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Abstract 
With limited land and resources available to implement conservation actions, efforts must be ef-
fectively targeted to individual places. This demands predictions of how individual sites respond 
to alternative interventions. Meta-learner algorithms for predicting individual level treatment ef-
fects (ITEs) have been pioneered in marketing and medicine, but they have not been tested in 
ecology. We present a first application of meta-learner algorithms to ecology by comparing the 
performance of algorithms popular in other disciplines (S-, T-, and X-Learners) across a broad set 
of sampling and modelling conditions that are common to ecological observational studies. We 
conducted 4,050 virtual studies that measure the effect of forest management on soil carbon. 
These varied in sampling approach and meta-learner algorithm. The X-Learner algorithm that ad-
justs for selection bias yields the most accurate predictions of ITEs. Our findings pave the way for 
ecologists to leverage machine learning techniques for more effective and targeted management 
of ecosystems in the future. 
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Introduction 
Tackling climate change and biodiversity loss requires effective conservation and restoration 
globally (IPBES, 2019). However, on-the-ground action is often undermined by context de-
pendency; variation in responses to interventions across individual sites due to complex in-
teractions among ecological and social drivers (Spake et al., 2019). Scientists, policymakers 
and practitioners have long recognised the need to target interventions to sites where they 
will be most effective, and to develop place-based action plans tailored to individual sites. 
For example, while tree planting has the potential to sequester vast amounts of carbon di-
oxide, and restore biodiversity, outcomes depend strongly on both where and how trees are 
planted (Holl & Brancalion, 2020; Moyano et al., 2024). Targeted and tailored management 
requires causal predictions of how individual sites will respond to alternative interventions, 
or ‘treatments’, from hereon. Currently, applied ecologists do not generate valid causal pre-
dictions of treatment effects at the level of individual sites (Spake et al., 2025). Instead, ecol-
ogists tend to estimate average treatment effects across all sites. However, when treatment 
effects vary in magnitude and direction across sites, average treatment effects are neither 
actionable nor desirable (Spake et al., 2022). 
 
In contrast to ecology, human-centred disciplines such as medicine, econometrics and mar-
keting explicitly design workflows to generate individual-level causal predictions (Tipton & 
Mamakos, 2023). These disciplines are undergoing a ‘causal revolution’ (Pearl, 2018), and 
have pioneered individual treatment effect (ITE) prediction by exploiting large datasets, 
causal inference and computational advances to underpin personalised medicine to patients 
and targeted marketing to customers. Prediction of ITEs is possible with individual sampling-
unit-level data on outcomes of interest, information on treatments that units have been 
subjected to, and other covariates that also predict those outcomes. Spake et al. (2025) re-
cently argued why and how applied ecology can capitalise on these rich advances, poten-
tially allowing for effective conservation over large extents. A range of ITE prediction meth-
ods, known as meta-learners, have been developed (Box 1), differing in how they adjust for 
confounding covariates and selection bias. Simulations have recently been used to assess 
their predictive performance across data scenarios typical of human-centred observational 
studies, varying parameters such as sample size, selection bias, and sparsity in covariate 
space (Künzel et al., 2019a; Okasa, 2022a). Given that ITEs defy direct observation because 
we can never truly observe the outcomes of individual units under multiple treatments (Hol-
land, 1986), simulation using synthetic data, where potential outcomes under treatment 
and control are known, is essential for evaluating meta-learner accuracy (Curth et al., 2021; 
Spake et al., 2025). Importantly, no single meta-learner consistently outperforms others 
across all data conditions (Knaus et al., 2021; Okasa, 2022a). However, more complex types 
of meta-learner algorithms that model both outcomes and treatment assignment generally 
yield more accurate predictions, especially with large datasets (Künzel et al., 2019a). The 
performance of meta-learners on ecological data remains untested. 
 
Here, for the first time, we compare the performance of different meta-learner algorithms 
for an ecological dataset. We take a ‘virtual ecologist’ approach (Zurell et al., 2010) and sim-
ulate the process of applying a treatment to several sites, collecting data and estimating 
ITEs. Specifically, we simulate soil carbon mass (our outcome variable) for Swedish National 
Forest Inventory plots (our sites) under different management regimes (treatments), 
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predicting 20 five-year time steps into the future. We systematically vary data properties to 
mimic conditions that are commonly encountered in observational studies in ecology, to 
gain a systematic understanding of how treatment assignment, sampling, and choice of 
meta-learners interact to influence ITE accuracy within real-world situations. We hope that 
this provides guidance and an incentive for ecologists to implement meta-learner ap-
proaches. 
 

Methods 
We implemented a virtual ecology approach that: i) simulated local forest dynamics under 
two alternative management interventions that were assigned in various ways to forest 
plots across a large, environmentally heterogeneous extent (treatment assignment mecha-
nism). These forest plots were then: ii) sampled in different ways by virtual observers to 
generate alternative ‘training’ datasets (sampling conditions); and iii) subjected to different 
statistical modelling decisions to predict individual treatment effects among these alterna-
tive ‘test’ datasets (modelling conditions). The simulated data is our “truth” - observed soil 
carbon mass for individual sites both with and without a treatment. We “virtually” applied 
the treatment, sampled the population at simulation time step 20 (year 2100), and used the 
meta-learner approach to predict ITEs. We implemented different conditions on each virtual 
study and compared our ITE predictions with the true ITEs to gain a systematic understand-
ing of how treatment assignment, sampling, and modelling conditions (Table 1) interact to 
influence ITE accuracy within real-world situations. 
 
