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Abstract

Beneath  the  Earth’s  surface  lies  a  network  of  interconnected  caves,  voids,  and 

systems of fissures forming in rocks of sedimentary, igneous, or metamorphic origin. 

Though largely inaccessible to humans, this hidden realm supports and regulates 

services critical to ecological health and human well-being. Subterranean ecosystems 

are integral to major biogeochemical cycles, sustain diverse surface habitats, and 

serve as the primary source of irrigation and drinking water. They also offer non-

material benefits, including scientific discovery, education, and cultural practices. Yet, 

these contributions often go unrecognized, partly due to the lack of a unified synthesis 

of  ecosystem  services  across  terrestrial,  freshwater,  and  marine  subterranean 

compartments. This gap limits effective communication of their value to scientists, 

practitioners, and the public. Through a systematic expert-based review, we show that 

subterranean ecosystems contribute to up to 75% of classified ecosystem services. 

Notably,  many  of  these  contributions  are  described  only  qualitatively,  lacking 

numerical or economic quantification. Next, we provide examples of the main services 

to offer a global overview of their multifaceted value and vulnerability to environmental 

change.  We  believe  this  synthesis  provides  researchers  and  practitioners  with 

concrete examples and targeted metaphors to  more effectively  communicate  the 

importance of subterranean ecosystems to diverse audiences.

Keywords: Groundwater; Hypogean; Nature value; Drinking water; Food production; 

Biotechnology; Geothermal energy; Sustainability; Ecotourism; Cultural heritage
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Introduction

Whether engaging in high-stakes discussions with policymakers or navigating casual 

conversations at social gatherings, scientists studying subterranean biodiversity may 

find themselves in the uncomfortable position of defending the very essence of their 

work. Questions like, “Why waste your time in a muddy cave to count tiny beetles?”, 

“Are we really worried about some blind shrimp no one's ever seen?” or “What’s next—

national parks for glow-in-the-dark worms?” are all too common. They reflect a deep 

misunderstanding of the hidden world beneath our feet,  the fragile ecosystems it  

sustains,  and  the  profound  influence  it  has  on  the  surface  environments  where 

humans live.

Studying  “unremarkable”  species  thriving  beneath  the  Earth  surface  might 

seem like an indulgent pursuit, far removed from the pressing concerns of modern life. 

After all, how could the presence of a whitish shrimp in a remote cave pond possibly 

contribute  to  global  challenges  such  as  economic  growth,  public  health,  or 

technological  development?  Far  from  trivial,  these  discussions  reflect  a  broader 

struggle to spotlight the invisible services provided by nature. The challenge, then, is 

not  merely  defending  one’s  research  but  broadening  collective  understanding  of 

biodiversity’s essential functions—its intrinsic value and its critical role in maintaining a 

healthy, habitable planet. The public cannot grasp what is at risk if scientists fail to 

communicate these values.

When the concept  of  ecosystem services gained momentum after 1997,  it 

offered biodiversity scientists a powerful framework to articulate the societal relevance 

of  their  work.  Ecosystem services  encompass  all  the  functions  and  products  of 

ecosystems that benefit humans and contribute to societal welfare. Initially conceived 

as a metaphor, the concept quickly evolved into a robust research agenda focused on 

cataloging, quantifying, and mapping humanity’s reliance on nature1–3. For example, 

ecosystem services are frequently categorized into: provisioning services (e.g., food, 

water), regulation and maintenance services (e.g., climate regulation, pollination, air 

and water quality), and cultural services (e.g., recreational, traditional practices and 

spiritual  well-being).  Notwithstanding  the  inherent  risk  of  putting  a  price  tag  on 
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nature10, many of these services are also often measured economically. This reflects 

the need to highlight the value of services that are, in part, subjective and difficult to 

perceive outside of academic contexts11,12.

While  the  quantification  of  ecosystem services  has  occupied the  research 

community for decades, knowledge remains incomplete for subterranean ecosystems. 

Despite their hidden nature, subterranean ecosystems (Box 1) provide and regulate 

services that are as critical to human well-being and ecological health as those in 

surface ecosystems (Figure 1). The benefits derived from subterranean ecosystems 

are remarkably diverse, with direct and indirect links to essential functions such as 

freshwater provisioning, food production, and the regulation of diverse biogeochemical 

and physical processes13–16. Subterranean ecosystems also contribute to essential 

“non-material” values, including scientific research and inspiration17–19, ecotourism20,21, 

aesthetic appreciation22,23, and cultural practices24,25. 

The  questions  driving  this  review  are  straightforward  yet  important:  What 

services do subterranean ecosystems provide, and how many of these have been 

quantified  to  some  extent?  Answering  these  questions  is  urgent  because, 

paraphrasing  the  common  adage,  “you  can’t  manage  what  you  can’t  see  and 

measure”.  Currently,  information  on  the  benefits  provided  by  subterranean 

ecosystems  is  scattered  across  numerous  sources,  many  of  which  remain 

inaccessible to the public. While a handful of reviews have compiled subsets of these 

services for specific subterranean ecosystems16,26–30 or species31, a comprehensive 

scheme  that  unifies  all  services  across  terrestrial,  freshwater,  and  marine 

subterranean compartments is still lacking. Moreover, integrating quantitative rigor into 

this mapping exercise could enhance the perceived importance of these services and 

help establish connections to the eco-evolutionary processes that sustain them. Such 

an understanding could shift the narrative—from viewing subterranean ecosystems 

merely as sources of water, geothermal energy, and minerals to recognizing their 

broader ecological value. This, in turn, would reinforce the importance of even partial 

data in  designing conservation strategies that  prioritize ecosystem functions over 

isolated species or habitats32.
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Figure 1. A visual summary of the main services associated with subterranean ecosystems. Original 

illustration by Jagoba Malumbres-Olarte.
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Box  1.  What  do  we  mean  by  “subterranean  ecosystem”?  Subterranean 

ecosystems are globally distributed and vary widely in extent and type of matrix. 

Following the function-based classification of Earth’s ecosystems33,34, we considered 

ecosystems belonging to these biomes in terrestrial, freshwater, and marine domains: 

‘Subterranean’  (S)  [including  the  ‘Subterranean  lithic’  (S1)  and  ‘Anthropogenic 

subterranean  voids’  (S2)  biomes],  ‘Subterranean-freshwater’  (SF)  [including  the 

‘Subterranean freshwater’ (SF1) and ‘Anthropogenic subterranean freshwater’ (SF2) 

biomes], and ‘Subterranean tidal’ (SM1). These include various types of caves (e.g., 

aerobic caves, lava tubes, volcanic pits, anchialine caves, sea caves) and other voids 

(e.g., fissure systems, deep scree strata), groundwater ecosystems and their ecotones 

(e.g.,  aquifers,  underground  streams,  ponds,  lakes,  subterranean  estuaries, 

anchialine pools, sinkholes, cenotes, blueholes, springs, hyporheic systems), as well 

as anthropogenic subterranean voids (e.g., mines, underground bunkers and tunnels, 

water pipes, subterranean canals, wells). Conversely, excluded ‘Endolithic systems’ 

(S1.2)33 or,  in other words,  the deep biosphere—microbial  communities occurring 

kilometers beneath the Earth’s surface—due to the limited ecological data available 

and  the  uncertainty  regarding  their  connectivity  to  shallower  ecosystems  and 

ecosystem service provision35,36.
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Subterranean ecosystems services in numbers

To  map  subterranean  ecosystem  services,  we  used  the  Common  International 

Classification of Ecosystem Services (CICES Version 5.1). CICES is a classification 

scheme designed to measure, account for, and assess ecosystem services  9. The 

services  are  categorized  into  three  main  “Sections”  (Provisioning,  Regulation  & 

Maintenance, and Cultural services) and two broad types within each section (biotic 

and  abiotic),  with  further  breakdowns  into  levels  of  Division,  Group,  and  Class. 

