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Abstract

The raccoon variant of the rabies virus (RRV) is managed in the eastern United States and 

Canada via distribution of oral rabies vaccine (ORV) baits. The goal of ORV distribution is to 

reach seroprevalence rates (an index of population immunity) of at least 60%, the threshold 

thought to eliminate RRV. Seroprevalence rates in urban areas rarely reach target levels, 

predictably leading to rabies outbreaks. However, many urban areas have spent several years 

rabies-free, aligning with previous work suggesting RRV can be eliminated from urban areas at 

below-target seroprevalence rates. Using an agent-based model to simulate raccoon populations 

in urban landscapes, we examined 1) whether RRV can be eliminated at vaccination thresholds 

below 60% and 2) whether landscapes with below-target vaccination rates are vulnerable to RRV 

recolonization, and 3) whether the rate and timing of immigration influences elimination and 

recolonization. Vaccination and immigration rates influenced elimination probability: elimination 

was more likely and occurred more quickly in landscapes with higher vaccination rates and less 

likely in landscapes with higher immigration rates. All immigration variables (immigration rate, 

immigrant disease prevalence, and immigration timing) influenced the probability of 

recolonization after rabies was eliminated: recolonization was more likely in landscapes with 

high immigration rates and when immigrants had higher disease prevalence, but less likely when 
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immigration occurred seasonally rather than continuously. Vaccination did not have a clear effect 

on recolonization probability but reduced the number of rabies cases during a recolonization 

event. Although elimination was highly likely in our simulated landscapes due to their small 

spatial extent, our results suggest that vaccination rates of at least 50% result in timely rabies 

elimination (median 1.5 years). After elimination is achieved, strategies for preventing infected 

individuals from entering the rabies-free area are essential for preventing recolonization events, 

as vaccination rates had a much smaller effect on recolonization that immigration rates and 

timing. Understanding long-distance movements of host individuals is crucial for managing 

diseases such as rabies which likely persist at the regional scale.

Keywords: raccoon rabies, urban ecology, immigration, rabies management, agent-based 

models, landscape ecology

Introduction

Rabies lyssavirus remains a zoonosis of global concern for both wildlife and humans 

(Elmore et al., 2017; Rupprecht et al., 2002; Vercauteren et al., 2012). Transmitted primarily 

through direct contact with an infected individual, rabies is usually fatal once observable 

symptoms appear (Rupprecht et al., 2002). Because the primary mode of transmission is host-to-

host contact, understanding of the movement ecology and social behavior of a given host species 

are essential for understanding rabies transmission. In the eastern United States and Canada, 

raccoons (Procyon lotor) are the primary reservoir of the raccoon variant of the rabies virus 

(RRV) and are the largest source of terrestrial wildlife cases (Elmore et al., 2017; Gilbert A, 

2018). Due to their broad geographic range and high tolerance of human-altered habitats (Lotze 
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& Anderson, 1979; Randa & Yunger, 2006; Slate et al., 2020), along with wide variation in 

demography and behavior across habitats (Prange et al., 2004; Prange & Gehrt, 2004; Slate et al., 

2020), understanding raccoon ecology as it relates to rabies dynamics is still an active area of 

management concern.

Raccoons are highly philopatric, and their within-year movement is often constrained to a 

home range that is typically 1–4 km2 in rural areas (Rees et al., 2008; Rosatte et al., 2010). 

Interspecific contacts between raccoons with overlapping or neighboring home ranges are 

frequent, but short in duration (Hirsch et al., 2013). As a result, the majority of rabies cases in 

raccoon populations are transmitted locally, and transmission rates are thought to be relatively 

low (Smith et al., 2002). Empirical estimates of the effective transmission rate (Re) of raccoon 

rabies are barely above the threshold required for disease persistence (~1–1.2, Biek et al., 2007; 

Fisher et al., 2018). Rabies persistence is therefore maintained at a regional scale (Mancy et al., 

2022) through a combination of wave-front dynamics (Childs et al., 2000; Smith et al., 2002), 

infrequent long-distance movements by infected individuals (Mancy et al., 2022; Rees et al., 

2013; Smith et al., 2002), and human-mediated translocation events (Hopken, Bjorklund, et al., 

2025; Nadin-Davis et al., 2020; Trewby et al., 2017). 

Since the 1990s, management of RRV has been largely successful in controlling the 

geographic spread of the virus due to a combination of enhanced surveillance and vaccination 

(Davis et al., 2021; Elmore et al., 2017; Kirby et al., 2017; Rosatte et al., 2009), especially 

distribution of oral rabies vaccines (ORV). In rural areas, ORV deployment appears to achieve 

target seroprevalence rates (60–80%, Gilbert et al., 2018; Johnson et al., 2021) thought to be 

needed for RRV elimination (McClure et al., 2020; Rees et al., 2013; Reynolds et al., 2015). 

Despite the success of ORV campaigns in rural areas, vaccination campaigns have proven 
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challenging in urban and suburban landscapes, with seroprevalence rates typically falling below 

40% (Beasley et al., 2024; Bigler et al., 2021; Mainguy et al., 2012). Urban and suburban 

raccoon populations often have very different demographics than their rural counterparts, 

including higher population densities, smaller home ranges, and differences in social behavior 

(Prange et al., 2003, 2004; Rosatte et al., 2010; Slate et al., 2020). Furthermore, urban habitats 

are often highly fragmented and can contain higher densities of nontarget bait competitors (e.g. 

virginia opossums Didelphis virginiana, feral cats Felis catus), which may influence the rate at 

which raccoons encounter ORV baits (Beasley et al., 2024). These ecological characteristics 

likely influence disease dynamics in urban and suburban areas, such as by increasing the 

duration of epizootics (Recuenco et al., 2007). Compounding the ecological challenges are 

logistical difficulties in bait distribution, resulting in bait distribution that is often along roads 

rather than in preferred urban raccoon habitat (Beasley et al., 2024; Bigler et al., 2021). 

As a result of these challenges, ORV is much less effective in urban and suburban 

habitats, leading to chronically suboptimal seroprevalence rates (Bastille-Rousseau et al., 2024). 

Managers have developed strategies to increase the effectiveness of ORV campaigns, such as 

targeting preferred raccoon habitat (McClure et al., 2022), the use of bait stations in addition to 

hand baiting, and supplementing ORV distribution with trap-vaccinate-release (TVR) campaigns 

(Bastille-Rousseau et al., 2024). The use of TVR has proven particularly effective in increasing 

seroprevalence rates in urban landscapes, and its use in addition to ORV has resulted in 

significant reductions in rabies cases in Hamilton, Ontario (Bastille-Rousseau et al., 2024). 

Despite low seroprevalence rates in urban areas, some vaccination campaigns have been 

successful in reaching local elimination (e.g. Burlington, VT, USA 2017–2022, Beasley et al., 

2024; Ontario, Canada 2024, Ontario Ministry of Natural Resources and Forestry, 2025). The 
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reasons for this success are unclear. It is possible that seroprevalence rates lower than the current 

target of 60% are sufficient for elimination; particularly given the estimated effective 

reproduction number Re is close to 1. However, a recent raccoon rabies outbreak in Burlington, 

Vermont ongoing since 2023 (Vermont Department of Health, 2025) suggests that low 

vaccination rates may leave urban and suburban areas particularly vulnerable to recolonization of 

the virus even if elimination has been achieved. 

Understanding the role of vaccination rates, immigration rates, and the interaction 

between them is therefore critical for assessing how vulnerable urban areas are to rabies 

recolonization after the virus has been successfully eliminated. However, the relative paucity of 

raccoon movement data across the urban-rural gradient makes empirical assessments impossible. 

Agent-based models are a powerful tool for evaluating the effects of various factors on disease 

dynamics, as one can readily modify model parameters to explore their effects across a broad 

range of possible ecological conditions. Using a spatially explicit agent-based model applied to 

simulated landscapes, we explored the effect of vaccination and immigration on rabies 

elimination and re-colonization under varying vaccination rates. More specifically, we examined 

how 1) vaccination rates, 2) immigration rates, 3) rabies prevalence of immigrants, and 4) 

frequency of immigration (continuous vs. seasonal) impacted the probability and timing of rabies 

elimination and subsequent re-colonization. Based on previous work, we predict that rabies can 

be eliminated from landscapes with vaccination rates less than 60% (Acheson et al., 2023; 

Beasley et al., 2024), but that immigration will 1) increase the time it takes to successfully reach 

elimination by augmenting the susceptible population of raccoons, and 2) affect the probability 

of rabies re-colonization by influencing invasion pressure. 
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Materials and Methods

Full modeling methodology following the Overview, Design Concepts, Details (ODD) 

protocol for describing individual-based models (Grimm et al., 2006, 2010) can be found in 

Appendix 1. 

