Relative High Fitness and Large Genome Size May Lead to the High Diversification of Plastic Foragers

- Dylan J. Padilla Perez^{1,2}, Martha M. Muñoz³, David K. Skelly²
- ¹Yale Institute for Biospheric Studies, Yale University, New Haven, CT 06511,
- 5 USA.
- ²School of the Environment, Yale University, New Haven, CT 06511, USA.
- ³Department of Ecology and Evolutionary Biology, Yale University, New Haven,
- 8 CT 06511, USA.
- 9 Corresponding author: dylan.padilla@yale.edu
- 10 Article type: Major Article
- Keywords: Genetic diversity, plasticity, speciation, reproductive effort.
- 12 This manuscript includes:
- 13 Abstract: 238 words
- Main Text: ~ 6000 words, excluding references
- Figures: 5
- 16 References: 65

17 Abstract

Explaining variation in diversification of species across the Tree of Life is an important challenge for evolutionary biologists. Growing evidence suggests that key innovations or historical contingency give rise to high diversification of species, but the genetic mechanisms through which this process may occur remain poorly investigated. Based on fitness landscapes, a high diversification is predicted to result from local adaptation as species navigate genotype space. To test this prediction, we conducted a comparative analysis of 997 reptile species that vary in their locomotion while foraging. The species ranged from those that travel long distances to acquire food ("active foragers") to those that barely move and acquire food in nearby sites ("sit-and-wait foragers"), or those that adopt a plastic strategy. We found that active and plastic foragers not only 27 have higher diversification of species but also have higher fitness compared to sit-andwait foragers. While traversing across heterogeneous environments, active and plastic foragers could accelerate the pace of evolution by exposing cryptic genetic variation to selection. This is possible in active and plastic foragers because their larger genomes 31 and nucleotide diversity potentially facilitate variation in gene expression, allowing natural selection to operate effectively to the point where divergence by ecological speciation could occur. Restricted locomotion among sit-and-wait foragers potentially led to relatively low diversification of species via stochastic processes. We used emerging genomic data and macroevolutionary observations supported by microevolutionary processes to provide key insights into mechanisms of diversification. 37

Keywords: Genetic diversity, plasticity, speciation, reproductive effort.

39 Introduction

The process of evolution by natural selection requires differences in fitness among organisms given variation in their genomes and environments (Orr, 2009). Often, such variation in fitness arises from plastic responses pushing populations into the realm of attraction of new fitness peaks (Figure 1), which can lead to genetic differentiation over time (Price et al., 2003). Accordingly, the relationship between genes and fitness is of fundamental importance to better understand the evolutionary history of organisms. Ideally, a theory that links microevolutionary processes responsible for changes in fitness (e.g., genetic drift, mutation, selection) with macroevolutionary patterns (e.g., speciation, diversification of species) should provide the basis for describing how biodiversity arises. To develop such a theory, researchers rely on the notion of "fitness landscapes", which enables one to visualize how the process of diversification can occur (Figure 1; Wright, 1931).

52 Figure 1.

A prevailing prediction emerging from consideration of fitness landscapes is that
many speciation events, and indeed whole adaptive radiations, result from local adaptation as species colonize new environments (Gavrilets, 1997; Wright, 1931). This
prediction is based on two premises: 1) While exploring large areas of genotype space,
the origin of novel allele combinations can occur as organisms with different genetic
makeup reproduce. 2) The increasing likelihood of spatial sorting as organisms move

across the genotype space can cause individuals with distinct traits to accumulate at the leading edge of a population in the process of divergence (Ochocki and Miller, 2017; Shine and Baeckens, 2023). Because such premises imply the displacement of organisms across their landscapes, focusing on species that differ in their locomotion while foraging offers a good opportunity to understand how the diversification process takes place. In this regard, the foraging behaviors of organisms is highly relevant; these behaviors lie along a continuum of locomotion, ranging from species that travel long distances to acquire food ("active foragers") to species that barely move and acquire food in nearby sites ("sit-and-wait foragers"; Pianka, 1966; Reilly et al., 2007). Interestingly, the existence of species that differ in their locomotor capacity based on their foraging behavior is pervasive in nature. For instance, a meta-analysis of dispersal among marine vertebrates and invertebrates revealed that foraging behavior can influence the locomotion of organisms by affecting how far they move (Woodson and McManus, 2007). Foraging animals often seek out areas with high resource concentrations, causing them to forage in nearby sites and decreasing their overall distance traveled. Conversely, a lack of food or the presence of predators can force animals to move and disperse over long distances (Woodson and McManus, 2007). Such an ability to adjust the foraging behavior in response to environmental variations ("plastic foragers") can be especially observed in colonizing species navigating heterogeneous environments, where encountering a new environment may result in selection pressures favoring divergence from the ancestor (Price et al., 2003; Shine and Baeckens, 2023). As plastic foragers travel across heterogeneous environments, genetic divergence is 80 expected as gene combinations favored under the locally prevailing conditions are not

useful in distant environments (Waddington, 1961). These plastic responses might be associated with the evolution of large genomes because a substantial amount of genetic material facilitates variation in gene expression and can fuel rapid adaptation (Price et al., 2003; She et al., 2024). For instance, the expression of a novel phenotype through plasticity can reveal previously hidden genetic variation, which can be more effectively selected for (Noble et al., 2019). At the same time, however, large genomes might impose a cost of carrying around additional genetic material. Large genomes also lead to slower development, longer generation times, and potentially slower growth rates, all of which could hinder locomotion and colonization to new environments (Knight et al., 2005). By contrast, relatively small genomes may lead to smaller cell sizes and faster cell division rates, which can impact locomotor-related traits (Pyšek et al., 2018). Intriguingly, the relationship between foraging behavior and genome size has not been previously analyzed among vertebrate species, motivating us to conduct a thorough investigation that may enable us to make general conclusions about the ecology and diversification of species across the tree of life.