Conveniently,  CICES is  interoperable  with  other  ecosystem service  classification 

systems by providing equivalency across various schemes. CICES lists 90 primary 

services—63 biotic and 27 abiotic. Using this backbone classification, we assessed 

whether subterranean ecosystems contribute to the various ecosystem services listed 

in  CICES based on  our  expert  knowledge and the  literature.  To  strengthen our 

evaluation, we conducted a literature review for each service to assess quantitative 

estimates of the services provided by subterranean ecosystems. 

According  to  our  mapping  exercise  (see Data  availability  statement), 

subterranean ecosystems contribute to up to 75% (68 out of 90) of the ecosystem 

services classified by CICES. This contribution is higher than the estimations for 

ecosystem services provided by grasslands (36%)37,  urban water bodies (43%)38, 

mangrove ecosystems (33% of the biotic services)39,  or vineyards (64%)40.  When 

considering  specific  systems,  terrestrial,  freshwater,  and  saltwater  subterranean 

compartments  match  48%,  57%,  and  54% of  the  services  classified  by  CICES, 

respectively. 

Of  all  the 68 matching services,  between one third and a half  have been 

quantified (i.e., measured numerically) (Figure 2), primarily by local case studies. Most 

of the identified services benefit society at large, although specific services appear to 

be most important for specific economic sectors (Figure 3). Groundwaters, particularly 

freshwater systems, dominate in the percentage of measured ecosystem services. 

This is likely both due to their accessibility and measurability compared to terrestrial 

and marine systems and the crucial  importance of  groundwater  for  drinking and 

irrigation.  Indeed,  human settlements are often located where there is  access to 
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aquifers, through springs, caves, wells and boreholes. These features allow for direct 

sampling and regular monitoring. In comparison, terrestrial and marine subterranean 

ecosystems are less accessible, often requiring specialized and costly technologies 

for exploration41–43.
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Figure 2. The number of Provisioning, Regulation & Maintenance, and Cultural services provided by 

terrestrial, freshwater, and saltwater subterranean ecosystems (colored bars) compared to the total 

services mapped by the Common International Classification of Ecosystem Services (white bars). 

Darker shades indicate the fraction of subterranean services that have been quantitatively assessed in 

at least one study.
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Provisioning services

Provisioning  ecosystem  services  are  the  tangible  goods  and  resources  that 

ecosystems provide to humans9. These services are the direct products we obtain 

from nature, such as freshwater, food, raw materials, medicinal resources, and energy. 

Subterranean  ecosystems  contribute  to  as  many  as  63%  of  the  provisioning 

ecosystem services classified by CICES (Figure 3). 

Water supply

Groundwater, the largest unfrozen continental reserve of freshwater globally44,45, is a 

prime source of water for drinking, irrigation, and industrial use13 (Figure 4A, 4B). It is 

estimated that groundwater constitutes approximately 95% of the planet’s accessible 

liquid freshwater resources, including drinking water. Over a quarter of the global 

population  relies  on  this  resource,  either  partially  or  entirely46.  Current  human 

groundwater use is estimated to exceed the capacity of aquifers by about 3.5 times 

and groundwater decline is accelerating at the global scale47. About 43% of irrigation 

water and 49% for domestic use is sourced from groundwater48, and this figure is likely 

to become even more pronounced due to continuous population growth and increasing 

frequency  of  droughts  and  extreme  events  connected  with  climate  change 

intensity48,49. 

Still, there are large uncertainties in global estimations of the total volume of 

groundwater44,45, where it is distributed45, its depth50, recharge rates51, and patterns of 

human extractions52. Besides quantity, water quality is very relevant, which primarily 

depends on geochemical processes and anthropogenic impacts but also, at least 

partially,  on the presence of  subterranean organisms (see section “Regulation & 

Maintenance Services”). 
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Figure  3.  Importance  of  ecosystem  services  provided  by  terrestrial,  freshwater,  and  marine 

subterranean  ecosystems  to  socio-economic  sectors  (primary:  resource  extraction;  secondary: 

manufacturing;  tertiary:  services;  quaternary:  knowledge-based  activities).  “All  society”  represents 

services with transversal benefits, not limited to a single sector.
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Energy production

Subterranean  ecosystems  are  increasingly  used  for  heating,  cooling,  and  direct 

energy production. Geothermal heat pump systems, which use heat from shallow 

underground sources, are the fastest-growing segment of geothermal technology and 

one of the fastest-growing renewable energy options in the world. Other direct uses, 

such  as  heating  buildings,  bathing,  swimming,  industrial  processes,  farming 

(especially greenhouses), and fish farming, are generally based on deep hydrothermal 

resources53.  Deep geothermal  energy plants produce hot  water,  directly  used for 

heating purposes (e.g., via district heating networks) or turn the heat into electrical 

power. The global geothermal energy production of 95 TWh yr–1 represents about 10% 

of  the  sustainable  electricity  generated annually.  Among renewables,  geothermal 

power has the highest potential in the future accounting for about 67%. Solar power, 

wind power, power from biomass, and hydropower account for 21%, 8%, 3.5%, and 

0.1%, respectively53–55.

When  considering  subterranean  ecosystems,  it  is  the  use  of  shallow 

geothermal energy that requires the most attention. In geology, the boundary between 

'shallow' and 'deep' is typically set at a depth of 400–500 meters, which corresponds, 

with only a few exceptions, to the deepest known occurrence of subterranean fauna56. 

Most  geothermal  heat  pump systems operate  with  relatively  shallow closed-loop 

borehole  heat  exchangers,  often  complemented  by  open,  groundwater-based 

systems. The shallow subsurface is warmer in winter and cooler in summer compared 

to  the  outside  air.  By  using  geothermal  heat  pump  systems,  this  temperature 

difference  can  provide  heating  in  winter  and  cooling  in  summer.  However,  it  is 

important to note that extracting heat or cold from the subsurface can alter thermal 

conditions in ways that may be harmful from an ecological perspective. It can also 

induce temperature fluctuations resembling surface seasonality, though with much 

smaller temperature differences. Among these effects, warming is the main factor that 

puts  pressure  on  subterranean  communities  57.  Warming  also  accelerates  the 

metabolism of both microbes and fauna, leading to faster consumption of dissolved 

oxygen  and  potentially  resulting  in  hypoxic  or  anoxic  conditions.  These  oxygen-

depleted conditions can cause the disappearance of fauna and are followed by a 
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decline in water quality58. Thus, energy production through geothermal use can be in 

conflict with the health of subterranean ecosystems—alongside other global driver of 

subsurface warming such as climate change59 and urbanisation60,61.

Food production

Groundwater is critical for global food security, supplying over 40% of the water used 

for irrigation and supporting approximately 13% of total food production62 (Figure 4B). 

