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SUMMARY 11 

In nesting animals, the built environment can play an important role in host-associated microbiome 12 

assembly. However, the sources and processes structuring the resulting microbiome remain 13 

underexplored. In the social spider Stegodyphus dumicola, philopatric sisters collectively build and 14 

maintain a silken nest, capture prey, and exhibit alloparental care. We used S. dumicola as a test 15 

system to assess the source and spatial/environmental processes structuring the nest microbial 16 

communities. We collected paired silk and soil samples along two orthogonal transects in southern 17 

Africa. Bacterial and fungal communities were extracted using high-throughput sequencing of 18 

16S-rRNA and ITS barcoding genes and assessed using the SourceTracker tool for R, distance-19 

based regression of soil and silk dissimilarity, and variation partitioning. Silk bacteria were 20 

partially derived from soil bacteria, but there is no apparent difference in the contribution of local 21 

vs. non-local soils: nest microbial communities are no more similar to microbes in the local soil 22 

beneath them than soil found hundreds of kilometers away. In contrast, silk fungi receive few taxa 23 

from the soil community but show a stronger relationship with local over non-local soils. Silk  24 

bacterial communities are weakly structured by spatial and environmental processes,  (i.e. dispersal 25 

and abiotic filtering) suggesting low dispersal limitation and a stronger influence of ecological 26 

drift. Silk fungal communities, in contrast, indicated stronger associations with spatial and 27 

environmental processes. The large contribution of extrinsic sources to the nest microbiome 28 

suggests high immigration potential for opportunistic or harmful microbes that may be partly 29 

responsible for eventual colony collapse. 30 
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Introduction 32 

Social animals that create permanent living structures maintain dispersal feedback between 33 

themselves and their built environment, which accumulate and structure host-associated 34 

microbiota (Hill & Gilbert 2023; Li et al. 2021; Miller et al. 2018). In extreme cases, the built 35 

environment is manipulated by hosts to specifically select for essential mutualistic microbes 36 

(Lucas et al. 2019). However, in most cases, nest-associated microbes are not obligate symbionts 37 

of the host. This means that the built environment (i.e., nest) can act as an equal-opportunity source 38 

for potential host-associated microbes dispersing from other origins – vital mutualists, indifferent 39 

commensals, and virulent parasites alike. Thus, the microbial metacommunity formed by the social 40 

group (the ‘social microbiome’; (Sarkar et al. 2020)) is likely to be affected by extrinsic sources 41 

that facilitate taxa colonizing the nest. Accumulation of extrinsically sourced taxa in the nest may 42 

have short- and long-term effects on the health of the social group (Sarkar et al. 2024). 43 

Social spiders use their nests as all-purpose living spaces for prey capture, feeding, mating, 44 

brood care, and shelter from predators across multiple generations (Aviles 1997). Colonies undergo 45 

boom-and-bust cycles, with most collapsing within three to five years for unknown reasons (Busck 46 

et al. 2022; Crouch & Lubin 2001). Colonies are comprised of two main components: the central 47 

silken domicile (retreat) and the surrounding capture web. Retreats are constructed with 48 

combinations of tough sheet and tangle webs that contain plant matter, soil/sand, carapaces, 49 

arthropod pieces, whole insect corpses, and assemblages of live arthropods (Fernandez-Fournier 50 

& Avilés 2018). Some species build retreats that create distinct microhabitats with much hotter 51 

conditions than their surroundings (Soydaner 2013). In contrast, capture webs contain very sticky 52 

silk in less dense combinations of tangle and sheet silk. Capture silk is susceptible to damage from 53 

rain, debris, and insects which appears to be replaced/repaired at a higher rate than retreats 54 

(Ainsworth et al. 2002; Christenson 1984). Due to their inherently different functions and 55 

structural properties, retreat and capture silk are expected to house different microbial 56 

communities. 57 

African social spiders (Stegodyphus dumicola) harbor microbiomes in their bodies, on their 58 

cuticle, and in their silken colonies. Their retreats are composed of extremely tough cribellate silk 59 

with crisscrossing tunnels and contain one or more capture webs that radiate from the retreat as 60 

mostly two-dimensional structures. Although this species is broadly distributed across southern 61 

Africa, it is notable for exhibiting high philopatry and inbreeding and infrequent dispersal 62 

(Settepani et al. 2017; Smith et al. 2009). These behaviors may partly explain the high microbiome 63 

similarity among spiders within the same nest compared to spiders from other nearby nests (Busck 64 

et al. 2020). However, individuals that do engage in long-distance dispersal vial “ballooning” 65 

establish new nests (‘founders’) can experience ecological drift in their microbiota (Rose et al. 66 

2023a), in part due to loss of socially maintained taxa and acquisition of novel environmental 67 

microbes during dispersal. This suggests that extrinsic sources of microbiota are likely to constitute 68 

a large proportion of the nest microbiota as well. 69 

The nearby sandy soil is but one source of potential colonists: the movement of wind-borne 70 

debris also assists microbial dispersal and can also homogenize built microbiomes over greater 71 

distances. Interestingly, previous microbiome analyses of S. dumicola and their silken nests have 72 

shown only weak spatial compositional turnover patterns (i.e. distance-decay) except at very large 73 

spatial scales (>500km; (Keiser et al. 2019; Nazipi et al. 2021)). Silk fungal communities, on the 74 

other hand, have demonstrated compositional turnover at smaller spatial scales than bacteria 75 

(Nazipi et al. 2021). It is possible that soil microbes do strongly influence silk microbiomes, but 76 



soil bacteria and fungi contribute to different degrees. Bacterial and fungal taxa contributed by soil 77 

may be extremely variable in their dispersal capabilities: even a low degree of dispersal limitation 78 

can induce a distance-decay pattern. However, if dispersal is sufficiently unlimited, nearby sites 79 

may not be easily differentiable from distant sites. 80 

The distribution of African social spider colonies across a large geographic range and a 81 

mild aridity gradient makes this a great system to test assembly rules of the built microbiome in a 82 

natural setting. Here, we explored the impact of an extrinsic microbial source (the soil) on the 83 

microbial community structure of actively occupied built environments (retreat and capture silk) 84 

utilized and maintained by S. dumicola. Taking the ‘metacommunity perspective’ means we 85 

consider the possible assembly outcomes of microbial dispersal between patches at both local and 86 

regional scales simultaneously (Leibold & Chase 2017). We use a combination of SourceTracker 87 

analysis (Knights et al. 2011), variation partitioning (Legendre 2008), and classic distance-decay 88 

methods to tease apart answers to the following questions: 1) To what degree does soil microbiota 89 

influence the microbial community associated with S. dumicola colonies? 2) Is the relationship 90 

between silk and soil microbiota distance-dependent? 3) Do abiotic factors (temperature and 91 

aridity) interact with dispersal limitation to influence the assembly of silk microbiota? 4) How do 92 

these patterns differ between communities of bacteria and fungi? By exploring these patterns in 93 

both bacterial and fungal communities, we can better understand how these two microbial groups 94 

experience community assembly within the built environment of a highly social species. The 95 

results highlight the influence of extrinsic soil microbes on silk microbial composition; however, 96 

quantifying the effects of specific extrinsic taxa on host or nest health is outside the scope of this 97 

analysis. 98 

Methods 99 

Study design and sample collection  100 

In December 2018, we collected samples along two roadside transects that experience a 101 

similar rate of environmental change (temperature and aridity) along their lengths (Figure 1a). The 102 

East-West transect follows the N10, N14, and R31 highways in South Africa, and the North-South 103 

transect follows along the B1 highway in Namibia (Figure 1b). Mean annual temperature and 104 

precipitation were gathered from WorldClim v2 30 arcsecond (~1km) raster files (Fick & Hijmans 105 

2017). Aridity data was gathered from the CGIAR-CSI Global-Aridity and Global-PET Database 106 