Our outcome variable of interest was soil organic carbon, ‘soil carbon’ from hereon. We se-
lected this metric, because maintaining or increasing soil carbon has many benefits for cli-
mate change mitigation, adaptation and biodiversity conservation, such as enhanced soil 
fertility and water-holding capacity, increasing productivity, and support to belowground bi-
odiversity (Mayer et al., 2020). As the manner and intensity in which forests are managed 
can influence soil carbon, it is important that forest management planning considers soil 
carbon (Mayer et al., 2020; Mazziotta et al., 2022a). Many studies have therefore used plot-
level data over large scales to statistically model how soil carbon varies as a function of mul-
tiple interacting drivers, including current and future climate, topography, and soil chemical, 
physical and biological properties), as well as management-related variables such as canopy-
dominant species, age class and land use history in order to infer how soil carbon will 
change as a function of alternative management regimes and under future climates (e.g.,  
(e.g., Chen et al., 2022; S. Lee et al., 2020; Liu et al., 2023; Mazziotta et al., 2022a; Vayreda 
et al., 2012). However, these approaches have adopted outcome prediction models that do 
not satisfy causal assumptions.  
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Box 1 Meta-learner algorithms for predicting Individual Treatment Effects 
(ITEs) 
Meta-learners are rooted in the potential outcomes framework, in which treatment ef-
fects are derived from counterfactual comparisons of outcomes that would result from 
alternative treatment levels. Consider the causal effect of clearcutting and replanting on 
soil carbon in the ith forest plot. In this example, the causal treatment can take only two 
values, a set-aside and unmanaged control plot (Xi = 0, where X corresponds to the treat-
ment) or a treated stand that has been clear-felled and replanted (Xi = 1). When the plot 
is a control, its soil carbon outcome is Yi

X=0. When the same plot is treated, its outcome is 
Yi

X=1. Both Yi
X=0 and Yi

X=1 are called potential outcomes because either one is potentially 
observable. The difference between these potential outcomes is the plot-level causal ef-
fect of clearfelling, i.e., the individual treatment effect for plot i. For prediction of treat-
ment effects to be causally valid, potential selection biases (non-random assignment of 
treatments to sample units) must be addressed and several causal assumptions met, ei-
ther through sampling design or by adjustment by confounding covariates in the modeling 
process (Kimmel et al., 2021).  
 
Meta-learners can be broadly distinguished into two groups; the more simple ‘conditional 
mean regression methods’, and more complex ‘pseudo-outcome’ methods. Here we 
briefly describe three popular algorithms: S-, T- and X-learners, depicted in Figure B1. See 
(Caron et al., 2022a; Cheung et al., 2024; Okasa, 2022b; Salditt et al., 2024a; Spake et al., 
2025), for reviews.  
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The single-model learners (S-learner, panel a in figure), are the simplest algorithms, and 
train a single model to predict outcomes as a function of covariates Z, handling the varia-
ble indicating treatment assignment (X) like any other covariate. Single-model learners 
are typical in ecological modelling, for example, soil carbon might be modelled as a func-
tion of protected area status (set-aside or managed), simultaneously with climatic and 
habitat covariates (Z). The same model (Ms) is used to predict outcomes for individual 
sampling units i, forcing control (X = 0) and treatment (X = 1) conditions. For a given site, 
the ITE is given as the difference in predicted values of Y between the treatment and con-
trol, while holding all other covariates at their individual site-level values.  
 
Two-model learners (T-learner, panel b in figure) predict ITEs by first splitting the data 
into two sub-datasets, one for control and one for the treatment groups, and two sepa-
rate models (M0 and M1) using all covariates (except for treatment assignment) are used 
to predict the outcomes separately for control and treated units, respectively. For the soil 
carbon example, two separate models would be fitted as a function of climatic and habi-
tat covariates for sites in each of the set-aside and managed datasets, and the ITE calcu-
lated as the difference between these predictions.  
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Cross-model learners (X-learner; (Künzel et al., 2019b), panel c in figure), build on the 
two-model approach. They additionally account for potential differences in covariate dis-
tributions between treatment and control groups, arising from possible selection biases, 
by adjusting predictions by a parameter known as the propensity score: the probability of 
a unit being assigned to a particular treatment level given a set of observed covariates Z. 
X-learners are thus designed for observational studies where positivity assumptions might 
otherwise be violated (i.e., when certain individuals in a study population have zero 
chance of receiving the treatment). Like T-learners, two outcome models are initially fit-
ted (M0 and M1) to predict outcomes Y separately for treatment and control datasets, re-
spectively. A propensity score model (Mps) is also fitted, predicting the treatment proba-
bility (X = 1) given Z. The intermediate outcome models (M0 and M1) and the propensity 
score model (Mps) are often referred to as ‘nuisance functions’ in the machine learning lit-
erature. Intermediate treatment effects (𝝉) are imputed from M0 and M1 using predicted 
outcomes (Y) and covariates (Z) for treated and control datasets (hence the crossing over, 
panel c in figure). A second pair of models is fitted to predict these intermediate treat-
ment effects (M𝝉0 and M𝝉1). Finally, the predicted treatment effects are adjusted by the 
propensity scores to predict ITEs. The adjustment puts more weight on treatment effects 
that have been estimated more precisely, i.e., the ones coming from the larger treated or 
control sample, respectively.  
 

