 

group with similar 

distributions of unmeasured 

confounders. 

Abadie et al., 2010; Fick et al., 2021; 

West et al., 2022; X. Wu et al., 

2023 

Synth (R package; see https://cran.r-

project.org/package=Synth) 

tidysynth (R package; see https://cran.r-

project.org/package=tidysynth) 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

Multi-level Modeling with 

Fixed Effects†: Use only 

within-unit variation over 

time to address time-

invariant unmeasured 

confounders. 

Byrnes & Dee, 2025; Gelman & Hill, 

2006; Simler-Williamson & 

Germino, 2022 

fixest (R package; see https://cran.r-

project.org/package=fixest) 

lfe (R package; see https://cran.r-

project.org/package=lfe) 

plm (R package; see https://cran.r-

project.org/package=plm) 

PyFixest (Python library; see 

https://github.com/py-

econometrics/pyfixest)  

Structural Causal Model 

(SCM)-based Front-door 

Criterion: Use causal 

diagrams to identify sets of 

measured variables that 

address the effects of some 

unmeasured confounders. 

Arif et al., 2022; Arif & MacNeil, 

2022; Paul, 2011; Pearl, 2009; 

Stewart et al., 2023 

causaleffect (R package; see https://cran.r-

project.org/package=causaleffect) 

daggity (R package and Web interface; see 

https://dagitty.net) 

fdtlme (R package; see 

https://github.com/annaguo-bios/fdtmle) 

DoWhy (Python library; see https://py-

why.github.io/dowhy) 

Interrupted Time Series 

Analysis†: Leverages a 

natural or implemented 

change using repeated 

outcome measurements 

before and after the change 

Gilmour et al., 2006; Kontopantelis 

et al., 2015; Lopez Bernal et al., 

2016; Wauchope et al., 2021 

CausalImpact (R package; see 

https://github.com/google/CausalImpact) 

and CausalImpact (Python library; see 

https://pypi.org/project/causalimpact) 

segmented (R package; see https://cran.r-

project.org/package=segmented) 

https://cran.r-project.org/package=Synth
https://cran.r-project.org/package=Synth
https://cran.r-project.org/package=tidysynth
https://cran.r-project.org/package=tidysynth
https://github.com/pymc-labs/CausalPy
https://cran.r-project.org/package=fixest
https://cran.r-project.org/package=fixest
https://cran.r-project.org/package=lfe
https://cran.r-project.org/package=lfe
https://cran.r-project.org/package=plm
https://cran.r-project.org/package=plm
https://github.com/py-econometrics/pyfixest
https://github.com/py-econometrics/pyfixest
https://cran.r-project.org/package=causaleffect
https://cran.r-project.org/package=causaleffect
https://dagitty.net/
https://github.com/annaguo-bios/fdtmle
https://py-why.github.io/dowhy
https://py-why.github.io/dowhy
https://github.com/google/CausalImpact
https://pypi.org/project/causalimpact
https://cran.r-project.org/package=segmented
https://cran.r-project.org/package=segmented
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to account for pre-existing 

trends. 

CausalPy (Python library; see 

https://github.com/pymc-labs/CausalPy) 

†Requires time-series data. 
aIPW and PSM are both examples of Covariate Balancing designs, which balance distribution of confounders across units with different 

exposure levels. 
bSEMs can incorporate unobserved constructs (i.e., “latent variables”) which are inferred from measured variables. 
cTo support causal interpretations, SEMs must explicitly invoke untestable causal assumptions (see Bollen & Pearl, 2013; Pearl, 2012) and 

specify a causal structure via an SEM diagram (see Kunicki et al., 2023).  
dWhile some SEM implementations allow some nonlinear specifications (e.g., via generalized additive models), they estimate causal effects 

using path coefficients or smooth terms derived from model components (Lefcheck, 2016) but do not provide formal identification criteria, as 

