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Abstract 
Among global changes urbanisation is distinctive because it entangles a variety of human-induced rapid 
environmental changes, such as habitat loss and fragmentation, temperature change, introduction of 
human food sources, and pollution. Urban environments are assumed to be heterogeneous and variable 
in space and time. A key feature of animals coping with high environmental variability ought to be 
phenotypic flexibility, i.e. the capacity of individuals to express reversible variation in labile traits. 
However, this “phenotypic flexibility hypothesis” has not been tested rigorously. Using a meta-analysis 
approach, we compiled available raw data of studies directly comparing urban and non-urban 
populations and estimated fixed and reversible individual variation. Across all taxa, fixed variation did 
not diƯer between rural and urban populations, although patterns emerged without birds. Reversible 
variation was marginally lower in urban compared to non-urban populations. The potential decrease of 
phenotypic flexibility in urban individuals could result from diƯerent responses of individual plasticity 
and predictability. Overall, the eƯects of urbanisation on phenotypic variation are not as generalisable 
as expected and may depend on the taxa, species and traits. Future studies should increase eƯorts to 
directly link temporal and spatial environmental variation at the individual level and disentangle 
plasticity and predictability. 

Key words: phenotypic plasticity, fixed variation, reversible variation, phenotypic flexibility, urbanisation, 
environmental heterogeneity, meta-analysis 

  



Introduction 
Among global changes urbanisation is one particular and fascinating process to study as it reconstructs 
several human-induced rapid environmental changes (HIREC) within a single environment. Indeed, 
urbanisation engenders habitat changes via habitat loss and/or fragmentation, induces pollution of 
diƯerent sorts (e.g. light, air, sound), and creates local warming eƯects through heat islands (Sih et al. 
2011). Together these environmental alterations create a dynamic and complex system making cities a 
major multi-level selection agent (Szulkin et al. 2020). As cities are constantly expanding throughout the 
world at an unprecedent rate and strongly aƯect wildlife it is crucial to understand what facilitates and 
constrains individual’s adjustment to urban environments. Many studies already reported shifts in 
average phenotypic responses between urban and non-urban populations in various phenotypic traits. 
For example, in behaviour, species thriving in cities are bolder, more exploratory and more active 
(Burkhard et al. 2024; see also Capilla-Lasheras et al. 2022; Iglesias-Carrasco et al. 2020; O’Donnell & 
delBarco-Trillo 2020; Putman & Tippie 2020). Those changes can be driven by local adaptation (i.e. 
selection of the individuals) but since environmental modifications in the city happen at large scales and 
often faster pace than evolution it is most likely that high phenotypic plasticity (i.e. individuals’ 
phenotypic adjustment) is also fundamental for city dwellers to be successful (Hendry et al. 2008). 

In this context of rapidly fluctuating environments, urban individuals will tend to face higher number of 
diƯerent environments within their lifetime compared to non-urban individuals. Individuals predisposed 
to show a larger range of phenotypic responses will be advantaged compared to individuals with a 
narrower range of responses. This range of reversible phenotypic transformation an individual expresses 
defines its phenotypic flexibility, one form of phenotypic plasticity (Piersma & Drent 2003). It should not 
be mistaken with the term behavioural flexibility used in cognitive studies for individuals’ learning or 
innovative abilities (Audet & Lefebvre 2017; Sol et al. 2002). Phenotypic flexibility is the key mechanism 
to understand species adaptation to urban life  (Kark et al. 2007; Lowry et al. 2013; Sih et al. 2011). The 
phenotypic flexibility hypothesis stipulates that phenotypic flexibility should increase when individuals 
live under high fluctuating conditions compared to conspecifics living under low fluctuating conditions 
(Fox et al. 2019; March-Salas et al. 2021; Matesanz et al. 2010; Nicotra et al. 2010; Pigliucci et al. 1996; 
Valladares et al. 2014). The high environmental dynamism present in the city often label urban habitats 
as more heterogenous environments when compared to natural ones (although a consensus is diƯicult 
to reach, see Thompson et al. 2022). Urban habitats typically show stark spatial heterogeneity with high 
variation regarding the type and densities of buildings, or the presence of remnant and natural areas over 
short distances (Cadenasso et al. 2007; Pickett et al. 2001). Cities are also characterised by high spatial 
and temporal temperature fluctuations, especially in their centres, due to less greenery boosting the 
urban heat island eƯect (Soltani & Sharifi 2017). Lastly, the availability of anthropogenic food sources is 
subject to higher fluctuation at a short temporal scale compared to natural food sources (Stofberg et al. 
2019). Overall, the high environmental heterogeneity in urban environments is expected to increase the 
phenotypic flexibility of individuals living under these conditions in contrast to those in less urban 
populations. Surprisingly, only one study investigated such phenomena. Gervais et al. (2025) found that 
higher spatial heterogeneity (i.e. variance in impervious area) was not associated with greater 
phenotypic flexibility for breath rate and exploration in a passerine bird species. Yet, even studies 
comparing solely phenotypic flexibility between urban and non-urban populations are scarce reducing 
our abilities to understand the biological importance of reversible variation in the context of urbanisation 
(but see Dammhahn et al. 2020; Gervais et al. 2025). 

Urban environmental heterogeneity is not only expected to aƯect within-individual phenotypic 
responses but also between-individual diƯerences. As mention above, the multi-environmental axis of 



human disturbances present in the city creates an urban filter selecting specific individuals and reducing 
the number of urban living species (Piano et al. 2017). These strong selective processes are most likely 
reducing interspecific competition in species communities in the cities. Therefore, according to niche 
theory, a reduction of competition is expected to shape phenotypic variation by decreasing between-
individual diƯerences in the city as individuals do not need to specialise for specific resources to 
increase fitness (Svanbäck & Bolnick 2005). This change of the fixed individual variation has the potential 
to damper the abilities of populations to cope with future environmental conditions when individuals in 
a population show high phenotypic homogenisation (Bolnick et al. 2011; Forsman & Wennersten 2016). 
However, we still do not know whether fixed individual variation, like reversible individual variation, is 
constraint by  urbanisation (but see Gervais et al. 2025 for one example). 

Reversible and fixed individual variation can be estimated via variance decomposition, as commonly 
used in quantitative genetics or animal personality to estimate heritability or repeatability, respectively 
(Falconer & Mackay 1996; Nakagawa & Schielzeth 2010; Réale et al. 2007). In short, it allows to 
estimate reversible (within-individual) and fixed (between-individual) variation for a trait of interest. 
Disentangling both variation components is a necessary and crucial step to understand their specific 
eco-evolutionary consequences in the context of urbanisation and explain how species adapt to urban 
life. Reversible variation (i.e. within-individual variation) informs us about an organism’s fast 
adjustments, which are key to cope with rapid environmental changes, often so rapid that genetic 
changes are lagging (Hendry et al. 2008). Fixed variation (i.e. between-individual variation) arises from 
genetic or permanent environmental eƯects and is indicative of local adaptation and selective 
processes (Dingemanse & Wolf 2013; Lynch & Walsh 1998; Wilson et al. 2010). Although variance 
partitioning oƯers a unique opportunity to test the phenotypic flexibility hypothesis and isolate a fixed 
marker of selective processes under urbanisation, most urban ecology meta-analyses summarized 
results regarding mean or total phenotypic variation change, thus lumping together both between- and 
within-individual variation (morphology: Putman & Tippie 2020; Thompson et al. 2022, life-history: 
Capilla-Lasheras et al. 2022, behaviour: Burkhard et al. 2024, physiology: Iglesias-Carrasco et al. 2020). 
Hence, there is an evident gap in evidence synthesis to understand how urbanisation aƯect fixed and, 
most importantly, reversible phenotypic variation. 