Here, we explored variation in net diversification of reptiles based on the foraging behavior and genomic attributes of species. Accordingly, we compared the net
diversification of species resulting from a state-dependent speciation and extinction
model. We also inferred the evolutionary history of foraging behaviors across the phylogeny and revealed historical patterns of radiations and mass extinctions of species
within each foraging category. Our hypotheses suggested that because both plastic
foragers and active foragers may more effectively explore heterogeneous environments
than sit-and-wait foragers, local adaptation may have taken place if populations ex-

ploited new fitness peaks (Figure 1), leading to the relatively high diversification of 105 species. By contrast, restricted locomotion by sit-and-wait foragers could have led to 106 relatively low diversification of species via stochastic processes. These hypotheses are 107 supported by the observation that local adaptation driven by natural selection to suit 108 specific environments generally leads to faster diversification than stochastic processes 109 (García-Pintos, 2024). Because local adaptation is directly dependent on the fitness 110 of organisms, we predicted that the high-dispersing capacity of active and plastic for-111 agers, compared to the low-dispersing capacity of sit-and-wait foragers (Reilly et al., 112 2007), may have enabled them to reach higher fitness. To test such prediction, we 113 compared the lifetime reproductive output as a function of foraging behavior across species, which involves both their reproduction and longevity (Alif et al., 2022; Stearns, 115 2000). Local adaptation also relies on the presence of genetic variation, which provides 116 the raw material for natural selection to act upon (Hoban et al., 2016). As such, we 117 modeled the effects of genome size and foraging behavior on the species' fitnesses. In 118 this context, we predicted that active and plastic foragers may have evolved larger 119 genomes (or higher nucleotide diversity) and greater lifetime reproductive output than 120 sit-and-wait foragers. However, the evolution of large genomes might have come at 121 the cost of carrying around additional genetic material. Such a cost may be evident 122 if active and plastic foragers have larger genomes but lower lifetime reproductive out-123 put than sit-and-wait foragers. Our study uses emerging genomic data and presents macroevolutionary observations supported by microevolutionary processes to provide 125 key insights into the mechanisms of species' diversification.

7 Materials and Methods

$_{28}$ Ecological data source

We used a comprehensive database for integrating a diverse range of physiological, behavioral, and life history data to explore patterns of diversification among reptiles 130 (Oskyrko et al., 2024). Specifically, our analyses focused on predicting diversification 131 rates based on the foraging behaviors of species. We classified the foraging behaviors 132 based on whether the species have been reported as active forgers, sit-and-wait for-133 agers, or using a plastic strategy (Meiri, 2018); a categorization that, albeit crude, 134 remains useful to biologists for defining the extremes of a continuum. Our investiga-135 tion included data of foraging behavior for 997 species of squamate reptiles distributed among 56 families. These data were mainly used for estimating net diversification of 137 species across the reptile phylogeny. 138

To examine variation in fitness, we collected data of lifetime reproductive output 139 among species. We defined lifetime reproductive output as the product between the 140 average clutch sizes of species, their average number of clutches per year, and their 141 longevity. We then regressed this quantity on the maximum body mass of the species (g). This way, the slope of the linear relationship can be interpreted as lifetime reproductive effort—proportion of mass allocated to reproduction—which enabled us to 144 avoid statistical issues associated with the analysis of ratios. We also accounted for 145 the effects of other factors such as the total area of the species' ranges and species relatedness. To estimate the area of the species' ranges, we used the species' polygonal 147 range maps provided by Roll et al. (2017), and ran a Zonal Statistical analysis in the 148 software QGIS (QGIS Development Team, 2025). This tool enabled us to compute the total area across pixels of the species' range maps. To account for species relatedness,
we informed our models with a time-calibrated phylogeny of squamate reptiles (Zheng
and Wiens, 2016). To model the effects of these factors on diversification of species,
we fitted a number of competing models and selected the most likely one based on
information theory (e.g., AIC values). All models were fitted on a logarithmic scale
and accounting for phylogenetic relationships using the function gls from the library
"nlme" (Pinheiro et al., 2007) in the free software for statistical computing R (R Core
Team, 2023).

158 Ancestral state reconstruction

Because historical factors may have played an important role in the diversification of species that we observe today (Blount et al., 2018), we inferred the evolutionary 160 history of foraging behaviors among reptiles. To do so, we fitted a set of continuous-161 time, discrete-state Markov chain models to sample the character histories from their 162 posterior probability distribution (Huelsenbeck et al., 2003), across a time-calibrated 163 phylogeny of squamate reptiles (Zheng and Wiens, 2016). The models consisted of a 164 an equal-rates (ER) model, in which the rate of change between the three states of the 165 character were assumed to be equivalent. We also fitted an all-rates-different model (ARD), which enables transitions among states to occur at different rates. Lastly, 167 we fitted a symmetrical model, which enables pairs of states to change at different 168 rates but changes among all states are theoretically possible. To fit the models, we 169 used the default arguments of the function make.simmap from the "phytools" library 170 of R (Revell, 2012), and simulated 1×10^5 character maps. We then summarized the number of state changes and the posterior probabilities of each internal node generated from the character map simulations. We selected the most likely model based on *AIC* values.