Landscape Creation

We modeled urban-suburban landscapes by constructing 60 x 60 rasters using the 

package NeutralLandscapes.jl, which is based on the Python package NLMPy, in Julia 1.9.2 

(Bezanson et al., 2017; Etherington et al., 2015; Poisot et al., 2023). Each grid cell was 0.5 x 0.5 

km for a total landscape size of 30 km2. We created habitat clusters using the mid-point 

displacement algorithm (Fournier et al., 1982), which takes as input an autocorrelation 

parameter. We used the function lsm_l_ai in the R package landscapemetrics (Hesselbarth et 

al., 2019) to calculate autocorrelation from land cover data from the greater Burlington, Vermont 

area (Homer et al., 2015). We re-classified the resulting raster into discrete habitat types, the 

relative proportions of which were derived from the Burlington land cover data. To prevent 

boundary effects (Koen et al., 2010), we also constructed a 5-cell buffer on each edge of the 

raster, resulting in a 50 x 50 grid of urban-suburban habitat surrounded by a unique “buffer” 

habitat. 

Raccoon movement and demographics

Raccoon movement in the simulated landscapes was governed using weighted 

probabilities. At each time step, a raccoon could move to any of its eight neighboring cells or 

stay in its current cell. The probability of selecting a given cell was weighted according to a 
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habitat selection function, in which some habitats were more likely to be selected than others 

(McClure et al., 2022), a home range attractor, in which cells further from a raccoon’s home cell 

were less likely to be selected as the destination cell (McClure et al., 2022; Signer et al., 2017), 

and conspecific avoidance. The home range attractor was calculated as a weighted probability:

p(c t+1)∝exp(−ω d (c t+1)) (Eq. 1)

In which p(ct+1) the probability of a raccoon occupying cell c within the raccoon’s Moore 

neighborhood at time t+1,  the strength of attraction towards the location of the home range 

attractor, and d(ct) the squared distance between potential target cells and the home cell. The 

squared distance between cells was calculated by:

 d (c t+1)=
r {( x t−xh )

2+( y t− yh )
2}

100
(Eq. 2)

In which (xt, yt) are x and y coordinates of the potential target cell, (xh, yh) are the x and y 

coordinates for the raccoon’s home cell, and r is the resolution of each grid cell. Raccoons which 

had not reached the age of independence (20 weeks) always moved to the same cell as their 

mother (Viard et al., 2022). Raccoons could not move outside of the landscape boundaries unless 

they were dispersing (see below).

Raccoon demographics followed the literature where data is available (Appendix 2, Table 

1). Female raccoons at least 52 weeks of age were considered eligible to reproduce, and the 

probability of reproduction in a given year was equal for all eligible raccoons. Births occurred in 

week 18 of each year of the simulation, with the litter size drawn from a Poisson distribution 

with an expected value (λ) of four. All raccoons were subject to stochastic mortality, in which the 

probability of mortality in a given week was 0.1%; old age mortality triggered at 416 weeks 

(eight years) of age; and density-related mortality which was triggered in cells with more than 10 

raccoons (equivalent to 40 raccoons/km2) and varied depending on the age of the raccoon 
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(Appendix 2, Table 1). In addition, raccoons younger than the age of independence were killed 

and removed from the simulation if their mother was dead.

Raccoons less than 1 year of age dispersed every year at week 43 of the simulation. For 

each dispersing raccoon, the direction of movement was determined by randomly selecting one 

of eight directions of movement corresponding to the cells surrounding the current cell 

(Cullingham et al., 2008). The raccoon then moved continuously in that direction for a given 

distance which was drawn from a Poisson distribution with an expected value (λ) of 3 cells (1.5 

km, Rees et al., 2008): thus, it was possible for an agent to have a dispersal distance of 0 and 

remain in place. Dispersal was repeated until the agent either moved to a cell below carrying 

capacity or moved 3 total times, whichever occurred first. Raccoons over 1 year of age could 

also disperse, but only dispersed if they occupied a cell above carrying capacity, and had a 

smaller expected dispersal distance (λ = 2 cells or 1 km, Rees et al., 2008). Raccoons that left the 

landscape were removed from the simulation.

We simulated two types of raccoon immigration: a “consistent” type in which the 

landscape received a steady stream of a few immigrants per week, and a “seasonal” type in 

which the landscape received a much larger number of weekly immigrants in a specific time 

frame. In landscapes with consistent immigration, the number of weekly immigrants was drawn 

from a Poisson distribution with an expected value (λ) taking variable integer values ranging 

from 1–5. Landscapes with seasonal immigration had a weekly immigration rate drawn from a 

Poisson distribution with an expected value of λ*5, but immigration only occurred in weeks 40–

50 to coincide with the annual dispersal period. In both cases, landscapes received approximately 

equal numbers of immigrants over the course of the simulation period. When entering the 

landscape, immigrants were assigned a direction of movement and a movement distance, the 
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latter of which was drawn from a Poisson distribution with an expected movement value (λ) of 

10 cells. All immigrants were assumed to be susceptible to the disease. Although it is likely that 

some raccoons immigrate from an ORV management zone and would have vaccine-induced 

rabies immunity, the proportion of total immigrants represented by these individuals is unknown, 

and we assumed full susceptibility to model a worst-case scenario. Immigrants were randomly 

assigned an infected state as the outcome of a Bernoulli trial with varying probabilities of 

success, ranging from 0–0.06 at intervals of 0.015.

Disease dynamics.

We modeled the disease as a spatially explicit SEIR model with additional demographic 

processes as described above (Fig. 1).  The spatially explicit component of the model primarily 

affects the force of infection parameter λ, or the probability with which an infectious raccoon 

infects a susceptible raccoon, which varies based on the proximity of each raccoon in a given 

week. Infectious raccoons were assumed to be more likely to infect raccoons that were located 

within 500 m of the infectious raccoon’s current position (core home range transmission, λ1 = 

0.035) due to a high degree of overlap in weekly home ranges, and therefore a higher probability 

of contact (Habib et al., 2011; Vander Wal et al., 2014, but see Yang et al., 2023). Susceptible 

raccoons within 2 grid cells (1 km) of the infected raccoon were less likely to be infected (λ2 = 

0.02) due to a lower degree of home range overlap. Values of λ were selected based on the results 

of a parameter sensitivity analysis (Appendix 2).

After a susceptible raccoon entered the exposed state, it could potentially recover from 

the disease and acquire permanent immunity with a weekly probability of 0.002, which 

corresponded to an 8–12% probability of recovery over the duration of the disease (Slate et al., 
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2014). Raccoons which did not recover in a given week could transition to the infectious state 

with a probability δ∼Beta(t ,5), in which t is the number of weeks the raccoon has spent in the 

exposed state. This results in a transition probability that increases over time, resulting in a 

typical incubation period of 4–6 weeks (Tinline et al., 2002). Raccoons in the infectious state 

always died after being infectious for 1 week (Hanlon et al., 2007).

Most agents transitioned to the recovered state via vaccination. Vaccination occurred 

during week 35 of the simulation, and the probability of vaccination was based on the agent’s 

age and location. Agents in the buffer which were at least 1 year old had a vaccination 

probability of 60% (Fehlner-Gardiner et al., 2012). Agents elsewhere in the landscape that were 

at least 1 year old were vaccinated with a user-defined probability that ranged from 0–80% at 

10% intervals. Agents less than 1 year old had a vaccination probability that was half of the 

probability for agents older than 1 year (Beasley et al., 2024). Once a raccoon entered the 

recovered state, it remained in that state (i.e. immunity was considered permanent).

Model specifications.

Raccoon populations were initialized with a mean population density of 6/km2. Initial 

ages of the raccoons were randomly assigned with a possible range of 52–416 weeks (1–8 years). 