Using a combined approach of data re-analysis follow by a formal meta-analysis, we aim to test the 
predictions of the phenotypic flexibility and the phenotypic homogenisation hypotheses. We first 
summarised studies that have repeated individual measurements for both urban and non-urban 
populations for labile traits (i.e., behaviour, physiology, life-history, and morphology) and quantified 
within- and between-individual variation by performing variance decomposition on all available data 
sets. We tested whether habitat type (urban versus non-urban) explained diƯerences for each 
phenotypic variance component. Specifically, we tested two predictions (i) within-individual variation is 
higher in urban compared to non-urban populations (i.e. indicating higher phenotypic flexibility) and (ii) 
between-individual variation is lower in urban compared to non-urban populations (i.e. indicating 
individual homogenisation). In addition, we tried to refine our estimates of ‘true’ within individual 
variation (individual predictability) by fitting population reaction norms in function of time (i.e. trial 
number) and sex as suggested by (Stamps et al. 2012).  



Materials and Methods 
Literature review: Scoping and search term development 
We first identified few studies that should fit the two main requirements for the meta-analysis (e.g. urban 
versus rural populations comparisons, repeated measures for labile traits). Using Google Scholar and 
the bibliography in these papers, we found thirteen suitable papers (Text S1). Based on these papers, we 
established a first keyword query (Query 1).  

Query 1: 

All Fields =“phenotypic plasticity” OR repeata* OR consistenc*, “inter-individual” or flexibilit* or 
“individual plasticity” or “animal personality”) AND Topic = (urban* or rural*) 

Using Query 1, we recovered all papers mentioned above except Møller & Tryjanowski (2014) most 
likely because their study was not focused on phenotypic flexibility. Therefore, we continued with Query 
1 and extracted 2,864 papers (13.12.2022) in Web of Science with specific categories (Text S2) to 
assess the suitability of Query 1 to yield relevant papers. We sorted the papers by author’s name and 
screened 1,000 papers using five categories: paper with non-wild animals, paper without repeated 
measurements, paper with urban or rural populations, paper with urban and rural populations, and paper 
of unknown category due to lack of methodological detail. From this categorisation, the hit rate was at 
3.5%. To improve the hit rate and facilitate the screening process, exclusion keywords were included in 
the search. We made two groups of papers: i) papers which were highly irrelevant using the very strong 
exclusion criteria ‘paper with non-wild animals’ (n = 767) and, ii) the papers which were highly relevant 
‘paper with wild animals, studying urban or rural populations and with repeated measurement for labile 
traits’ (n = 35). 

For each dataset, we made a table summarising what words are used in the title and abstract separately 
and calculated their associated frequencies using R packages wordcloud (Fellows 2018) and 
wordcloud2 (Lang & Chien 2018). We found six words which were used very often in the irrelevant paper 
group and never used in the relevant paper group (e.g., planning, water management, emission, policy, 
carbon, and child). Those words were added in the query as exclusion words. We also added important 
keywords that were missing such as “intra-individual”, “repeated disturbance”, “repeated exposure”, and 
“repeated trial”. We did not use “repeat*” because it was adding many irrelevant articles. Based on these 
refinements Query 2 was developed. 

Query 2: 

TOPIC = "phenotypic plasticity" or repeata* or consistenc* or "inter-individual" or "intra-individual" or 
flexibilit* or "individual plasticity" or "animal personality" or "repeated disturbance*" or "repeated 
exposure*" or "repeated trial*" AND ABSTRACT = urban* or rural* NOT ABSTRACT = "planning" or "water 
management" or emission* or polic* or carbon* or child* 

Query 2 yielded 1,509 papers in Web of Science with specific categories (Text S3) and retrieved the 12 
original papers from the Google Scholar search (Møller & Tryjanowski 2014 was still missing) as well 
as the 35 papers from the first screening. Thus, Query 2 was more specific and eƯective to find relevant 
papers and was used for the literature search.  

Literature review: The search 
We performed the literature search in five databases (Web of Sciences collection, Scopus, ProQuest, 
EBSCOhost Open Dissertations, and OpenGrey) on the 10th of March 2023. The details of the search 



term used for each database can be found in Table S1. In total, we found 4,322 papers. We removed 
1,150 duplicates using the software Ryan (Ouzzani et al. 2016) and double checked with a very 
conservative string match script in R (v.4.4.0; R Core Team 2022) resulting in 3,172 papers. Then, we 
performed three screening phases resulting in 113 papers. The first screening excluded all studies on 
humans, plants, domesticated or zoo animals, discarding 2,626 studies. The second and third screening 
excluded studies that did not have repeated measurement of labile traits for both urban and non-urban 
populations, discarding  409 and 25 studies, respectively. The number of papers excluded for each 
screening phase per exclusion criteria is explained in Figure S1.  

Dataset collection 
To assess whether phenotypic flexibility (i.e. within-individual variation) diƯers between urban and non-
urban populations, variance partitioning needs to be performed (for details see ‘Variance partitioning’). 
None of the 113 papers did the adequate variance partitioning on the phenotypic traits as most studies 
were not focusing on phenotypic flexibility. Therefore, raw data was extracted if made open access or 
authors were contacted to obtain raw data or asked to run a specific R-script (Text S4 for contact 
procedure). After the final contacting phase and a deep data check, we collected data from 33 studies. 
Initially, the meta-dataset contained 111 paired urban–non-urban estimates from 23 species.  

Data categorisation 
Labile traits are defined as traits with the capacity to be reversibly expressed (Brommer 2013; 
Westneat et al. 2015). For behavioural, physiological, cognitive, and life history traits, we assumed an 
overall presence of reversible variation (i.e. phenotypic flexibility). However, morphological traits can be 
labile, such as body mass, or not, such as tarsus length in birds, which  grows continuously without 
reversible change. We excluded all morphological traits that were not labile. To standardised across 
studies, we relabelled some traits following functional definitions coming from key papers (Table S2). 

The level of urbanisation can be assessed in multiple ways (Szulkin et al. 2020) and cities encompasses 
various types of habitats. To facilitate comparisons, we followed the classification into urban and non-
urban habitats by the authors of the original studies. Urban habitats were referred as “urban”, “stable 
urban”, “dynamic urban”, “city”, “urban zone” and “suburban”. Non-urban habitats were referred as 
“forest”, “rural”, “extra-urban”, “pond”, “crops”, “country”, “woodland”, “agricultural”, “lake”, “artificial 
reservoir”. Although environmental heterogeneity exists within urban and non-urban habitats, we 
assume that this within-habitat variation  is smaller compared to variation between urban and non-urban 
areas as all studies had clear macro-environmental changes associated with urban and non-urban 
areas (e.g. human presence, percentage of imperviousness). 

Measurement intervals can aƯect repeatability estimates via temporal bias of phenotypic variation 
assessment. Short-interval measurements are expected to produce higher repeatability estimates than 
long-interval measurements (Araya-Ajoy et al. 2015; Bell et al. 2009). Particularly, high repeatability 
can occur when individuals are measured under diƯerent environmental conditions over a short period 
of time (e.g. low versus high predation risk; Araya-Ajoy et al. 2015, Dingemanse & Dochtermann 2013 
for the pseudo-repeatability). Therefore, we classified measurement intervals for each trait of the 
original studies into six categories (minute, day, hour, week, month, and year) based on the shortest 
interval. For example, if 3 tests were performed within 4 h over 7 days we classified it as ‘hour’ interval.  

The biological meaning of diƯerent measurement intervals depends on the species lifespan. Therefore, 
we created four temporal categories (very-short, short, medium, long) relating the measurement interval 
to one round of a breeding season. To illustrate for a bird species, repetitions made across two years (≥ 
two breeding seasons) would be considered a long interval. Repetitions made between the first and the 



second half of one breeding season would be considered medium whereas repetitions within a shorter 
period within one breeding season (e.g. one week) would be considered short. Repetitions over 
consecutive days would be considered very short.  

Development (e.g. age class) can strongly aƯect phenotypic variation within a population (Sears 2014). 
To standardised comparisons and take into account this potential eƯect, we subset datasets that had 
both age classes juvenile and adult. The category juvenile included age classes such as ‘juvenile’, ‘larvae’, 
‘chicks’ or ‘pupae’. The category adult included the age class named ‘adult’. 