Groundwater enables both large- and small-scale farmers to enhance agricultural 

output,  particularly  in  regions  where  rainfall  is  insufficient  to  meet  crop  water 

demands63.  Even  though  the  negative  effect  of  irrigation  can  be  mitigated64,65, 

groundwater  resources  are  increasingly  being  overexploited,  especially  in  major 

agricultural regions such as California’s Central Valley, the High Plains Aquifer in the 

U.S. Midwest, the Middle East, the Indus and Ganges Basins, and the North China 

Plain66. Currently, India is the world’s largest consumer of groundwater, supplying 

approximately 60% of its irrigation needs67. Among internationally traded crops, rice is 

the most groundwater-intensive, accounting for 29% of global usage, followed by 

wheat (12%), cotton (11%), maize (4%), and soybeans (3%). Citrus and sugar crops 

also account for approximately 5% of groundwater use for irrigation each68.

Beyond  these  agricultural  trends,  subterranean  environments  have  been 

central  to  food  production  and  foraging  practices  for  millennia.  Shepherds  have 

historically used caves and caverns as shelters to protect livestock from harsh weather 

conditions69,70. Additionally, caves were integral to traditional food preservation and 

production, particularly in cheese and wine-making, as well as mushroom cultivation, 

where  their  stable  temperatures  and  humidity  make  them  natural  analogs  to 

cellars71,72.  A  case-in-point  is  Penicillium  roqueforti,  a  fungus  discovered  in  the 

limestone caves above Roquefort, France, where the mold accidentally transformed 

cheese into a flavorful delicacy, now renowned as Roquefort cheese.

Subterranean ecosystems and their ecotones also contribute to the service of 

food production by enabling aquaculture or as habitat for commercially or culturally 

important species. For example, anchialine pools have been used to keep fish for fresh 

consumption or even to cultivate fish bait used in traditional mackerel fisheries73, as in 
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the case of the red shrimp Halocaridina rubra (ʻōpaeʻula) in Hawaiʻi74. The nests and 

eggs  of  cave  swiftlets  (Collocalia  linchi)  and  Cory’s  shearwaters  (Calonectris 

diomedea) are harvested for their nutritional 75 or traditional medical value76. Oilbirds 

(Steatornis caripensis) are exploited in South America for their flesh and fat (oil), used 

for cooking and lighting77. Bats are hunted as a meat source in Asia and Africa78. 

Depending on species and locations, bats are either considered a delicacy or an 

affordable source of protein during times of food scarcity79,80. However, such practices 

may threaten endangered species and their habitats81.
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Figure 4. Global mapping of major subterranean ecosystem services based on proxy variables. 

A) Groundwater depth and human population density, illustrating potential hotspots where there will be 

pressure in terms of groundwater extraction. Pink areas indicate regions where groundwater is deeply 

underground and difficult to access, with low population densities. Dark orange areas represent regions 

where groundwater is also difficult to access but have high population densities. B) Groundwater depth 

and  irrigation  intensity,  illustrating  potential  hotspots  where  there  will  be  pressure  in  terms  of 

groundwater extraction. Dark blue areas indicate regions that are highly irrigated and face greater 

difficulty accessing groundwater. In both A and B, groundwater availability is measured as the depth 

from the land surface to the point where groundwater begins (source: ref. 82). A shallow depth means 

groundwater is close to the surface, whereas a greater depth indicates it is further underground. Dark  

orange and dark blue areas highlight regions where accessing groundwater is particularly challenging, 

especially in the absence of shallow water resources. C) Global mining pressure, illustrating potential 

hotspots  where  mining  activities  may  reduce  subterranean habitat  availability.  Mining  intensity  is 

calculated based on the percentage of each country’s area occupied by mines (source: ref. 83) and the 

total extracted tonnage of target minerals (source: World Mineral Statistics contributed by permission of 

the British Geological Survey). D) Annual number of show cave visitors per country and associated 

income, estimated based on cave entrance fees (in dollars) (source: ref. 20).
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Raw materials 

Rock, mineral, and materials extracted from subterranean ecosystems account for a 

major part of the global economy (Figure 4C). The effects of mining, including rock or 

mineral extraction itself and all the infrastructure involved, potentially influences 50 

million km2 of the planet´s surface84. In 2025, the global production of minerals is 

expected to reach 15 billion tons85, with a value exceeding 7 trillion USD in 2024 and 

constituting an important part of the national GDP in many countries86.

Many  of  the  mining  areas  coincide  with  protected,  key  biodiversity  and 

wilderness areas. Hence, mining activities impact subterranean ecosystems, either 

directly (e.g., loss of habitat) or indirectly (aquifer contamination)87,88. For example, iron 

ore  production  in  Brazil  accounts  for  approximately  1.6% of  the  country’s  GDP, 

generating around 31 billion US$ in 2022. With thousands of caves associated with 

iron ore landscapes, mining activities severely threaten these unique subterranean 

ecosystems,  which are recognized for  their  significant  diversity  of  cave-restricted 

species89,90.

A special case of mining involves bat and bird guano, which can be locally 

abundant—millions of bats gathering in cave colonies can produce guano piles as high 

as 10 meters91.  Guano is widely used as a fertilizer due to its high nitrogen and 

phosphorus  content92,  or  as  a  source  of  chitin  and  chitosan  for  cosmetics, 

pharmaceutics, and textiles93,94. Bat guano fertilizer typically costs US$ 2.50–24.00 per 

1 kg 92.

Biomolecular resources and emerging technologies

Subterranean ecosystems are a promising source of molecules and compounds with 

biotechnological applications, though bioprospective activities are still in their early 

stages.  Subterranean  microbial  biofilms  often  influence  mineral  precipitation  and 

dissolution95,  particularly  through  polymeric  substances  that  are  produced  and 

secreted by microbes (mediating microbial adhesion on surfaces) and may serve as 

nucleation sites for mineral precipitation, promoting the growith of cave formations 

(speleothems)96–98. Secondary metabolites produced by microbes within those biofilms 
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may have biotechnological and pharmaceutical applications as well, including use as 

enzymes,  biosurfactants,  or  as  antitumoral,  immunosuppressive,  and 

immunostimulatory agents98–105. Some subterranean microorganisms with extracellular 

hydrolytic activity and antimicrobial compound production may be relevant against 

multidrug-resistant pathogens99,106,107. For example, extracts of bacterial isolates from 

lava tubes of Lanzarote (Canary Islands) showed antimicrobial activity against the 

pathogenic  strains  Staphylococcus  aureus,  Escherichia  coli,  and  Pseudomonas 

aeruginosa,  and  exhibited  antiproliferative  activity  against  human  breast  cancer 

cells104.

Beyond microbes, larger subterranean organisms have also been explored for 

their biomolecular potential. For example, many sessile invertebrates in marine caves 

(e.g., sponges, anthozoans, bryozoans, and tunicates) contain or secrete compounds 

with significant application potential108–112.  This biotechnological potential  may also 

arise from more subtle interactions between microscopic and macroscopic organisms. 

For instance, animal excrement in caves, which often harbors pathogenic viruses, may 

stimulate microorganisms to produce antiviral substances113.

Finally, the unique biological adaptations of several subterranean species hold 

promise for biomimicry, particularly in developing sensors, biomaterials, adhesives, 

and biologically inspired robotic movement19. In recent years, medical applications 

inspired  by  subterranean  adaptations  have  also  gained  attention,  ranging  from 

potential  treatments  for  diabetes114 and  autism115 to  innovations  in  blindness 

research116. Despite these possibilities, this potential remains largely untapped, with 

most studies still far from yielding concrete applications.