 

Study system and dataset: soil carbon in Swedish forests in response to alterna-
tive management interventions 
Forest stand dynamics were simulated for National Forest Inventory (NFI) plots across Swe-
den using the Heureka simulation system (Wikström, Edenius, Elfving, Eriksson, Lämås, et 
al., 2011). Heureka is widely used in both forestry and research to forecast the outcomes of 
alternate management scenarios across Sweden (Mazziotta et al., 2022b; Moor et al., 2022). 
Heureka comprises a set of empirical growth and yield models that simulate stand develop-
ment in five-year time steps, combining tree species-specific models of tree establishment, 
growth and mortality. Soil carbon was modelled across cohorts using a dynamic decomposi-
tion Q-model, following the mass loss of litter over time for different litter compartments. 
The theoretical framework is presented in Ågren & Bosatta (1998) and the general imple-
mentation is described in Ågren & Hyvönen (2003). 
 
We simulated two scenarios of forest dynamics and management for the period 2010–2100, 
which were: set-aside (‘control’ from hereon), where stands were set-aside and left to de-
velop without any intervention, and ‘business as usual clearcutting forestry without thin-
ning’ (‘treatment’ from hereon). These stands were clearcut and replanted at the stand age 
of 60-120 years, at lower ages in southern, high-productive stands and higher in northern, 
low-productive stands, at typical clearcutting stand stockings. Simulations were initialised 
with observed NFI input data recorded on 26,193 circular plots with a radius of 10 m from 
2016 to 2020, representing the 23.5 Mha of productive forest land in Sweden. For each NFI 
plot and time step, a large number of management actions can be simulated, which to-
gether comprise a management schedule. We restricted Heureka’s simulation output to 
plots for which both our control and treatment management scenarios were simulated. We 
limited our sample to NFI plots situated in pine-dominated stands (≥50% standing volume), 
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that were between 30 and 50 years of age in 2016-2020 in order to limit variation in histori-
cal management that could be parameterised in statistical models. We removed plots con-
taining peatland (as recorded in the NFI) and plots with high soil moisture (soil moist code 
four and five as recorded in the NFI) due to low prevalence, yielding 2,580 plots, and as-
sumed that climate averages from the period 1983–1992 remained constant for the whole 
simulation period, i.e. the standard setting of Heureka, and assuming no climate change. 
Since the application of the clear-cutting treatment occurred at different time periods for 
different plots, we limited our study to only include plots which reached their maximum soil 
carbon at the 12th time step since the start of the simulation and plots with a single “peak” 
in maximum soil carbon - indicating they were only clear cut once during the simulation 
(yielding 1,806 plots). We did this because data on time since management are not usually 
available in observational studies employing NFI datasets. Soil carbon simulations for NFI 
plots under control and treatment conditions for each time step are shown in SI Figure 1. 
 

Virtual ecology approach 
Empirical studies often use a snapshot of real data to statistically model plot-level soil car-
bon as a function of environmental variables across broad extents. To emulate this, we took 
a ‘snapshot’ of the simulated soil carbon data, at simulation year 2100, i.e., the twentieth 
time step. In our virtual ecologist approach, we systematically varied six ‘study features’ (de-
scribed in Table 1) related to the treatment assignment mechanism (inducing varying de-
grees of selection bias), plot sampling (varying sample size and imbalance across treatment 
levels) and modelling (meta-learner algorithm choice, covariate omission and test data loca-
tion) to quantify their influence on ITE accuracy. Each ‘virtual study’ consisted of different 
combinations of each of the six study features.  
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Table 1. Description of study features that were varied to evaluate their influence on individual treatment effect predictions.  
 

Study feature Rationale In this study 

Treatment assignment mechanism 

Selection bias Observational studies face the challenge of selection bias, where 
non-random treatment assignment with respect to one or more co-
variates can induce differences in covariate overlap between the 
treatment groups, creating regions in areas of covariate space with-
out appropriate comparators, i.e., where only treated, or only con-
trol, subjects are present. For example, unmanaged forest stands are 
often located at higher altitudes than managed stands due to differ-
ences in site accessibility and productivity. This constitutes a viola-
tion of the ‘positivity’ (or common support) assumption that every 
unit has a non-zero probability of being in either treatment group. 
When confounding variables are observable, they can be accounted 
for with various modelling strategies (e.g., X-learner algorithms ad-
just for propensity scores). If unobserved, then propensity score ad-
justment could introduce more bias. 

We used three treatment assignment mechanisms to induce var-
ying levels of selection bias: i) random (no selection bias); ii) 
‘correlated with altitude’, where the likelihood of treatment de-
creased with altitude; and iii) ‘correlated with region’, where the 
likelihood of treatment varied systematically across NFI ‘re-
gions’, corresponding to broad administrative areas from the 
North to the South.   
 
 

Sampling conditions 

Training sam-
ple size 

ITE prediction can be more data-hungry than conventional ap-
proaches to average treatment effect prediction. ITE estimation re-
quires more parameter estimates (e.g., propensity scores), and two-
model meta-learners (e.g., T- and X-learners) reduce sample sizes to 

Five total sample sizes were used: 62, 125, 250, 500 or 1000 NFI 
plots sampled from across Sweden. 
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their treatment groups. This may represent a ‘cost’ to using more 
complex meta-learners. 
 

  

Sample imbal-
ance  

Treatments can differ in their sample sizes in observational studies. 
For example, in monitoring programmes that aim for representative 
sampling of geographic units (e.g., nationally), sampling units might 
sample in proportion to the actual probability of treatment assign-
ment in nature. Treatment levels with unbalanced sample sizes 
might be problematic when sample size is low overall (across both 
treatment levels), and when treatment effects are complicated 
(highly dependent on covariate values). 

Three levels of sample size imbalance were implemented, with 
either 30%, 50% or 70% of the plots sampled that had been as-
signed as control in the previous step. 
 