Variance partitioning 
The two main objectives of the meta-analysis were to estimate i) whether within-individual variation (i.e. 
phenotypic flexibility) is higher in the urban habitat than in the non-urban habitat, and ii) whether 
between-individual variation (i.e. irreversible variation) is lower in the urban habitat than in the non-urban 
habitat. We performed variance partitioning using linear mixed eƯects models (LMMs) to estimate each 
of these components. All models were run on continuous or count data using Gaussian error distribution 
to facilitate the comparison between the estimates. It is accepted that count data can be analysed using 
Gaussian error distribution, but residual heterogeneity might occur still estimates remain unbiased 
(Schielzeth et al. 2020; Zuur et al. 2009). Therefore, we verified homogeneity of residuals for all our 
models via the function check_model() from the performance package (Lüdecke et al. 2021). Based on 
model validation we ensured that models estimated properly the overall total phenotypic variation and 
the mean (Text S5). We would like to stress that models are here used solely as a tool to calculate 
descriptive statistics such as overall average, inter-group variance (e.g. individual identity) and inter-
observation variance (e.g. residuals). We did not perform any model selection as the only goal of these 
models was to describe the data variance patterns. We used only untransformed data and excluded 
composite variables from PCAs because we were interested to estimate the raw amount of variance 
change for between- and within-individual variance. Any transformation could change the relationships 
among variances (Emerson 1991). One potential bias when fitting count data in Gaussian statistic 
without transformation is to have a variance-mean relationship which we resolved by using logarithm 
coeƯicient variance ratio (lnCVR) estimates in the meta-analysis (see below ‘Meta-analytic eƯect size’), 
as suggested by Senior et al. (2020). 

The variance partitioning was based on the following steps. First, we ran ‘intercept-only’ LMMs (IO-LMM) 
with individual identity as random intercept. Second, we ran ‘adjusted’ linear mixed eƯects models (AD-
LMM) with trial number and sex (if available) as fixed factors as well as other fixed factors when the 
authors mentioned that they improved the model fit significantly. IO-LMM were used to perform basic 
variance partitioning because studies varied covariates. These models were used for sensitivity 
analyses. We also used them to verify that the mean estimation from the LMMs were aligned with the 
classical mean estimation approach (Text S5). AD-LMM were used to control for variation that might 
arise from experimental or natural causes (De Villemereuil et al. 2018). AD-LMMs compute more 
ecologically accurate variance partitioning which are used for the eƯect size main meta-analytic 
models. We did not include interactions, quadratic eƯects and more than three fixed eƯects as their 
variance estimation become diƯicult using a frequentist approach. For both model types, Maximum 
Likelihood method was used to estimate all variance components simultaneously making variance 
estimates more comparable between models (by avoiding diƯerential variance estimations when fixed 
factors are included) and targeting better the true variance parameter value (Bryk & Raudenbush 1992; 
Searle et al. 1992). In all models, between-individual variation was approximated via the variance hold 
by the variable “ID_individual” (i.e. between-individual variance). Within-individual variation was 
approximated using the residual variance (i.e. within-individual variance). Usually, in meta-analysis, 
authors extract estimates based on basic descriptive statistics rather than using a variance partitioning 



approach. Therefore, we also extracted the mean and total variance with the basic function “mean()” 
and “var()” in R (v.4.4.0; R Core Team 2022) for each urban and non-urban data set separately. We 
checked that the mean and total variance estimates from our models did not deviate > 5% compared to 
the basic estimation method. We considered that 5% deviation is an adequate threshold to validate how 
the models accomplish a solid estimation. After excluding observations with inappropriate deviation 
(Table S3), on average for the IO-LMM, the overall ‘mean’ divergence was 0.46% with a maximum 
positive divergence of 4.20% and a maximum negative divergence of 4.89%. The overall ‘variance’ 
divergence was 2.08% with a maximum positive divergence of 3.82% and a maximum negative 
divergence of 5.36%. For the AD-LMM, the overall ‘variance’ divergence was -1.36% with a maximum 
positive divergence of 5.87% and a maximum negative divergence of 5.81%. We did not calculate the 
divergence for the ‘mean’ since the inclusion of fixed factors deviated the model intercept from the ‘true’ 
mean. 

Meta-analytic eƯect size 
For all variance estimates that were validated, we calculated the log coeƯicient of variation ratio (lnCVR) 
to investigate diƯerences in the variability between urban and non-urban populations (Nakagawa et al. 
2015; Senior et al. 2020). In all eƯect size calculation, we used the mean estimation coming from the 
raw data via the basic R function mean(). Mean and variance values are often positively associated  (e.g. 
Taylor’s Law; Cohen & Xu 2015). Therefore, we chose lnCVR over lnVR as we did not mitigate this mean-
variance relationship using log-transformation on the count data (Senior et al. 2020). lnCVR were 
calculated so that positive values meant higher estimates in urban populations compared to their non-
urban counterparts. For lnCVR, we used the script from Nakagawa et al. (2015) as the package metafor 
(v.4.6-0; Viechtbauer 2010) do not apply the mean-variance relationship correction for lnCVR sampling 
variance. We calculated lnCVR for between- and within-individual variation separately for both IO-LMM 
and AD-LMM with their associated sampling variance. To do so, we used the variance components, 
ID_individual and residuals, from the LMMs and the intercept from the basis R function mean() in R 
(v.4.4.0; R Core Team, 2022). Although our variance components were estimated with repeated 
measurements, we used the original sample size of the study for the calculation of the lnCVR to follow 
the most conservative approach. Using two sample size variants weighted for the number of repeated 
measurement did not change our findings. Finally, we discarded 26 and 18 paired urban–non-urban 
estimates because the IO-LMM and AD-LMM calculated an amount of between-individual variation 
equal to zero hampering our ability to compute lnCVR (Table S4). 

Final dataset 
In total, 33 and 27 paired urban–non-urban estimates were discarded for IO-LMM and AD-LMM 
respectively due to poor model fit or inability to calculate lnCVR (Text S5 for procedure and Table S3, 
Table S4 for summary of the deletion). 

The final meta-dataset included – both models taken together –  89 paired urban–non-urban estimates 
from 22 species and 31 studies (Figure 1) (Bar-Ziv et al. 2023; Batabyal et al. 2017; Batabyal & Thaker 
2019; Biondi et al. 2022; Dominoni et al. 2020, 2015; Garitano-Zavala et al. 2022; Hardman & Dalesman 
2018; Harten et al. 2021; Heppner et al. 2023; Huang et al. 2020; Jakubas et al. 2020; Kaiser et al. 2018, 
2019, 2020; Kozlovsky et al. 2017; Mazza et al. 2020; Mazza & Guenther 2021; Ouyang et al. 2019; Papp 
et al. 2015; Prasher et al. 2019; Smit et al. 2024; Solaro & Sarasola 2019; Stansell et al. 2022; Tabh et 
al. 2022; Thompson et al. 2018; Tüzün et al. 2017; Vardi & Berger-Tal 2022; Vincze et al. 2016; J. Petit & 
M. Dammhahn, unpublished data; R. Rimbach & M. Dammhahn, unpublished data). Of these 89 
comparisons, 61 corresponded to comparisons of behavioural traits (20 studies), 12 were comparisons 
of cognitive traits (7 studies), 5 were comparisons of physiological traits (4 studies), 11 were 