(Zomer et al. 2007, 2008). All climatic variables were cross-referenced with the GPS coordinates 107 

of each site location using QGIS (QGIS Development Team & others 2024). 108 

We collected two silk types (retreat and capture) from S. dumicola colonies as well as soil 109 

samples from immediately below each colony (Figure 1c). We collected capture silk samples by 110 

twisting a sterile cotton swab in each capture web to gather up approximately 0.5 mL of 111 

mechanically sticky silk and placing it into 1.5 mL centrifuge tubes. We used sterile plastic forceps 112 

to remove approximately 10 mL of retreat silk and placed it into sterile 15 mL tubes. To collect 113 

soil, we scooped approximately 10 mL of sandy soil, no deeper than 5 cm, into sterile 15 mL tubes 114 

directly below each colony. We filled all samples to the max fill line on each tube with RNAlater® 115 

(Sigma-Aldrich, St. Louis, MO) for transport and storage. Samples were then transported to the 116 

University of Florida and placed in a -20ºC freezer prior to processing.  117 



To prepare samples for DNA extraction, we thawed each sample tube, removed the 118 

RNAlater® at the top of the tube, and centrifuged them 3 times at 4500 rpm for 5 mins. to separate 119 

and remove RNAlater® supernatant from the sample as much as possible. Once RNAlater® was 120 

removed, we added 0.01 M of phosphate buffered saline solution (-0.138M NaCl mixed with 121 

0.0027 M KCl at pH 7.4). For capture silk samples, we used sterile forceps to remove the capture 122 

silk from the cotton swap used to collect the silk and placed the silk in a new sterile 1.5 mL tube. 123 

Figure 1. Silk and soil collection along a temperature and aridity gradient in southern Africa. 

A) Pairwise relationship of geographic distance and environmental dissimilarity. Environmental 

dissimilarity is measured as Euclidean distance based on mean annual temperature and aridity. 

Pairwise comparison of sample sites is made within-transect (Namibia or South Africa) or 

between-transects (Namibia vs South Africa). B) Map of the sampling area. Samples from all sites 

(white dots) were used to calculate alpha and beta diversity metrics. Downstream analysis is 

restricted to the 13 sites labeled Fungi (pink), Bacteria (purple), or both (yellow). At these sites, 

all three sample types (retreat, capture, soil) were successfully sequenced. C) Example site showing 

all three sample types. 



All samples were vortexed at the end and frozen at -20ºC. We sent all samples to ZymoBIOMICS 124 

Targeted Sequencing Service (Zymo Research, Irvine, CA) for processing and sequencing.  125 

DNA extraction, sequencing, and HTS data processing  126 

ZymoBIOMICS-96 MagBead DNA Kit (Zymo Research, Irvine, CA) was used to extract 127 

DNA using their automated platform. Bacterial 16S ribosomal RNA gene targeted sequencing was 128 

performed using the Quick-16S™ NGS Library Prep Kit (Zymo Research, Irvine, CA) which 129 

amplifies the V3-V4 region of the 16S rRNA gene. Fungal ITS gene targeted sequencing used the 130 

same library prep kit but with ITS2 primers substituted for 16S primers. The ZymoBIOMICS 131 

Microbial Community Standard (Zymo Research, Irvine, CA) was used as a positive control and 132 

negative controls (i.e., blanks with no DNA) were included to assess the level of contamination 133 

for each DNA extraction during the library prep.  134 

Real-time PCR was used to amplify the DNA and quantified with qPCR fluorescence 135 

readings, which were pooled together based on equal molarity. The final pooled library was 136 

cleaned with the Select-a-Size DNA Clean & Concentrator (Zymo Research, Irvine, CA), then 137 

quantified with TapeStation (Agilent Technologies, Santa Clara, CA) and Qubit (Thermo Fisher 138 

Scientific, Waltham, WA). The final library was sequenced on Illumina MiSeq with a v3 reagent 139 

kit (600 cycles). The sequencing was performed with 10% PhiX spike-in.  140 

A qPCR was set up using the same primers as the library prep with a standard curve made 141 

with plasmid DNA for both 16S and ITS2 sequences in 10-fold serial dilutions. The standard curve 142 

was used to calculate the number of gene copies in the reaction for each sample. The number of 143 

gene copies per µL was calculated using the PCR input volume (2µL) for each DNA sample. The 144 

number of genome copies per µL DNA sample was calculated by dividing the gene copy number 145 

by an assumed number of gene copies per genome (i.e., 4 16S copies per genome and 200 ITS 146 

copies per genome). The assumed genome size used to for this calculation was 4.64 x 106 bp, the 147 

genome size of Escherichia coli, for 16S samples, and 1.20 x 107 bp, the genome size of 148 

Saccharomyces cerevisiae, for ITS samples. The full calculation for this is in the Appendix.  149 

Data analyses  150 

For both bacterial and fungal datasets independently, general metrics of diversity and 151 

composition were calculated using the full sample set. However, SourceTracker, distance-decay, 152 

and structuring process analysis were performed on a subset of sites from which data was 153 

successfully collected from all three sample types. In both bacterial and fungal datasets, all three 154 

sample types were represented from 12 sites, but one site was removed from each dataset due to 155 

poor or biased sampling, leaving samples from 13 total sites across both datasets (2 bacteria-only, 156 

2 fungi-only, 9 with both; Figure 1b). All analyses were conducted in Rstudio using R version 4.4.1 157 

(R Core Team 2024). 158 

Sample diversity and composition  159 

To help visualize ASV distribution among sample types, ASVs were parsed based on their 160 

presence in at least one sample of any type (soil, capture, or retreat). An ASV can be found in any 161 

of the seven possible combinations for the three sample types (i.e. soil, capture, retreat, soil & 162 

capture, soil & retreat, retreat & capture, soil & capture & retreat). For each sample, the total ASV 163 

relative abundance (%) is given for each sample type combination.  164 



Basic diversity analyses were also conducted to assess sampling differences between 165 

sample types. Species accumulation curves were drawn to assess the adequacy of sampling depth 166 

for all samples (`vegan`: (Oksanen et al. 2022)). Three alpha diversity metrics (Shannon's H 167 

[`vegan`], absolute richness [`vegan`], Faith’s phylogenetic diversity [PD; `picante`: (Kembel et 168 

al. 2010)]) and Pielou's evenness were used to examine within-sample diversity and compare 169 

between sample types. Statistical differences between sample types were assessed with ANOVA 170 

and the Tukey HSD post-hoc test. Principal coordinates and distance-based PERMANOVA were 171 

used to examine compositional differences between sample types (`pairwiseAdonis`: (Martinez 172 

Arbizu 2020)). Beta dispersion was used to assess the degree of within-sample type similarity 173 

(`vegan`) and differences between sample types were assesed with ANOVA and Tukey HSD. 174 

Structuring processes  175 

The compositions of most microbial communities in nature are structured by both 176 

deterministic and stochastic processes (Martiny et al. 2006), and structural turnover can occur 177 

along both spatial and environmental gradients (Feng et al. 2019; Gilbert & Lechowicz 2004; 178 

Ranjard et al. 2013). Confounding of spatial and environmental effects is common and several 179 

methods exist to approach this problem, including linear regression and the Mantel test (Astorga 180 

et al. 2012), phylogenetic null models (Stegen et al. 2012), and variation partitioning (Peres-Neto 181 

& Legendre 2010). Each of these methods has its uses and applications that are appropriate for 182 

different kinds of sampling design. In this case, we have two transects across similar environmental 183 

gradients, and we can draw comparisons from within and between them to separate very long 184 

distance effects from environmental effects. We know that the two transects share a similar 185 

environmental gradient to distance relationship (Figure 1a). We also know that there may be little 186 

spatial structure for the silk microbiome of S. dumicola at scales <500km (e.g., within the transects; 187 

(Nazipi et al. 2021)); however, pairwise comparisons between sites of different transects can 188 

separate whether compositional dissimilarity is due to environmental difference or large-scale 189 

dispersal limitation. Here, we begin with distance-decay regression (Soininen et al. 2007) and add 190 

in environment-decay multiple regression for comparison (e.g. (Locey et al. 2020; Ranjard et al. 191 