Raccoons were randomly assigned an initial vaccination status as the outcome of a Bernoulli trial 

with a probability of success that varied based on the adult vaccination rate assigned at the start 

of the simulation. The buffer zone of the simulation area was then populated at a density of 

4/km2 with a vaccination rate of 60%, with ages of the raccoons assigned as described above. 

Rabies was introduced at the beginning of year two of the simulation to allow the raccoon 

population dynamics to stabilize. In each simulation, 10 susceptible raccoons were randomly 
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selected from the population to enter the exposed state. Disease dynamics then proceeded as 

described above. 

Simulation replicates varied in adult vaccination rate, immigration type, immigration rate, 

and the proportion of immigrants that were infected (Appendix 2, Table 1). We ran 50 replicates 

of each combination of the above parameter values; each simulation ran for 11 years (one year to 

stabilize population + 10 years after rabies introduction). Data visualization was completed in R 

version 4.1.2 (R Core Team, 2021); R0 and Re were calculated using the R package R0 (Boelle & 

Obadia, 2023). We compared 1) the probability of rabies elimination, 2) length of the initial 

outbreak, 3) weekly probability of recolonization, and 4) duration of subsequent outbreaks across 

our four variables. We defined a recolonization event as a period in which, after rabies was 

completely eliminated from the landscape, infected individuals were present in the landscape for 

a duration of at least 10 consecutive weeks. We chose a 10-week duration because, based on the 

latent period of the disease (Appendix 2, Figure 3), we can assume with near certainty that the 

disease was transmitted to at least one other individual. We compared weekly probability of 

recolonization rather than total probability because simulations in which elimination was 

achieved more rapidly had a longer time period in which rabies could potentially recolonize. 

Results

Rabies was eliminated at least once in 86.7% of simulated landscapes, with an estimated 

R0 of 1.38. The estimated value of Re varied based on vaccination rates (Appendix 3, Figure 1) 

and varied temporally within simulations, but was typically 1.14 in simulations where the adult 

vaccination rate was 0%. Rabies prevalence varied between simulations and fluctuated 
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seasonally within each simulation, but was typically very low, with a maximum prevalence near 

1.25% (Appendix 3, Fig. 2). 

Elimination probability was strongly influenced by vaccination rates and weekly 

immigration rate: increasing vaccination rates increased the likelihood of elimination, whereas 

increased immigration rates increased the likelihood of rabies persistence (Fig. 2). Populations 

with higher vaccination rates were also more resistant to the effects of increased immigration 

rates: decreases in elimination probability due to increases in immigration rates were much lower 

for populations with higher vaccination rates. Immigration type slightly influenced elimination 

probability: simulations with seasonal immigration were slightly more likely to achieve 

elimination than simulations with continuous immigration under the same vaccination rate 

(Appendix 3, Fig. 3). There was also an interaction between immigration rate and immigrant 

prevalence: rabies elimination was least likely when immigration rate and prevalence were both 

high (Appendix 3, Fig. 4). 

For simulations in which elimination was reached, elimination was achieved more 

quickly in simulations with higher adult vaccination rates (Fig. 3). None of the immigration 

variables had a clear effect on time to elimination.

For simulations in which rabies recolonization was possible (i.e., immigrant prevalence 

was greater than 0 and rabies was eliminated at least once), total recolonization probability 

ranged from 26.7% to 97.9%. All immigration variables influenced weekly recolonization 

probability. Increasing immigration rates and immigrant prevalence resulted in increased weekly 

colonization probability, and weekly probabilities were slightly lower when immigration 

occurred seasonally rather than continuously (Fig. 4; Appendix 3, Fig. 5). Vaccination rates did 

not have a clear effect on recolonization probability (Fig. 4).
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Recolonization events were generally short in duration, typically lasting less than one 

year. There were no clear effects of any variables on the duration of recolonization events. When 

immigration was continuous, the timing of the recolonization event did not have a clear effect on 

outbreak duration (Appendix 3, Fig. 6). The number of cases after a recolonization event 

generally increased with immigration rates and decreased with vaccination rates (Appendix 3, 

Fig. 7 ). 

Discussion

In line with our predictions, rabies elimination was possible at vaccination rates less than 

the target rate of 60%: in fact, elimination was common, occurring in more than 80% of 

simulations. The probability and speed of rabies elimination increased with increasing 

vaccination rates; whereas increased immigration rates resulted in lower probabilities of rabies 

elimination. Rabies elimination was likely facilitated by the relatively small extent of the 

simulated landscape and small raccoon home range sizes, as disease mortality and (when 

applicable) vaccination sufficiently reduced localized densities of susceptible individuals to 

reduce Re below 1. Additionally, all of our immigration variables influenced rabies recolonization 

in a manner consistent with our predictions: higher immigration rates and higher disease 

prevalence in immigrants increased the likelihood of recolonization. Seasonal immigration was 

slightly less likely to result in rabies recolonization, likely due to a smaller time period in which 

recolonization is possible and due to the immigration period coinciding with the vaccination 

period. Vaccination rates had a very small influence on recolonization rates, but reduced the 

number of cases associated with recolonization events.
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Our model, like all agent-based models, represents a simplified version of reality, the 

assumptions of which may impact the results. Our definition of “recolonization” essentially 

corresponded to an event in which an infected immigrant transmitted the virus to at least one 

other individual, which likely results in a recolonization probability that is much higher than the 

probability of a recolonization event leading to long-term persistence. However, defining the 

length of time corresponding to an “established” rabies outbreak would be somewhat arbitrary, 

and we chose a definition of “recolonization” that is more reproducible. Other modeling 

decisions, such as the grain size of the simulated landscapes and the use of a step function to 

model disease transmission, could have influenced the results (see Appendices 1–2 for more 

details on modeling decisions and the rationale behind them). It is possible that these decisions 

resulted in simulated enzootic periods that are shorter than empirical county-level enzootic 

periods (Childs et al., 2000), but our short enzootic periods could also be an artifact of the 

relatively small landscape extent. Given that our estimated Re at vaccination rates of 0% is 

consistent with previous estimates of raccoon rabies Re (Biek et al., 2007) and our estimated R0 is 

consistent with estimates of R0 among other rabies reservoirs (Hampson et al., 2009; Townsend 

et al., 2013; but see Li et al., 2024), our simulations are a sufficiently reasonable approximation 

of reality to produce useful results.

Our results suggest that, while vaccination rates at or above target levels offer some 

protection against recolonization events, they might not be sufficient to prevent recolonization 

entirely. This may be due to high raccoon population densities in urban areas (Prange et al., 

2003, 2004; Rosatte et al., 2010; Slate et al., 2020): although many of our simulations had 

intentionally high proportions of vaccinated individuals, in terms of raw numbers, many agents 

were still susceptible to the disease. Furthermore, our choice of vaccination strategy may not be 
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the most efficient for rabies prevention: we assigned an equal vaccination probability for all adult 

agents in the simulation, whereas previous work suggests that targeting preferred habitat (where 

raccoons tend to congregate) is a more efficient vaccination strategy (McClure et al., 2022). 

Future work could investigate the efficacy of alternate vaccination strategies on preventing 

recolonization. Regardless, from a management perspective, vaccination is still an effective 

strategy for rabies elimination, and reducing the number of cases associated with potential 

recolonization events reduces the likelihood of dispersal of infected individuals to uninfected 

areas. 

Due to longer enzootic periods as a result of low vaccination rates and susceptibility to 

rabies re-establishment, urban areas located within ORV management zones may increase the 

risk of a barrier breach by acting as a “stepping stone” to regions in which raccoon rabies has 

been eliminated. The standard width of ORV zones in the United States is 40 km (McClure et al., 

2020), which is larger than the vast majority of recorded raccoon dispersal distances (Rosatte et 

al., 2010). However, an ORV zone width of 40 km may be insufficient when infected individuals 

disperse from within the ORV zone itself, due to a decrease in the distance an infected individual 

must travel to breach the barrier (McClure et al., 2020; Rees et al., 2013).  The width of ORV 

zones that intersect an urban region may need to be increased to account for the possibility of 

long-distance movements that originate within the zone, particularly when the urban region is 

located in a known risk corridor that facilitates long-distance raccoon movement (Davis et al., 

2019). Additional work is needed to assess the viability of urban areas as stepping stones and 

evaluate the ability of increased ORV zone width to counteract potential stepping stone effects. 