$State ext{-}dependent\ diversification\ framework$

To explore whether the foraging behavior of species influenced the net diversifica-176 tion of species, we relied on state-dependent speciation and extinction models (SSE). 177 These models are a birth-death process in which the diversification of species are de-178 pendent on the state of an evolving character (FitzJohn et al., 2009). Because the data of foraging behavior consisted of a discrete character with 3 levels, we used the 180 MuSSE method—a Multi-State Character extension of the Binary State Speciation 181 and Extinction Model (BiSSE). In doing so, we first defined a likelihood function, and then optimized it as required by the library diversitree of R (FitzJohn, 2012). The 183 likelihood function requires a phylogenetic tree (Zheng and Wiens, 2016), a vector of 184 numbers ranging from 1 to 3 (where 1 = active foraging, 2 = plastic foraging, and 3= sit-and-wait foraging), the number of states (k = 3), and a vector specifying the 186 proportion of species in each character state. We computed this proportion based 187 on the ratio of the number of species for which we had data within each foraging 188 state to the total number of squamate species currently reported on Reptile Database 189 (see http://www.reptile-database.org). Subsequently, we constrained this general 190 likelihood function to fit different competing models. We started with a null model, 191 in which all birth and death rates are equal between states. Next, we fitted the most complex model in which all rates of speciation and extinction depended on the character state for our multi-state character. Also, we fitted models in which only the speciation rate (λ) varied between states, only the extinction rate (μ) varied, and one in which neither λ nor μ varied, but the transition rates differed between types of transitions (e.g., ordered, unordered, etc.). As previously described, we compared the models' goodness of fit based on AIC_c and selected the most likely one for inferences. Finally, we used the most likely model to run a Bayesian Markov chain Monte Carlo simulation (MCMC) with 1×10^5 steps to take, an exponential prior distribution, and the control parameter (w) suggested by FitzJohn et al. (2009).

We complemented the state-dependent diversification framework with a lineagethrough-time plot, which consists of a visual representation of how the number of
lineages within clades changed over time, essentially tracing the diversification history
of the clades (Helmstetter et al., 2022). Importantly, the interpretation of this analysis remains inconclusive because a simple comparison of the total number of species
between clades of different ages does not necessarily reflect consequences of species
interactions even though species numbers differed.

209 Genomic data source

Because genetic diversity changes as organisms with distinct allele combinations reproduce, important variation in the genetic makeup among species should be observed (Waters et al., 2020). Accordingly, we examined the association between
genome size and the foraging behavior of species. To do this, we obtained data of
genome size from The National Center for Biotechnology Information (NCBI; https:
//www.ncbi.nlm.nih.gov/) and The Animal Genome Size Database (Gregory et al.,

2007). The genome size dataset that we compiled included 99 squamate species distributed among 29 families. Importantly, the number of species with data of genome 217 size and genetic diversity is dramatically low compared to the availability of ecological 218 data. Thus, our results in this context should be carefully interpreted and will require 219 further evaluation as more data become available. To model the cost of genome size, 220 we examined the effects of the interaction between foraging behavior and genome size 221 on the lifetime reproductive output of species. We fitted a set of phylogenetic-corrected 222 models and evaluated their goodness of fit based on AIC_c values. In addition to ac-223 counting for the effect of relatedness between species, we also accounted for potential 224 confounding factors such as body mass. To do so, we used the function gls from the library "nlme" of R (Pinheiro et al., 2007). 226 Furthermore, we compared the genome-wide genetic diversity of an active forager 227 (Podarcis muralis) with that of a sit-and-wait forager (Anolis carolinensis). To do this, 228 we obtained whole genomes from one population of each species (n = 5 individuals). 229 The genomic sequences obtained for P. muralis and A. carolinenesis are available on 230 NCBI under the Bioproject numbers PRJNA715201 and PRJNA533001, respectively. 231 Both populations were composed of individuals collected from distant localities across 232 the range of the species. We performed a quality-control check of the samples (paired-233 end sequences) with FastQC (Andrews et al., 2012), and filtered out reads of low 234

quality with Trimmomatic (Bolger et al., 2014). After quality control, we aligned the reads to the reference genome of *P. muralis* (PodMur_1.0) and *A. carolinensis* (rAnoCar3.1.pri) using *bwa* from samtools (Danecek et al., 2021). We then ran the

236

237

238

Haplotype Caller algorithm from the software GATK (Van der Auwera and O'Connor,

2020) to identify single nucleotide polymorphisms (SNPs) across the genomes of the 240 study species. This pipeline generated the variant-calling format files (VCF) that 241 we later used to compute the nucleotide diversity (π). The nucleotide diversity is a 242 measure of genetic variation within a population, which is calculated as the average 243 number of nucleotide differences per site in pairwise comparisons of DNA sequences. To 244 accomplish this task, we used *vcftools* to quantify the nucleotide diversity over 10kb (1× 245 10^4bp) windows of the genome. Finally, we presented the average nucleotide diversity 246 at the chromosome level for each species with the associated standard deviation.