in nonparametric SCMs, to assess whether these effects can be uniquely determined from the data (Wang & Sobel, 2013). 
eExperimental BACI designs with manipulated treatments are rare. Most BACI studies are observational and may not meet all the assumptions 

for robust causal inference (see Ferraro et al., 2019; Smokorowski & Randall, 2017; Wauchope et al., 2021). 
fBACI, DID, and RDD are all examples of Natural Experiments, which leverage naturally occurring random variation in the causal variable to 

mimic randomization and account for unmeasured confounders. 
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Table S7. Algorithms for causal discovery, grouped by category. Each algorithm includes a brief description, key references 378 

(including applications in ecology, where available), and links to available software and code. 379 

Category Algorithm Resources and Applications Software and packages 

Constraint-based 

methods 

PC (Peter and Clark): Uses 

repeated conditional 

independence tests to infer 

causal relationships from 

observed independencies in 

data, producing a set of causal 

graphs that represent 

possible causal relationships 

consistent with the data.  

Bystrova et al., 2024; Chu et al., 

2018; Ebert-Uphoff & Deng, 2012; 

Glymour et al., 2019; Kalisch et 

al., 2012; J. Li et al., 2015, pp. 9–

20; Spirtes et al., 2000 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

bnlearn (R package; see https://cran.r-

project.org/package=bnlearn and 

https://www.bnlearn.com) 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

pgmpy (Python library; see 

https://pgmpy.org) 

FCI (Fast Causal Inference): 

Extends the PC algorithm to 

detect possible unmeasured 

confounders, producing a 

causal graph that reflects 

uncertainty about edges. 

Bystrova et al., 2024; Glymour et al., 

2019; Kalisch et al., 2012; La 

Bastide-van Gemert et al., 2014; 

Mielke et al., 2022; Nogueira et 

al., 2022; Shen et al., 2020 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

PCMCI (Peter and Clark 

Momentary Conditional 

Independence): A time-

series adaptation of PC that 

improves detection of causal 

effects in autocorrelated data 

by iteratively testing for 

conditional independencies 

among variables and their 

lags. 

Docquier et al., 2024; Krich et al., 

2020; Nogueira et al., 2022; 

Runge, Nowack, et al., 2019; 

Tárraga et al., 2024 

Tigramite (Python library; see 

https://github.com/jakobrunge/tigramite) 

CausalFlow (Python library; see 

https://github.com/lcastri/causalflow) 

Score-based 

methods 

GES (Greedy Equivalence 

Search): Searches for the best 

Gong et al., 2025; La Bastide-van 

Gemert et al., 2014 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=bnlearn
https://cran.r-project.org/package=bnlearn
https://www.bnlearn.com/
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://causal-learn.readthedocs.io/
https://pgmpy.org/
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://causal-learn.readthedocs.io/
https://github.com/jakobrunge/tigramite
https://github.com/lcastri/causalflow
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
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causal graph by iteratively 

adding or removing edges 

based on a scoring criterion, 

such as the Bayesian 

Information Criterion (BIC), 

balancing data fit and 

simplicity. 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

pgmpy (Python package; see 

https://pgmpy.org/) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

GIES (Greedy Interventional 

Equivalence Search): An 

extension of GES that 

incorporates interventional 

data or assumptions to 

distinguish between 

equivalent causal graphs. 

Hauser & Bühlmann, 2012; Shah et 

al., 2023 

pcalg (R package; see https://cran.r-

project.org/package=pcalg) 

Causal Discovery Toolbox (Python library; see 

https://github.com/FenTechSolutions/Caus

alDiscoveryToolbox) 

gies (Python library; see 

https://github.com/juangamella/gies) 

FGES (Fast Greedy 

Equivalence Search): A 

variant of GES that uses a 

parallelized greedy approach 

to rapidly search for the 

optimal causal graph, making 

it suitable for high-

dimensional datasets. 