 

Modelling conditions 
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Spatial over-
lap of test and 
training data 

The performance of predictive ecological models (e.g., species distri-
bution models) is typically evaluated using a test or validation da-
taset that is withheld from the training dataset. Studies vary in the 
location of the test data used - analysts might choose test data that 
is a random subset of the entire available dataset, or choose to use 
test data that is geographically distinct from the training dataset 
(Valavi et al., 2019). The location of the test data in geographic space 
will likely influence the location of test data in covariate space, with 
implications for predictive performance (Yates et al., 2018). 

Three different spatial locations of test data were simulated: i) 
‘randomly selected’ plots, sampled from NFI plots across Swe-
den; ii) ‘core’ plots, selected from a distinct area in the centre of 
Sweden, and iii) ‘edge’ plots in the North.  

 

Meta-learner 
algorithm 

The choice of meta-learner algorithm can have major implications 
for the performance of ITE predictions. In ecology, convention is to 
fit a single model, including the treatment variable as any other co-
variate. Other disciplines including medicine and marketing have 
found improvements in accuracy with using Two model and Cross 
model algorithms (See Box 1). 
 
 

Three meta-learner algorithms were implemented: i) Single 
model; ii) Two model and iii) Cross model 
 

Covariate 
omission  

Ecologists often make a strong (usually implicit) assumption that all 
important variables are observed (i.e., measurable) and therefore 
available for inclusion in our models, e.g., for predicting an outcome 
or for generating propensity scores. In reality, important covariates 
might be omitted due to a lack of availability, or due to an incom-
plete understanding of the system. The exclusion of an important 
variable could result in biased ITE predictions due to unobserved 
confounding and/or the misspecification of propensity score models. 

We systematically varied the inclusion or exclusion of the covari-
ate ‘initial soil carbon’ when training our base learners. 
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Treatment assignment conditions: Selection bias 
To emulate observational studies, NFI plots were assigned to one of the two treatment levels: control 
(set-aside) and treatment (clearcut and replanted). Observational studies face the challenge of selec-
tion bias, where sampling units are non-randomly assigned to treatment levels. For example, unman-
aged forest stands are often located at higher altitude than managed stands due to differences in site 
accessibility and productivity (Lindenmayer & Laurance, 2012), or due to different economic priorities 
of different administrative units of land. A range of approaches have been developed in applied sta-
tistics to deal with confounding and limit bias in treatment effect estimation (Kimmel et al., 2021). 
Several approaches use propensity score estimation, to summarise multiple confounders and quan-
tify the degree of covariate imbalance across treatment levels. The propensity score is the probability 
of treatment assignment, conditional on observed baseline covariates (Austin, 2011). 
We implemented different treatment assignment procedures in order to induce varying degrees of 
selection bias and thus confounding of treatment level with environmental covariates (and thus pro-
pensity scores), that are typical to observational studies (SI Table 1). Plots were assigned to either 
treated (BAU) or control (set aside) according to one of three treatment assignment procedures, the 
first inducing no bias: (1) ‘random’, to mimic randomised control designs (rare in ecology); and two 
that imposed systematic selection bias: (2) ‘correlated with altitude’, where plots located at lower al-
titudes were more likely to be assigned to treated (BAU) than control (set aside) conditions, and  (3) 
‘correlated with region’, where the probability of treatment assignment systematically varied with 
latitude. For random treatment assignment, 50% of the available plots were randomly selected as not 
treated using the slice_sample function from the R package dplyr (v 1.1.2). For the ‘correlated 
with altitude’ assignment, plots were assigned as above but the sampling weights were equal to alti-
tude (SI Table 1). For the ‘correlated with region’ assignment, we assigned plots a sampling weight 
according to the region of Sweden where they were located. We aggregated regions 1 and 2.1, and 
regions 4 and 5 from the Swedish National Forest Inventory to group them into latitudinal bands. 
Sampling weights ranged from 0.1 to 0.4, increasing from North to South. We used the weight_by 
argument in slice_sample to randomly assign 50% of plots as not treated according to the sam-
pling weights.  

 

Sampling conditions: sample size and imbalance 
Two sampling conditions were varied, including the (1) ‘total sample size’, the number of NFI plots 
sampled across both treatment levels, and (2) ‘sample size imbalance’, the degree of imbalance be-
tween the sample sizes of control and treatment groups. Five different total sample sizes were used: 
62, 125, 250, 500 or 1000 and three levels of sample size imbalance were implemented, with either 
30%, 50% or 70% of the plots sampled that had been assigned as control in the previous step. Hence, 
we selected the control plots randomly using slice_sample where n was equal to the total sam-
ple size multiplied by the level of sample size imbalance. Treated plots were randomly sampled using 
slice_sample where n was equal to the total sample size minus the number of control plots 
which had been selected. 
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Modelling conditions for ITE prediction: meta-learner algorithm, covariate omission and 
test data location 
We set out to evaluate how modelling decisions influence ITE predictions. To emulate observational 
studies that infer effects of forest management on soil carbon using statistical models, we selected 
covariates that are typically used for this purpose, including variables related to climate, topography, 
forest stand structure, soil conditions and management (described in SI Table 1) (e.g., Chen et al., 
2022; S. Lee et al., 2020; Liu et al., 2023; Mazziotta et al., 2022a; Vayreda et al., 2012). 
 
Three modelling conditions were varied between simulation runs. (1) The meta-learner algorithm 
used to predict ITEs; we compare S-, T- and X-learner algorithms. (2) The omission of a covariate from 
the suite of covariates used to predict ITEs. We chose to vary the inclusion of covariate ‘initial soil car-
bon’ (Table 1), because this covariate is not always available in empirical studies (i.e., not available for 
multiple years), and because it was consistently the most important variable according to variable im-
portance scores (SI Figure 2). (3) The spatial location of the ‘test’ dataset. The performance of predic-
tive ecological models (e.g., species distribution models) is typically evaluated using a test or valida-
tion dataset that gets withheld from the training dataset. Test data can differ from training data in 
both geographic and covariate space, with implications for predictive performance (Roberts et al., 
2017). 
 