Regulation & Maintenance services

Regulation & Maintenance services provide the abiotic  and biotic  processes and 

environmental conditions that benefit living organisms, including humans  9. Hence, 

these services offer stability, safety, and resilience to both ecosystems and human 

societies,  and subterranean ecosystems contribute to  as many as 82% of  these 

(Figure 3). 
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Regulation of physico-chemical conditions

Subterranean ecosystems are central to global water and (bio)geochemical cycles, 

including carbon, nitrogen, and other key elements (e.g., phosphorus, sulphur, and 

iron)13,36,117.  Given their  role in maintaining freshwater,  seawater,  and atmospheric 

balance,  subterranean ecosystems are  increasingly  recognized  as  vital  to  global 

sustainability efforts. In particular, subterranean environments may be integral to Earth 

System  governance  frameworks  such  as  the  planetary  boundaries,  where 

groundwater  has  already  been  proposed  as  a  key  component13.  The  planetary 

boundaries define a set of critical biogeophysical processes that collectively regulate 

the stability and resilience of the Earth System118,119. 

Hotspots  for  these  biogeochemical  processes  are  typically  located  along 

environmental gradients, redox interfaces, ecotones, and other transition zones in 

both  terrestrial  (e.g.,  subsurface-surface  atmosphere,  sediment/rock-atmosphere 

interfaces)  and  aquatic  settings  (e.g.,  land-sea,  sediment-water,  and  water-

atmosphere  interfaces)120.  These  environmental  gradients  span  micro  (< mm)  to 

regional scales (> km), and their role in regulating chemical fluxes and ecosystem 

functioning is often disproportionately large relative to their size121. Some of these 

processes may also be mediated within the so-called “deep biosphere” (Box 1)—

following the recognition that bacteria and archaea can occur kilometers deep in the 

Earth's crust35. Yet, major gaps remain in our understanding of their extent, function, 

and role in global biogeochemical cycling36.

Biogeochemical processes associated with subterranean ecosystems primarily 

regulate  the  chemical  conditions  of  freshwater  and  marine  habitats.  Natural  and 

anthropogenic  inputs  of  nutrients  and  organic  matter  from  the  surface  into  the 

groundwater increase dissolved organic carbon (DOC) and nitrate concentrations—

important  indicators  of  water  quality—that  are  then  attenuated  through  microbial 

activity16. For instance, redox-driven microbial processes under aerobic or anaerobic 

conditions (e.g., denitrification and iron reduction) can substantially consume nitrate 

and  reduce  or  transform  DOC  as  groundwater  migrates  through  subterranean 

freshwater environments15 or discharges into the sea122. Marine caves and cavities in 
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tropical regions are also areas of heterotrophic DOC consumption123, which depletes 

dissolved oxygen124.

Fresh groundwater discharge only accounts for a minor portion (~0.6%) of the 

total freshwater input to the world’s oceans125, but it can be critical locally for coastal 

ecosystem functioning due to its high solute and nutrient loads126. At the land-sea 

interface, the region of a coastal aquifer where seawater and groundwater mix—the 

subterranean estuary—is a biogeochemical reaction zone that modulates nutrient and 

carbon fluxes from rocky, sandy, and muddy coastlines to marine ecosystems and 

fisheries122,127.  For  example,  microbial  activity  reduces  nitrate  and  methane 

concentrations in groundwater discharged from sandy coasts128,129, and methane and 

DOC in groundwater discharging from karstic coastlines130,131. Moreover, sinkholes 

along karst coastlines are hotspots for carbon burial132, highlighting their potential for 

inclusion  in  blue  carbon  stocks.  Given  that  approximately  40%  of  the  world’s 

population lives within  100 km of  the coast,  understanding these dynamics is  of 

growing global importance133.

Beyond  biogeochemical  cycles,  subterranean  ecosystems  regulate  key 

physical conditions in the environment. For example, hydrogeological conditions in 

aquifers  control  land  subsidence,  a  phenomenon  mainly  driven  by  excessive 

groundwater  extraction  and  aquifer  compaction,  a  process  that  occurs  when  an 

aquifer's volume and storage capacity decreases due to the removal of water, often 

resulting in land subsidence. Globally, land subsidence leads to the loss of aquifer 

storage  (~17  km3/year)  and  affects  mainly  cropland  and  urban  areas  (73%)134. 

Consequences  include  damage  to  infrastructure,  increased  flood  hazards,  and 

substantial economic and human impacts135,136.

Groundwater  also  supports  ecosystem  services  provided  by  groundwater-

dependent ecosystems137, such as water storage, purification, and flood control. In 

turn,  groundwater-fed vegetation controls  erosion rates138,  buffers  and attenuates 

mass movement, and regulates the overall hydrological cycle and water flow, and 

contributes to flood control and coastal protection. For example, tidal marsh vegetation 

stabilizes sediment and prevents shoreline erosion139, while riparian trees like willows 

(Salix  spp.)  reduce  erosion  along  riverbanks  during  heavy  flow140.  The  value  of 

groundwater-fed vegetation in flood control has been estimated at about €16 billion in 
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the  EU  alone141.  Moreover,  groundwater  provides  essential  baseflow  to  rivers, 

particularly during dry seasons, sustaining river flow and influencing nutrient cycling 

and contaminant transport. Globally, baseflow is estimated to account for 59% ± 7% of 

river flow142. 

Regulation of biological conditions

Subterranean  ecosystems  largely  support  surface  vegetation137,143 and  marine 

habitats122,144. Approximately 37% of the world’s vegetation depends on groundwater to 

some extent145,146. The quality and availability of groundwater influence the distribution, 

diversity, functioning, and resilience of these plant communities143. This dependency is 

particularly  pronounced  in  drought-prone  regions,  where  threshold  levels  of 

groundwater  availability  serve  as  indicators  of  potential  drought  refugia147. 

Groundwater discharged into the marine environment delivers nutrients and affects 

water quality in estuaries, coral reefs, lagoons, mangroves, and saltmarshes122,148.

Subterranean ecosystems also act as temporary, daily, or seasonal habitats for 

many  surface  animals  and  plants,  all  of  which  are  integral  to  interconnected 

subterranean-surface  food  webs17.  Surface  vertebrates  shelter  or  nest  in  cave 

entrances149–151, while bats mate near entrances, but breed and hibernate in deeper 

sections152.  Different  vertebrates  and invertebrates  move in  and out  of  terrestrial 

caves, often guided by circadian rhythms or seasonal cues151,153–155. Aquatic insects, 

crustaceans, and fish seek refuge in the hyporheic zone of rivers during droughts156. 

Groundwater  inputs  also  heavily  influence  freshwater  fish  behavior,  migration, 

spawning,  and  distribution156.  Similarly,  marine  caves  host  diverse  sessile 

invertebrates  (e.g.,  sponges,  corals,  bryozoans  and  brachiopods),  fishes,  and 

crustaceans, including many economically and ecologically valuable species such as 

the precious red coral Corallium rubrum157. As climate become more unpredictable, 

these subterranean refugia are expected to grow in importance because of  their 

environmental stability57.