Kitson & Constantinou, 2021; 

Ramsey et al., 2017; Shen et al., 

2020 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

Functional model-

based methods 

LiNGAM (Linear Non-

Gaussian Acyclic Model): 

Identifies causal direction 

among variables by assuming 

linear relationships and non-

Gaussian noise. 

Ikeuchi et al., 2023; Kotoku et al., 

2020; Kurotani et al., 2024; 

Shimizu, 2014; Shimizu et al., 

2006, 2011 

Tetrad (GUI, Python library, R package; see 

https://www.cmu.edu/dietrich/philosophy/

tetrad/use-tetrad) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

lingam (Python library; see 

https://github.com/cdt15/lingam) 

ANM (Additive Noise Model): 

Assumes the outcome 

variable is an unknown 

function of the causal variable 

plus independent additive 

noise, which enables 

Bühlmann et al., 2014; Mooij et al., 

2016; Peters et al., 2014; Song et 

al., 2022 

CANM (R package; see https://github.com/Jie-

Qiao/CANM) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://pgmpy.org/
https://causal-learn.readthedocs.io/
https://cran.r-project.org/package=pcalg
https://cran.r-project.org/package=pcalg
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/juangamella/gies
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://www.cmu.edu/dietrich/philosophy/tetrad/use-tetrad
https://causal-learn.readthedocs.io/
https://github.com/cdt15/lingam
https://github.com/Jie-Qiao/CANM
https://github.com/Jie-Qiao/CANM
https://causal-learn.readthedocs.io/
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identification of causal 

direction in both linear and 

nonlinear settings. 

Causal Discovery Toolbox (Python library; see 

https://github.com/FenTechSolutions/Caus

alDiscoveryToolbox) 

lingam (Python library; see 

https://github.com/cdt15/lingam) 

IGCI (Information Geometric 

Causal Inference): 

Determines causal direction 

by analyzing asymmetries in 

the joint distributions of 

cause-effect pairs, without 

inherently controlling for or 

detecting unmeasured 

confounders or indirect causal 

effects. 

Janzing et al., 2012; Mooij et al., 

2016; Song et al., 2022 

CANM (R package; see https://github.com/Jie-

Qiao/CANM) 

Causal Discovery Toolbox (Python library; see 

https://github.com/FenTechSolutions/Caus

alDiscoveryToolbox) 

IGCI (Python library; see 

https://github.com/amber0309/IGCI) 

Dynamical systems 

causality (DC)-

based methods 

Granger Causality (GC): Tests 

whether past values of one 

time series can predict future 

values of another, assuming 

linear relationships in time-

series data. 

Detto et al., 2012; Granger, 1969; 

Nogueira et al., 2022; Reygadas et 

al., 2020; Singh & Borrok, 2019; 

Yuan & Shou, 2022 

NlinTS (R package; see https://cran.r-

project.org/package=NlinTS) 

causal-learn (Python library; see 

https://causal-learn.readthedocs.io) 

Information Theoretic (IT) 

Causality: A class of 

nonparametric and model-

based methods that infer 

direct causal relationships by 

quantifying how knowledge of 

one variable reduces 

uncertainty about the future 

states of another variable. 

Includes Transfer Entropy 

(TE) approaches. 

Benocci et al., 2025; Docquier et al., 

2024; Hmamouche, 2020; 

Schreiber, 2000; Sun et al., 2015; 

Sun & Bollt, 2014; Yang et al., 

2018 

NlinTS (R package; see https://cran.r-

project.org/package=NlinTS) 

copent (R package; see 

https://github.com/majianthu/copent) 

crossmapy (Python library; see 

https://github.com/PengTao-

HUST/crossmapy) 

IDTxl (Python library; see 

https://github.com/pwollstadt/IDTxl) 

Convergent Cross Mapping 

(CCM): Uses state-space 

reconstruction to infer causal 

Chang et al., 2017; Karakoç et al., 

2020; Kitayama et al., 2021; 