We used the functions S_RF, T_RF and X_RF from the causalToolbox package (v 0.0.2.4) 
(Künzel et al., 2019a) to fit S-Learner, T-Learner or X-Learner algorithms, which use random forest 
models as base learners. We chose to use random forest models as base models within our meta-
learner frameworks since they are a popular choice in empirical studies using meta-learners, and 
there are a variety of software implementations available to researchers which are fast and reliable 
(Okasa, 2022a). While tuning hyperparameters for random forest models can greatly increase the ac-
curacy of predictions (Bernard et al., 2009), tuning the base random forest models in meta-learner 
algorithms is difficult (Künzel et al., 2019a) and since we were not interested in the selection of hy-
perparameters in the context of this study we used fixed hyperparameters for each algorithm. The 
hyperparameters were chosen in a simulation study by Künzel et al. (2019a) and are the default set-
tings for the meta-learner functions in the causalToolbox package.  
 
Simulated soil carbon after 20 time steps was predicted as a function of the covariates listed in SI Ta-
ble 1. We included all the covariates listed in SI Table 1 (except when omitting initial soil carbon). We 
then used the models to estimate the unit-specific treatment effects (ITE values) for NFI plots in the 
test dataset with the EstimateCate function from causalToolbox. 
 
We evaluated three different variants of spatial location of test data. 162 test plots were selected for 
ITE prediction for every simulation run from three possible pools (all excluding plots used in training 
datasets), i) ‘randomly selected’ plots, sampled from NFI plots that were widely distributed across 
Sweden; ii) ‘core’ plots, selected from a distinct area in the centre of Sweden. These test plots were 
located at the centre of training data’s multi-dimensional covariate space (SI Figure 3); and iii) ‘edge’ 
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plots located in the cooler and dryer north east. These test plots were located at the spatial periphery 
of the training data, as well as the periphery of multi-dimensional covariate space (SI Figure 3).  
Performed a virtual study for every unique combination of our six study features (n = 810 unique 
combinations) with five replications for each, yielding 4,050 virtual studies in total.  

Evaluating ITE estimate performance 
We computed two related measures of ITE estimate performance in our test datasets (Yarkoni & 
Westfall, 2017): root mean square error (RMSE) and R2 using the package yardstick (v 1.2.0) 
(Kuhn et al., 2023) for each of the 4,050 virtual studies (which each had 162 test plots). R2 is the 
squared correlation between the true ITE and the ITE estimate and RMSE is the square root of the 
mean squared error. To compute these values, we used measures of the true ITE values and pre-
dicted ITE values for test NFI plots in each virtual study. The true ITE for each individual NFI plot was 
calculated as the difference between simulated soil carbon values under treatment (BAU) and control 
(set aside) management regimes at year 2100. Predicted ITE values were obtained from the Esti-
mateCate function as described above. RMSE provides an absolute measure of the average dis-
tance that the predicted ITE values fall from the true ITE values in the units of the response variable 
(soil carbon), with low RMSE indicating ITE predictions that more closely matched the true ITE values 
for a test dataset, on average. R2 measures the degree of consistency or correlation between true and 
predicted ITE values, and not of accuracy. R2 values can be low when one or both of the ITE datasets 
(true or predicted) has low variation, e.g., if predictions are shrunk to a common value such as zero or 
the mean. To help interpret variation in RMSE and R2 values with study features, we visualised the 
correspondence between true and predicted ITE values using scatterplots.  
 
To quantify how the ITE prediction accuracy varies with study features, we modelled RMSE as a func-
tion of selection bias, sampling conditions (size and imbalance) and modelling conditions (covariate 
omission and test data location) given by each virtual study (Table 1). Separate models were fitted for 
each meta-learner, so we could compare the relative importance of study features for each meta-
learner. We used the tidymodels (v 1.1.0) family of R packages with the ranger R package (v 
0.15.1) (Probst et al., 2019) to build a random forest model and tune hyperparameters. We computed 
variable importance and constructed variable importance plots using the vip R package (v 0.4.0) 
(Greenwell & Boehmke, 2020) to visualise the relationship between each study feature and the 
model’s accuracy. 
 

Results 
The predictive accuracy of plot-level ITEs measuring the effects of forest management on soil carbon, 
varied considerably, depending on the choice of meta-learner, study features and their interactions. 
The S-Learner (a typical method of ITE prediction in ecology) performed consistently poorer than T-
Learner and X-Learner; across all study features, it achieved the lowest ITE accuracy (highest RMSE 
values, Figure 1) and yielded ITEs that correlated weakest with the distribution of true ITEs (lowest R2 
values, Figure 1). The S-Learner’s poor performance can be attributed to its tendency to yield ITEs 
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that are shrunk towards zero to a greater degree than for T-Learner and X-Learner algorithms (Figure 
3).  
 
Sample size was the most influential of the tested study features in terms of determining predictive 
accuracy across the meta-learner algorithms (Figure 2). Larger sample sizes resulted in models with 
both greater accuracy and consistency with the true ITEs (Figures 1a and b, respectively). The S-
Learner and T-Learner algorithms had comparably high RMSE values at low sample sizes, with their 
differences in accuracy increasing with sample size (increasing divergence between orange and green 
lines in Figure 1a). 
 