comparisons of morphological traits (9 studies) (Figure 1A) for proportions of phenotypic trait per 
species). Last, within the 61 behavioural traits, 15 corresponded to comparisons of boldness (11 
studies), 32 corresponded to comparisons of activity/exploration (11 studies), 8 corresponded to 
comparisons of aggression (3 studies), 1 corresponded to neophilia (1 study), 3 corresponded to 
neophobia (3 studies) and 2 corresponded to foraging (2 studies). For IO-LMM models only the dataset 
is composed of 78 paired urban–non-urban estimates from 20 species and 27 studies. Of these 78 
comparisons, 56 corresponded to comparisons of behavioural trait (20 studies), 10 corresponded to 
cognitive traits (7 studies), 3 were comparisons of physiological trait (2 studies), 9 were comparisons of 
morphological traits (7 studies). Last, within the 56 behavioural traits, 15 corresponded to comparisons 
of boldness (11 studies), 28 corresponded to comparisons of activity/exploration (11 studies), 8 
corresponded to comparisons of aggression (3 studies), 1 corresponded to neophilia (1 study), 2 
corresponded to neophobia (2 studies), and 2 corresponded to foraging (2 studies). For AD-LMM models 
only the dataset is composed of 84 paired urban–non-urban estimates from 21 species and 29 studies 
(list reference here). Of these 84 comparisons, 58 corresponded to comparisons of behavioural trait (19 
studies), 10 were comparisons of cognitive trait (6 studies), 11 were comparisons of morphological 
traits (9 studies) and 5 were comparisons of physiological trait (4 studies). Last, within the 58 
behavioural traits, 31 corresponded to comparisons of activity/exploration (10 studies), 8 corresponded 
to comparisons of aggression (3 studies) and 13 corresponded to comparisons of boldness (10 studies), 
1 corresponded to neophilia (1 study), 3 corresponded to neophobia (3 studies), and 2 corresponded to 
foraging (2 studies). 

 

Figure 1. Phylogenetic and geographical portrayal of the meta-analysis data set. A) Phylogenetic tree of the 22 
species included in the meta-analysis with the number of eƯect sizes (k = urban–non-urban comparisons) 
included per species (the numbers may vary if IO-LMM or AD-LMM are meta-analysed, see ‘Final dataset’) and the 
proportion of comparisons for each phenotypic trait type. B) Pictures of species included in the meta-analysis 
representing the five major taxa. Left to right from top to bottom: Parus major, Milvago chimango, Psammophilus 
dorsali, Pararge aegeria, Apodemus sylvaticus, and Engystomops pustulosus. All images were extracted from 



www.flickr.com (Authors: Nicolas Venner, Gonzalo Arias, Vipin Baliga, Nicolas Venner, Tim Worfolk, Brian 
Gratwicke) in accord with their copyright (Text S6). C) Global map (excluding Antarctica) showing the location of 
each study included in the meta-analysis. Each point represents the urban location of the urban–non-urban pair. 

Phylogenies 
We used the Open Tree of life (HinchliƯ et al. 2015; Rees & Cranston 2017) and the interface provided 
by the R package rotl (v.3.1.0; Michonneau et al. 2016; OpenTreeOfLife et al. 2019) to calculate the 
phylogenetic trees. We estimated tree branch length using Grafen’s method (Grafen 1989) and 
generated a phylogenetic correlation matrix to include in all our multilevel meta-analytic models. We 
assessed the phylogenetic signal based on the proportion of variation explained by phylogeny (Cinar et 
al. 2022). 

Meta-analysis 
We evaluated the eƯect of urbanisation on phenotypic flexibility of labile traits running phylogenetic 
multilevel (intercept-only) meta-analysis for each response term (Model 1 and Model 3, Table 1). We 
also fitted models that separate labile traits into four principal trait types: behaviour, physiology, 
morphology, and cognition (Model 2 and Model 4, Table 1). One recent study found that diƯerent 
phenotypic traits might show diƯerent change across the variance partition (Gervais et al. 2025). Thus, 
we ran a model exclusively on behavioural traits since it was the only one with an appropriate sample 
size for the category boldness, aggressiveness, and activity/exploration (Model 5, Table 1). Since a large 
part of heterogeneity was still unexplained among our eƯect size, we tested whether the relationship of 
the meta-phenotypic traits and urbanisation diƯered among a priori selected moderators. We fitted a 
‘full’ model that included each of the following predictors: taxa, category for test interval in relation to 
lifespan, provenance of data (whether wild animals are measured in the wild or in the lab), and the 
number of random and fixed factors used in the LMM to partition the variance (Model 6 and Model 7, 
Table 1) 

All meta-analytic models estimated four random intercept eƯects, publication identity (i.e. among-study 
variation), phylogeny (see ‘phylogenies’ section), species identity (i.e. among-species variation not 
explained by phylogeny), and an observation ID term (residuals). All models were fitted assuming 
compound symmetry variance structure. For all models, we estimated total heterogeneity (I²) following 
Nakagawa & Santos (2012) and Senior et al. (2016) using the R function i2_ml (orchaRd R package 
v.2.0; Nakagawa et al. 2021). We considered I2 values around 25%, 50%, and 75% as low, moderate, 
and high heterogeneity respectively (Higgins et al. 2003). We performed all analysis and produce 
visualisations using R (v.4.4.0; R Core Team 2022).  

Sensitivity analysis 
We assessed the robustness of our results with two complementary analyses. First, we re-ran the same 
model as model 1 to 5 using lnCVR calculated from the variance component of IO-LMM (Model 8 to 12, 
Table 1). Second, since bird taxa represented 62% of our eƯect sizes, we re-ran the phylogenetic 
multilevel (intercept-only) meta-analysis (Model 1 and 3, Table 1) once only on birds (Model 13 and 14, 
Table 1) and once excluding all bird species (Model 15 and 16, Table 1). Following general practice, we 
did not re-run models using lnVR because of the strong mean-variance relationship present in our study 
due to the count data. 

Publication bias 
We assessed two types of publication biases, small-study and decline eƯects (time-lag eƯects), 
following Nakagawa et al. (2022) method and the example from Capilla-Lasheras et al. (2022). In 



total, we ran two additional uni-moderator multilevel meta-analytic models for lnCVR of between-
individual variation and lnCVR of within-individual variation (Model 17 to 20, Table 1). Each of these 
models included as a single moderator either the square-root of the inverse of the eƯective sample size 
or the mean-centred year of study publication (Nakagawa et al. 2022; Trikalinos & Ioannidis 2005). 
When data were unpublished, we used the year when the data were collected in the model. The variation 
explained by these moderators (i.e. R2

marginal) was calculated using the R function r2_ml (orchaRd R 
package v.2.0; Nakagawa et al. 2021). 

 

Table 1. Summary of the diƯerent models present in the meta-analysis 

Model ID Response Variance partitioning 
model 

Data Moderators Details 

Main analyses 
1 lnCVR 

between-
individual 
variation 

AD-LMM All traits Intercept Overall meta-analysis on 
between-individual variation. 
Univariate. Table S5. Figure S2. 

2 lnCVR 
between-
individual 
variation 

AD-LMM All traits Trait type EƯect per trait on between-
individual variation. Quadrivariate. 
Table S7. Figure 2A 

3 lnCVR within-
individual 
variation 

AD-LMM All traits Intercept Overall meta-analysis on within-
individual variation. Univariate. 
Table S6. Figure S3. 

4 lnCVR within-
individual 
variation 

AD-LMM All traits Trait type EƯect per trait on within-
individual variation. Quadrivariate. 
Table S8. Figure 2B 

5 lnCVR within-
individual 
variation 

AD-LMM Only 
behaviour 

Behaviour trait 
type 

EƯect per behavioural trait on 
within-individual variation. 
Trivariate. Table S9. Figure 3. 

Secondary analyses 
6 lnCVR 

between-
individual 
variation 

AD-LMM All traits Provenance of 
data + interval 
between 
measurement 
corrected for 
lifespan + number 
of fixed and 
random eƯect in 
AD-LMM 

EƯect of various moderators on 
between-individual variation. 
Multivariate. Table S10. 

7 lnCVR within-
individual 
variation 

AD-LMM All traits Provenance of 
data + interval 
between 
measurement 
corrected for 
lifespan + number 
of fixed and 
random eƯect in 
AD-LMM 

EƯect of various moderators on 
within-individual variation. 
Multivariate. Table S11. 



Sensitivity analysis 
8 lnCVR 

between-
individual 
variation 

IO-LMM All traits Intercept Overall meta-analysis on 
between-individual variation. 
Univariate. Table S12a. 