Arguably, cave-dwelling bats represent the best-studied example of biological 

regulation by subterranean ecosystems. Bats provide critical  pollination and seed 

dispersal services for economically important plants, including figs, durian, mango, 
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and agave31,158. For instance, the pollination services of Eonycteris spelaea to durian 

farmers in Sulawesi,  Indonesia, were valued at  US$117 per hectare during each 

fruiting season159. Another notable example is the mutualistic relationship between 

bats and agave. The pollination of agave relies on bats, particularly the cave-dwelling 

Leptonycteris  nivalis,  which,  in  turn,  depend  on  agave  during  their  seasonal 

migrations160. Agave holds cultural and economic significance in Mexico as a source of 

food, spirits (tequila and mezcal), and fiber.

Insectivorous  bats  are  also  key  biological  controllers  due  to  their  hunting 

efficiency. For example, the cave-dwelling species  Pteronotus gymnonotus and  P. 

personatus consume 5–28% of their body weight in insects each night161. At least 81 

species of insectivorous bats, including several obligate or facultative cave-dwellers, 

prey on over 760 species of insect pests that affect economically important crops such 

as corn, coffee, cotton, rice, apples, macadamia nuts, cocoa, and grapes162. Some of 

these species form massive colonies. For example, Mexican free-tailed bats (Tadarida 

brasiliensis) can form colonies of millions of individuals. During the summer, when bat 

populations peak in Bracken Cave, Texas, they can remove approximately 100 tons of 

insects per night, with the annual value of this pest suppression estimated at US$3.42 

million31. The economic importance of insectivorous bats in Northern America has 

been estimated to be as high as exceeding US$3.7 billion per year163. 

Mitigation of pollutants

The Chemical Abstracts Service lists >200 million organic and inorganic synthesized 

compounds, with 20,000–30,000 new entries added daily164. Many of these chemicals, 

especially those produced in large volumes, are released into the environment and 

eventually make their way underground, either passively (e.g., through percolating 

water) or intentionally (historically, shallow aquifers and caves were often used as 

waste disposal sites)165,166. 

Against  this  backdrop,  a critical  service is  self-purification—the removal  or 

immobilization of pollutants by natural processes27. Subterranean microorganisms are 

key actors in this process, transforming harmful substances into more stable or less 

toxic  forms.  For  example,  bacteria  such  as  Alcaligenes,  Acinetobacter,  and 

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528



23

Pseudomonas can immobilize heavy metals or dissolve phosphate minerals, aiding in 

the removal of contaminants167. As for organic pollutants, microbes can degrade or 

mineralize  compounds  like  petroleum  hydrocarbons  and  halogenated  solvents, 

particularly in point-source contamination scenarios168. However, these processes are 

often  slow,  as  microbial  activity  in  subsurface  environments  is  limited,  and 

groundwater contamination can persist for years169,170. For example, nitrates persist in 

groundwater for decades unless hypoxic or anoxic conditions and an appropriate 

electron donor (e.g., organic matter, pyrite) are present171. 

Self-purification  processes  may  be  stimulated  via  amendment  of  electron 

acceptors (e.g., dissolved oxygen), electron donors (e.g., molasses), and bacterial 

strains  (termed  bioaugmentation)172.  Managed  aquifer  recharge  systems  can 

effectively remove contaminants173, including pharmaceuticals and antibiotics, through 

degradation processes that depend on the aquifer's redox state and temperature174. 

However, biotransformation processes can sometimes produce byproducts that are 

recalcitrant  to  further  degradation  or  more  toxic  than  their  parent  compounds, 

highlighting the complexity of chemical regulation in groundwater systems175.

Beyond microorganisms,  larger  subterranean fauna may also contribute to 

water  purification  through  bioturbation  of  sediments  and  filtration176,177.  Based  on 

consumption rates and rough density estimates of the isopod Phreatoicus typicus in 

New Zealand, it has been estimated that a population of 100 individuals can process 

approximately 7–28 tonnes of sediment per hectare annually and assimilate 120–650 

grams  of  organic  carbon  per  hectare  annually176.  Synergistic  effects  with 

microorganisms  appear  to  be  particularly  important  in  this  context.  Amphipods, 

isopods, and other invertebrates bioturbate and aerate sediments, creating favorable 

conditions for microbial communities to degrade contaminants176–178. For example, the 

isopod Coecidotaea tridentata enhances both planktonic and sedimentary bacterial 

abundance and activity through the excretion of nitrogen, which promotes microbial 

growth, the disturbance of sediments, and the direct consumption of bacteria179.
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Subterranean  ecosystems—particularly  karst  environments  and  caves—play  a 

surprisingly  important  yet  understated  role  in  locally  regulating  atmospheric 

composition.  Microbially-mediated formation  of  speleothems,  such as  moonmilks, 

sequesters and stores CO2
180,181.  Furthermore, aerobic caves act as net sinks for 

atmospheric  methane  (CH4),  actively  consuming  this  greenhouse  gas  through 

microbial oxidation mediated by methane-feeding (methanotrophic) bacteria182–184 or 

through other processes185. Within flooded caves of a karst subterranean estuary, it is 

estimated that ~1.4 tons of methane was consumed during 6 months across a ~100 

km2 catchment region in the Yucatán Peninsula131. It is unlikely that this magnitude of 

methane removal would affect global greenhouse gas budgets, but it quantifies the 

contribution of a critical energy source for an anchialine food web130.

Beyond gas fluxes, subterranean ecosystems exert influence on microclimatic 

conditions. Their ability to buffer temperature and maintain high humidity levels creates 

stable environments that interact with aboveground climates, especially in regions with 

extensive karst topography186,187. In terrestrial systems, this kind of regulation is often 

aided by bryophyte cushions (mosses and liverworts) developing in the entrance-zone 

of caves, which function as living sponges, intercepting rainfall, fog, and dew and 

retaining water volumes several times their dry mass. By slowly releasing this stored 

moisture into the substrate and underlying fissures, they buffer hydrological extremes 

at the subterranean-surface interface, sustain high local humidity for microbial and 

faunal  communities,  and  contribute  measurably  to  the  water-storage  service  of 

groundwater-dependent ecosystems188. In aquatic and marine settings, flooded caves 

and other subterranean environments have an important role in heat transfer through 

groundwater  transport.  Aquifers in  rocky coastlines,  such as karstic  and volcanic 

platforms,  are  distinct  from  others,  because  the  fissures  and  conduits  enhance 

hydraulic transport and exchange of material with the sea through diffuse processes or 

submarine springs144,189,190. Tidal driven oscillation of fresh groundwater discharge has 

been shown to transport heat to the sea from a volcanic platform191. On the contrary, 

tropical  carbonate platforms may cool  the nearby sea through fresh groundwater 

discharge while facilitating the marine-derived saline water to import heat from the 

coast to inland192.
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Beyond caves, groundwater-dependent ecosystems such as groundwater-fed 

wetlands, fens, riparian forests,  and woodlands facilitate atmospheric CO  uptake₂  

through  photosynthesis,  root  respiration,  bicarbonate  formation  in  soil,  and  the 

subsequent  storage  of  carbon  in  groundwater  or  its  precipitation  as  calcium 

carbonate193. Vegetation supported by groundwater, such as the redwood forests of 

Northern  California,  grows  more  robustly  and  for  longer  periods  compared  to 

vegetation without  groundwater  access,  sequestering significantly  more carbon194. 