While consistently more accurate than the S-Learner models, the relative performance of T-Learner 
and X-Learner models varied as a function of study features and performance metric (Figure 1). The 
X-Learner yielded the lowest RMSE values, and therefore the highest accuracy, across all simulation 
runs. However, the T-Learners showed larger variation in their ITE predictions (more comparable to 
that seen in the observed data) compared to the X-Learner (Figure 3) and showed the higher R2 val-
ues in most circumstances (Figure 1).  
 
Omitting an important variable from the models led to a reduction in predictive accuracy for all meta-
learner algorithms, although it most strongly influenced performance of the T-Learner (Figure 2b), 
which showed the greatest reduction in accuracy (i.e., increase in RMSE) with variable omission (Fig-
ure 1g). 
 
For all meta-learner algorithms, the imposition of selection bias (treatment assignment) was the least 
important study variable explaining predictive accuracy (Figure 2). RMSE was lowest when treatment 
assignment was random i.e, when there was no selection bias. For the two biassed treatment assign-
ment procedures, RMSE values were higher when treatment assignment was correlated with region 
than when correlated with altitude (Figure 1).  
 
Treatment imbalance affected ITE predictive accuracy distinctly for each meta-learner algorithm. The 
highest RMSE values (and lowest accuracy) of predictions from each meta-learner occurred at differ-
ent degrees of treatment imbalance: 0.7 for the single model, 0.3 for the T-Learner and 0.5 for the X-
Learner algorithms (Figure 1).  
 
Regarding the location of test plots, we found that predictive accuracy was the lowest when training 
data were obtained from plots sampled randomly across the whole extent of Sweden, irrespective of 
meta-learner algorithm. For T-Learner and X-Learner algorithms, the RMSEs were similar for edge and 
core locations. The S-Learners, predictive accuracy was substantially lower when test plots were lo-
cated at the ‘edge’ of the country (which also corresponded to the edge of multivariate space, SI Fig-
ure 3).  
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Figure 1. Performance of three 
meta-learners (different col-
ours) at predicting ITEs repre-
senting the effect of forest 
management on soil carbon, 
obtained from different combi-
nations of study features (see 
Table 1). Average RMSE (left) R2 
values (right) and their standard 
errors are shown. Note that in 
most cases the standard error 
bars are too small to be dis-
played. Each panel contains 
data from the full complement 
of the 4,050 virtual studies (see 
text). Mean R2 and RMSE are 
calculated using the true (simu-
lated) and predicted ITEs from 
the test datasets in each study. 
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Figure 2. Variable Importance Plots showing the relative importance of study features at influencing RMSE, shown for models em-
ploying different meta-learner algorithms (left to right).  
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Figure 3. Individual treatment ef-
fect (ITE) predictions obtained us-
ing three different meta-learner 
algorithms (top to bottom). The 
first column of plots show the pre-
dicted ITE values against the true 
ITEs for individual National Forest 
Inventory plots in a test dataset 
spanning all of Sweden. Predictions 
with zero error lie on the diagonal 
blue line. The second column is an 
alternative way of visualising the 
same data. A line is drawn between 
the true and predicted values of ITE 
for each test NFI plot and the distri-
bution of true and predicted ITEs 
are indicated by the half-violins. 
The final column shows the loca-
tion of the test NFI plots used in 
Sweden. Study features were iden-
tical for the three virtual studies, 
varying only the meta-learner algo-
rithm. Study conditions were: 
treatment assignment = random, 
sample imbalance = 0.5, sample 
size = 1000, location of test plots = 
random, important variable omit-
ted = FALSE. 
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Figure 4. Accuracy of individual treatment effect (ITE) predictions under different study features. 
Each panel shows the predicted ITE against the true ITE, with each point corresponding to a single 
test data unit (National Forest Inventory plot). Predictions with zero error lie on the diagonal blue 
line. Each column of panels displays model predictions when one of three study features are varied 
(indicated by colour of points): sample size (left), location of test data (middle) and variable omission 
(right). Rows display results from three different meta-learner algorithms. Other than the three study 
features varied in each figure, the remaining study features were kept at: treatment assignment = 
random, sample imbalance = 0.5, sample size = 1000, location of test plots = random, important vari-
able omitted = FALSE. 
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Discussion 
Here we present a first application in ecology of meta-learners for ITE prediction, and compare the 
relative performance of three meta-learners across a broad set of sampling and modelling conditions 
that are common to ecological observational studies. Our primary finding is the relative performance 
of the different meta-learners (in terms of the error) depend on the specific data setting. In general, 
the T-Learners and X-Learners that are increasingly applied in human-centred disciplines, such as 
marketing and medicine, produce consistently more accurate ITE predictions than the S-Learner ap-
proach that is typical to ecology. We provide guidance below for applied ecologists wishing to make 
causal predictions, and for quantitative ecologists wishing to further explore how the accuracy of 
such predictions might vary with data conditions. 
 
S-Learners performed consistently poorly; ITEs were underestimated and tended to be shrunk to-
wards zero, a finding consistent with simulation studies from other disciplines (Künzel et al., 2019a; 
Okasa, 2022a). Since the treatment indicator is treated like any other covariate and plays no special 
role in the S-Learner, using the S-Learner in settings where treatment status is not a strong predictor 
of the outcome variable can be problematic. Machine learning models may completely ignore treat-
ment status during model-fitting; a tree ensemble method like random forest selects splitting varia-
bles randomly at each node in each tree, so treatment status may not be chosen in some trees. The 
likelihood of treatment being excluded from splitting rules increases with the number of covariates, 
as the model has more variables to choose from (Caron et al., 2021, 2022a). Even when the treat-
ment status remains in the model, the S-Learner may bias ITEs towards zero, depending on the 
amount of regularisation (settings that prevent overfitting in predictive machine learning models; 
(Künzel et al., 2019a; Salditt et al., 2024b)). 
 