9 lnCVR 
between-
individual 
variation 

IO-LMM All traits Trait type EƯect per trait on between-
individual variation. Quadrivariate. 
Table S12b. 

10 lnCVR within-
individual 
variation 

IO-LMM All traits Intercept Overall meta-analysis on within-
individual variation. Univariate. 
Table S13a. 

11 lnCVR within-
individual 
variation 

IO-LMM All traits Trait type EƯect per trait on within-
individual variation. Quadrivariate. 
Table S13b. 

12 lnCVR within-
individual 
variation 

IO-LMM Only 
behaviour 

Behaviour trait 
type 

EƯect per behavioural trait on 
within-individual variation. 
Trivariate. Table S13c. 

13 lnCVR 
between-
individual 
variation 

AD-LMM All traits 
with only 
bird 

Intercept Overall meta-analysis on 
between-individual variation only 
with bird. Univariate. Table S14a. 

14 lnCVR within-
individual 
variation 

AD-LMM All traits 
with only 
bird 

Intercept Overall meta-analysis on within-
individual variation only with bird. 
Univariate. Table S14b. 

15 lnCVR 
between-
individual 
variation 

AD-LMM All traits 
without 
bird 

Intercept Overall meta-analysis on 
between-individual variation 
without bird. Univariate. 
Table S14a. 

16 lnCVR within-
individual 
variation 

AD-LMM All traits 
without 
bird 

Intercept Overall meta-analysis on within-
individual variation without bird. 
Univariate. Table S14 b. 

Publication bias 
17 lnCVR 

between-
individual 
variation 

AD-LMM All traits square-root of the 
inverse of the 
eƯective sample 
size 

Overall small-study eƯect on 
between-individual variation. 
Table S15a. 

18 lnCVR within-
individual 
variation 

AD-LMM All traits square-root of the 
inverse of the 
eƯective sample 
size 

Overall small-study eƯect on 
within-individual variation.  
Table S15b. 

19 lnCVR 
between-
individual 
variation 

AD-LMM All traits mean-centred 
year of study 
publication 

Overall decline eƯect on 
between-individual variation. 
Table S16a. 

20 lnCVR within-
individual 
variation 

AD-LMM All traits mean-centred 
year of study 
publication 

Overall decline eƯect on within-
individual variation.  
Table S16b. 

 

  



Results 
After inspecting 3,167 unique studies, our meta-analysis included 89 urban–non-urban comparisons 
from 31 studies for 4 phenotypic traits: behaviour (61 eƯect sizes, 20 studies), physiology (5 eƯect sizes, 
4 studies), cognition (12 eƯect sizes, 7 studies) and morphology (11 eƯect sizes, 9 studies). This dataset 
included 22 species, with most studies located in the northern hemisphere (Figure 1). 

Is between-individual variation lower in the city for diƯerent phenotypic traits? 
Univariate and quadrivariate meta-analytical model (origin of variance: AD-LMM) 

The overall coeƯicient of between-individual phenotypic variation in urban populations did not diƯer 
from non-urban ones (Model 1: lnCVR estimates [95% CI] = -0.046 [-0.191, 0.098]; Figure S2; Table S5). 
Total heterogeneity was high (I2

total = 89.5%), with 20.4% explained by species-specific eƯects (Table 
S5). Calculating urban eƯects per trait confirmed no eƯect of urbanisation on between-individual 
variation across diƯerent phenotypic traits (Model2: lnCVR behaviour estimates [95% CI] = -0.038 [-
0.211, 0.136]; cognition estimates = -0.133 [-0.494, 0.227]; morphology estimates = -0.081 [-0.403, 
0.241]; physiology estimates = 0.297 [-0.182, 0.777], Figure 2A), Table S7). Total heterogeneity was high 
(I2

total = 89.6%), with 21.0% explained by species-specific eƯects (Table S7). 

Is within-individual variation higher in the city for diƯerent phenotypic traits? 

Univariate and quadrivariate meta-analytical model (origin of variance: AD-LMM) 

We found that non-urban populations tended to have on average 6.2% higher coeƯicients of within-
individual phenotypic variation than urban populations, but this eƯect did not diƯer from zero (Model3: 
lnCVR estimates [95% CI] = -0.062 [-0.165, 0.041]; Figure S3; Table S6). Total heterogeneity was high 
(I2

total = 92.6%), with 7.9% explained by species-specific eƯects (Table S6). Calculating urban eƯects 
per trait suggested that the observed trend was most likely due to a pattern emerging from behavioural 
traits (Model4: lnCVR behaviour estimates [95% CI] = -0.073 [-0.205, 0.059]; cognition estimates = 
0.125 [-0.173, 0.423]; morphology estimates = 0.053 [-0.222, 0.329]; physiology estimates = -0.227 [-
0.619, 0.165], Figure 2B), Table S8). Total heterogeneity was high (I2

total = 92.8%), with 11.8% explained 
by species-specific eƯects (Table S8). Additional analysis on the subset of behavioural traits revealed 
that there is not a specific behaviour leading the decrease of within-individual variation in non-urban 
populations compared to urban ones (Model5: lnCVR activity/exploration estimates = -0.069 [-0.251, 
0.113]; aggression estimates = 0.025 [-0.302, 0.351]; boldness estimates [95% CI] = 0.010 [-0.268, 
0.288], Figure 3, Table S9). Total heterogeneity was high (I2

total = 93.9%), with 13.0% explained by 
species-specific eƯects (Table S9). 



 

Figure 2. Model estimates per phenotypic trait for log coeƯicient of variation ratio (lnCVR) assessing 
diƯerences between urban and non-urban populations for A) between-individual variation (model 2) and B) 
within-individual variation (model 4) calculated from AD-LMM. Positive values on the x-axes represent higher 
between- or within-individual variation in urban populations than in non-urban populations and vice versa for 
negative values. The large coloured points represent overall model estimates. The thick black lines show their 95% 
confidence intervals. Transparent small coloured dots show the raw data (their size is scaled according to their 
sample size from which they were estimated). k is the number of observations supplemented with the number of 
studies between brackets. 

 

Figure 3. Model estimates per behaviour for log coeƯicient of variation ratio (lnCVR) assessing diƯerences 
between urban and non-urban populations for within-individual variation calculated from AD-LMM. Positive 
values on the x-axis represent higher within-individual variation in urban populations than in non-urban populations 
and vice versa for negative values. The large coloured points represent overall model estimates. The thick black 
lines show their 95% confidence intervals. Transparent small coloured dots show the raw data (their size is scaled 
according to their sample size from which they were estimated). k is the number of observations supplemented 
with the number of studies between brackets.  



Are other moderators explaining heterogeneity for between- and within-individual 
variation in the context of urbanisation? 

Meta-regression model (origin of variance: AD-LMM) 

We found a positive correlation between the number of factors added in the LMM used for variance 
partitioning and the lnCVR of between-individual variation (Model 6: lnCVR ‘Number of factors in AD-
LMM’ estimates [95% CI] = 0.209 [0.044, 0.374], Table S10). Provenance of data and inter-test interval 
corrected for lifespan did not aƯect lnCVR of between-individual variation (Table S10). We ran additional 
analyses to understand why the number of factors aƯected the lnCVR of between-individual variation. 
We did not find any eƯect due to the amount of variance explained by the fixed eƯects in our AD-LMM 
or the average amount of variance explained by the ’trial’ variable from the AD-LMM of urban and non-
urban populations as well as the lnCVR of the ‘trial’ variable. We did not report those additional analyses. 
In addition, we did not find any eƯect neither between all the tested moderators and the lnCVR of within-
individual variation (Table S11). 

Sensitivity analysis and assessment of publication bias 

Sensitivity analysis – IOM-LMM versus AD-LMM 

We performed the same main analysis (Model 1 to Model 5) using the eƯect size calculating with 
variance partitioning done via intercept-only LMMs (i.e. IOM-LMM). For between-individual variation, like 
in the main analysis, we found that the coeƯicient of between-individual phenotypic variation in urban 
populations did not diƯer from non-urban ones whether we perform the analysis on the overall dataset 
(Table S12a for comparisons) or per phenotypic trait (Table S12b for comparisons). We noted that 
estimates might change between IOM-LMM and AD-LMM methods, but they fall between the 
confidence interval of each other. 