Matsuzaki et al., 2018; Nova et al., 

rEDM (R package) and pyEDM (Python 

library); see 

https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/cdt15/lingam
https://github.com/Jie-Qiao/CANM
https://github.com/Jie-Qiao/CANM
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/amber0309/IGCI
https://cran.r-project.org/package=NlinTS
https://cran.r-project.org/package=NlinTS
https://causal-learn.readthedocs.io/
https://cran.r-project.org/package=NlinTS
https://cran.r-project.org/package=NlinTS
https://github.com/majianthu/copent
https://github.com/PengTao-HUST/crossmapy
https://github.com/PengTao-HUST/crossmapy
https://github.com/pwollstadt/IDTxl
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relationships in nonlinear 

systems by testing whether 

past states of the causal 

variable can reliably predict 

current states of another 

variable. 

2021; Sugihara et al., 2012; Ushio 

et al., 2018; J. Wu et al., 2023; Ye 

et al., 2015; Yuan & Shou, 2022 

https://sugiharalab.github.io/EDM_Docume

ntation  

Partial Cross Mapping (PCM): 

An extension of CCM that 

adjusts for potential 

unmeasured confounders to 

better isolate direct causal 

relationships. 

Leng et al., 2020; Yongmei & Yulian, 

2024 

MATLAB code (see https://github.com/Partial-

Cross-Mapping) 

crossmapy (Python library; see 

https://github.com/PengTao-

HUST/crossmapy) 

380 

https://sugiharalab.github.io/EDM_Documentation
https://sugiharalab.github.io/EDM_Documentation
https://github.com/Partial-Cross-Mapping
https://github.com/Partial-Cross-Mapping
https://github.com/PengTao-HUST/crossmapy
https://github.com/PengTao-HUST/crossmapy
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7. Advanced methods for causal inference and causal discovery 381 

While many of the fundamental methods for causal discovery and causal inference have existed for 382 

several decades, the field of causal inference is continually evolving to incorporate novel statistical 383 

techniques and address increasingly complex data scenarios. For example, machine learning (ML) 384 

techniques are being integrated into methods for causal discovery and causal inference (Leist et al., 385 

2022). Causal discovery with ML approaches, such as deep causal learning algorithms, use neural 386 

approaches to learn causal networks from a combination of empirical data and prior causal knowledge 387 

(C. Li et al., 2024; Scherrer et al., 2021; Yu et al., 2019). ML models can also be used in causal 388 

inference, provided the model and covariates are specified to accurately represent the underlying causal 389 

process (Brand et al., 2023; Hernán & Robins, 2024; Huber, 2023). For example, causal forests estimate 390 

causal effects using random forests (Wager & Athey, 2018), while double/debiased ML methods, such 391 

as targeted maximum likelihood estimation (TLME) (van der Laan & Rubin, 2006), control for 392 

measured confounders using ML models that can capture complex nonlinear and high-dimensional 393 

patterns of confounding (Chernozhukov et al., 2018). We summarize some of these 394 

advanced methods for both causal discovery and causal inference in Table S8. 395 

It should be noted that not all ML approaches are appropriate for causal analyses (Pichler & 396 

Hartig, 2023). ML approaches are merely a class of models that, without pre-existing knowledge and 397 

assumptions, are purely intended for predictive tasks and are not appropriate for obtaining causal 398 

interpretations (Section S2). Thus, causal ML approaches still require the principles and assumptions 399 

linking statistical dependence to causal dependence (Section S4), and careful model building using pre-400 

existing knowledge about all relevant confounding variables is essential for these methods to detect and 401 

estimate causal effects without bias (Section S3).  402 

 403 

 404 
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 405 

Table S8. Advanced methods for causal discovery and causal inference, grouped by causal task. Each method includes a brief 406 

description, key references and links to relevant software and code. 407 

 Causal Task Method Resources and Applications Software and packages3 

Causal 

discovery 

Deep causal learning: Uses deep 

learning models (e.g., neural 

networks) to detect causal 

relationships in complex, high-

dimensional data, often 

incorporating pre-existing 

knowledge to improve accuracy. 