247 Results

A state-dependent diversification framework indicated that a model in which both the 248 rates of speciation and extinction depend on foraging behavior was strongly supported $(AIC_c = 10076.030, w = 1.000)$. Overall, net diversification was indistinguishable 250 among active and plastic foragers, but it was higher than that of sit-and-wait foragers 251 (Figure 2C). Character state reconstruction revealed that active foraging appears to 252 be the ancestral state of all reptiles, with a posterior probability of 0.639 at the root 253 of the tree (Figure 2A). Although two major transitions from active foraging to sit-254 and-wait foraging occurred in Gekkota and Iguania, bursts of frequent transitions 255 immediately followed within each of these clades (Figure 2B). Specifically, the highest number of transitions took place from sit-and-wait to active foraging (~ 64), followed 257 by a similar number of transitions from sit-and-wait to plastic foraging (~ 57). The 258 accumulation of lineages from the root of the tree to the present showed that active foragers dominated the landmasses for the first 200 million years since the origin of reptiles in the tree of life. However, sit-and-wait foragers subsequently took over for about 100 million years (Figure 3A).

263 Figure 2.

A phylogenetic-informed model revealed that the evolution of lifetime reproductive output among reptiles is underlain by an interaction between body mass and foraging behavior (Figure 3B). In general, lifetime reproductive output increased strongly with body mass, but the highest rate of increase is observed in plastic foragers ($\beta = 0.241, Std.Error = 0.069, t = 3.484, p < 0.001$). The relatively high fitness of plastic foragers, however, did not seem to be influenced by their genome size (Figure 3B). Although lifetime reproductive output generally increased with genome size among species (Figure 4A), it was unlikely that such a model could explain our observations ($AIC = 79.403, AIC_c = 6.659, w = 0.014$).

Figure 3.

Interestingly, plastic foragers did not seem to incur a cost of carrying around additional genetic material (Figure 4B). Plastic foragers evolved the largest genomes on average ($\mu = 9.272~Mb$, $\sigma = 0.143~Mb$, n = 10), followed by sit-and-wait foragers ($\mu = 9.264~Mb$, $\sigma = 0.089~Mb$, n = 19). Even though active foragers have evolved the smallest genomes on average ($\mu = 9.194~Mb$, $\sigma = 0.085~Mb$, n = 12, n = 28), their genome-wide nucleotide diversity potentially exceeds that of plastic and sit-and-wait foragers (Figure 5). Yet, further studies on the association between nucleotide diversity

281 and genome size are needed to make robust conclusions.

Figure 4.

Figure 5.

284 Discussion

Based on an analysis of nearly one thousand reptile species, we found that plastic foraging and active foraging are associated with higher diversification of species (Figure 2C). Previous hypotheses suggest that historical contingency has been a major de-287 terminant of the diversification pattern that we observe in modern-day reptiles (Vitt 288 et al., 2003). The early evolution of specialized feeding-related traits in active foragers, 289 such as jaw prehension to capture larger prey, may have enabled them to dominate for 290 almost 200 million years since the origin of reptiles (Figure 3A). The subsequent rise 291 of sit-and-wait foragers may be linked to the emergence and spread of angiosperms 292 (flowering plants) in the past 100 million years (van der Kooi and Ollerton, 2020; Jud et al., 2018). The habitat created by large-sized angiosperms potentially conferred a 294 competitive advantage to sit-and-wait foragers adopting arboreal lifestyles where lim-295 ited movements suited the restrictions that arboreality exerts on the locomotion of organisms (Astley and Jayne, 2007; Hyams et al., 2012). The observation that many 297 sit-and-wait foragers are arboreal while most active foragers are terrestrial supports 298 this claim (Vitt et al., 2003). Although historical contingency seems to provide good

evidence in favor of the high diversification of activate foragers, it does not necessarily
explain how plastic forgers have a similar net diversification of species (Figure 2C).
For example, our results not only show that active foragers and plastic forages have
similar net diversification of species, but also that the number of lineages may be stabilizing in the present. By contrast, plastic-foraging lineages continue to grow almost
monotonically, reflecting the diversifying effect of plasticity (Figure 3A).

Explaining variation in diversification of species across the tree of life is an impor-306 tant challenge for evolutionary biologists. Most of the work on this topic has focused 307 on associations between key innovations or historical factors and species' diversification 308 (Ricklefs, 2004). But the role of variation in fitness and its effects on diversification of species have received less attention. In this study, not only was the net diversification 310 of plastic foragers relatively high, but they also evolved relatively high lifetime repro-311 ductive effort and large genomes. Foraging plasticity, the ability of an organism to 312 change its foraging behavior in response to environmental variations, could then accel-313 erate the pace of evolution, in turn accelerating species' diversification. This flexibility 314 may be crucial for colonizing species, such as plastic and active foragers, to survive and 315 reproduce above maintenance levels and, hence, for the persistence of species (Fusco 316 and Minelli, 2010). Often, such plasticity is adaptive in that organisms that show a 317 plastic response tend to have higher fitness than those that do not (Price et al., 2003). 318 There are many examples where animals respond to heterogenous environments with immediate behavioral changes. Many bird species show a realm of exploratory forag-320 ing behaviors, occasionally resulting in quite innovative foraging techniques (Lefebvre, 321 2000; Lefebvre et al., 2001). These feeding innovations are correlated with species 322

numbers (Nicolakakis et al., 2003), reflecting the contribution of plasticity to lineage diversification. But the question of how the relatively high fitness of plastic foragers can lead to species diversification remains puzzling.