For within-individual variation, like in the main analysis, we found that non-urban populations tended to 
have on average 5.3% higher coeƯicients of within-individual phenotypic variation than urban 
populations but again the 95% confidence interval for this estimate overlapped zero (Model 10: lnCVR 
estimates [95% CI] = -0.053 [-0.155, 0.048]; Table S13a for comparisons). We also found again that the 
observed trend was most likely due to a pattern emerging from behavioural traits when calculating urban 
eƯects per traits (Model 11: lnCVR behaviour estimates [95% CI] = -0.057 [-0.184, 0.071]; cognition 
estimates = 0.062 [-0.197, 0.321]; morphology estimates = 0.001 [-0.257, 0.276]; physiology estimates 
= -0.162 [-0.606, 0.281], Table S13b for comparisons). Additional analysis on the subset of behavioural 
traits did not reveal a pattern of an influential behaviour driving the potential eƯect (Model 12: lnCVR 
activity/exploration estimates = 0.001 [-0.154, 0.156]; aggression estimates = 0.011 [-0.278, 0.301]; 
boldness estimates [95% CI] = -0.072 [-0.298, 0.154], Table S13c for comparisons). 

In this sensitivity analysis, we noted that all estimates for lnCVR might change between IOM-LMM and 
AD-LMM methods but that all estimates fell within the confidence interval of each other. In addition, for 
the meta-analytical model for lnCVR of within-individual variation per behavioural trait, we observed 
significant changes in the estimates probably due to the low sample sizes per trait in this analysis. Most 
importantly, the overall observed patterns remained. 

Sensitivity analysis – Bird versus all other taxa combined 

We conducted the main meta-analysis (Model 1 and Model 3) only on the bird data (Model 13 and Model 
14) and excluding the bird taxa (Model 15 and Model 16). For between-individual variation, we found that 
non-bird taxa of non-urban population tended to have on average 7.4% higher coeƯicient of between-
individual phenotypic variation than non-bird taxa of urban populations but the 95% confidence interval 



for this estimate overlapped zero (Model 15: lnCVR estimates [95% CI] = -0.074 [-0.217, 0.068]; Table 
S14a for comparisons). We did not find this trend in the bird taxa analysed alone (Model 14: lnCVR 
estimates [95% CI] = -0.030 [-0.299, 0.240]; Table S14a for comparisons). 

For within-individual variation, we found the same trend as in the main analysis whether the analysis 
was performed only on birds (Model 14: lnCVR estimates [95% CI] = -0.069 [-0.200, 0.063], Table S14b 
for comparisons) or only on non-bird taxa (Model 16: lnCVR estimates [95% CI] = -0.074 [-0.244, 0.096], 
Table S14b for comparisons).  

Sensitivity analysis – Sample size versus number of repetition 

Our variance estimation to calculate the lnCVR was based on repeated measurements since we were 
interested in between- and within-individual variation. In the computation of the lnCVR we used the 
most conservative approach which is to use the sample size of the study (i.e. ‘N’). In addition, we 
calculated two version of the number of repetitions present in the study (i.e. ‘k’) which would be less 
conservative. In both versions, the uncertainty of the lnCVR was slightly larger and the overall patterns 
did not change. Therefore, we reported only the most conservative approach and did not provide the 
details of the diƯerent versions of k. 

Publication bias – small-study and decline eƯects 

We did not find evidence for the existence of small-study or decline eƯects for lnCVR of between- and 
within-individual variation estimates (Model 17: between-individual variation slope estimate for the 
square-root of the inverse of the eƯective sample size [95% CI] = -0.437 [-1.967, 1.092], R²marginal = 0.006, 
Table S15a); Model 18: within-individual variation slope estimate for the square-root of the inverse of the 
eƯective sample size [95% CI] = -0.355 [-1.501, 0.791], R²marginal = 0.006, Table S15b); Model 19: 
between-individual variation slope estimate for year of publication [95% CI] = 0.024 [-0.028, 0.076], 
R²marginal = 0.013, Table S16a); Model 20: within-individual variation slope estimate for year of publication 
[95% CI] = 0.008 [-0.050, 0.034], R²marginal = 0.002, Table S16b) for comparisons). According to 
Nakagawa et al. (2022), our results do not seem to suƯer from publication bias. 

  



Discussion 
We used phylogenetically controlled multilevel meta-analysis to assess how urban living is related to 
changes in phenotypic variation for labile phenotypic traits. By decomposing phenotypic variation into 
between- and within-individual variation, we addressed potential changes in irreversible and reversible 
variation between urban and non-urban populations. Contrary to our hypothesis, we found no evidence 
that urban individuals are more flexible than non-urban individuals. Instead, we observed a very weak 
tendency for urban individuals to be less flexible than non-urban ones. We also did not find evidence 
that urban individuals are more phenotypically similar to each other than non-urban ones. However, our 
sensitivity analyses revealed that other taxa than birds tended to validate this pattern, but evidence was 
also very weak. Our findings highlight that the eƯects of urbanisation on the diƯerent partitions of 
phenotypic variation are not as straightforward and generalisable as expected and may depend on the 
taxa, species, and traits. 

Do individuals show higher phenotypic flexibility in the city? 

Cities are characterised by high spatial variation in their landscape structure (Cadenasso et al. 2007; 
Pickett et al. 2001), high temporal change of anthropogenic food availability (Stofberg et al. 2019) and 
high spatial-temporal temperature fluctuations (Soltani & Sharifi 2017). In this context of rapid 
environmental changes, the capacity for individuals to reversibly adjust their phenotype seems to be key 
for adaptation (i.e. phenotypic flexibility hypothesis). However, in our study, we did not find evidence that 
urban individuals express higher phenotypic flexibility (i.e. within-individual variation) than non-urban 
ones. On the contrary, we observed a very weak tendency for urban individuals to express lower 
phenotypic flexibility, especially in their behaviour. Our results contribute to the mixed patterns found in 
literature. Indeed, Gervais et al. (2025) showed that within-individual variation increased in function of 
urban spatial heterogeneity for breath rate but decreased for exploration whereas Dammhahn et al. 
(2020) found that urban individuals had higher behavioural flexibility for boldness and exploration 
compared to rural conspecifics. It is possible that our current assumption associating urban habitats 
with higher environmental heterogeneity might not be generalisable especially considering that no 
overall consensus of this phenomena has been reached yet (Thompson et al. 2022). Environmental 
heterogeneity measures are generally lacking in empirical studies, limiting our ability to develop broad 
predictive frameworks. To our knowledge, only two studies (Capilla-Lasheras et al. 2022; Gervais et al. 
2025) have linked spatial heterogeneity to phenotypic changes directly. In our study, we were not able 
to extract enough spatial heterogeneity information for a meaningful comparison. Most critically, it would 
have been diƯicult, if not impossible, to decide a ‘one-size-fits-all’ species scale. Urban environments 
are complex systems with multiple environmental axes (Szulkin et al. 2020) which may have similar or 
diƯerent heterogeneity compared to natural environments depending on the measurement scale and 
the species in focus (Alberti et al. 2020; Pickett et al. 2016; Uchida et al. 2021). In addition, urban 
individuals could choose living in areas in the city that display low environmental heterogeneity to reduce 
environmental pressures (i.e. ‘selection of the environment’ in Edelaar et al. 2023, or 'niche choice' in 
Trappes et al. 2022). Therefore, such variation associated with the environmental heterogeneity eƯect 
could explain why we do not observe an overall change in phenotypic flexibility in our study. 