2013)). We then use variation partitioning to estimate how much variation is attributed to the 192 

environmental gradient, to the spatial gradient, and to spatial autocorrelation effects present in the 193 

environmental gradient (Legendre et al. 2005; Peres-Neto et al. 2006).  194 

The distance-based approach used binary Bray-Curtis distances between samples of the 195 

same type regressed against geographical distance and ‘environmental distance,’ respectively. 196 

Compositional distance was calculated as 
𝐴+𝐵−2𝐽

𝐴+𝐵
 where A and B are the number of taxa in each 197 

sample and J is the number of taxa in both (Oksanen et al. 2022). Only taxa present in more than 198 

one sample were included (i.e. singletons were removed). Environmental distance was calculated 199 

as the Euclidean distance between sites based on temperature and PET. Both temperature and PET 200 

covariates were centered and scaled prior to this calculation. Likewise, geographical distance was 201 

calculated as the Euclidean distance between sites from latitude and longitude given in decimal 202 

degrees. Geographical distances were converted from decimal degrees to kilometers after 203 

calculation. Environmental and geographical distance multiple regressions were performed for 204 

within- and between-transect comparisons with compositional distance.  205 

To perform variation partitioning, we first constructed a Moran’s Eigenvector Map (MEM) 206 

from a spatial weighting matrix of the input site coordinates (`adespatial`: (Guénard & Legendre 207 

2022)), following Dray et al (Dray et al. 2006). MEM1 was highly correlated with site geographic 208 



location and best accounted for the degree of spatial segregation of the two transects. The MEM 209 

was first used to quantify the degree of spatial autocorrelation present in the environmental 210 

covariates, temperature and PET). MEM2 was highly correlated with both environmental variables 211 

and best represented the environmental gradient present in both transects. Therefore, MEM1 was 212 

used as the spatial factor during variation partitioning in order to separate large-scale regional 213 

effects from within-transect effects. A Moran Structural Randomization (MSR) test (`adespatial`) 214 

was then performed between temperature and PET to quantify the degree of correlation between 215 

the covariates after accounting for spatial autocorrelation. The MSR test indicated that, after 216 

accounting for inherent correlation due to spatial autocorrelation, temperature and PET were 217 

sufficiently non-correlated to include both in subsequent variation partitioning analysis (`vegan`). 218 

Statistical significance of the environmental and spatial components was quantified using 219 

canonical correspondence analysis (CCA; `vegan`). 220 

SourceTracker  221 

SourceTracker analysis (Knights et al. 2011) is a Bayesian approach to quantifying the 222 

proportion of a microbial population in a sample that comes from each of a set of sources identified 223 

a priori. Originally, it was designed as a tool for identifying sources of contamination in 224 

microbiome samples. It randomly assigns each ASV to one of the given source environments and 225 

updates the likelihood of observing it in that source based on the proportion present in the sink 226 

environment. It repeats this Gibbs sampling process 10 times to estimate the variability of the 227 

posterior distribution. We used SourceTracker v1 (https://github.com/danknights/sourcetracker), 228 

which was written for implementation in R (Knights 2016).  229 

After each sink ASV has been assigned proportionally to each source, we took the mean of 230 

the Gibbs samples of the ASV for each sample. We then took the mean across the samples to get 231 

an estimate of the overall proportional source assignment for the sequence. With each capture silk 232 

ASV given an assignment to 'soil', 'retreat' or 'unknown' source, we used these proportions to group 233 

sequences by source value majority. Four groups were created: Soil, Retreat, Mixed, and 234 

Unknown. ASVs grouped into the Soil, Retreat, and Unknown clusters were those assigned to each 235 

of those three sources by SourceTracker with a proportion greater than 50%. ASVs grouped into 236 

the 'Mixed' cluster were those with proportions less than 50% for all three assigned sources.  237 

Variation between Gibbs draws of an ASV in each sink sample is quantified as the 238 

coefficient of variation (𝐶𝑉 = σ/μ). The skewness and kurtosis of the CV distribution for each 239 

source summarizes the degree of uncertainty around draws from each source. Skewness > 1 and 240 

high kurtosis indicates strongly right-skewed data that peaks near CV=0. Skewness <1 and low 241 

kurtosis indicates weakly right-skewed data that peaks further from CV=0.  242 

Intra-colony similarity  243 

To better understand the SourceTracker results, we also examined compositional turnover 244 

between sample types as a function of distance. Cross-comparison between the communities of 245 

different sample types allows us to see the compositional relationship between sample types and 246 

whether the strength of that relationship is affected by the physical distance between samples. 247 

Similar to the traditional distance-decay approach, strong distance-dependent turnover between 248 

sample types indicates that microbial exchange is more common between nearby samples than 249 

distant ones.  250 

Pairwise compositional distance was calculated between each bacterial and fungal dataset 251 

and categorized by geographical distance between the sample collection sites. We calculated binary 252 

https://github.com/danknights/sourcetracker


Bray-Curtis distances (`vegan`) between retreat and capture matrices, between retreat and soil 253 

matrices, and between capture and soil matrices. We included only those taxa that were present in 254 

more than 1 sample of either type (singletons removed).  255 

We first performed multiple regression of pairwise compositional distances between 256 

samples against the geographical distances within and between transects. We then grouped 257 

compositional distances by relationship: between samples collected from the same site (“within-258 

colony”), between samples of different types from the same transect (“within-transect”), and 259 

between samples of different types between transects (“between-transect”). The mean 260 

compositional distances for each group were compared using two-way ANOVA. In this way, we 261 

can test whether the microbiota collected from silks of the same colony are more similar to each 262 

other than to silks of more distant colonies (i.e. distance-decay); likewise, we can test whether 263 

local soils contribute to silk microbiome composition more than distant soils.  264 

Data accessibility 265 

Community feature tables, sample metadata, and data analysis pipeline are available at 266 

https://github.com/kjmtaylor22/stegodyve, which is downloadable as a package using 267 

`devtools::install_github`. 268 

Results 269 

Bacterial and fungal DNA extraction and sequencing were successful for 22 soil samples, 270 

12 retreat silk samples, and 21 capture silk samples, though bacterial DNA sequencing was 271 

successful for one additional retreat silk sample. The full dataset was used to examine general 272 

metrics of diversity and composition. Subsequent analyses were conducted using the 33 sample 273 

datasets as described in Methods. 274 

Silk microbial communities are distinct from soil 275 

Sample type (soil vs. retreat vs. capture) had a significant effect on alpha diversity and 276 

evenness in bacteria, but not in fungi (Figure 2, Diversity; Figure S2). Bacterial alpha diversity 277 

(Shannon’s H, richness) was significantly higher in soil than silks (Tukey HSD: padj<0.01), but 278 

not different between silk types. Evenness in the soil communities was significantly higher than 279 

the retreat communities (Tukey HSD, padj =0.005), but not different from capture communities. 280 

Fungal alpha diversity and evenness were not significantly different between the three sample 281 

types. Phylogenetic diversity (Faith’s PD) was not significantly different between sample types for 282 

either bacterial or fungal communities.  283 

Differences in composition among samples (Figure 2, Composition) were explained 284 

predominantly by the sample type (soil, retreat, capture) and secondarily by transect (Namibia, 285 

South Africa) in both bacteria (PERMANOVA; p<0.001) and fungi (PERMANOVA; p<0.001). 286 

These factors accounted for 21% and 18% of the total variance in bacterial and fungal 287 

communities, respectively. In the bacterial samples, all three sample types were compositionally 288 

distinct. In contrast, while fungal communities were compositionally distinct between silk and soil, 289 

there were no differences between silk types. 290 

Bacterial beta dispersion was not significantly different between sample types. Fungal beta 291 

dispersion was significantly higher in soil than retreat silk (Tukey HSD; padj=0.003) and capture 292 

silk (Tukey HSD; padj=0.002) and not significantly different between capture and retreat silk 293 