Since a S-Learner fits a single regression, it does not account for potentially varying distributions of 
the covariates across treatment levels, i.e., as a result of selection bias. Using S-Learners, the ITE can-
not be interpreted as a causal prediction unless assumptions have been met through design, i.e., ran-
domised treatment assignment. In our simulations, the treatment assignment mechanism (whether 
randomised or correlated with altitude or latitude) had weak effects on ITE prediction accuracy (low 
importance value in Figure 1e and limited effect in 2a). This is likely due to the relatively weak selec-
tion bias that we imposed with our treatment assignment mechanisms (treatment assignment was 
correlated with region or altitude, Table1). In reality, a greater degree of covariate imbalance could 
occur. Nevertheless, even when treatment assignment was random, and covariate distributions 
across control and treatment groups were thus similar, S-Learner performance remained consistently 
poor. This is likely because the S-Learner is restrictive in the way it models variation in ITEs as a func-
tion of covariates. In general, the S-Learner will perform poorly when the outcome surface complexity 
is very different across the two groups. In other words, when the ITE function is more complex than 
either of outcome prediction functions.  
What does the poor performance of single-model approaches matter for ecological studies? With 
ecological datasets spanning increasingly large spatial extents, this raises an important question as to 
whether single-model approaches - typical to ecology to e.g., predict variation in species abundance 
and distributions - might be underestimating site-level ‘treatment’ effects of interest that are often 
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smaller in size relative to those of environmental drivers such as temperature that vary considerably 
across large extents. While these studies are often explicit in their aims, to predict outcomes (species 
abundance), outcome-predictor relationships are often interpreted causally posthoc, with studies in-
creasingly attempting to make ITE-like predictions at the site-level. Our findings highlight that at-
tempts to predict ITEs using single-model approaches will likely yield biased predictions of ITEs, even 
if covariate distributions are equal across treatment levels (e.g., even if statistical matching is imple-
mented), and when ITEs are small relative to other covariates. We therefore recommend two-model 
approaches for making causal predictions. 
 
Two-model approaches (T- and X-Learners) performed consistently better than the single-model ap-
proach, except for the lowest sample size category (R2 Figure 1d). In contrast to the S-Learner, the 
two-model approaches do not suffer from the regularisation on treatment status, because the out-
comes are modelled separately for each group. The comparable error of the approaches at the lowest 
sample sizes is likely evidence of a causal bias-variance trade-off, wherein the splitting of data in the 
two-model approaches yields a larger sampling variance, which may lead to more errors than the (bi-
ased) single model prediction approach that ignores counterfactuals (Fernández-Loría & Provost, 
2022). For greater sample sizes, two-model approaches offer greater predictive accuracy of ITEs, alt-
hough this might not hold true if treatment effects are ‘simple’, e.g., by varying linearly with a small 
number of covariates.  
 
While the single-model approach performed consistently poorer than T-Learner and X-Learner ap-
proaches at moderate to larger sample size, the differences in the relative performance of the T-
Learner and X-Leaner meta-learners are more nuanced, and become more pronounced the greater 
the sample imbalance, and when an important covariate was omitted. Previous simulations from hu-
man-centred disciplines have shown that their relative performance can depend on both the size and 
the complexity of the treatment effects (Salditt et al., 2024b). We found that X-Learner ITE predictive 
accuracy was less sensitive to sample imbalance than T-Learners. With sample imbalance, and only 
few data points available in one of the treatment groups, the T-learner may yield biased predictions if 
the individual model overfits the data in the small group, and so that differences in the two functions 
are (partly) due to random noise. Interestingly, the highest RMSE values (and lowest accuracy) using 
the T-Learner occurred when 30% of samples were treated, but had a lower error when samples were 
balanced or when 70% of samples were treated (Figure 1). Therefore, the effect of sample imbalance 
depends on which treatment group was smaller. This might suggest a more complex functional form 
was necessary to predict the outcome in the treated group, necessitating larger sample sizes. Curth et 
al. (2024) note that when prediction the potential outcomes separately for each treatment groups, 
prediction errors can either accumulate or cancel out across the two predictions, so that, in finite 
samples, the model with the best fit in terms of the potential outcome is not necessarily the model 
with the best fit on the ITE.  
 
The X-Learner was developed to overcome limitations of the S-Learner and the T-Learner, and to per-
form well for imbalanced samples, and whether the ITE is simple or complex in form. By using the in-
formation of the control group to predict the ITE for the treatment group and vice versa (the ‘cross-
ing’), and adjusting for structural differences through propensity score weighting, X-Learners can 
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remove some of the bias induced by regularisation and overfitting with the S-Learner and the T-
Learner approaches. Yet, the X-Learner requires the estimation of more parameters then the S- and 
T- Learners. The intermediate treatment effects and propensity scores that are computed in the X-
Learner approach are ‘nuisance parameters’ and error in their estimation can propagate into the final 
error of the ITE. Although the sample splitting and cross fitting implemented in the cross-model ap-
proach can serve to reduce overfitting bias, in smaller samples, less data available for estimation 
might lead to lower accuracy due to errors in learning the ITE function itself.  

 

Conclusions and future directions 
Further simulation studies are needed to inform on rules of thumb regarding the choice of meta-
learner algorithm for different applied empirical settings, with different data structures inherent to 
observational studies (Okasa, 2022a). Here we varied the degree of confounding (correlating treat-
ment status with altitude and latitude), yet other degrees and types of confounding occur in real eco-
logical datasets. For example, analysts using citizen scientist data might be confronted with a selec-
tion bias wherein ‘treatments’ (e.g., protected area status) are confounded with other covariates 
(e.g., slope), but also the additional challenge that sample site selection can vary with the outcome 
variable of interest (e.g., species richness), wherein citizens favour sampling in species-rich areas 
(Mentges et al., 2021).  
 