Alternatively, no overall change in phenotypic flexibility could rise from diƯerent independent responses 
of the individual plasticity (Dingemanse et al. 2010; Snell-Rood 2013) and the individual predictability 
component (Hertel et al. 2021; Westneat et al. 2015) to environmental heterogeneity. Here, we 
postulated that both components would react similarly towards environmental heterogeneity. In the 
case of individual plasticity, individuals would express optimal plasticity in response to environmental 
heterogeneity (i.e. reaction norm). In other words, one unit of change in the environment triggers one unit 



of change in the  phenotype (i.e. 1/1 ratio; slope of 1). However, urban populations could only adjust their 
phenotype every two environmental change resulting in a weaker slope response (1/2 ratio; slope of 0.5) 
as an adaptation to environmental heterogeneity and to new environmental stressors present in the city. 
Indeed, if changes in the urban environment are non-detrimental, individuals with a weaker slope 
response would have reduced costs of plasticity and they would potentially benefit of higher fitness than 
individuals with a stronger slope response (DeWitt et al. 1998). Environmental insensitivity and 
environmental non-assimilation are two mechanisms that could explain a reduction in slope response. 
Environmental insensitivity occurs when individuals integrate environmental information but do not 
respond strongly to an environmental stimulus (e.g. behavioural tolerance: Čapkun-Huot et al. 2024; 
habituation: Blumstein 2016) whereas environmental non-assimilation occurs when an individual’s 
sensory systems is not able to integrate environmental information preventing a phenotypic response 
(Kelley et al. 2018). Such a phenomenon was observed by Sprau & Dingemanse (2017) in great tits 
(Parus major) where optimal behavioural plasticity in aggressiveness and risk taking did not follow urban 
environmental change. However, we do not expect this phenomenon to aƯect our results very strongly 
for two reasons. First, in most cases the measurements were repeated under same conditions without 
any environmental change. Second, we accounted for treatment and temporal eƯects by including them 
as variables in the variance partitioning models, where possible. We note that this correction is solely 
an approximation of a part of the variance explained by individual plasticity and does not replace a proper 
estimation of individual slopes. Still, the reduced reaction norm phenomenon could explain why we 
observe a weak tendency of urban populations to exhibit lower phenotypic flexibility.  

Lower phenotypic flexibility could also be due to changes in individual’s predictability. Changes in 
residual within-individual variance (i.e. individual predictability) can be produced by additive eƯects of 
multidimensional reaction norms (Westneat et al. 2015). Transposing the example in Westneat et al. 
(2015), if territories with good food supplies are more likely to have more stable temperatures in the city 
due to heat island eƯects, then urban individuals on good territories might be less variable in foraging 
than non-urban individuals on good territories with less stable temperature (no heat island eƯect). Error 
in assessment (i.e. organismal error) could also explain why individual predictability diƯers between 
urban and non-urban individuals. If we assume that an individual’s reaction norm slope is the optimal 
response to environmental change, then individuals expressing high residuality around this slope would 
be considered far from their optimal response (errors in plasticity). It is often shown that the urban filter 
strongly selects certain phenotypes, therefore allowing only certain individuals to live in the city 
(behaviour: Burkhard et al. 2024; life-history: Capilla-Lasheras et al. 2022; home range: O’Donnell & 
delBarco-Trillo 2020; morphology: Putman & Tippie 2020). This strong selection could result in a lower 
organismal error in urban habitats compared to non-urban habitats explaining why urban individuals 
tend to show lower phenotypic flexibility. Finally, changes in individual predictability could result from 
passive plasticity (Scheiner 2006), which creates phenotypic variation solely from physical processes. 
For example, food intake rate will have a component of variation associated to the time taken to find the 
next prey item (i.e. unpredictable variance). Small resource patches in cities may help predators to find 
their next prey item more rapidly, allowing lower phenotypic variance due to reduced search times. In 
addition, passive plasticity could be used as an environmental assessment to stabilise an individual’s 
phenotype around their optimal reaction norm, a process analogous to canalization (Stearns & Kawecki 
1994) but occurring at the within-individual level. Variance-prone foraging is one example where prey 
encounters may be unpredictable, but if the variance in encounter times can be assessed by foragers, 
then individuals could adjust their foraging decisions to experience more or less unpredictable passive 
plasticity and shift towards their optimal responses (Shafir 2000; Stephens 1981). Overall, our results 
highlight that the assumed eƯects of urban heterogeneity on phenotypic flexibility might not be 
generalisable across cities and phenotypic traits. The presence of diƯerential feedback mechanisms 



between individual plasticity and individual predictability may create high heterogeneity related to the 
relationship of urbanisation and phenotypic flexibility. 

Do between-individual diƯerences decrease in the city? 

We know that urban environments favour certain phenotypes, leading to shifts in population averages 
(behaviour: Burkhard et al. 2024; life-history: Capilla-Lasheras et al. 2022; home range: O’Donnell & 
delBarco-Trillo 2020; morphology: Putman & Tippie 2020). However, it is unclear how this pattern 
aƯects between-individual variation at the population level. In community ecology, one major 
mechanism to change between-individual variation is linked to competition. High intraspecific 
competition can increase between-individual niche variation when it limits the use of an optimal 
resource leading individuals to feed on alternative items (Svanbäck & Bolnick 2005, 2006). As an 
individual’s resource use is linked to phenotypic trait variation (Bolnick et al. 2011) and intraspecific 
competition could act similarly as interspecific competition, we assumed a similar pattern might be 
possible for between-individual trait variation and interspecific competition. Urban habitats are known 
to select mostly generalist, thermophilic or high-dispersal capacity species which tend to reduce the 
number of urban living species (Piano et al. 2017). Thus, we expected that this reduction of interspecific 
competition would decrease between-individual variation in the city. Surprisingly, we did not find that 
urban individuals were more similar to each other than non-urban ones. Although species richness often 
decreases in the context of urbanisation (but see Rimbach et al. 2025), there are several studies 
showing an increase of individual abundance (Batáry et al. 2018; Szabó et al. 2023). It is possible that 
higher densities in the city induce higher intraspecific competition which could counterbalance any 
interspecific competition reduction maintaining similar levels of individual phenotypic diƯerentiation. 
However, it is possible that this process might be species or taxa specific. Our sensitivity analysis found 
a very weak evidence that urban taxa other than birds might express lower between-individual variation 
than non-urban ones. It is most likely that birds (and flying insects) are less aƯected by urban spatial 
fragmentation and have a higher dispersal propensity, leading to a higher gene flow (Medina et al. 2018; 
Miles et al. 2019; but see Delaney 2013) which could maintain higher between-individual variation. On 
the other hand, species with low dispersal ability might endure higher selective pressures triggering 
adaptive evolutionary processes to canalise individual’s phenotype towards the population optimum 
average, reducing between-individual variation (Dingemanse & Réale 2005). For example, urban 
habitats might display high heterogeneity in  resource availability where only a few resource items are 
highly available and others are limited, enforcing most individuals to use the same resources. Overall, 
urban environmental conditions are expected to act as a filter for urban species composition with clear 
winners and losers. Our results regarding between-individual variation highlights a potential phenotypic 
homogenisation across cities due to an urban filter which is most likely taxa- or species-specific. 

How accounting for more factors in the LMMs could result in changes in the eƯect size? 

When estimating within- and between-individual variation using linear mixed-eƯects models, it is 
important to integrate fixed-eƯects and appropriate random structures to  optimize the estimation of 
each partition (De Villemereuil et al. 2018). Data-level predictors associated with individual data points 
(e.g. age if same individual measured at diƯerent age) will tend to reduce residual variance whereas 
individual-level predictors varying between individuals (e.g. sex) will reduce between-individual variance 
(Nakagawa & Schielzeth 2010). We tested how the number of factors in our models impacted the 
variance estimation. It is known that models with more factors estimate variance partition more 
accurately. We found that comparisons with more factors expressed higher between-individual variation 
in urban populations compared to non-urban ones, shifting the observed trend in the data subset 
including taxa other than birds. This phenomenon could be explicated if the integration of more fixed and 
random factors explained more variance in urban populations than in non-urban populations. However, 



in additional analyses (not reported in this paper), we did not find any eƯect of the amount of variance 
explained by those factors. It is most likely that models controlling for more variables have a stronger 
impact on studies made in urban environments although we could not determine it in our case. It 
highlights the potential of certain biological factors (e.g. sex, time) to aƯect phenotypic variation 
diƯerently in function of the habitat in focus. 