The dynamics of rabies re-emergence in regions where it has been previously eliminated 

are highly dependent on the timing and intensity of raccoon movement, as well as the origin of 
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displaced raccoons. Immigrants from rural areas inside the ORV zone are more likely to be 

vaccinated than those from urban areas (Beasley et al., 2024; Bigler et al., 2021; Gilbert et al., 

2018; Johnson et al., 2021; Mainguy et al., 2012), and may represent a high enough proportion of 

immigrants to reduce recolonization risk. Furthermore, our results demonstrate that the 

seasonality and intensity of immigration influence rabies dynamics. Given that raccoons are 

highly philopatric, with relatively short dispersal distances (Rees et al., 2008; Rosatte et al., 

2010), immigration rates in this study are likely artificially high. However, the paucity of 

movement data across the urban-rural interface make it difficult to accurately model immigration 

timing, intensity, and origin. Previous work using genetic methods successfully identified the 

origin of three raccoons which had undergone long-distance translocations (Hopken, Bjorklund, 

et al., 2025); but due the lack of clear population structure at finer geographic scales (Hopken et 

al., 2023; Root et al., 2009; but see Hopken, Mankowski, et al., 2025) it is unclear if these 

methods be useful for quantifying movement across highly localized urban/rural gradients. More 

data are needed to understand raccoon movements in the urban-rural transition zone and the 

effects of these movements on rabies transmission.

Our results demonstrate that, even in urban and suburban landscapes with high raccoon 

population density, rabies elimination and subsequent recolonization is highly probable at small 

spatial extents. This work aligns with previous findings suggesting that local rabies transmission 

is relatively low and that persistence is maintained on a regional scale (Biek et al., 2007; Fisher 

et al., 2018; Mancy et al., 2022; Smith et al., 2002). However, urban and suburban areas still 

represent localized points of management concern, as the low vaccination rates in these areas 

increases their potential as “stepping stones” that reduce the distance required to breach the 
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vaccination barrier. The potential for urban areas to concentrate or amplify outbreak risk suggests 

the need for flexible, targeted management for both rabies elimination and prevention.
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Figure 1. Transitions between susceptible (S), exposed (E), infected (I), and recovered (R) 

disease states of the model. Transitions between disease states are governed by probability of 

vaccination (v, 0–80% annually), force of infection (λ, which varies spatially), and weekly 

infectious probability (δ, which varies with time spent in the exposed state). Agents in the 

exposed state have a 10% probability of transitioning to the recovered state rather than the 

infectious state. Demographic processes include birth (b), immigration (i), emigration (e), and 

death (d; all agents in the infectious state die after 1 week).
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Figure 2. Proportion of simulations in which the initial rabies outbreak was successfully 

eliminated. Rabies was more likely to be eliminated in simulations in which adult vaccination 

rates were high and immigration rates, measured in terms of the expected number of weekly 

immigrants, were low. Simulations with higher adult vaccination rates were also more resistant 

to increases in immigration rates, as shown by the smaller decrease in elimination probability 

with higher immigration rates.

Figure 3. Time to reach rabies elimination (in years) in simulations where rabies was 

successfully eliminated at least once. Simulations with higher adult vaccination rates generally 

reached elimination more quickly: simulations with adult vaccination rates of 50% or higher had 

a median elimination time of less than 1.5 years; whereas simulations with vaccination rates of 

0–10% had a median elimination time of greater than 3 years.
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Figure 4. All immigration variables influenced the weekly probability of rabies recolonization 

after the initial rabies elimination. Recolonization probability increased with immigration rate 

(a,b), defined as the expected number of weekly immigrants, and rabies prevalence of 

immigrants (a). Recolonization was also more likely when immigration occurred continuously 

rather than seasonally (b). Vaccination rates had no clear effect on recolonization probability (c). 

Outliers removed for clarity.
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Appendix 1: Expanded Methodology and Model Specifications

E.M. Beasley and T. Poisot

The model description herein follows the ODD (Overview, Design concepts, Details) 

protocol for describing individual-based models, including agent-based models (Grimm et al., 

2006, 2010).

Overview

I. Purpose. 

We used this agent-based model to describe the effects of vaccine-induced immunity and 

immigration on rabies dynamics in a simulated urban-suburban landscape. Although immigration 

is likely responsible for the recent re-emergence of rabies cases in Chittenden County, Vermont, 

data on immigration and emigration in urban areas is sparse and the effects of these processes on 

rabies dynamics is poorly understood. Because of the relative scarcity of work investigating the 

role of immigration in sustaining and re-establishing rabies in urban areas, we used this model to 

provide a baseline understanding of these processes. We designed the model to be flexible 

enough to incorporate more complex scenarios, such as variability in individual habitat selection 

behavior or more realistic vaccination scenarios.

II. Entities, state variables, and scales

The model consisted of two entities: agents and grid cells. Each grid cell represented a 

0.5 x 0.5 km2 section of the landscape and contained the attributes habitat type (e.g. forest, low 
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urban development, pasture, etc.) and a vaccination probability for agents over 52 weeks of age. 

Each agent represented a raccoon and has a variety of attributes (Table 1-1).

Table 1-1. Attributes of simulated agents.

Attribute Description

ID Unique identifier for each agent

Position Coordinates of agent at time step t

Home Range Attractor Coordinates of the agent’s home range attractor

Incubation Binary indicator of the agent’s disease state. 0 = uninfected, 1 = 
infected with rabies

Time since infection If incubation = 1, the number of weeks since the agent entered the 
incubation state

Contagious If incubation = 1, binary indicator of the agent’s contagious state. 0 
= not contagious (i.e. cannot spread disease), 1 = contagious

Time since contagious If contagious = 1, the number of weeks since the agent entered the 
contagious state

Sex Sex of each agent; 0 = male, 1 = female

Mother ID of the agent’s mother

Immunity Binary indicator of an agent’s immunity status, 0 = not immune to 
disease, 1 = immune to disease

Age Age of the agent in weeks

The model landscape consisted of a 60 x 60 square grid, for a total simulation area of 

approximately 30 km2. The boundaries of the landscape were reflective, i.e. agents generally 

could not leave the landscape (see the dispersal submodel in section VII: Submodels for 

exceptions). Each time step represented 1 week and simulations were run for 11 years, with 52 

time steps per year. 

III. Process overview and scheduling
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Time in the simulations was modeled as discrete 1-week steps. Grid cell attributes were 

fixed for the duration of each simulation, but agent attributes could be changed weekly, or during 

particular time steps within each year (i.e. seasonally). The first year of the 11-year simulation 

was treated as a burn-in period to allow the agent population to stabilize before the disease was 

introduced (i.e. a unique event). The full model schedule can be found in Table 1-2. 

Table 1-2. Scheduling of model processes. Within frequency categories, processes are presented 

in the order in which they occur. Immigration timing varied depending on the simulated scenario 

and either occurred weekly (consistent immigration) or seasonally.

Frequency Time step Event Description

Weekly Mortality Agents are removed from the simulation 
due to stochastic, old age, disease-induced, 
and carrying capacity-induced mortality

Movement Agents’ weekly positions are updated

Disease 
transmission

Contagious agents can infect new agents

Immigration 
(consistent)

New agents over 52 weeks of age which are 
not associated with any existing agents are 
added to the simulation

Disease state 
change

Agents which are infected can become 
contagious or can shed the infection and 
immune. Time since infection and time 
since contagious attributes increase by 1

Seasonally Week 18 Reproduction New agents with age 0 that are associated 
with existing female agents are added to the 
simulation

Week 35 Vaccination Agents which are not immune can become 
immune

Week 43 Dispersal Agents’ home range attractor can be 
updated; if the new home range attractor is 
outside of the landscape boundary, the agent 
is removed from the simulation
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Week 40-50 Immigration 
(seasonal)

New agents over 52 weeks of age which are 
not associated with any existing agents are 
added to the simulation

Unique Year 2, Week 1 Disease 
initialized

10 agents are randomly selected from non-
immune agents and become infected

Design Concepts

IV. Design Concepts

Basic Principles. We designed our agent-based model as a spatially explicit SEIR model, 

with additional demographic processes such as births, deaths, immigration, and emigration 

(Figure 1-1). The spatially explicit component of the model primarily affects the force of 

infection parameter λ, which varies based on the proximity of an agent to a contagious agent 

(Figure 1-2). The spatially explicit component of the model also influences the demographic 

parameters e (emigration) and d (death) due to increased mortality rates and increased 

probability of dispersal (therefore increasing the likelihood of an agent leaving the landscape) in 

grid cells in which the number of agents exceeds the carrying capacity.