C. Li et al., 2024; Luo et al., 2020; Yu 

et al., 2019; K. Zheng et al., 2024 

DAG-GNN (Python code; see 

https://github.com/fishmoon1234/DAG-

GNN) 

DeFuSE (Python code; see 

https://github.com/chunlinli/defuse) 

Dagma (Python library; see 

https://github.com/kevinsbello/dagma) 

Causal representation learning: 

Learning disentangled latent 

representations that correspond to 

underlying causal variables and 

capture the structure of the data-

generating process. 

Ahuja et al., 2023; Brehmer et al., 

2022; Scholkopf et al., 2021 

Emei (Python library; see 

https://github.com/FrankTianTT/emei) 

DRL (Python code; see 

https://github.com/CausalRL/DRL) 

gCastle (Python library; see 

https://pypi.org/project/gcastle) 

Causal reinforcement learning: 

Incorporates causal assumptions 

or causal models into 

reinforcement learning (a machine 

learning approach where models 

learn by trying actions and 

observing which ones produce the 

best outcomes). 

Buesing et al., 2019; Wang et al., 

2021; Zeng et al., 2025; Zhu et al., 

2020 

CARL (Python code; see 

https://github.com/arquimides/carl) 

Note: No dedicated packages or libraries – 

most implementations of causal 

reinforcement learning are ad hoc in 

published papers or preprints. 

Invariant causal prediction: 

Identifies causal variables by 

selecting predictors whose 

statistical relationships with the 

outcome remain invariant across 

environments or experimental 

settings.  

Peters et al., 2016; Pfister et al., 

2019 

InvariantCausalPrediction (R package; see 

https://cran.r-

project.org/package=InvariantCausalPre

diction) 

causalicp (Python library; see 

https://github.com/juangamella/icp) 

 
3See also https://github.com/rguo12/awesome-causality-algorithms  

https://github.com/fishmoon1234/DAG-GNN
https://github.com/fishmoon1234/DAG-GNN
https://github.com/chunlinli/defuse
https://github.com/kevinsbello/dagma
https://github.com/FrankTianTT/emei
https://github.com/CausalRL/DRL
https://pypi.org/project/gcastle
https://github.com/arquimides/carl
https://cran.r-project.org/package=InvariantCausalPrediction
https://cran.r-project.org/package=InvariantCausalPrediction
https://cran.r-project.org/package=InvariantCausalPrediction
https://github.com/juangamella/icp
https://github.com/rguo12/awesome-causality-algorithms
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Causal 

inference 

Targeted Maximum Likelihood 

Estimation (TMLE): Semi-

parametric method that uses 

machine learning models for 

flexible outcome and treatment 

modeling, with a targeted 

correction step to ensure valid 

inference. 

Luque‐Fernandez et al., 2018; 

Schuler & Rose, 2017; van der 

Laan & Rubin, 2006 

tmle3 (R package; see 

https://tlverse.org/tmle3) 

causal-curve (Python library; see 

https://github.com/ronikobrosly/causal-

curve) 

Double/debiased machine 

learning: Uses machine learning to 

model outcomes and treatments 

separately, then combines them to 

estimate treatment effects while 

controlling for confounding in 

high-dimensional settings. 

Chernozhukov et al., 2018; Fink et 

al., 2023; B. Shi et al., 2024 

DoubleML (R package; see https://cran.r-

project.org/package=DoubleML) 

EconML (Python library; see 

https://github.com/py-why/econml) 

Causal forests: Uses ensembles of 

decision trees to estimate 

heterogeneous treatment effects 

while accounting for confounding. 