(Figure 2, Variability).  294 

https://github.com/kjmtaylor22/stegodyve


Differences between soil and silk composition were driven largely by the numerical difference in 295 

species richness (Figure 2, Dispersion). However, though soil tended to be more species rich, 296 

bacterial taxa specific to each sample type or shared among all three sample types were the most 297 

abundant. Taxa shared just between soil and retreat silk or soil and capture silk were numerically 298 

rare. In contrast, the most abundant fungal taxa were those that were shared among all three sample 299 

types or were unique to soil. Taxa shared between just two sample types or unique to silk were 300 

more numerically rare. 301 

Silk communities are structured by different ecological processes than soil 302 

Examining compositional turnover against geographical distance alone generally explained 303 

compositional turnover well (Figure 3a, Bacteria: retreat R² =0.41, F=11.98, p<0.001, capture R² 304 

=0.26, F=5.92, p<0.001; Figure 3c, Fungi: retreat R² =0.49 F=16.43, p<0.001, capture R² =0.62, 305 

F=27.95, p<0.001). There were no within- or between-transect differences for the different sample 306 

types, except in the retreat bacteria where the slopes of the two lines differed (t=2.09, p=0.04). The 307 

lack of statistical difference in the multiple regression indicates that the relationship between 308 

composition and geographical distance is ultimately the same both within- and between-transects. 309 

In absentia of an environmental decay gradient, this might be easily mistaken for evidence of 310 

distance-decay patterns. However, compositional turnover across an environmental gradient was 311 

also considered:  312 

Environmental effects on composition within and between transects have substantial 313 

explanatory power for silk compositional variation (Figure 3b, Bacteria: retreat R² =0.44, F=13.13, 314 

p<0.001, capture R² =0.45, F=13.69, p<0.001; Figure 3d, Fungi: retreat R² =0.41, F=11.60, 315 

Figure 2. Alpha and beta diversity of microbiota associated with silk and soil samples. Panels 

from left to right compare simple metrics of diversity (richness), composition (principal 

coordinates), variability (dispersion) and taxonomic distribution among sample types for bacterial 

communities (top) and fungal communities (bottom). Groups that are statistically different from on 

another are indicated either with letters or stars (*p<0.05; **p<0.01). Non-significant differences 

are indicated with ‘ns.’ 



p<0.001, capture R² =0.65, F=30.99, p<0.001). Generally, sites that were more similar 316 

environmentally across transects were also more compositionally similar than those that were more 317 

environmentally distinct. Within transects, sites that were more similar environmentally generally 318 

Figure 3. Parsing spatial and environmental processes influencing silk and soil microbial 

community assembly. A,B) Bacteria. C,D) Fungi. A,C) Multiple regression of pairwise sample 

compositional similarity against geographical distance (km). B,D) Multiple regression of pairwise 

sample compositional similarity against environmental dissimilarity. Environmental dissimilarity 

is calculated as a Euclidean distance based on mean annual temperature and aridity at each site.  

Sample pairs are either both from the same transect (“Within transect,” solid line) or from different 

transects (“Between transect,” dashed line). Trendline equations are given for each line 

separately. See Tables S1,2 for coefficients and statistics. B,D insets) Venn diagrams showing the 

proportion of the total R2 accounted for by environmental and spatial processes. The total R2 is 

given below the Venn segments. Stars indicate statistical significance based on CCA (*p<0.05, 

**p<0.01, ***p<0.001). 



had greater silk compositional similarity (Bacteria: retreat t=-4.72, p<0.001, capture t=-3.32, 319 

p=0.002; Fungi: retreat t=-2.60, p=0.01; capture t=-6.16, p<0.001). Interestingly, the between-320 

transect decay trend paralleled the within-transect result but y-downshifted in three of the four silk 321 

communities. The y-downshift of the between-transect regression relative to the within-transect 322 

regression is significant in the silk fungal communities (Fungi: retreat t=-3.55, p<0.001, capture 323 

t=-3.33, p=0.002) but not in the silk bacterial communities (Bacteria: retreat t=-3.09, p=0.003, 324 

capture t=-0.19, p=0.85). Neither silk nor soil microbial communities show significant interaction 325 

effect between environmental decay and transect (Table S1,2), meaning that environmental 326 

influence on compositional dissimilarity is not affected by increasing distance. 327 

Variation partitioning analysis of silk microbial communities showed that silk 328 

compositional turnover is more dependent on environmental differences than geographical 329 

distance, although the two variables are measurably confounded (Figure 3b, insets). Permutation 330 

test for CCA of bacterial silk communities indicates that the environmental component is 331 

significant (Retreat: R² =0.17, F=2.09, p=0.035; Capture: R² =0.1, F=1.56, p=0.021) but the spatial 332 

component is not (Retreat: R² =0.07, F=1.78, p=0.1; Capture: R² =0.03, F=1.27, p=0.2). Overlap 333 

between bacterial spatial and environmental components is large relative to the individual fractions 334 

(Retreat: R² =0.05; Capture: R² =0.07). CCA permutation tests for fungal silk communities 335 

indicates that both the environmental and spatial components are significant (Retreat: 336 

environmental R² =0.16, F=1.77, p=0.043, spatial R² =0.12, F=2.80, p=0.015; Capture: 337 

environmental R² =0.21, F=2.44, p=0.001, spatial R² =0.13, F=2.55, p=0.003). Overlap between 338 

fungal spatial and environmental components is small relative to the individual fractions (Retreat: 339 

R² =0.04; Capture: R² =0.02). 340 

In contrast to the silk, soil microbial composition is poorly explained both by within- or 341 

between-transect environmental dissimilarity and by geographical distance alone (Figure 3c,d; R² 342 

< 0.07). In other words, neither environmental filtering nor geographical distance has a significant 343 

impact on soil microbe composition. Similarly, partitioning of soil community variation is weak 344 

in both the bacterial and fungal communities (Figure 3d, insets; Bacteria: environmental R² =0.08, 345 

F=1.41, p<0.1, spatial R² =0.06, F=1.56, p<0.1; Fungi: environmental R² =0.07, F=1.35, p=0.1, 346 

spatial R² =0.03, F=1.23, p>0.1). There is no measurable overlap between the environmental and 347 

spatial variation components in the soil microbial communities (Figure 3b,d insets, bottom). 348 

Capture silk is a sink for soil bacteria dispersing from across the region 349 

SourceTracker identified 1930/5167 bacterial ASVs and 606/2087 fungal ASVs abundant 350 

enough in the capture silk to be drawn by the Gibbs sampler. The goal of this analysis was not to 351 

generate an exhaustive catalogue of soil taxa present in the silk; rather, it was to assess the potential 352 

for soil to contribute to silk microbiome assembly.  353 

SourceTracker identified several highly abundant soil bacterial ASVs present in the capture 354 

silk. The top 5 most abundant bacterial ASVs in capture silk were classified as Retreat or Soil and 355 

belong to Geodermatophilus and Modestobacter. For bacterial ASVs drawn from retreat and soil 356 

sources, the distribution of CV of Gibbs draws is highly right-skewed (Figure 4a; skew > 5, kurt > 357 

46). The assignment of bacterial ASVs to an Unknown source generally exhibited greater 358 

uncertainty (Figure 4a ; skew=1.46 kurt=5.49). Capture silk bacteria are drawn similarly from soil 359 

(764/1930; 39.6%), retreat silk (509/1930; 26.4%), and an unknown source (587/1930; 30.4%). 360 



The remaining capture silk bacteria (70/1930; 3.6%) are most likely drawn in part from multiple 361 

sources.  362 

In contrast, identifiable soil fungal ASVs were typically rare in capture silk, and the most 363 

abundant taxa were either classified as Unknown or Retreat. The top 5 most abundant fungal ASVs 364 

belong to Aureobasidium, Pleosporales, and Neocamarosporium. For fungal ASVs drawn from 365 

retreat and Unknown sources, the distribution of CV of Gibbs draws is highly right-skewed (Figure 366 