Figure 1-1. Transitions between susceptible (S), exposed (E), infected (I), and recovered (R) 

disease states of the model. Transitions between disease states are governed by probability of 

vaccination (v, 0–80% annually), force of infection (λ, which varies spatially), and weekly 
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infectious probability (δ, which varies with time spent in the exposed state). Approximately 90% 

of exposed individuals eventually transition to the infectious state; approximately 10% instead 

transition to the recovered state. Demographic processes include birth (b), immigration (i), 

emigration (e), and death (d; all agents in the infectious state die after 1 week).

Figure 1-2. a) Each agent in the model is assigned a home range attractor (black X), which can 

change during the annual dispersal period, and a position (black circle), which can change each 

week. The agent’s weekly position (b) is selected from the previous position’s Moore (9-cell) 

neighborhood, with the probability of selection weighted based on the habitat type, distance from 

the home range attractor, and the number of agents in each of the possible target cells. If the 

agent is in the infectious period of the disease (c, red circle), it can infect agents within 500 m of 

its current position with a probability λ1. Agents within 1 km of the infected agent’s position are 

infected with a lower probability λ2.

The disease and demographic processes are heavily influenced by the movement of 

individual agents in the simulation landscape. Movements can be categorized into two types: 

weekly and seasonal movements. Weekly movements result in changes in an agent’s weekly 

position in the landscape and are influenced by the habitat type, number of agents, and distance 
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from the agent’s home range attractor of each grid cell in the agent’s Moore (9-cell) 

neighborhood. Agents can also disperse seasonally (i.e. update the location of their home range 

attractor). Agents less than 52 weeks of age always undergo the dispersal process; however, their 

dispersal distance can be 0, effectively representing an agent that does not disperse from its natal 

home range. Agents over 52 weeks of age can disperse if the number of agents in the agent’s 

current cell exceeds the cell’s carrying capacity. Similarly to agents less than 52 weeks of age, 

the dispersal distance can be 0. For more details, see the movement submodel in Section VII: 

Submodels.

Interactions. Direct interactions between agents influence disease transmission and agent 

movement. For weekly agent movement, an agent’s weekly position is influenced by the number 

of agents in a given cell within movement range, among other factors. Agents less than 20 weeks 

of age always inhabit the same cell as their mother. On a seasonal basis, agents over 52 weeks of 

age can disperse if the number of agents in their current position exceeds the carrying capacity of 

that cell. Interactions between agents are also assumed, but not explicitly defined, in the disease 

transmission submodel. A contagious agent can transmit the disease to agents within 500 m of 

the infectious agent’s position with a given probability λ1, and can transmit the disease to agents 

within 1 km of the agent’s current position with a probability λ2 (Figure 1-2). These values were 

chosen based on the results of a parameter sensitivity analysis (Appendix 2). In both cases, it 

assumed that the contagious agent must have contact with another agent in order to spread the 

disease, given that rabies is transmitted via direct contact. See the disease transmission submodel 

in Section VII: Submodels for more details.

Stochasticity. Most processes in the model are at least partially stochastic. The biological 

realities these processes represent are often highly variable, and the causes of this variability are 
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not always understood. We are more interested in exploring the consequences of this variability 

rather than its causes: e.g., we are interested in how varying immigration rates influence rabies 

persistence, but not necessarily in the biological causes leading to changes in immigration rates. 

Therefore, we have used stochasticity to generate variability in parameter values and processes 

that roughly matches the variability observed in real systems. For specific information on how 

stochasticity is implemented in specific processes, see Section VII: Submodels.

Details

V. Initialization

Landscape initialization. We initialized the 60 x 60 landscape using the midpoint 

displacement algorithm in the Neutral Landscapes package in Julia (Etherington et al., 2015; 

Fournier et al., 1982). We supplied an autocorrelation parameter that matches the landscape 

autocorrelation of the greater Burlington, Vermont, area; upon which our simulations are loosely 

based (see Section VI: Inputs for details). We then reclassified the landscape into discrete habitat 

categories, the relative proportions of which matched the land cover composition of Burlington. 

We then created a 5-cell zone of a unique “buffer” habitat on the outer sides of the simulated 

landscape. The purpose of the buffer is twofold: 1) to reduce the effects of artificial boundaries in 

the simulated landscape (see the movement submodel in Section VII: Submodels) and 2) to 

represent the rural landscape surrounding the greater Burlington area, which differs in raccoon 

density, movement patterns, and vaccine-induced immunity rates (Bastille-Rousseau et al., 2024; 

Fehlner-Gardiner et al., 2012; Prange et al., 2004). 

Initializing agents. We populated non-buffer cells of the simulated landscape using a 

Poisson point process in which the expected number of agents per cell (λ) was 1.5. All disease-

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531



related attributes were set to 0 (i.e. no agent had contracted the disease). Agent sex and age were 

stochastically assigned: each agent had a 50% probability of being male or female, whereas each 

agent’s age in weeks was randomly selected from a range of 52–416 weeks (the maximum age in 

the simulation). Immunity status was assigned as the outcome of a Bernoulli trial, in which the 

probability of an agent being immunized varied based on the user-defined vaccination 

probability. Buffer cells were populated using the same procedure, but with a lower expected 

number of agents per cell (λ = 1) and a fixed probability of disease immunity (0.6). The initial 

vaccination probability in the buffer zone is based on the USDA’s target vaccine-induced 

immunity rates, which is frequently achieved in rural areas (Fehlner-Gardiner et al., 2012; 

Johnson et al., 2021). 

VI. Inputs

We simulated landscapes based on NLCD land cover data from the greater Burlington, 

Vermont area (Homer et al., 2015). We obtained land cover at a 30m x 30m resolution from the 

NLCD website and trimmed the raster to an extent of -73.347 – -73.0.17 degrees longitude and 

44.374 – 44.587 degrees latitude. We reclassified the land cover data based on land cover 

categories used in the National Rabies Management Program Oral Rabies Vaccine baiting 

algorithm (McClure et al., 2022). After land cover reclassification, we calculated 1) the 

proportion of each land cover type in the landscape and 2) a spatial autocorrelation index using 

the function lsm_l_ai in the R package landscapemetrics (Hesselbarth et al., 2019). 

The land cover proportions and autocorrelation index were used to generate simulated 

landscapes.
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VII. Submodels

The following submodels are presented in the order in which they occur in the 

simulation.

Mortality. There were several sources of mortality, in which agents were removed from 

the landscape. Each week, agents could be stochastically removed from the landscape with a 

probability of 0.001, which represented all potential sources of mortality that were not explicitly 

defined here (e.g., vehicle collisions). All agents in the contagious state of the disease died after 

having been in the contagious state for 2 weeks. Because disease mortality occurs before disease 

transmission in each time step, this corresponds to 1 week in which the agent can potentially 

spread the disease to other agents. Agents were removed from the simulation upon reaching 416 

weeks (8 years) of age. Finally, agents with a weekly position in a cell that exceeded carrying 

capacity were subjected to higher weekly mortality rates: agents at least 52 weeks of age had a 

carrying capacity mortality rate of 0.005, whereas agents younger than 52 weeks of age had a 

carrying capacity mortality rate of 0.02. These differential mortality rates lead to increased 

mortality among younger agents, which is observed in real populations (Pitt et al., 2008). 

Movement. Each agent in the simulation can potentially update their weekly position. For 

agents at least 20 weeks of age (i.e. agents old enough to move independently of their mother), 

each agent selected a position from within the current cell’s 9-cell (Moore) neighborhood, which 

includes the agent’s current position and the eight adjacent landscape cells. These cells were 

selected using a weighted probability that accounted for 1) the habitat type in each cell, 2) the 

distance from the agent’s home range attractor, and 3) the number of agents occupying each cell 

in the previous time step. We weighted each component process independently, then calculated 
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the final weight as a product of the three processes. Weighted probabilities were calculated using 

the Weights function in the StatsBase package in Julia v. 1.9.2 (Bezanson et al., 2017).