To elucidate a potential answer to this question, let us consider the ability of active 326 and plastic foragers to colonize and survive in new environments (Sol et al., 2002). In 327 the process of colonizing new environments, local adaptation could take place by expos-328 ing cryptic genetic variation to selection (Price et al., 2003). Perhaps, this is possible in 329 active and plastic foragers because their large genomes potentially contain more genes, 330 more and longer introns, and more transposable elements (Figure 4). Transposable 331 elements often facilitate gene duplication and variation in gene expression (Krasileva, 2019; Marino et al., 2024). As variation in gene expression is expected to underlie plas-333 ticity in higher order traits, including fitness, genetic changes in sequences regulating 334 gene expression are likely to have a key role in lineage divergence (Siddiq et al., 2024; 335 Meyer, 1987; Kappeler and Fichtel, 2015). If selection acts on the new genetic varia-336 tion supplied by gene expression, then different lineages might become adapted to and 337 simultaneously develop genetic preferences for different ecological niches (Alatalo and 338 Gustafsson, 1988). Eventually, species utilizing different ecological niches evolve differ-339 ences in mating preferences by a process analogous to reinforcement (Gavrilets, 2010; 340 Gavrilets and Losos, 2009). If genome size is not sufficiently large to facilitate variation 341 in gene expression or function given a limited capacity to acquire new genes by gene duplication (Charlesworth and Barton, 2004), a high genome-wide nucleotide diversity 343 could compensate (Figure 5A). Because nucleotide diversity (π) is directly related to 344 the effective population size (N_e) , active and plastic foragers with high nucleotide di-

versity are expected to have large effective population sizes (Charlesworth and Barton, 2004). As the efficiency of selection increases with effective population size, speciation 347 by natural selection could occur through ecological speciation (Schluter, 2009; Nosil, 2012). Under this process, natural selection acts in contrasting directions between 349 environments, which drives the fixation of different alleles, each advantageous in one 350 environment but not in the other, potentially causing populations to diverge into new 351 species (Schluter and Conte, 2009). However, if the species happen to have relatively 352 low nucleotide diversity, as in the case of sit-and-wait foragers (Figure 5B), abundant 353 resources and a lack of competitors might enable them to seed populations that exploit 354 different niches at low densities, potentially leading to the diversification of species by stochastic processes like random mutation and genetic drift (Gavrilets, 2010, 2014). 356 Overall, we provide a set of potential scenarios by which the process of diversifi-357 cation could occur in reptiles. Our framework places emphasis on the ways in which 358 variation in foraging behavior alters the locomotion of organisms, allowing them to 359 effectively sample the genotype space and explore different fitness peaks. Although 360 the mechanisms underlying our hypotheses sound appealing, alternative views should also be considered. For instance, some evidence suggests that a high locomotor ability 362 is expected to favor higher rates of gene flow (Suárez et al., 2022). In contrast to the 363 predictions of our hypotheses, over an evolutionary timescale gene flow is expected to 364 suppress speciation events and thus clade level diversification (Claramunt et al., 2012; Weeks and Claramunt, 2014). However, recent work has shown that speciation with 366 gene flow is also possible (Weeks and Claramunt, 2014; Feder et al., 2012). In the past 367 decades, the emerging field of speciation genomics has enabled us to transition from

346

individual gene to whole genome, improving our understanding of speciation with gene flow. Our observations that plastic foragers have larger genomes and that active for-370 agers have a relatively high genome-wide genetic diversity pave the way for others to investigate the issue of the relative importance of divergence hitchhiking and genome 372 hitchhiking for facilitating speciation with gene flow among reptiles. Future directions 373 should address the question of whether foraging behavior and locomotor capacity are 374 actually linked to each other. To our knowledge, studies comparing dispersal among 375 reptile species varying in foraging behavior are scarce in the literature. Therefore, 376 more compelling evidence is required to conduct meaningful comparative analyses of 377 dispersal and its connection to the diversification of reptiles.

379 Acknowledgements

We thank David Klinges, Laura Alencar, and Raúl Araya-Donoso for their feedback on previous versions of this manuscript. The first author has been funded by the Yale Institute for Biospheric Studies (YIBS).

Data Accessibility Statement

A fully reproducible workflow of the data analyses, including R scripts and additional supporting material, is available in the following repositories: Github https:
//dylan-padilla.github.io/speciation-foraging/. A dryad link will be available upon acceptance: .

388 Conflict of interest

The authors have declared no competing interests.