4b; skew > 2, kurt > 10). The assignment of fungal ASVs to soil generally exhibited greater 367 

uncertainty (Figure 4b; skew=1.34, kurt=3.70). Capture silk fungi are largely drawn from an 368 

unknown source (406/606; 67.0%). Comparatively few capture silk fungi are drawn from the soil 369 

(75/606; 12.4%) and retreat silk microbiota (103/606; 17.0%), and a few are indeterminate 370 

(22/606; 3.6%). 371 

Silk is a sink for soil fungi dispersing locally 372 

In the bacterial communities, the distance-decay relationship is generally weak. 373 

Compositional similarity of the capture and retreat silk microbiota is significantly higher within 374 

colonies than between transects (ANOVA, p=0.003), but the within-colony comparison is not 375 

significantly different from comparisons within transect. Similarity between the capture silk and 376 

the soil microbiota is slightly higher within colony than within transect (ANOVA, p=0.03) but is 377 

Figure 4. Sources of microbial taxa in capture silk and the uncertainty of source assignment by 

SourceTracker based on ten Gibbs draws. Pie charts show the number of ASVs analyzed that 

were assigned to a given source. Density plots show the distribution of coefficient of variation of 

assignments for each ASV across the ten Gibbs draws. A) Bacteria. B) Fungi. 



not different from the ‘between transect’ group. The retreat silk bacterial communities indicate 378 

equal compositional similarity to local and distant soil microbiota.  379 

In contrast, the fungal communities indicate a strong distance-decay relationship between 380 

samples collected at the same site versus samples collected further apart. Compositional similarity 381 

between capture and retreat silk samples collected from the same site is strongly differentiated 382 

from samples collected within transect (ANOVA, p<0.002) and from samples collected between 383 

transects (ANOVA, p<0.001). There is also a significant difference in compositional similarity 384 

between samples collected within and between transects (ANOVA, p=0.002). Similarly, both the 385 

capture and retreat silk microbiota show significantly stronger similarity to local soil than soils of 386 

Figure 5. Compositional similarity between sample types is a function of distance between 

transects. Samples of different types are generally more similar when taken from the same location 

(“Within colony”) than when taken from different locations (“Within transect” or “Between 

transects”). Capture silk microbiota are compared with the retreat silk microbiota (teal; top 

panels) and soil microbiota (brown; middle panels), and retreat silk microbiota are compared with 

soil microbiota (magenta; bottom panels). Groups that are statistically different from on another 

are indicated with letters. Non-significant differences are indicated with ‘ns.’ 



the same transect (ANOVA, p<0.001 and p=0.015, respectively) or to soils of the other transect 387 

(ANOVA, p<0.001 and p<0.001, respectively).  388 

Discussion 389 

Built environments act as reservoirs for host-extrinsic microbiota and host-associated 390 

microbiota alike (Bosch et al. 2024; Wilkins et al. 2016). In a metacommunity mindset, these 391 

reservoirs engage in dispersal feedbacks with the host that can reinforce existing host microbiota 392 

and/or facilitate transmission within the social group (Miller et al. 2018; Sarkar et al. 2020). For 393 

social spiders, a potentially major source of extrinsic microbiota is the sand and soil being blown 394 

around the arid landscape of Southern Africa. Both the capture and retreat silk are typically 395 

suspended in bushes and trees and easily accumulate soil and dust particulates as well as other 396 

debris. Although transmission rates from the environment are likely lower than transmission rates 397 

among individuals, environmental acquisition by one member of the social group has the potential 398 

to be passed quickly among nestmates for both fungi (Cassidy et al. 2025) and bacteria (Keiser et 399 

al. 2016). 400 

Strong spatial structure in silk-associated fungal communities has been demonstrated 401 

across small and large scales (Nazipi et al. 2021), so we expected to observe it here as well. Indeed, 402 

the fungal metacommunity responded more strongly to both spatial and environmental factors than 403 

the bacteria, suggesting that temperature and aridity also have a substantial localized effect on silk 404 

microbial assembly. Mean annual precipitation, mean annual temperature, and potential 405 

evapotranspiration have all been found to be generally good predictors of fungal alpha, beta, and 406 

gamma diversity, respectively (Mikryukov et al. 2023; Tedersoo et al. 2014). The environmental 407 

gradient here is suggestive; however, longer transects across a longer environmental gradient might 408 

yield stronger structuring power over microbial communities.  409 

In contrast, the distance dependence of the silk bacterial metacommunity is not as strong 410 

as we might expect, given that both silks are constructed by spiders that rarely stray from the nest 411 

and maintain a strong social microbiome between generations (Rose et al. 2023b). For instance, in 412 

a strong distance-decay relationship, silks from the same site should be significantly different from 413 

silk comparisons made between colonies within the same transect or between transects. Here, the 414 

bacterial metacommunity shows that only the within-colony and between-transect comparisons are 415 

significantly different, suggesting a breakdown of distance-dependence at smaller scales. Previous 416 

analyses have also hinted at this pattern, where spatial structure of the silk microbiome between 417 

colonies breaks down at scales less than 500km (Busck et al. 2020; Keiser et al. 2019; Nazipi et 418 

al. 2021). Two forces may be responsible for driving this pattern. The first driver is bottom-up: the 419 

obligate, core microbiome of the spiders is small or nonexistent (Busck et al. 2020, 2022), and the 420 

social microbiome is easily disrupted by social fragmentation (Rose et al. 2023a); thus, spatial 421 

turnover may only be observable at very small scales (i.e. <100 m) where historical colony 422 

connections are most feasible. The alternative driver is top-down: High propagule pressure from 423 

cosmopolitan environmental taxa distributed across the region wash out the relationship between 424 

silk microbiomes within that area. Uncontrolled influx of microbes from high-diversity sources 425 

like soil can thus have major impacts on both the built environment and the social microbiome of 426 

its inhabitants. 427 

Clearly, in this system, the soil microbiome has significant influence over the composition 428 

of the silk microbiome. However, it is interesting that this influence is realized in very different 429 

ways by the bacterial and fungal metacommunities. For instance, although neither the bacterial nor 430 



fungal soil metacommunities showed any large-scale turnover with distance (distance-decay) or 431 

along the temperature and aridity gradient (environment-decay) fungal soil-silk relationships were 432 

stronger within colonies than between them. This suggests that a) soil fungal communities exhibit 433 

high spatial heterogeneity (much like soil bacteria (O’Brien et al. 2016)), and b) extremely 434 

localized fungal dispersal has a much more significant impact on nearby silks than long-distance 435 

dispersal.  436 

The soil bacterial metacommunity, in contrast, demonstrated both no distance-decay 437 

relationship and only a very weak affinity to local silks relative to distant silks. This suggests that, 438 

compared to the soil fungi, soil bacteria are truly dispersal unlimited once airborne. The lack of 439 

any meaningful distance-decay relationship between soil bacteria and either silk type, despite high 440 

soil taxonomic contribution, supports the top-down perspective of high propagule pressure. Under 441 

the hypothesis of high dispersal, high loads of well-mixed soil bacteria caught in silk may influence 442 

nearby and distant nest communities equally. These taxa may be widely distributed due to low 443 

dispersal limitation of soil bacteria under extremely arid and windy conditions (Barberán et al. 444 

2014; Choudoir et al. 2018).  445 

The difference between bacterial and fungal cross-comparison patterns may be due to 446 

multiple factors related to fungal biology and life history traits, which may have significant impacts 447 

on the shape of their dispersal kernels: bacterial dispersal kernels may be more fat-tailed on average 448 

than fungal dispersal kernels (Golan & Pringle 2017; Jenkins et al. 2007). The standing assumption 449 

in the literature is that both bacteria and fungal spores are considered “dispersal unlimited” by 450 

virtue of their small size. However, fungal propagule size relative to bacteria may show relative 451 

more dispersal limitation (stronger distance-decay) in fungi than bacteria (De Bie et al. 2012; 452 