To account for habitat type in each agent’s weekly movement, we used resource selection 

function (RSF) coefficients calculated by McClure et al. (2022) as the values for each weighted 

probability calculation. We used population-level coefficients rather than individual-level 

coefficients to calculate movement probabilities: a decision which omits the individual 

variability found in real populations, which may in turn influence disease dynamics. However, 

reducing individual variability in movement reduces some of the “noise” from this variability, 

allowing us to focus on the effects of immigration and population-level immunity. We accounted 

for distance from an agent’s home range attractor using methods derived from Signer et al. 

(2017) (Eq. 1-1):

p(ct+1)∝exp(−ωd (ct+1)) (Eq. 1-1)

In which p(ct) the probability of a raccoon occupying cell c within the raccoon’s current Moore 

neighborhood at time t+1,  the strength of attraction towards the location of the home range 

attractor, and d(ct) the squared distance between potential target cells and the home cell. The 

squared distance between cells was calculated by (Eq. 1-2):

d (ct)=
r (( x t−xh )

2+( y t− yh )
2)

100
(Eq. 1-2)

After agents at least 20 weeks old selected their weekly position, the position of any 

agents less than 20 weeks old was updated to match their mother’s. 

Disease transmission. Only agents in the infectious state of the disease could transmit the 

disease (Figure 1-1). Furthermore, these agents could only transmit the disease to agents within 1 

km of their current weekly position which had not acquired immunity through vaccination or 

recovery from the exposed state. Disease transmission had a spatial component (Figure 1-2) in 
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which agents had a higher probability of transmitting the disease to agents within 500 m of their 

current position (λ1) than to agents within 1 km of their current position (λ2). These probabilities 

were selected using a parameter sensitivity analysis (Appendix 2). Although it is more common 

to use a continuous distance-decay function to account for spatial effects on disease transmission, 

the grain size of the simulation (0.5 x 0.5 km) compared to the typical weekly home range size of 

raccoons in urban-suburban landscapes such as Burlington (mean radius 600m, McClure et al., 

2022) would essentially result in discrete transmission probabilities. We supplied these 

probabilities based on the results of a parameter sensitivity analysis rather than calculating them 

each time step to reduce computation time.

Change disease state. Each week, an agent in the exposed state of the disease could 

recover from the disease with a probability of 0.002. Recovered agents obtained lifelong 

immunity to the disease. Agents which did not recover transitioned to the infectious state with a 

probability drawn from a beta distribution P ~ Beta(t, 5), in which t is the number of weeks since 

the agent was exposed to the disease. These weekly probabilities resulted in a total probability of 

recovery of 8–12% and a typical disease incubation period of 4–6 weeks, which is consistent 

with observed values (see Appendix 2 for details).

Update temporal attributes. Each agent’s age, time since infection (if in the exposed 

state), and time since entering the infectious state (if in the infectious state) was increased by 1 

each week.

Immigration. Immigration could occur either weekly (consistent immigration) or 

seasonally. When immigration was set to be consistent, the number of immigrants per week was 

drawn from a Poisson distribution N ~ Pois(n), in which n took values of 1–5 expected 

immigrants per week. Most immigrant attributes were assigned the same way as the initial 
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population (see Section V: Initialization); with the exception of the agents’ position, immunity 

status, and incubation status. Each agent immigrating into the landscape was assigned an initial 

position along one of the edges of the simulated landscape. Each immigrating agent could be 

incubating the disease with a user-defined probability which could take values of 0, 0.015, 0.03, 

0.045, and 0.06. All immigrants were assumed to have an immunity status of 0. After attributes 

were assigned, immigrants were randomly assigned a movement direction that would not 

immediately take them out of the simulated landscape, and a movement distance. Agents then 

moved to a new position based on these parameters.

Seasonal immigration took place between weeks 40 and 50 of the simulation. The 

procedure is the same as consistent immigration, with the exception that the number of weekly 

immigrants was determined by N ~ Pois(n*5), which resulted in approximately the same total 

number of immigrants for the duration of each simulation (Appendix 2).

Reproduction. Reproduction occurred at week 18 of each year in the simulation. Female 

agents were randomly selected to reproduce with a probability of 95% (Rees et al., 2013; Tinline 

et al., 2007). We then assigned the number of offspring for each reproducing female by drawing 

from a Poisson distribution Ni ~ Pois(4), in which Ni was the number of offspring produced by 

agent i. With this distribution a litter size of 0 was possible, but rare. Each offspring was assigned 

a value of male or female with a 50% probability and its initial position was the same as the 

mother’s. Offspring were also assigned a unique identifier and all disease and vaccination states 

were set at 0. Although it is likely that immune female raccoons confer some rabies immunity to 

their offspring, we did not incorporate this into the model because the duration and strength of 

rabies resistance conferred this way is currently unknown (Fry et al., 2013). 
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Vaccination. Vaccination success of a given agent during the annual vaccination period 

(week 35) was based on the agent’s age and position. Agents in the buffer zone which were at 

least 1 year old had a vaccination probability of 60%, consistent with empirical vaccination rates 

in rural areas (Fehlner-Gardiner et al., 2012). Agents elsewhere in the landscape that were at least 

1 year old were vaccinated with a user-defined probability that ranged from 0–80% at 10% 

intervals. Agents less than 1 year old had a vaccination probability that was half of the 

probability for agents older than 1 year (Beasley et al., 2024). 

Dispersal. Seasonal dispersal as defined here includes a potential change in 1) the agent’s 

current position and 2) the location of an agent’s home range attractor. The dispersal function 

was activated in week 43 of each year of the simulation and was largely the same for raccoons of 

all ages. Starting from the agent’s current position, each agent undergoing dispersal was assigned 

a movement direction and distance. Movement direction was defined by randomly selecting one 

of the eight cells in the agent’s Moore neighborhood (Cullingham et al., 2008). Movement 

distance was defined as the number of landscape cells traveled and was drawn from a Poisson 

distribution with an expected movement distance λ that varied based on the agent’s age (it was 

possible for any agent to have a movement distance of 0). The agents then moved to a new 

position according to their assigned movement distance and direction. Agents whose updated 

position fell outside of the landscape boundary were permanently deleted from the simulation. 

All other agents’ home range attractor was updated to the agents’ new position. This process was 

repeated until the agent reached a grid cell below carrying capacity or until 3 movements were 

made, whichever occurred first. 

Although the overall dispersal process was the same for raccoons of all ages, there were 

slight differences between agents less than one year of age and all other agents. All agents less 
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than one year old were subject to the dispersal process, whereas agents at least one year old only 

went through the dispersal process if they were occupying a cell above carrying capacity. The 

expected movement distance also varied based on age: the expected distance for agents less than 

1 year of age was 3 grid cells (1.5 km), other agents had an expected distance of 2 grid cells (1 

km). These distances are consistent with empirical dispersal distances (Rees et al., 2008). 

Disease initialization. We initialized the disease in week 1 of year 2 by randomly 

selecting 10 non-immune agents and changing their incubation state to 1. 
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Appendix 2: Model Functionality Testing and Parameter Sensitivity Analysis

E.M. Beasley and T. Poisot

We tested various aspects of the agent-based model (see Appendix 1 for detailed 

descriptions of individual functions) to ensure they were producing expected outputs. For most 

model parameters, we assigned values based on empirical data, but for parameters for which 

empirical values were limited, we conducted a parameter sensitivity analysis to identify values 

that produced realistic outcomes. Results of both tests are discussed below. Unless otherwise 

indicated, functionality tests and parameter sensitivity analyses were completed without agents 

immigrating into the landscape.

Functionality Tests

Cell Size 

We chose a 0.5 x 0.5 km cell for our spatial grain size. This grain size reduces 

computational intensity compared to a smaller grain size (e.g. the 30 x 30 m resolution of the 

available land cover data). Additionally, there is little habitat heterogeneity at the 30 x 30 m 

resolution in the greater Burlington area, the empirical landscape from which we derived the 

characteristics of our simulated landscapes. As a result, the autocorrelation of the original 30 x 

30 m landscape calculated using the package landscapemetrics (Hesselbarth et al., 2019) 

was similar to the landscape with a 0.5 x 0.5 km resolution (75.8 vs. 77.4, respectively). The 

major features in a map of Burlington at a 30 x 30 m resolution were still present in a map with a 

0.5 x 0.5 km resolution (Figure 2-1).
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We decided against using a larger grain size than 0.5 x 0.5 km because 1) the major 

landscape features are less identifiable at larger grain sizes, and 2) increasing the grain size 

would restrict agents’ home ranges to approximately 1 cell or less, which would prevent agents 

from readily changing their weekly position.