Athey et al., 2019; Athey & Wager, 

2019; Fink et al., 2023; Wager & 

Athey, 2018; Xie et al., 2012; L. 

Zheng & Yin, 2023 

grf (R package; see https://cran.r-

project.org/package=grf) 

EconML (Python library; see 

https://github.com/py-why/econml) 

Meta-learners for heterogeneous 

treatment effects (e.g., S-learner, 

T-learner, X-learner, and R-

learner): Use machine learning 

models to estimate heterogeneous 

treatment effects by modeling 

outcomes separately for different 

treatment levels, with a tradeoff 

between simple implementation 

and reduced reliability in inference. 

Jiang et al., 2021; Künzel et al., 2019; 

Nie & Wager, 2021; Salditt et al., 

2024 

rlearner (R package; see 

https://github.com/xnie/rlearner) 

EconML (Python library; see 

https://github.com/py-why/econml) 

CausalML (Python library; see 

https://github.com/uber/causalml) 

metalearners (Python library; see 

https://github.com/quantco/metalearne

rs) 

Causal inference using Bayesian 

machine learning: Estimate 

treatment effects using Bayesian 

machine learning models (e.g., 

Bayesian Additive Regression 

Trees [BART]) to capture nonlinear 

Green & Kern, 2012; Hahn et al., 

2020; J. Hill et al., 2020; J. L. Hill, 

2011; Zeldow et al., 2019 

bartCause (R package; see 

https://github.com/vdorie/bartCause) 

BCI Toolbox (Python library; see 

https://github.com/evans1112/bcitoolb

ox) 

https://tlverse.org/tmle3
https://github.com/ronikobrosly/causal-curve
https://github.com/ronikobrosly/causal-curve
https://cran.r-project.org/package=DoubleML
https://cran.r-project.org/package=DoubleML
https://github.com/py-why/econml
https://cran.r-project.org/package=grf
https://cran.r-project.org/package=grf
https://github.com/py-why/econml
https://github.com/xnie/rlearner
https://github.com/py-why/econml
https://github.com/uber/causalml
https://github.com/quantco/metalearners
https://github.com/quantco/metalearners
https://github.com/vdorie/bartCause
https://github.com/evans1112/bcitoolbox
https://github.com/evans1112/bcitoolbox
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relationships and quantify 

uncertainty via posterior 

distributions. 

Counterfactual fairness: Defines 

fairness based on counterfactual 

comparisons across protected 

attributes using structural causal 

models, ensuring outcomes would 

remain the same in a hypothetical 

world where protected group 

membership had been different. 

Chiappa, 2019; Nabi & Shpitser, 

2018; Y. Wu et al., 2019 

EXOC (Python code; see 

https://github.com/CASE-Lab-

UMD/counterfactual_fairness_2025) 

Note: No dedicated packages or libraries – 

most implementations of counterfactual 

fairness are ad hoc in published papers or 

preprints. 

Causal data fusion: Combines data 

from different sources (e.g., 

observational and experimental) to 

estimate causal effects when no 

single dataset is sufficient, using 

assumptions encoded in 

transportability diagrams (causal 

diagrams that represent 

differences between data sources). 

Bareinboim & Pearl, 2016; Chau et 

al., 2021; Josey et al., 2022; Pearl 

& Bareinboim, 2014 

Note: Data fusion methods remain in 

development, thus general-purpose 

implementations are not currently widely 

available. Implementation of some data 

fusion concepts are available via a GUI at 

https://causalfusion.net. A Python library 

called Y0 (see https://github.com/y0-

causal-inference/y0) also implements 

some data fusion concepts (e.g., parsing 

transportability graphs). 

 408 

 409 

 410 

https://github.com/CASE-Lab-UMD/counterfactual_fairness_2025
https://github.com/CASE-Lab-UMD/counterfactual_fairness_2025
https://causalfusion.net/
https://github.com/y0-causal-inference/y0
https://github.com/y0-causal-inference/y0
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