Wilkinson et al. 2012). There is also variation in fungal dispersal ability; for example, spores from 453 

mycorrhizal fungi are much larger than ascomycetes and basidiomycetes, and as a result, they do 454 

not hang in the air as long or travel as far (Egan et al. 2014; Peay et al. 2012). Generally longer 455 

lifespans in fungi also correspond with longer historical contingency in fungi than bacteria 456 

(Mennicken et al. 2020), although bacterial communities do exhibit some historical contingency 457 

too (Andersson et al. 2014).  458 

Indirectly, the SourceTracker results concur with the idea that bacterial and fungal 459 

metacommunities here differ in degree of dispersal limitation. We included the SourceTracker 460 

analysis initially because of its application to sample contamination analysis over fairly large scales 461 

(Henry et al. 2016; Liu et al. 2018). In general, SourceTracker had an easier time classifying each 462 

bacterial ASV to its most likely source than it did each fungal ASV. In the bacteria, there was 463 

greater uncertainty with the so-called “Unknowns” than either the retreat or soil taxa; in the fungi, 464 

the greatest uncertainty was with the soil. This suggests that, in the fungal metacommunity, soil 465 

samples are each more directly paired to a particular capture sink than to the capture silk 466 

metacommunity as a whole. In contrast, several retreat fungi and bacteria appeared to be 467 

identifiable with high concordance between Gibbs samples. This suggests that these taxa may be 468 

silk or S. dumicola specialists that occupy silk and debris as a byproduct of their association with 469 

the host. In both bacterial and fungal metacommunities, the Unknown taxa are likely representative 470 

of either capture silk specialists or poorly distributed taxa. We suggest that the Unknown bacteria 471 

are more likely to be capture silk specialists, not only because they tend to be rare but also because 472 

the most abundant extrinsic taxa (Geodermatophilus and Modestobacter) are members of the 473 

family Geodermatophilaceae and commonly associated with soils (Normand et al. 2014). 474 

Likewise, we suggest that the Unknown fungi are more likely to be dispersal limited because they 475 



were often highly abundant compared to the soil taxa. The most abundant Unknown or retreat taxa 476 

(Aureobasidium, Pleosporales sp., and Neocamarosporium) are members of the class 477 

Dothideomycetes and most commonly found infecting plants or saprotrophic to decaying plant 478 

matter (Schoch et al. 2009) and may be most closely sourced from the plant acting as substrate to 479 

the nest. 480 

There are two possible explanations for the discrepancy in classification power between 481 

bacterial and fungal datasets. The first explanation is biological: the fungi identified as Unknown 482 

may be immigrating from other, more significant sources than soil. One of these sources may be 483 

prey carcasses, as suggested previously (Keiser et al. 2019; Nazipi et al. 2021). The second 484 

explanation is based on the analytical structure of SourceTracker, which was originally designed 485 

to identify sources of sample contamination and quantify their contribution to sink sample 486 

composition (Knights et al. 2011). SourceTracker assumes that samples taken from a given source 487 

contain communities that are drawn from the same joint species distribution (Knights et al. 2011), 488 

which can be affected by dispersal limitation, gradients of abiotic factors, and/or biotic interactions 489 

(Leibold et al. 2021). If these communities are not equally governed by the same underlying 490 

ecological processes, the resulting pattern is high uncertainty around assignments to one or more 491 

of the given sources -- in this case, soil.  492 

To our knowledge, SourceTracker has not been applied to a dataset of this geographic scale 493 

before. Previous studies applying it have been largely limited to single experimental setups in the 494 

lab (Pedersen et al. 2015), or to exploring waterborne contamination across broader scales in the 495 

field (e.g. (Bauza et al. 2019; Henry et al. 2016; Liu et al. 2018; Tian et al. 2024)]. In both cases, 496 

the assumption is that dispersal between samples is high. We find that its assumptions about the 497 

nature of the distribution underlying the relationship between sources and sinks make it an 498 

unexpectedly useful tool for discriminating dispersal specialists on very large scales. Other 499 

methods, such as those by Stegen et al (Stegen et al. 2013, 2015), are perhaps better approaches 500 

for parsing homogenizing dispersal from dispersal limitation within one type of sample (i.e. soils) 501 

but are not designed for estimating relationships between sample types. 502 

Together, these different lines of evidence indicate that the bacterial and fungal 503 

metacommunities in this system take on different network structures. Based on our analysis, we 504 

hypothesize that the fungal metacommunity takes on a multi-layer network-like structure, where 505 

the strongest links occur within sample type, and additional links between sample types are 506 

moderated by distance. In contrast, we hypothesize that the bacterial metacommunity assumes a 507 

modular network-like structure, where samples (the nodes) are strongly linked within each sample 508 

type but weakly linked between types, and link strength is not influenced by geographical distance. 509 

This work explores the baseline for the relationship between the built environment and extrinsic 510 

microbial sources in this system. Future work should address how the differences in bacterial and 511 

fungal metacommunity structure influence the social microbiome and health of hosts. Different 512 

network structures are known to influence microbial transmission (Shirley & Rushton 2005) and 513 

may be factors in pathogen accumulation and nest decline in S. dumicola (Busck et al. 2022). 514 

Alternatively, how these networks influence compositional changes to the host- and nest-515 

associated microbiome over time may locally alter host fitness and survival patterns (Mueller et 516 

al. 2020).  517 

Acknowledgements 518 

We would like to thank… and our reviewers for their constructive feedback. 519 



Author contributions 520 

CNK funded the project and designed/executed the field work and sample collection with PRM. 521 

STC organized and performed sample extraction, processing, and data collection. KJMT designed 522 

and executed the data analysis. KJMT lead the manuscript writing with STC, PRM, MAL, and 523 

CNK all contributing to the writing. MAL provided support funding and conceptual guidance to 524 

KJMT during the analysis phase.  525 

Declaration of interests 526 

Authors declare no competing interests. 527 

Funding 528 

KJMT was funded by NSF 2025118 529 

References 530 

Ainsworth, C., Slotow, R., Crouch, T. & Lubin, Y. (2002). Lack of task differentiation during 531 

prey capture in the group living spider Stegodyphus mimosarum (Araneae, Eresidae). 532 

arac, 30, 39–46. 533 

Andersson, M.G.I., Berga, M., Lindström, E.S. & Langenheder, S. (2014). The spatial structure 534 

of bacterial communities is influenced by historical environmental conditions. Ecology, 535 

95, 1134–1140. 536 

Astorga, A., Oksanen, J., Luoto, M., Soininen, J., Virtanen, R. & Muotka, T. (2012). Distance 537 

decay of similarity in freshwater communities: do macro- and microorganisms follow the 538 

same rules? Global Ecology and Biogeography, 21, 365–375. 539 

Aviles, L. (1997). Causes and consequences of cooperation and permanent sociality in spiders. 540 

The evolution of social behaviour in insects and arachnids. 541 

Barberán, A., Henley, J., Fierer, N. & Casamayor, E.O. (2014). Structure, inter-annual 542 

recurrence, and global-scale connectivity of airborne microbial communities. Science of 543 

The Total Environment, 487, 187–195. 544 

Bauza, V., Madadi, V., Ocharo, R.M., Nguyen, T.H. & Guest, J.S. (2019). Microbial Source 545 

Tracking Using 16S rRNA Amplicon Sequencing Identifies Evidence of Widespread 546 

Contamination from Young Children’s Feces in an Urban Slum of Nairobi, Kenya. 547 

Environ. Sci. Technol., 53, 8271–8281. 548 

Bosch, T.C.G., Wigley, M., Colomina, B., Bohannan, B., Meggers, F., Amato, K.R., et al. (2024). 549 

The potential importance of the built-environment microbiome and its impact on human 550 

health. Proceedings of the National Academy of Sciences, 121, e2313971121. 551 

Busck, M.M., Lund, M.B., Bird, T.L., Bechsgaard, J.S., Bilde, T. & Schramm, A. (2022). 552 

Temporal and spatial microbiome dynamics across natural populations of the social 553 

spider Stegodyphus dumicola. FEMS Microbiology Ecology, 98, fiac015. 554 

Busck, M.M., Settepani, V., Bechsgaard, J., Lund, M.B., Bilde, T. & Schramm, A. (2020). 555 