Figure 2-1. Map of the greater Burlington, VT area at a 30 x 30 m resolution (a) and 0.5 x 0.5 

km resolution (b). Due to a high degree of spatial autocorrelation in land cover, major landmarks, 

including the wetlands of the Winooski River delta and Intervale Center farmland in the top-left 

corner, and the municipalities of Burlington, South Burlington, Winooski, and Essex Junction in 

the center, are still recognizable with the larger spatial grain.

Landscape Generation Algorithm

We used the midpoint displacement algorithm in the Julia package 

NeutralLandscapes (Poisot et al., 2023), which is a port of the Python package NLMpy 
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(Etherington et al., 2015), to generate our simulated landscapes. This algorithm simulates a 

landscape of values of a continuous variable such as elevation, the autocorrelation of which is 

specified by the user (Fournier et al., 1982; Palmer, 1992). We calculated the spatial 

autocorrelation of Burlington habitat data using lsm_l_ai function in the R package 

landscapemetrics (Hesselbarth et al., 2019) and used that value in the mid-point 

displacement algorithm. After generating a continuous landscape using the mid-point 

displacement algorithm, we re-classified the simulated landscape into discrete categories based 

on the relative proportions of available habitat in Burlington (Figure 2-2). We also placed a 

unique “buffer” habitat on the outermost 5 cells on each side of the simulated landscape, which 

were used to reduce boundary effects in the simulation (see Appendix 1 for more details).

Figure 2-2. Example landscape generated using a mid-point displacement algorithm and re-

classified into discrete habitat categories. Spatial autocorrelation and relative proportions of land 

cover categories were calculated from land cover data of the greater Burlington, VT area.
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Weekly Position and Seasonal Home Range

Each agent was assigned a weekly position at each time step in the simulation, which 

represented the center of the agent’s weekly home range. In addition, each agent was assigned a 

home range attractor that restricted the agent’s movement to a particular geographic area. The 

home range attractor could be updated annually during the dispersal period. The weekly position 

was updated each week based on a weighted probability that accounted for 1) the habitat type, 2) 

conspecific density, and 3) distance from the agent’s home range attractor in the agent’s current 

weekly position and the 8 cells surrounding its weekly position. For more details, see the 

Movement subsection of Appendix 1, Section VII: Submodels.

We tested the movement of agents prior to the dispersal period of the model to ensure 

seasonal home range size was consistent with empirical values from Burlington. Because 

empirical data from Burlington spans from July–September, we calculated agents’ seasonal home 

ranges from the equivalent weeks of the simulation. A distance-decay rate from the home range 

attractor of -0.001 resulted in seasonal home ranges that ranged from 0.785–5.935 km2 in size, 

with a median value of 1.658 km2. The median home range size was very close to the empirical 

median (1.626 km2); however, there was more variability in the empirical data (range 0.283–

11.087 km2, United States Department of Agriculture Animal and Plant Inspection Service 

[USDA APHIS], Wildlife Services, unpublished data). Variability in home range sizes can affect 

rabies persistence (McClure et al., 2020), but because we were primarily interested in the affects 

of immigration on rabies persistence and recolonization, we chose not to introduce additional 

variability in seasonal home range size.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754



Disease State Changes

Rabies typically has a latent period of 3–6 weeks, in which an individual has been 

infected with the virus but is not yet contagious (Tinline et al., 2007). We modeled the weekly 

probability of an agent moving from the “exposed” (i.e. infected but not contagious) to the 

“infectious” (i.e. contagious) state as the outcome of a Bernoulli trial, in which the probability of 

changing states was drawn from a beta distribution P ~ Beta(n, 5), where n is the number of 

weeks the agent has spent in the exposed state. This resulted in a typical latent period of 3–6 

weeks, which is consistent with empirical values (Figure 2-3).

Figure 2-3. Distribution of the length of the latent period of the disease, in weeks. The 

distribution has a mode of 4–5 weeks; consistent with empirical values.

Raccoons exposed to the rabies virus also have a 10% probability of recovering from the 

virus rather than becoming infectious (Slate et al., 2014). We modeled the weekly process of an 

exposed individual entering the recovered state as the outcome of a Bernoulli trial, in which the 

probability of success was 0.015, resulting in simulated recovery rates ranging from 8–12%.
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Parameter Sensitivity Analyses

Kmax and Carrying Capacity Mortality

Empirical data from Burlington suggests a mean raccoon density of approximately 

40/km2 in July and 30/km2 in October (Beasley et al., 2024). Density distributions are strongly 

right-skewed, so total population sizes are likely smaller than these density values would 

suggest. A max carrying capacity of 40/km2, an adult density mortality rate of 0.005, and a 

juvenile density mortality rate of 0.02 typically results in population sizes close to empirical 

values, with a population that is slowly growing (Figure 2-4). 

Figure 2-4. Total simulated population sizes across a 10-year simulated period with a maximum 

carrying capacity K set at 40 raccoons/km2. Population sizes varied according to adult (rows) and 

juvenile (columns) mortality rates, which occurred when a given cell exceeded the maximum 
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number of raccoons. At this carrying capacity, an adult mortality rate of 0.005 and a juvenile 

mortality rate of 0.02 resulted in population sizes that were close to empirical values measured in 

Burlington in July and October 2015–2017.

We also examined the turnover rate (i.e. births vs. deaths) of the population at the selected 

carrying capacity and associated mortality rates, because turnover affects the relative proportion 

of susceptible to recovered/vaccinated individuals in the population. We simulated 2 years of the 

population: one without the disease, and one following disease introduction on week 1 of year 2. 

The annual birth pulse approximately doubled the population during the week in which births 

occurred. However, year-over-year population growth with the density mortality rates described 

above ranged from -1.58%–1.79%, with a median growth rate of 1.29%.

Weekly deaths ranged from 0.6–7.5% of the population, with a median of 1.4%. Prior to 

disease introduction, mortality rates were highest between weeks 20 and 40 of the simulation 

(Figure 2-5) due to high carrying capacity mortality of agents less than 52 weeks of age, which 

ranged from 20–100% of deaths with a median of 61.5% of deaths during this time period. This 

is qualitatively consistent with higher juvenile mortality rates in natural populations (Pitt et al., 

2008). Over the course of a year, carrying capacity-induced mortality of agents was the most 

common source of mortality (74.0% of all mortality events before disease introduction).

After the disease was introduced into the population, mortality rates tended to be higher 

earlier in the year, although this could be an artifact of disease introduction, as mortality rates 

with and without the disease were similar at the end of the year (Figure 2-5). The most common 

source of mortality post-disease introduction was still carrying capacity mortality of agents less 

than 52 weeks of age, accounting for 40.5% of deaths over the course of the year. Disease-
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induced mortality accounted for 35.2% of deaths, while carrying capacity mortality of agents 

over 52 weeks of age accounted for 13.9% of deaths. 

Figure 2-5. Weekly mortality rates before (black) and after (green) rabies was introduced into 

the simulated population. Mortality rates were generally low, with a median rate of 0.014. Prior 

to disease introduction, mortality rates were highest between weeks 20 and 40 of the simulation, 

a time period after the birth of new agents but before the dispersal period. After disease 

introduction, mortality rates were slightly higher earlier in the year, although this could be an 

artifact of disease initialization.

Disease Transmission Rates

We tested several combinations of values of core home range (λ1, corresponding to the 

transmission rate to raccoons within 500 m of the infectious raccoon) and peripheral home range 

( λ2, corresponding to transmission to raccoons within 1 km of the infectious agent) transmission 
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rates in simulations with the density mortality rates discussed above. We tuned the core home 

range transmission rate first by performing a wide sweep of parameter values between 0.001 and 

0.5 on a logarithmic scale, with 5 replicates per parameter value (Figure 2-6a), and selected a 

narrower range of parameter values based on the number of weeks needed to reach elimination. 

We repeated the process on the narrow range values with 10 replicates per parameter. We 

selected a parameter value for λ1 based on 1) time to elimination, 2) median weekly cases, and 3) 

the effective reproduction number Re. A λ1 value close to 0.035 yielded an expected time to 

elimination of 172 weeks (3.3 years, Figure 2-6b), 5 median weekly cases (Figure 2-7), and an R0 

of approximately 1.32, which were closest to empirical values (Biek et al., 2007; Childs et al., 

2000).