390 References

- Alatalo, R. V. and Gustafsson, L. (1988). Genetic component of morphological differentiation in coal tits under competitive release. *Evolution*, pages 200–203.
- Alif, Ž., Dunning, J., Chik, H. Y. J., Burke, T., and Schroeder, J. (2022). What is the best fitness measure in wild populations? a case study on the power of short-term fitness proxies to predict reproductive value. *PLoS One*, 17(4):e0260905.
- Andrews, S., Krueger, F., Segonds-Pichon, A., Biggins, L., Krueger, C., and Wingett, S. (2012). FastQC. Babraham Institute.
- Astley, H. C. and Jayne, B. C. (2007). Effects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (*Elaphe quttata*). *Journal of Experimental Biology*, 210(21):3862–3872.
- Blount, Z. D., Lenski, R. E., and Losos, J. B. (2018). Contingency and determinism in evolution: Replaying life's tape. *Science*, 362(6415):eaam5979.
- Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics*, 30(15):2114–2120.
- Charlesworth, B. and Barton, N. (2004). Genome size: does bigger mean worse?

 Current Biology, 14(6):R233–R235.
- Claramunt, S., Derryberry, E. P., Remsen Jr, J., and Brumfield, R. T. (2012). High
 dispersal ability inhibits speciation in a continental radiation of passerine birds.
 Proceedings of the Royal Society B: Biological Sciences, 279(1733):1567–1574.
- Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., and Li, H. (2021).

 Twelve years of SAMtools and BCFtools. *GigaScience*, 10(2).
- Feder, J. L., Egan, S. P., and Nosil, P. (2012). The genomics of speciation-with-geneflow. *Trends in genetics*, 28(7):342–350.
- FitzJohn, R. G. (2012). Diversitree: comparative phylogenetic analyses of diversification in r. *Methods in Ecology and Evolution*, 3(6):1084–1092.
- FitzJohn, R. G., Maddison, W. P., and Otto, S. P. (2009). Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. *Systematic biology*, 58(6):595–611.

- Fusco, G. and Minelli, A. (2010). Phenotypic plasticity in development and evolution:
- facts and concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1540):547-556.
- García-Pintos, L. P. (2024). Limits on the evolutionary rates of biological traits.

 Scientific Reports, 14(1):11314.
- Gavrilets, S. (1997). Evolution and speciation on holey adaptive landscapes. *Trends*in ecology & evolution, 12(8):307–312.
- Gavrilets, S. (2010). High-dimensional fitness landscapes and speciation. *Evolution:*the extended synthesis, pages 45–79.
- Gavrilets, S. (2014). Models of speciation: where are we now? Journal of heredity, 105(S1):743-755.
- Gavrilets, S. and Losos, J. B. (2009). Adaptive radiation: contrasting theory with data. *Science*, 323(5915):732–737.
- Gregory, T. R., Nicol, J. A., Tamm, H., Kullman, B., Kullman, K., Leitch, I. J., Murray, B. G., Kapraun, D. F., Greilhuber, J., and Bennett, M. D. (2007). Eukaryotic genome size databases. *Nucleic acids research*, 35(suppl 1):D332–D338.
- Helmstetter, A. J., Glemin, S., Käfer, J., Zenil-Ferguson, R., Sauquet, H., de Boer, H.,
 Dagallier, L.-P. M., Mazet, N., Reboud, E. L., Couvreur, T. L., et al. (2022). Pulled
 diversification rates, lineages-through-time plots, and modern macroevolutionary
 modeling. Systematic Biology, 71(3):758–773.
- Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B.,
 Poss, M. L., Reed, L. K., Storfer, A., and Whitlock, M. C. (2016). Finding the
 genomic basis of local adaptation: pitfalls, practical solutions, and future directions.
 The American Naturalist, 188(4):379–397.
- Huelsenbeck, J. P., Nielsen, R., and Bollback, J. P. (2003). Stochastic mapping of
 morphological characters. Systematic biology, 52(2):131–158.
- Hyams, S. E., Jayne, B. C., and Cameron, G. N. (2012). Arboreal habitat structure
 affects locomotor speed and perch choice of white-footed mice (peromyscus leucopus). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology,
 317(9):540-551.
- Jud, N. A., D'Emic, M. D., Williams, S. A., Mathews, J. C., Tremaine, K. M., and
 Bhattacharya, J. (2018). A new fossil assemblage shows that large angiosperm
 trees grew in north america by the turonian (late cretaceous). Science advances,
 4(9):eaar8568.
- Kappeler, P. M. and Fichtel, C. (2015). Eco-evo-devo of the lemur syndrome: did
 adaptive behavioral plasticity get canalized in a large primate radiation? Frontiers
 in zoology, 12:1–16.

- Knight, C. A., Molinari, N. A., and Petrov, D. A. (2005). The large genome constraint hypothesis: evolution, ecology and phenotype. *Annals of Botany*, 95(1):177–190.
- Krasileva, K. V. (2019). The role of transposable elements and dna damage repair
 mechanisms in gene duplications and gene fusions in plant genomes. Current Opinion
 in Plant Biology, 48:18-25.
- Lefebvre, L. (2000). Feeding innovations and their cultural transmission in bird populations. In *The Evolution of Cognition*. The MIT Press.
- Lefebvre, L., Juretic, N., Nicolakakis, N., and Timmermans, S. (2001). Is the link between forebrain size and feeding innovations caused by confounding variables? a study of australian and north american birds. *Animal Cognition*, 4:91–97.
- Marino, A., Debaecker, G., Fiston-Lavier, A.-S., Haudry, A., and Nabholz, B. (2024).
 Effective population size does not explain long-term variation in genome size and
 transposable element content in animals. *bioRxiv*, pages 2024–02.
- Meiri, S. (2018). Traits of lizards of the world: Variation around a successful evolutionary design. *Global ecology and biogeography*, 27(10):1168–1172.
- Meyer, A. (1987). Phenotypic plasticity and heterochrony in cichlasoma managuense (pisces, cichlidae) and their implications for speciation in cichlid fishes. *Evolution*, 41(6):1357–1369.
- Nicolakakis, N., Sol, D., and Lefebvre, L. (2003). Behavioural flexibility predicts species richness in birds, but not extinction risk. *Animal Behaviour*, 65(3):445–452.
- Noble, D. W., Radersma, R., and Uller, T. (2019). Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation.