Microbiomes and Specific Symbionts of Social Spiders: Compositional Patterns in Host 556 

Species, Populations, and Nests. Frontiers in Microbiology, 11. 557 

Cassidy, S.T., Pope, A., Missigman, N., Taylor, K.J.M., Haufiku, M., Kavili, T., et al. (2025). 558 

Exploring the effects of horizontal pathogen transmission on mortality and behaviour in a 559 

cooperatively breeding spider. Animal Behaviour, 222, 123113. 560 



Choudoir, M.J., Barberán, A., Menninger, H.L., Dunn, R.R. & Fierer, N. (2018). Variation in 561 

range size and dispersal capabilities of microbial taxa. Ecology, 99, 322–334. 562 

Christenson, T.E. (1984). Behaviour of colonial and solitary spiders of the theridiid species 563 

Anelosimus eximius. Animal Behaviour, 32, 725–734. 564 

Crouch, T. & Lubin, Y. (2001). Population stability and extinction in a social spider Stegodyphus 565 

mimosarum (Araneae: Eresidae). Biological Journal of the Linnean Society, 72, 409–417. 566 

De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., et al. (2012). 567 

Body size and dispersal mode as key traits determining metacommunity structure of 568 

aquatic organisms. Ecology Letters, 15, 740–747. 569 

Dray, S., Legendre, P. & Peres-Neto, P.R. (2006). Spatial modelling: a comprehensive framework 570 

for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 571 

196, 483–493. 572 

Egan, C., Li, D.-W. & Klironomos, J. (2014). Detection of arbuscular mycorrhizal fungal spores 573 

in the air across different biomes and ecoregions. Fungal Ecology, Fungal ecology 574 

beyond boundaries: from communities to the globe, 12, 26–31. 575 

Feng, M., Tripathi, B.M., Shi, Y., Adams, J.M., Zhu, Y.-G. & Chu, H. (2019). Interpreting 576 

distance-decay pattern of soil bacteria via quantifying the assembly processes at multiple 577 

spatial scales. MicrobiologyOpen, 8, e00851. 578 

Fernandez-Fournier, P. & Avilés, L. (2018). Environmental filtering and dispersal as drivers of 579 

metacommunity composition: complex spider webs as habitat patches. Ecosphere, 9, 580 

e02101. 581 

Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces 582 

for global land areas. International Journal of Climatology, 37, 4302–4315. 583 

Gilbert, B. & Lechowicz, M.J. (2004). Neutrality, niches, and dispersal in a temperate forest 584 

understory. Proceedings of the National Academy of Sciences, 101, 7651–7656. 585 

Golan, J.J. & Pringle, A. (2017). Long-Distance Dispersal of Fungi. Microbiology Spectrum, 5, 586 

10.1128/microbiolspec.funk-0047–2016. 587 

Guénard, G. & Legendre, P. (2022). Hierarchical Clustering with Contiguity Constraint in R. 588 

Journal of Statistical Software, 103, 1–26. 589 

Henry, R., Schang, C., Coutts, S., Kolotelo, P., Prosser, T., Crosbie, N., et al. (2016). Into the 590 

deep: Evaluation of SourceTracker for assessment of faecal contamination of coastal 591 

waters. Water Research, 93, 242–253. 592 

Hill, M.S. & Gilbert, J.A. (2023). Microbiology of the built environment: harnessing human-593 

associated built environment research to inform the study and design of animal nests and 594 

enclosures. Microbiology and Molecular Biology Reviews, 87, e00121-21. 595 

Jenkins, D.G., Brescacin, C.R., Duxbury, C.V., Elliott, J.A., Evans, J.A., Grablow, K.R., et al. 596 

(2007). Does size matter for dispersal distance? Global Ecology and Biogeography, 16, 597 

415–425. 598 

Keiser, C.N., Hammer, T.J. & Pruitt, J.N. (2019). Social spider webs harbour largely consistent 599 

bacterial communities across broad spatial scales. Biology Letters, 15, 20190436. 600 



Keiser, C.N., Howell, K.A., Pinter-Wollman, N. & Pruitt, J.N. (2016). Personality composition 601 

alters the transmission of cuticular bacteria in social groups. Biology Letters, 12, 602 

20160297. 603 

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., et al. 604 

(2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 605 

1463–1464. 606 

Knights, D. (2016). SourceTracker for R. 607 

Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G., et al. 608 

(2011). Bayesian community-wide culture-independent microbial source tracking. Nat 609 

Methods, 8, 761–763. 610 

Legendre, P. (2008). Studying beta diversity: ecological variation partitioning by multiple 611 

regression and canonical analysis. Journal of Plant Ecology, 1, 3–8. 612 

Legendre, P., Borcard, D. & Peres-Neto, P.R. (2005). Analyzing Beta Diversity: Partitioning the 613 

Spatial Variation of Community Composition Data. Ecological Monographs, 75, 435–614 

450. 615 

Leibold, M.A. & Chase, J.M. (2017). Metacommunity Ecology. Metacommunity Ecology, Volume 616 

59, Monographs in Population Biology. Princeton University Press. 617 

Leibold, M.A., Rudolph, F.J., Blanchet, F.G., De Meester, L., Gravel, D., Hartig, F., et al. (2021). 618 

The internal structure of metacommunities. Oikos, 2022. 619 

Li, S., Yang, Z., Hu, D., Cao, L. & He, Q. (2021). Understanding building-occupant-microbiome 620 

interactions toward healthy built environments: A review. Front. Environ. Sci. Eng., 15, 621 

65. 622 

Liu, G., Zhang, Y., van der Mark, E., Magic-Knezev, A., Pinto, A., van den Bogert, B., et al. 623 

(2018). Assessing the origin of bacteria in tap water and distribution system in an 624 

unchlorinated drinking water system by SourceTracker using microbial community 625 

fingerprints. Water Research, 138, 86–96. 626 

Locey, K.J., Muscarella, M.E., Larsen, M.L., Bray, S.R., Jones, S.E. & Lennon, J.T. (2020). 627 

Dormancy dampens the microbial distance–decay relationship. Philosophical 628 

Transactions of the Royal Society B: Biological Sciences, 375, 20190243. 629 

Lucas, J.M., Madden, A.A., Penick, C.A., Epps, M.J., Marting, P.R., Stevens, J.L., et al. (2019). 630 

Azteca ants maintain unique microbiomes across functionally distinct nest chambers. 631 

Proceedings of the Royal Society B: Biological Sciences, 286, 20191026. 632 

Martinez Arbizu, P. (2020). pairwiseAdonis: Pairwise multilevel comparison using adonis. 633 

Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., et al. 634 

(2006). Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol, 635 

4, 102–112. 636 

Mennicken, S., Kondratow, F., Buralli, F., Manzi, S., Andrieu, E., Roy, M., et al. (2020). Effects 637 

of Past and Present-Day Landscape Structure on Forest Soil Microorganisms. Frontiers in 638 

Ecology and Evolution, 8. 639 



Mikryukov, V., Dulya, O., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., et al. (2023). 640 

Connecting the multiple dimensions of global soil fungal diversity. Science Advances, 9, 641 

eadj8016. 642 

Miller, E.T., Svanbäck, R. & Bohannan, B.J.M. (2018). Microbiomes as Metacommunities: 643 

Understanding Host-Associated Microbes through Metacommunity Ecology. Trends in 644 

Ecology & Evolution, 33, 926–935. 645 

Mueller, E.A., Wisnoski, N.I., Peralta, A.L. & Lennon, J.T. (2020). Microbial rescue effects: 646 

How microbiomes can save hosts from extinction. Functional Ecology, 34, 2055–2064. 647 

Nazipi, S., Elberg, C.L., Busck, M.M., Lund, M.B., Bilde, T. & Schramm, A. (2021). The 648 

bacterial and fungal nest microbiomes in populations of the social spider Stegodyphus 649 

dumicola. Systematic and Applied Microbiology, 44, 126222. 650 

Normand, P., Daffonchio, D. & Gtari, M. (2014). The Family Geodermatophilaceae. In: The 651 