Here we have compared the performance of just three popular meta-learners, and employed random 
forests as their base learners. Numerous other meta-learners have been proposed in the literature, 
including the ‘doubly-robust’ DR-Learner (Kennedy, 2023) and the ‘residualisation’ R-Learner (Nie & 
Wager, 2021), which are extensions of the X-Learner. All meta-learners can use other machine learn-
ing methods including e.g., gradient boosted trees or neural networks. For other meta-learner algo-
rithms, we direct readers to the numerous published reviews (Knaus et al., 2021; Künzel et al., 2019a; 
Okasa, 2022a). 
 
Future research could evaluate the effect of choice of covariates to use to construct the propensity 
scores. Literature suggests that scientific causal knowledge should help determine if a variable might 
be a confounder as opposed to leaving this to a purely statistical exercise that optimise model fit (Ca-
ron et al., 2022b). Propensity score models have long been known to be highly sensitive to model 
misspecification (J. Lee et al., 2024).  In practice, and as was done in this study, the set of covariates 
that are used in models for outcome prediction are typically the same as those used to estimate the 
propensity scores (e.g., Künzel et al., 2019a; Salditt et al., 2024b). A sound understanding of how co-
variate choice for propensity score models influences ITE prediction accuracy would help to inform 
the choice of model for different data settings.  
 
In addition to testing the implementation of alternative meta-learners and base learners, future re-
search could vary the complexity of the treatment effect. Our virtual ecologist approach used poten-
tial outcomes for each NFI plot that were simulated using the Heureka forest dynamics model. Future 
work could use alternative virtual ecology approaches that generate treatment effect heterogeneity 
through different mechanisms in different ecological systems. Indeed, the distribution of individual 
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treatment effects across sampling units is shifted and shaped by baseline differences, and variability 
in the direction and magnitude of treatment effects across individual sampling units. Curth et al. 
(2021) found that simulation runs in which more covariates have large nonzero effects yielded higher 
heterogeneity in ITEs.  
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SI Table 1. Environmental covariates selected for use in statistical models predicting soil carbon.  
 

Covariate Details 

Altitude

 

Height above sea level, sourced from the Swedish National Forest In-
ventory. 
 

Temperature

 

Mean annual temperature, sourced from CRU TS (Climatic Research 
Unit gridded Time Series) (v. 4.07) (Harris et al., 2020). Plots were 
matched to the nearest climate station and mean annual tempera-
ture was averaged across a 5-year period prior to NFI sampling.  
 

Rainfall

 

Mean annual precipitation, sourced from CRU TS (Climatic Research 
Unit gridded Time Series) (v. 4.07) (Harris et al., 2020). Plots were 
matched to the nearest climate station and mean annual precipita-
tion was averaged across a 5-year period prior to NFI sampling. 
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Ditch 

 

A binary variable indicating if the site has been ditched to aid water 
drainage, where 0 is no ditching and 1 is ditched. Sourced from the 
Swedish National Forest Inventory.  
 

Volume of tree species

 

Absolute volume of tree species within the plot, as recorded by the 
Swedish National Forest Inventory. (Note this only contains plots in-
cluded in our study - we limited our sample to NFI plots situated in 
pine-dominated stands (≥50% standing volume), see methods). 
 

Number of stems

 

Total number of stems within the plot (DBH >= 4 cm) sourced from 
the Swedish National Forest Inventory. 
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Soil moisture

 

An ordinal variable ranging from 1 (dry) to 3 (mesic-moist), sourced 
from the Swedish National Forest Inventory. (Note this only contains 
plots included in our study - we did not include plots with soil mois-
ture 4 (moist) or 5 (wet) plots see methods.) 
 

Initial soil carbon

 

Total amount of soil organic carbon as measured in the Swedish Na-
tional Forest Inventory at t = 0, and corresponding to input data for 
Heureka’s soil carbon model.  
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SI Figure 1. Simulated soil carbon over time for six National Forest Inventory Plots. Figure labels (a - 
f) are plotted on a map of Sweden to indicate their location. For the first year, soil carbon is plotted at 
its “initial state” (green triangle), this is the value measured during National Forest Inventory surveys 
in the given year. Subsequent values were simulated by Heureka under either “business as usual” 
management where trees are clear cut and replanted (orange circle, “treated” in this study), or “set 
aside” (blue cross, “untreated”). Given the same management intervention, soil carbon after 20 years 
can be the same (d), higher (c, f), or lower (a, b, e) than if the same plot was set aside, demonstrating 
variation in the unit specific treatment effect. 
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SI Figure 2. Importance of variables for predicting soil carbon after 20 simulated time steps. Soil car-
bon at period 20 was modelled as a function of environmental variables (main text Table 2) and treat-
ment (set aside or business as usual) in a random forest. 
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SI Figure 3. Location of test data. The left panel depicts a map of Sweden with the National Forest 
Inventory plots indicated by points. The right panel is a principal component analysis visualisation 
where points which are closer in space are plots with similar environmental covariates (listed in main 
text Table 2). Edge plots (purple) were selected to be at the periphery of the training data’s multi-di-
mensional covariate space and core plots (orange) were selected to be at the centre of covariate 
space whilst being geographically distinct. See methods. 
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SI Figure 4. Importance of study features for predicting RMSE. RMSE for each virtual study (n = 
4,050) was modelled in a random forest as a function of meta-learner algorithm, selection bias, sam-
pling and modelling conditions (main text Table 1). 
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