 **Proceedings of the National Academy of Sciences, 116(27):13452–13461.
- Nosil, P. (2012). Ecological speciation. Oxford Ecology and Evolution.
- Ochocki, B. M. and Miller, T. E. (2017). Rapid evolution of dispersal ability makes biological invasions faster and more variable. *Nature communications*, 8(1):14315.
- Orr, H. A. (2009). Fitness and its role in evolutionary genetics. *Nature Reviews*Genetics, 10(8):531–539.
- Oskyrko, O., Mi, C., Meiri, S., and Du, W. (2024). Repttraits: a comprehensive dataset of ecological traits in reptiles. *Scientific Data*, 11(1):243.
- Pianka, E. R. (1966). Convexity, desert lizards, and spatial heterogeneity. Ecology, 47(6):1055-1059.
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Team, R. C., et al. (2007). Linear and nonlinear mixed effects models. *R package version*, 3(57):1–89.
- Price, T. D., Qvarnström, A., and Irwin, D. E. (2003). The role of phenotypic plasticity
 in driving genetic evolution. Proceedings of the Royal Society of London. Series B:
 Biological Sciences, 270(1523):1433-1440.

- Pyšek, P., Skálová, H., Čuda, J., Guo, W.-Y., Suda, J., Doležal, J., Kauzál, O.,
- Lambertini, C., Lučanová, M., Mandáková, T., et al. (2018). Small genome separates
- native and invasive populations in an ecologically important cosmopolitan grass.
- Ecology, 99(1):79-90.
- QGIS Development Team (2025). QGIS Geographic Information System. QGIS Association.
- R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Reilly, S. M., McBrayer, L. D., and Miles, D. B. (2007). *Lizard ecology*. Cambridge University Press.
- Revell, L. J. (2012). phytools: an r package for phylogenetic comparative biology (and other things). *Methods in ecology and evolution*, (2):217–223.
- Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity.

 Ecology letters, 7(1):1–15.
- Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A. M., Bernard, R., Böhm,
- M., Castro-Herrera, F., Chirio, L., Collen, B., et al. (2017). The global distribution
- of tetrapods reveals a need for targeted reptile conservation. Nature ecology \mathscr{E}
- evolution, 1(11):1677-1682.
- Schluter, D. (2009). Evidence for ecological speciation and its alternative. *Science*, 323(5915):737–741.
- Schluter, D. and Conte, G. L. (2009). Genetics and ecological speciation. *Proceedings* of the National Academy of Sciences, 106(supplement 1):9955–9962.
- She, H., Hao, Y., Song, G., Luo, X., Lei, F., Zhai, W., and Qu, Y. (2024). Gene expression plasticity followed by genetic change during colonization in a high-elevation environment. *Elife*, 12:RP86687.
- Shine, R. and Baeckens, S. (2023). Rapidly evolved traits enable new conservation tools: perspectives from the cane toad invasion of australia. *Evolution*, 77(8):1744–1755.
- Siddiq, M. A., Duveau, F., and Wittkopp, P. J. (2024). Plasticity and environmentspecific relationships between gene expression and fitness in saccharomyces cerevisiae. *Nature Ecology & Evolution*, pages 1–11.
- Sol, D., Timmermans, S., and Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. *Animal behaviour*, 63(3):495–502.
- Stearns, S. C. (2000). Life history evolution: successes, limitations, and prospects.

 Naturwissenschaften, 87:476–486.

- Suárez, D., Arribas, P., Jiménez-García, E., and Emerson, B. C. (2022). Dispersal
 ability and its consequences for population genetic differentiation and diversification.
 Proceedings of the Royal Society B, 289(1975):20220489.
- Van der Auwera, G. A. and O'Connor, B. D. (2020). Genomics in the cloud: using Docker, GATK, and WDL in Terra. O'Reilly Media.
- van der Kooi, C. J. and Ollerton, J. (2020). The origins of flowering plants and pollinators. *Science*, 368(6497):1306–1308.
- Vitt, L. J., Pianka, E. R., Cooper, Jr, W. E., and Schwenk, K. (2003). History and the global ecology of squamate reptiles. *The American Naturalist*, 162(1):44–60.
- Waddington, C. H. (1961). Genetic assimilation. Advances in genetics, 10:257–293.
- Waters, J., Emerson, B. C., Arribas, P., and McCulloch, G. (2020). Dispersal reduction: causes, genomic mechanisms, and evolutionary consequences. Trends in Ecology & Evolution, 35(6):512–522.
- Weeks, B. C. and Claramunt, S. (2014). Dispersal has inhibited avian diversification in
 australasian archipelagoes. Proceedings of the Royal Society B: Biological Sciences,
 281(1791):20141257.
- Woodson, C. and McManus, M. (2007). Foraging behavior can influence dispersal of marine organisms. *Limnology and Oceanography*, 52(6):2701–2709.
- Wright, S. (1931). Evolution in mendelian populations. Genetics, 16(2):97.
- Zheng, Y. and Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes)
 based on 52 genes and 4162 species. Molecular phylogenetics and evolution, 94:537–547.