Prokaryotes: Actinobacteria (eds. Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E. 652 

& Thompson, F.). Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 361–379. 653 

O’Brien, S.L., Gibbons, S.M., Owens, S.M., Hampton-Marcell, J., Johnston, E.R., Jastrow, J.D., 654 

et al. (2016). Spatial scale drives patterns in soil bacterial diversity. Environmental 655 

Microbiology, 18, 2039–2051. 656 

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., et al. (2022). 657 

vegan: Community Ecology Package. 658 

Peay, K.G., Schubert, M.G., Nguyen, N.H. & Bruns, T.D. (2012). Measuring ectomycorrhizal 659 

fungal dispersal: macroecological patterns driven by microscopic propagules. Molecular 660 

Ecology, 21, 4122–4136. 661 

Pedersen, M.W., Overballe-Petersen, S., Ermini, L., Sarkissian, C.D., Haile, J., Hellstrom, M., et 662 

al. (2015). Ancient and modern environmental DNA. Philosophical Transactions of the 663 

Royal Society B: Biological Sciences, 370, 20130383. 664 

Peres-Neto, P.R. & Legendre, P. (2010). Estimating and controlling for spatial structure in the 665 

study of ecological communities. Global Ecology and Biogeography, 19, 174–184. 666 

Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard, D. (2006). Variation Partitioning of Species 667 

Data Matrices: Estimation and Comparison of Fractions. Ecology, 87, 2614–2625. 668 

QGIS Development Team, A. & others. (2024). QGIS geographic information system. Open 669 

source geospatial foundation project. 670 

R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation 671 

for Statistical Computing, Vienna, Austria. 672 

Ranjard, L., Dequiedt, S., Chemidlin Prévost-Bouré, N., Thioulouse, J., Saby, N.P.A., Lelievre, 673 

M., et al. (2013). Turnover of soil bacterial diversity driven by wide-scale environmental 674 

heterogeneity. Nat Commun, 4, 1434. 675 

Rose, C., Lund, M.B., Schramm, A., Bilde, T. & Bechsgaard, J. (2023a). Does ecological drift 676 

explain variation in microbiome composition among groups in a social host species? 677 

Journal of Evolutionary Biology, 36, 1684–1694. 678 



Rose, C., Lund, M.B., Søgård, A.M., Busck, M.M., Bechsgaard, J.S., Schramm, A., et al. 679 

(2023b). Social transmission of bacterial symbionts homogenizes the microbiome within 680 

and across generations of group-living spiders. ISME COMMUN., 3, 1–10. 681 

Sarkar, A., Harty, S., Johnson, K.V.-A., Moeller, A.H., Archie, E.A., Schell, L.D., et al. (2020). 682 

Microbial transmission in animal social networks and the social microbiome. Nat Ecol 683 

Evol, 4, 1020–1035. 684 

Sarkar, A., McInroy, C.J.A., Harty, S., Raulo, A., Ibata, N.G.O., Valles-Colomer, M., et al. 685 

(2024). Microbial transmission in the social microbiome and host health and disease. 686 

Cell, 187, 17–43. 687 

Schoch, C.L., Crous, P.W., Groenewald, J.Z., Boehm, E.W.A., Burgess, T.I., de Gruyter, J., et al. 688 

(2009). A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol, 64, 1-689 

15S10. 690 

Settepani, V., Schou, M.F., Greve, M., Grinsted, L., Bechsgaard, J. & Bilde, T. (2017). Evolution 691 

of sociality in spiders leads to depleted genomic diversity at both population and species 692 

levels. Molecular Ecology, 26, 4197–4210. 693 

Shirley, M.D.F. & Rushton, S.P. (2005). The impacts of network topology on disease spread. 694 

Ecological Complexity, 2, 287–299. 695 

Smith, D., Van Rijn, S., Henschel, J., Bilde, T. & Lubin, Y. (2009). Amplified fragment length 696 

polymorphism fingerprints support limited gene flow among social spider populations. 697 

Biological Journal of the Linnean Society, 97, 235–246. 698 

Soininen, J., McDonald, R. & Hillebrand, H. (2007). The distance decay of similarity in 699 

ecological communities. Ecography, 30, 3–12. 700 

Soydaner, A.L. (2013). Compensating for the Consequences of Group-living in the Cooperative 701 

Spider Stegodyphus dumicola. MSc. Arhus University. 702 

Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., et al. (2013). 703 

Quantifying community assembly processes and identifying features that impose them. 704 

The ISME Journal, 7, 2069–2079. 705 

Stegen, J.C., Lin, X., Fredrickson, J.K. & Konopka, A.E. (2015). Estimating and mapping 706 

ecological processes influencing microbial community assembly. Front. Microbiol., 0. 707 

Stegen, J.C., Lin, X., Konopka, A.E. & Fredrickson, J.K. (2012). Stochastic and deterministic 708 

assembly processes in subsurface microbial communities. The ISME Journal, 6, 1653–709 

1664. 710 

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., et al. (2014). 711 

Global diversity and geography of soil fungi. Science, 346, 1256688. 712 

Tian, Y., Han, Z., Su, D., Luan, X., Yu, L., Tian, Z., et al. (2024). Assessing impacts of municipal 713 

wastewater treatment plant upgrades on bacterial hazard contributions to the receiving 714 

urban river using SourceTracker. Environmental Pollution, 342, 123075. 715 

Wilkins, D., Leung, M.H. & Lee, P.K. (2016). Indoor air bacterial communities in H ong K ong 716 

households assemble independently of occupant skin microbiomes. Environmental 717 

Microbiology, 18, 1754–1763. 718 



Wilkinson, D.M., Koumoutsaris, S., Mitchell, E.A.D. & Bey, I. (2012). Modelling the effect of 719 

size on the aerial dispersal of microorganisms. Journal of Biogeography, 39, 89–97. 720 

Zomer, R.J., Bossio, D.A., Trabucco, A., Yuanjie, L., Gupta, D.C. & Singh, V.P. (2007). Trees 721 

and water: smallholder agroforestry on irrigated lands in Northern India. IWMI. 722 

Zomer, R.J., Trabucco, A., Bossio, D.A. & Verchot, L.V. (2008). Climate change mitigation: A 723 

spatial analysis of global land suitability for clean development mechanism afforestation 724 

and reforestation. Agriculture, ecosystems & environment, 126, 67–80. 725 

  726 



Supplemental information 727 

Figure S1. Rarefaction curves for bacterial (left) and fungal (right) communities from soil, (top), 728 

retreat silk (middle) and capture silk (bottom) samples.  Curves were generated with a sample size 729 

of 250 taxa. 730 



Figure S2. All diversity metrics calculated for bacterial and fungal communities: Shannon’s H, 731 

Richness, Evenness, Chao1, Faith’s PD, beta dispersion. A) Boxplots show the values of each 732 

metric for each sample type. B) Tukey HSD results for pairwise ANOVA comparisons between the 733 

sample types for each metric. Blue lines indicate those differences between groups that are 734 

statistically different from 0.  735 



Figure S3. Building the Moran Eigenvector Map from a relative neighbor network. A) The relative 736 

neighbor network for bacterial sites (N=11, indicated in red) and fungal sites (N=11, indicated in 737 

blue). B) MEMs 1-10 for bacterial sites. C) MEMs 1-10 for fungal sites.  738 



Figure S4. A) Ternary plots showing the mean source assignment of each site averaged across all 739 

taxa. Most bacterial communities are dominated by retreat or soil taxa. Most fungal communities 740 

are dominated by retreat or Unknown taxa. B,C) Source assignment for each ASV, segregated by 741 

the average proportion of the assignment exceeding 50%. B) Ternary plots show the mean 742 

proportion of reads drawn by the Gibbs sampler for each ASV. C) Bar graph shows the mean 743 

proportions for each ASV visualized a different way. 744 
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