Notably,  areas  with  groundwater-dependent  ecosystems store  approximately  790 

million tons of CO —nearly double California’s annual emissions₂ 194. However, these 

benefits  can  be  counterbalanced  by  the  dewatering  of  groundwater-dependent 

ecosystems. For example, estimates suggest that wetlands could emit 408 gigatons∼  

of CO  between 2021 and 2100 if degraded or drained₂ 195.

Cultural services

Cultural  ecosystem  services  are  the  non-material  benefits  people  derive  from 

ecosystems,  contributing  to  cultural  identity,  spirituality,  scientific  endeavors,  and 

quality of life9. Subterranean ecosystems contribute to all (Figure 3). 

Tourism and recreation

Terrestrial  and  marine  caves  are  among  the  most  frequently  visited  geo-  and 

ecotourism attractions worldwide. A recent synthesis identified 1,223 show caves 

across 95 countries, involving an estimated 79 million visitors in 201920. This generates 

around 800 million euros in entrance fees, with an even greater economic impact when 

considering related tourist  activities—souvenir  shops,  restaurants,  bars,  and local 

transport  (Figure 4D). Inevitably, this level  of  tourism comes not without impacts, 

including  structural  damage to  caves,  alterations  to  local  climatic  conditions,  the 

introduction of external organic matter and non-native fungi, bacteria, and animals, 

and the growth of photosynthetic organisms due to artificial lighting21.

Furthermore,  geothermal phenomena linked to subterranean ecosystems—

such as boiling lakes, mud ponds, and geysers—serve as striking natural attractions, 
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drawing visitors to destinations that blend wonder with recreation. Some of these 

features also fuel the wellness sector. Thermal springs, long used by humans—and 

other  apes196—for  health  and  wellness,  are  increasingly  being  transformed  into 

modern  hot  spring  resorts  and  water  parks.  Similarly,  speleotherapy,  particularly 

speleoclimatotherapy and radon therapy, offers drug-free therapeutic benefits. For 

example, the unique microclimate of salt  caves and mines—characterized by fine 

aerosols  of  NaCl,  K+,  and  Mg2+,  high  humidity,  low  radiation,  light  air  ions, 

hypoallergenic air, and stable temperature—effectively alleviates different respiratory 

syndromes197. 

Terrestrial and aquatic caves are popular recreational sites for activities such as 

caving, snorkeling, scuba diving, and boat tours198,199. These activities range from 

spontaneous experiences lasting a few hours, undertaken solo or in groups, to more 

structured expeditions and cave trips that require advanced speleological knowledge 

and skills. Often this kind of tourism brings visitors to caves that would be closed to 

humans otherwise, which may cause local impact to the ecosystems but also enhance 

scientific knowledge by citizens, amateur scientists, and speleologists. 

Finally,  subterranean-related  ecotourism  offers  opportunities  for  wildlife 

enthusiasts to observe animals in their natural habitats. For instance, bat-watching is 

increasingly popular worldwide200. The nightly emergence of millions Mexican free-

tailed bats from caves in the Southwestern US is estimated to attract over 240,000 

visitors each year, conservatively valued at $6.5 million annually201. Such activities 

support local economies and provide unique educational experiences for the public, 

raising awareness about the ecological significance of subterranean ecosystems.

Aesthetic and artistic value

Subterranean landscapes inspire and support a range of artistic expressions22,23. For 

instance, artistic practices have explored groundwater as a theme through creative 

expressions of its sensory qualities—tastes, smells, sounds, textures, and movements

—as  well  as  its  landscapes,  cultural  significance,  and  community  connections23. 

Contemporary  abstract  art  frequently  draws  from  the  textures  and  patterns  of 

speleothems,  as  seen in  the  cave-inspired  works  of  artist  Ana  Teresa  Barboza. 
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Literature  has frequently  embraced subterranean themes,  such as Jules Verne’s 

Journey to the Center of the Earth and Haruki Murakami’s Hard-Boiled Wonderland 

and the End of the World. Music, too, draws inspiration from subterranean acoustics, 

with composers like John Luther Adams creating pieces that echo the resonant and 

mysterious qualities of caves. Architecture has similarly demonstrated how caves and 

sinkholes can be reimagined into cultural and artistic venues, with spaces like Los 

Jameos del Agua in Lanzarote, shaped by César Manrique and Jesús Soto. These are 

just a few examples among many22,23.

It  has  been  argued  that  subterranean-related  art  may  improve  scientific 

communication and support the conservation of subterranean ecosystems22,23,202. For 

example, projects such as the virtual reconstructions of cave art by the Chauvet Cave 

team not only preserve these fragile environments but also educate the public about 

their  ecological  and  historical  significance.  Likewise,  the  Cenoteando  initiative 

(https://cenoteando.mx/) in Mexico, has developed several educational materials that 

combine  scientific  accuracy  with  artistic  expression  to  promote  environmental 

awareness and proper stewardship of cenotes, promoting a sustainable interaction 

with these fragile environments. Similarly, artworks and photography that highlight the 

fragility  of  subterranean ecosystems,  such as those by environmental  artists  like 

Agnes Denes and Martin Broen,  can galvanize support  and financial  backing for 

conservation  campaigns.  Lastly,  there  is  a  practical  significance  to  exploring 

aesthetics of  subterranean features.  For example,  groundwater  aesthetics—taste, 

odor, color, and clarity—is essential in shaping cultural perceptions and public trust in 

water supplies203.

Scientific research 

Terrestrial caves have long been regarded as model systems for scientific research 

across various fields18,204,205. The convergent adaptations of subterranean organisms 

make subterranean ecosystems a rich subject for evolutionary research, with a lineage 

of studies tracing back to Charles Darwin206. Several cave-adapted species, such as 

cavefish and crustaceans, serve as established model organisms for evolutionary 

studies  and  beyond42.  Furthermore,  due  to  their  climatic  stability,  low  biological 

diversity, simple habitat structure, and often isolated nature, caves allow researchers 
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to minimize many confounding factors that typically complicate ecological studies in 

surface  environments17.  Similarly,  marine  caves  in  the  littoral  zone  have  been 

described as “deep-sea mesocosms”, providing direct human access to deep-sea-like 

conditions207.

Importantly,  this  expanding research agenda builds  upon the observations 

made by individuals who regularly explore subterranean environments, often driven by 

personal passion and a deep appreciation for nature. Speleological and cave diving 

clubs  are  typically  composed of  highly  experienced,  non-scientific  explorers  who 

possess the technical expertise necessary to access and map these underground 

spaces. Scientific research is also increasingly supported by dedicated subterranean 

research facilities, such as the Moulis Experimental Ecology Station in France and the 

Boulby Underground Laboratory in the UK, which provide controlled environments for 

ecological and evolutionary experiments42. Other underground laboratories, including 

Gran Sasso (Italy) and SNOLAB (Canada), further highlight the broader scientific 

value of caves, extending beyond biology to fields such as astroparticle physics. 