Figure 2-6. Timing of rabies elimination under a variety of transmission rates. A wide parameter 

sweep with 5 replicates per rate (a) yielded 6 transmission rates in which rabies outbreaks 

typically lasted more than 2 years. These values were tested again with 10 replicates per rate (b). 

A transmission rate close to 0.035 yielded a mean elimination time closest to the empirical 

median of 350 weeks. 
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Figure 2-7. Median weekly cases at varying rabies transmission rates in an infected agent’s core 

home range. 

We then tested a series of values for transmission rates at the periphery of an infected 

agent’s weekly home range λ2 (i.e. within 1 km of the agent’s current position). We began with a 

logarithmic sequence of values ranging from 0.001–0.03, with 10 replicates per value and λ1 

fixed at 0.035. We selected values close to 0.03 for further testing because this value resulted in 

some outbreaks persisting in the landscape (70%), a mean duration of 219 weeks for outbreaks 

which were eliminated (Figure 2-8), and a median of 2.5 cases per week after the initial 

outbreak. The estimated R0 was also 1.22, which is consistent with empirical estimates of Re 

(Biek et al., 2007)
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Figure 2-8. Week of elimination for assorted values of λ2 (i.e. disease transmission in the home 

range periphery) for simulations in which rabies was eliminated. Values of 0.001 and 0.03 

yielded similar elimination timings; however, simulations in which λ2 was 0.03 were more likely 

to have rabies persistence over the duration of the simulation. 

Lastly, we tested values of λ2 from 0.1–0.03 at intervals of 0.05, with λ1 fixed at 0.035. 

We simulated 20 replicates for each parameter. Of these, we chose a final value of λ2 of 0.02 due 

to having the highest probability of persistence (85%) and the most realistic value of R0 (~1.24). 

Time to elimination and cases per week were similar among values tested.

We also examined population sizes, as rabies endemicity tends to result in a small but 

noticeable decrease in population sizes. The initial disease outbreak results in a noticeable 

decrease in population size, followed by an increase in population as the initial peak in cases 

subsides (Figure 2-10). This pattern was qualitatively similar across all tested transmission rates.
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Figure 2-10. Mean population sizes in each week of the simulation with the core home range 

transmission rate (λ1) fixed at 0.035 and the peripheral home range transmission rate (λ2) fixed at 

0.02. The simulated population decreases after the disease is introduced into the population 

(dashed vertical line), but the population then increases to close to the initial size.

Table of Parameters

Values for demographic and epidemiological parameters can be found in the following 

table (Table 2-1).

Table 2-1. Parameter values for demographic and epidemiological parameters from the agent-

based model. 

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908



Parameter Value(s) Description and Source
Raccoon demographics
Kmax 40/km2 Maximum carrying capacity per cell (Figure 2-5).
Age of 
independence

20 weeks Age at which juveniles are no longer maternally 

dependent: can survive if mother dies & moves 

independently, but still shares a home range attractor 

(Rees et al., 2008; Tinline et al., 2007)

Week of birth Week 18 (Hauver et al., 2010; Rees et al., 2008; Sanderson & 

Nalbandov, 1973)

Probability of a 
female > 52 
weeks old 
producing a 
litter

95% (Prange et al., 2003)

Litter size ~ Pois(4) (Rees et al., 2008)

Dispersal 
timing

Week 43 Adults only disperse if their current position exceeds 
carrying capacity
(Rees et al., 2008)

Dispersal 
distance

~Pois(3) (< 52 
weeks of age)
~Pois(2) 
(>= 52 weeks 
of age)

For ~Pois(λ) in which λ represents the number of 0.5 km x 
0.5 km grid cells moved 
(Rees et al., 2008)

Weekly 
stochastic 
mortality 

0.001 Represents all sources of mortality not explicitly defined 

here (Gehrt & Prange, 2007; Prange et al., 2003)

Orphan 
mortality

100% Applied to raccoons < 20 weeks of age whose mother is 
dead

Old age 
mortality

100% Applied to raccoons over 8 years old (Rees et al., 2013)

Weekly density-
related 
mortality rate

0.005 (>= 52 
weeks)
0.02 (< 52 
weeks)

Applied to raccoons occupying cells exceeding Kmax 

(Figure 2-5)

Immigration 
Timing

Variable Immigration occurs weekly (“consistent”) or between 
weeks 40 and 50 (“seasonal”)

Immigration ~Pois(λ) Variable. For consistent immigration, λ is set by the user 



Rate (values of 1–5); for seasonal immigration, the number of 
immigrants is ~Pois(λ*5), resulting in approximately the 
same number of annual immigrants per value of λ.

Epidemiological parameters
Probability of 
becoming 
infectious

~Beta(n, 5) Where n = number of weeks since exposure. Results in a 

typical latent period of 3–6 weeks (Figure 2-3, Tinline et 

al., 2002)

Probability of 
recovery from 
exposure

0.002/week Results in a total recovery rate of approximately 10% 

(Slate et al., 2014)

Infectious 
period

1 week (Hanlon et al., 2007)

Transmission 
coefficient 

λ1 = 0.035
λ2 = 0.02

In which λ1 = transmission rate to raccoons occupying the 
same cell as the infected raccoon; λ2 = transmission rate to 
raccoons occupying any other cell within the infected 
raccoon’s home range (Figures 2-6 – 2-9)

Initial infection 
time 

Year 2, Week 1

Initial infections 40 Raccoons to be infected initially are randomly selected 
from non-immune raccoons

Vaccination 
probability 
(raccoons at 
least 52 weeks 
of age)

Varies Takes values from 0–80% at intervals of 10%

Vaccination 
probability 
(raccoons less 
than 52 weeks 
of age)

Vaccination 
probability / 2

(Beasley et al., 2024)

Immunity 
duration

Permanent Vaccine-induced immunity duration is unknown. Previous 

work has included permanent immunity (e.g. McClure et 

al., 2020, but see Acheson et al., 2023)

Infection rate of 
immigrants

Varies Values include 0, 0.015, 0.03, 0.045, and 0.06
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Appendix 3: Supplemental Tables and Figures

E.M. Beasley and T. Poisot

Figure 1. Estimated effective reproduction numbers (Re) across simulations with varying adult 

vaccination rates. Re tended to decrease as the vaccination rate increased, which is expected 

given the lower proportion of susceptible individuals in the population. Mean estimates of Re in 

landscapes with an adult vaccination rate of 0% (1.14) are consistent with empirical estimates 

(~1–1.2). 
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Figure 2. Average weekly rabies prevalence in simulated raccoon populations with varying adult 

vaccination rates. Prevalence was generally low in all simulations, and was lower in simulations 

with higher vaccination rates. Increases in average prevalence beyond week 200 correspond to 

periods of seasonal immigration in some simulations.
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Figure 3. Mean proportion of simulated rabies outbreaks eliminated by adult vaccination rate 
and immigration type. Among simulations with the same vaccination rate, simulations with 
continuous immigration were slightly less likely to achieve rabies elimination than simulations 
where immigration was restricted to a specific part of the year. This effect tended to be more 
pronounced in landscapes with adult vaccination rates of at least 50%.
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Figure 4. Proportion of simulated rabies outbreaks eliminated across simulations with varying 

values of expected weekly immigrants and the disease prevalence of immigrants. Elimination 

was least likely to be achieved when immigration rate and immigrant prevalence were both high. 

Effects of immigrant prevalence tended to be more pronounced in simulations with higher 

immigration rates. 
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Figure 5. Effects of immigration variables on the weekly probability of rabies recolonization 

after the initial rabies elimination. Recolonization probability increased with immigration rate (a, 

b), defined as the expected number of weekly immigrants, and rabies prevalence of immigrants 

(a). Recolonization was also more likely when immigration occurred continuously rather than 

seasonally (b). Vaccination rates had no clear effect on recolonization probability (c).

944

945

946

947

948

949

950

951

952

953



Figure 6. Mean duration of recolonization events, in weeks, based on the timing of the 

reinfection event. There were no clear differences in duration between the three time periods. 

Most recolonization events lasted less than one year. Outliers removed for clarity.

Figure 7. Mean cases after rabies recolonization. Cases after a recolonization event were higher 

in simulations with higher immigration rates and lower in simulations with higher vaccination 

rates. 
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