552 Figures with captions

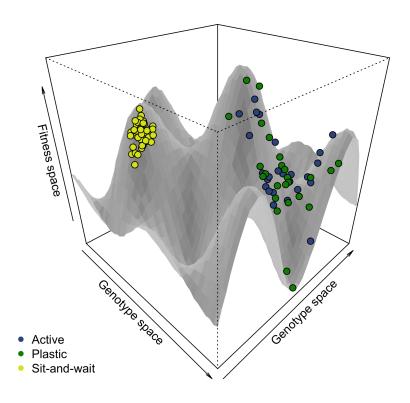


Figure 1: Populations of an active forager, a plastic forager, and a sit-and-wait forager navigating a fitness landscape. Sit-and-wait foragers occupy a single fitness peak given their restricted locomotion. By contrast, active and plastic foragers colonize new fitness peaks as a result of their high locomotor capacity. The "genotype space" in a fitness landscape is the multi-dimensional "ground" where every possible genotype exists as a location. The "height" at each location, or its position on the landscape, represents the fitness of that specific genotype. Therefore, the genotype space defines the relationship between all possible genetic makeups and their associated levels of fitness, which helps visualize how evolution operates. Solid dots represent individuals.

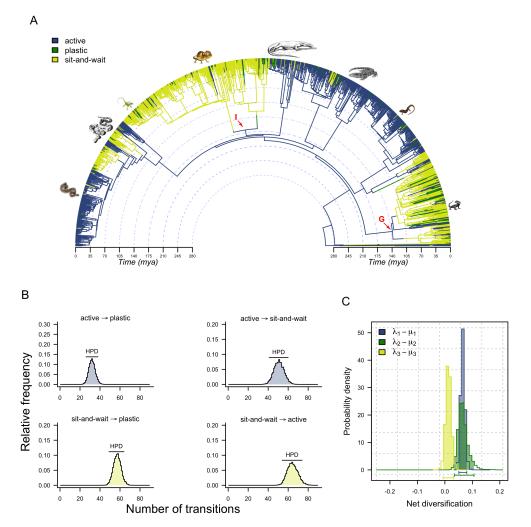


Figure 2: A) Random sample of 1×10^5 simulated character maps depicting the evolution of foraging behaviors among 997 reptile species. Clades where major transitions have occurred are indicated as follows: G = Gekkota, I = Iguania. B) Expected number of changes between the states of the character under the most likely model. The high probability density (HPD) reflects the variance of changes between states given the assumed model. C) Net diversification between clades defined by the foraging behavior of species. For each clade, the net diversification of species was computed as the difference between speciation rates (λ) and extinction rates (μ).

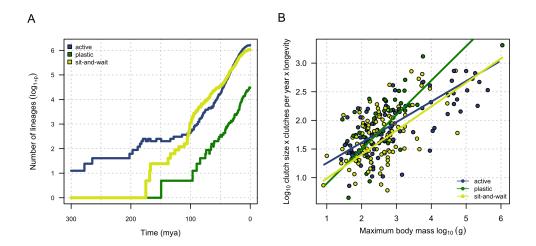


Figure 3: A) Lineage-through-time plot illustrating the accumulation of lineages within clades defined by the foraging behavior of species. B) Relationship between the lifetime reproductive output of species as a function of their body mass and foraging behavior. Dots represent species.

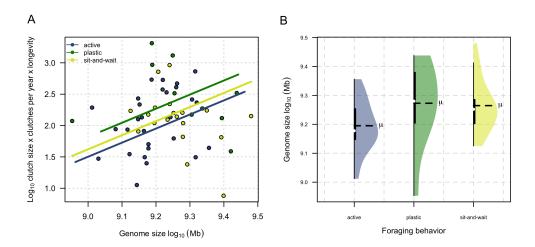


Figure 4: A) Effects of the interaction between genome size and foraging behavior on lifetime reproductive output. B) Genome size as a function of foraging behavior category. White dots represent median values and dashed lines mean values (μ)

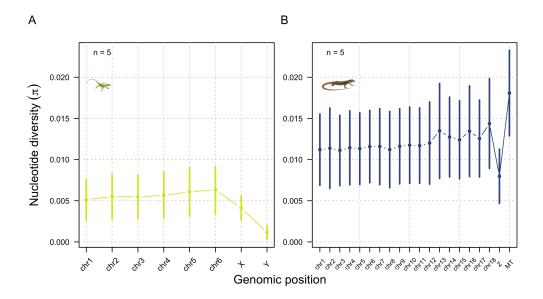


Figure 5: A) Genome-wide nucleotide diversity estimated from a population of a sitand-wait forager (*Anolis carolinensis*). B) Genome-wide nucleotide diversity estimated from a population of an active forager (*Podarcis muralis*). Solid dots represent the average nucleotide diversity per chromosome and across the mitochondrial genome, which is abbreviated as MT. The bars associated indicate the standard deviation.