Caves play a crucial role in archaeology and paleontology by safeguarding 

fossils, sediments, prehistoric artifacts, and even recently extinct species—such as 

certain  birds  known  only  from  cave  deposits  in  Macaronesia208,209—as  well  as 

numerous human remains discovered in caves around the world210,211. Stalagmites are 

archives for paleoclimate research, offering high-resolution records of past climatic 

fluctuations through isotopic and geochemical analyses212, while sediment deposits 

within  cave systems record  paleoenvironmental  history,  such as  changes in  sea 

level213–215.  All  these  archives  provide  clues  into  past  ecosystems  useful  for 

reconstructing  paleoenvironments  and  their  biodiversity—yielding  important 

implications  for  establishing  baseline  references  for  conservation  and  restoration 

efforts216. For example, the analysis of speleothems has provided evidence of past 

environmental changes and the anthropogenic impacts that contributed to the well-

documented ecocide on Easter Island217. Similarly, speleothems from lava tubes in the 

Galapagos Islands have revealed biomarkers of  surface vegetation changes and 

human-induced pollution, emphasizing the need for robust conservation policies to 

mitigate the impact of anthropogenic activities218.
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The inspirational  value of caves may even extend beyond Earth219–221.  The 

detection of volcanic caves on Mars and their protective properties against surface 

radiation, extreme temperatures, and atmospheric variability, have led researchers to 

explore caves on Earth from planetary science and astrobiological perspectives. A rich 

research agenda is shaping up, showing that these subterranean environments could 

serve as analogs for space exploration and planetary research220,222, and offer insights 

into the possibility of extraterrestrial life223,224. Specifically, microbial metabolism and 

mineral  interactions  in  caves  and  lava  tubes  on  Earth  generate  a  variety  of 

biosignatures222,225–227,  which  provide  reference  models  for  potentially  detecting 

extraterrestrial microbial life228. Moreover, deep caves offer polygons for training for 

astronauts  (programme  by  European  Space  Agency),  allowing  them  to  practice 

behavior and tasks in harsh environments that resemble conditions in space.

Education

Subterranean ecosystems offer vast  educational  potential,  especially  for  fostering 

scientific literacy and environmental awareness. Every cave provides visitors with an 

unforgettable experience, combining natural beauty with rich site-specific educational 

opportunities. Cave interpretation centers, guided tours, and interactive activities can 

help students and visitors appreciate the uniqueness of cave ecosystems and the 

importance of  their  conservation.  Similarly,  groundwater-fed  springs  enhance the 

natural beauty of their surroundings and serve as ideal settings for educational school 

trips. These sites allow students and teachers to observe firsthand the interactions 

between groundwater systems, biodiversity, and human activities229. Activities such as 

water quality testing, species identification, and habitat mapping can transform these 

visits into living labs, offering hands-on learning experiences that reinforce classroom 

lessons.

This interplay between natural and cultural elements creates opportunities for 

educational projects that explore connections across disciplines such as biology, earth 

sciences,  history,  and  even  art.  For  example,  studying  speleothems  can  teach 

students about geological processes, offering a concrete visual representation of time 

accumulation, while analyzing the unique adaptations of cave-dwelling organisms can 
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illustrate fundamental evolutionary principles. Importantly, these educational activities 

can be reinforced through citizen science initiatives. A recent citizen science project 

collected  biological  samples  from  over  300  municipal  groundwater  sites  across 

Switzerland. This initiative bridged educational objectives with research goals, leading 

to the discovery of  new species230 and enabling the mapping of  macroecological 

patterns at unprecedented resolutions231–233. 

Cultural heritage and identity

Subterranean ecosystems often shape traditions, customs, and identities, influencing 

both positive and negative cultural narratives. Historically, caves were often perceived 

as liminal spaces—thresholds between the world of the living and the underworld. In 

European folklore, they often symbolize fear of the unknown and are believed to be 

entrances to Hell or lairs for dragons, trolls, and other sinister beings. This is illustrated 

in 17th-century engravings published in the monograph on the Duchy of Carniola by J. 

V. Valvasor, a Slovenian scientist, which depicts the beliefs of local inhabitants at the 

time234. Yet, caves have also held positive associations, for example by serving as 

places  of  refuge25.  Quintessential  examples  are  underground  cities  in  the 

Mediterranean region, such as Matera (Italy), Bulla Regia (Tunisia), and Cappadocia 

(Turkey), with tunnels, living quarters, and even chapels carved into the rock. Similarly, 

Coober Pedy, South Australia, is renowned for its man-made “dugouts”, subterranean 

residences bored into the hillsides of the desert. Beyond human-accessible cavities, 

features such as springs, anchialine pools, and oases played vital roles in community 

life, fostering social interaction and cohesion.

Specific  organisms,  such  as  bats,  are  often  protagonists  of  these  cultural 

narratives235. In some traditions, bats are feared as harbingers of darkness and death, 

a view perpetuated by Gothic literature and popular media. However, bats are also 

revered as symbols of luck, fertility, or protection. For example, in Chinese culture, 

bats are associated with happiness and prosperity, as the word for bat (fu) sounds like 

the word for good fortune. In the Americas, indigenous communities such as the Maya 

often incorporate bats into their mythology, viewing them as powerful guardians of the 

underworld. 
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Slovenia offers a prime example of how, even today, subterranean landscapes 

and their fauna can be deeply intertwined with national identity. The country is home to 

the renowned Postojna Cave, a UNESCO-listed site that has become a source of 

national pride236. This is the cave where the first scientific descriptions of exclusive 

cave-dwelling animals originated, beginning with the beetle Leptodirus hochenwartii, 

which marks the start of speleobiological research in 1832237. Slovenia is also the land 

where the discovery and scientific description of the olm (Proteus anguinus)—a blind, 

pale  groundwater  salamander—took  place.  Proteus has  achieved  iconic  status, 

celebrated across various facets of Slovenian culture, from beer labels and public 

street art to the textile industry and contemporary art projects.

Spiritual and religious significance 

Caves,  anchialine  pools,  subterranean  rivers,  springs,  and  cenotes  were  often 

regarded as sacred or spiritually significant24,238. For example, the caves of Crete were 

religious sites for the ancient Minoans, while Zeus was believed to have been born in a 

cave. In Greek mythology, the river Styx delineated Hades, the underworld (the prefix 

“stygo-” is still used today for “stygobionts“, a technical term referring to groundwater-

dwelling organisms). Similarly, the cenotes of the Yucatán Peninsula were viewed by 

the Maya as both gateways to Xibalba, the underworld, and essential sources of life-

giving water239,240. Likewise, many anchialine pools in Hawai‘i are revered as wahi pana 

(celebrated places), or strictly reserved for various uses, including royal baths, rituals, 

ceremonies, and other daily activities241. 

Countless rock-cut churches and monasteries worldwide further highlight the 

spiritual dimensions of subterranean sites25. Likewise, groundwater provides spiritual 

and religious services through sacred water sites, often linked to natural features such 

as trees, stones, caves, and hills. These places offer a sensory connection to spiritual 

practices, with holy wells and springs frequently serving as focal points for rituals and 

supernatural engagement. While not all water sources are considered sacred, many 

cultures believe in offering gifts to water spirits to sustain their blessings. Springs 

emerging from caves hold particular significance, often seen as miraculously pure and 

ritually  powerful,  with  evidence  of  reverence  spanning  from  prehistoric  times  to 
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contemporary cultures worldwide238. In Australia, many Aboriginal nations consider 

groundwater  sites  fundamental  to  their  Dreamtime creation  stories,  in  which  the 

Rainbow Serpent is believed to have shaped landforms, springs, and river upwelling 

zones.  Many sacred sites  associated with  fertility,  teachings of  lore,  and cultural 

customs  are  linked  to  groundwater,  holding  immeasurable  value  for  these 

communities242.

Subterranean ecosystem disservices 

Alongside their many positive contributions, ecosystems can also have effects that are 

perceived as harmful, unpleasant, or unwanted—termed “ecosystem disservices”243. 

While research on subterranean ecosystem disservices is virtually non-existent and 

beyond the scope of this assessment, it is important to briefly mention the potential 

human  health  and  infrastructural  risks  associated  with  these  environments.  For 

instance,  subterranean  ecosystems  can  serve  as  reservoirs  of  pathogens  and 

facilitate disease transmission. They harbor harmful microbes, fungi,  and viruses, 

which may exist freely or be associated with specific organisms. Cave-roosting bats, in 

particular, are significant vectors of pathogens, including Histoplasma fungi found in 

bat guano, which can cause histoplasmosis in humans244. Additionally, subterranean 

environments  can  accumulate  potentially  toxic  gases  such  as  carbon  dioxide, 

methane, hydrogen sulfide, and radon. These gases pose risks of asphyxiation or 

poisoning, while radon may increase lung cancer risk for frequent visitors. 

At the same time, the public’s fascination with the underworld has often led to 

unfortunate accidents, particularly when individuals engage in caving or cave diving 

without adequate training or equipment—as in the famous Thailand cave rescue245 or 

the harrowing account of Sheck Exley in the Túnel de la Atlántida246. Subterranean 

ecosystems can also evoke some of the most common human phobias, as ranked by 

ref. 247. These environments are often dark (nyctophobia), enclosed (claustrophobia), 

contain deep pits or abysses (acrophobia/vertigo), and host fear-inducing organisms 

such  as  spiders  (arachnophobia)  and  bats  (chiroptophobia),  potentially  causing 

psychological  distress  in  visitors.  Beyond  direct  health  risks,  subterranean 

environments also pose threats to human infrastructure. Natural underground erosion, 
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combined with human activities such as mining and groundwater extraction, can lead 

to cave collapses and sinkholes, damaging buildings and roads. 

This  discussion  of  disservices  is  far  from exhaustive.  Yet,  it  serves  as  a 

placeholder for further research in this area. Indeed, studying ecosystem disservices 

has been proposed as a way to better balance the benefits and drawbacks of nature, 

ultimately leading to a more objective evaluation of its net impact on human well-

being248.
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Box 2. The economic dimension of subterranean ecosystem services 

Valuation of services provided by subterranean ecosystems is still in its early stages. A 

recent  review  of  over  1,300  studies,  yielding  more  than  9,400  monetary  value 

estimates,  found that  subterranean ecosystems accounted for  only  0.08% of  the 

sample12. Similarly, ref.  249 reported negligible research effort toward subterranean 

ecosystems  when  analyzing  the  correlation  between  ecological  and  economic 

assessments of 15 regulating services across 32 ecosystem types. While ecological 

roles such as nutrient cycling, soil formation, and groundwater provision are well-

documented, their economic valuation remains limited, with groundwater being the 

most studied249.

In  subterranean  ecosystems,  most  valuation  efforts  focus  on  provisioning 

services, particularly groundwater. Methods include market prices, replacement costs, 

and production functions that measure the marginal impact of water on economic 

outputs like agricultural crops250. However, market prices often fail to capture the full 

social value of groundwater due to distortions like subsidies, requiring adjustments to 

reflect  true  economic  value251.  Replacement  cost  methods,  which  estimate  the 

expenses needed to restore lost services, offer an alternative approach252.

Regulating services, though frequently reported for subterranean ecosystems, 

are  rarely  valued  economically.  For  example,  studies  on  erosion  control,  flood 

protection, and water quality regulation typically focus on surface ecosystems rather 

than subterranean ones253,254. Similarly, cultural services like geo- and ecotourism are 

gaining attention, with examples including the recreational value of mining heritage 

and willingness-to-pay estimates for geo-guided tours255–258.
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Outlook: Communicating the value of subterranean ecosystems 

Although still  emerging, research on subterranean ecosystem services is likely to 

expand rapidly28. We now have reasonable estimates of the global distribution and 

volume of certain types of subterranean ecosystems44,45, a growing understanding of 

subterranean  biodiversity  patterns259,260,  and  insights  into  how  much  of  these 

ecosystems  and  their  biodiversity  are  protected32,261.  Increasingly  available  open 

data262 and emerging technologies—from omics tools263 and environmental DNA264 to 

terrestrial  laser  scanning265 and  computer  simulations42—enable  us  to  map  and 

quantify  subterranean  ecosystems at  unprecedented  resolutions.  Simultaneously, 

state-of-the-art economic theory provides a set of approaches to quantify the socio-

economic relevance of these services at meaningful scales (Box 2).  If  harnessed 

effectively,  these  tools  could  bridge  critical  knowledge  gaps  in  subterranean 

ecosystem services research.

Yet the importance of subterranean ecological processes to support surface 

ecosystems and human societies often goes unnoticed. Why do we celebrate climbing 

the highest mountains, yet overlook the exploration of the deepest caves? Why are so 

many unaware of the remarkable biodiversity thriving underground? And why do we 

study distant galaxies while Earth's subterranean environments may hold solutions to 

today’s ecological and societal challenges?

Considering the importance of communicating these findings to inform real-

world decision-making, this review aims to equip researchers and practitioners with a 

comprehensive  vade mecum of examples, concepts, and ideas for conveying the 

importance of subterranean ecosystems. Effective communication requires tailoring 

messages to specific target audiences, using the right metaphors and psychological 

triggers.  For  some,  subterranean  biodiversity  can  be  framed  as  a  form  of  “life 

insurance,” emphasizing its role in maintaining ecosystem stability and resilience2. 

Others  may respond to  economic  metaphors,  recognizing the monetary  value of 

services like water filtration, carbon sequestration, and raw material provision (Box 2). 

At  the  same  time,  indigenous  cultures,  which  have  depended  on  subterranean 

ecosystems  for  centuries,  offer  invaluable  traditional  ecological  knowledge  and 

biocultural values that can enrich natural resource management strategies 241 These 
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perspectives often tap into metaphors related to the spiritual connection with these 

places, whereas the aesthetic allure and sense of mystery inherent to subterranean 

ecosystems can captivate audiences drawn to the unknown266. 

By integrating these diverse perspectives, we can foster a deeper appreciation 

for subterranean ecosystems and their role in sustaining life on Earth. Subterranean 

biodiversity is not just a scientific curiosity—it is a cornerstone of planetary health, a 

source of resilience in the face of environmental change, and a testament to the 

interconnectedness  of  all  ecosystems.  With  this  knowledge,  we  can  transform 

awkward questions about subterranean ecosystems into opportunities for inspiration 

and advocacy. As the world rallies to address environmental change and biodiversity 

loss, acknowledging and valuing the vital services provided by nature is essential to 

driving meaningful progress toward a more sustainable future. Ultimately, ensuring 

that  subterranean  ecosystems receive  the  attention  and  protection  they  deserve 

begins with one simple act: shifting the attitude of the next listener from indifference to 

appreciation.
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Data and code availability

Data  and  code  to  reproduce  the  analysis  is  available  in  Github 

(https://github.com/StefanoMammola/Subterranean-ecosystem-services). 
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