Conclusions 

Our study is the first evidence synthesis partitioning and summarising irreversible and reversible 
phenotypic variation across all taxa and a broad range of labile phenotypic traits. It highlights the 
importance of studying both within- and between- individual variation to advance our understanding of 
the biological meaning of phenotypic flexibility and its relevance for human-induced rapid environmental 
changes. Urbanisation – a highly impactful and spreading anthropogenic habitat development – has the 
potential to induce changes in phenotypic variation at diƯerent individual levels. Although evidence was 
very weak, our findings showed how urbanisation could decrease phenotypic flexibility. Such changes in 
individual variation could have drastic consequences on how individuals express their ecological niche 
through environmental tolerance. The high heterogeneity in the available dataset and the sensitivity 
analyses showed that the observed patterns are most likely to be species, taxa and/or trait specific 
supporting recent mixed results found in the literature. Changes in phenotypic variation at the within- or 
between- individual level will have diƯerent eco-evolutionary consequences and aƯect populations 
persistence and species adaptation. Given that many changes observed in urban habitats foreshadow 
broader shifts driven by global change, it is essential to systematically examine how both partitions of 
phenotypic variation respond to such changes. Such studies linking environmental heterogeneity and 
phenotypic variation are rare especially studying considering change in within-individual variation. 
Within-individual variation (i.e. phenotypic flexibility) represents up to 60% of unexplained variation for 
many labile traits and contains most likely crucial biological information. For future research, we 
advocate for a more holistic framework that considers phenotypic flexibility alongside environmental 
heterogeneity to better understand organismal responses to changing environments. 
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Appendix - Material and methods 
Text S1. List of suitable papers from Google Scholar search 

The following papers have been used for finding original key words for the first search (Carrete & Tella 
2013, 2017; Charmantier et al. 2017; Davies & Sewall 2016; Evans et al. 2010; Hardman & Dalesman 
2018; Kaiser et al. 2018; Miranda et al. 2013; Møller & Tryjanowski 2014; Papp et al. 2015; Scales et al. 
2011; Tabh et al. 2022; Uchida et al. 2020). 

Text S2. Web of sciences categories for Query 1 

Environmental Sciences, Environmental studies, Ecology, Urban studies, Marine Freshwater Biology, 
Ornithology, Agriculture Multidisciplinary, Veterinary Sciences, Multidisciplinary Sciences, Zoology, 
Biodiversity Conservation, Psychology Multidisciplinary, Neurosciences, Physiology, Psychology 
Multidisciplinary, Behavioural Sciences, Biology, Evolutionary Biology, Parasitology, Immunology, 
Toxicology, Psychology Biological, Endocrinology Metabolism, Entomology, Reproductive biology. 

Text S3. Web of sciences categories for Query 2 

Environmental Sciences, Environmental studies, Ecology, Urban studies, Marine Freshwater Biology, 
Zoology, Psychology Multidisciplinary, Biology, Evolutionary Biology, Behavioural Sciences, Veterinary 
Sciences, Neurosciences, Entomology, Agriculture Multidisciplinary, Ornithology, Physiology, 
Toxicology, Reproductive Biology, Immunology, Parasitology, Multidisciplinary Sciences, Biodiversity 
Conservation. 

Table S1. Final search terms used per literature database 

Database Search used Specific filter used 
Web of 
Sciences 
Collection 

TOPIC = "phenotypic plasticity" or repeata* or 
consistenc* or "inter-individual" or "intra-
individual" or flexibilit* or "individual plasticity" or 
"animal personality" or "repeated disturbance*" 
or "repeated exposure*" or "repeated trial*" 
AND ABSTRACT = urban* or rural* 
NOT ABSTRACT = "planning" or "management" 
or emission* or polic* or carbon* or child* 

In Web of Science Core 
Collection. 
 
All dates until 10.03.2024 
 
Web of sciences categories: 
‘Environmental Sciences’, 
‘Environmental studies’, 
‘Ecology, Urban studies’, 
‘Marine Freshwater ‘Biology, 
Zoology’, ‘Psychology 
Multidisciplinary’, ‘Biology’, 
‘Evolutionary Biology’, 
‘Behavioural Sciences’, 
‘Veterinary Sciences’, 
‘Neurosciences’, ‘Entomology’, 
‘Agriculture Multidisciplinary’, 
‘Ornithology’, ‘Physiology’, 
‘Toxicology’, ‘Reproductive 
Biology’, ‘Immunology’, 
‘Parasitology’, ‘Multidisciplinary 
Sciences’, ‘Biodiversity 
Conservation’ 



Scopus (article, abstract, keyword) = "phenotypic 
plasticity" or repeata* or consistenc* or "inter-
individual" or "intra-individual" or flexibilit* or 
"individual plasticity" or "animal personality" or 
"repeated disturbance*" or "repeated exposure*" 
or "repeated trial*" 
AND ABSTRACT = urban* or rural* 
NOT ABSTRACT = "planning" or "management" 
or emission* or polic* or carbon* or child* 

All dates until 10.03.2024 
 
Subject area: ‘Environmental 
Sciences’, ‘Agricultural and 
Biological Sciences’, 
‘Psychology’, ‘Multidisciplinary’, 
‘Decision Sciences’, 
‘Immunology and Microbiology’, 
‘Pharmacology, Toxicology and 
Pharmaceutics’, 
‘Neuroscience’, ‘Veterinary’, 
‘Undefined’ 

ProQuest "phenotypic plasticity" or repeata* or consistenc* 
or "inter-individual" or "intra-individual" or 
flexibilit* or "individual plasticity" or "animal 
personality" or "repeated disturbance*" or 
"repeated exposure*" or "repeated trial*” IN 
abstract – ABSTRACT° AND urban* or rural* IN 
abstract – ABSTRACT° NOT "planning" or 
"management" or emission* or polic* or carbon* 
or child* IN abstract – ABSTRACT° 

All dates until 10.03.2024 
 

EBSCOhost 
Open 
Dissertations 

("phenotypic plasticity" or repeata* or 
consistenc* or "inter-individual" or "intra-
individual" or flexibilit* or "individual plasticity" or 
"animal personality" or "repeated disturbance*" 
or "repeated exposure*" or "repeated trial*") AND 
(urban* or rural*) NOT ("planning" or 
"management" or emission* or polic* or carbon* 
or child*) 

Publication data: 1970-2020 

Open Grey ("phenotypic plasticity" or repeata* or 
consistenc* or "inter-individual" or "intra-
individual" or flexibilit* or "individual plasticity" or 
"animal personality" or "repeated disturbance*" 
or "repeated exposure*" or "repeated trial*") AND 
(urban* or rural*) NOT ("planning" or 
"management" or emission* or polic* or carbon* 
or child*) 

All dates until 10.03.2024 
 

 



 

Figure S1. PRISMA chart of the three screening phases and after the contact phase with criteria table. 

Text S4. Contact procedure 

We used a template letter inspired from Foo et al. (2021). This first contacting phase added 9 potential 
papers resulting in 122 papers. All authors were contacted at least 3 times over a one year and a half 
period to increase the chance of responses. In total, we collected 39 dataset, and 2 researchers were 
willing to run our script without sharing data. After the last contacting phase and a deep check of the 
data we could use 33 datasets to estimate the between- and within-individual variance partitions. We 
would like to emphasize that, unfortunately, about half of our emails did not receive any answer whether 
to share the data. 

 

 

 



Table S2. Functional definitions of the phenotypic traits incorporated in the meta-analysis. 

Phenotypic traits Definitions 
BEHAVIOUR 
Aggression Agonistic behaviour including all behaviours associated with the 

contest or struggle between individuals (King 1973). 
Boldness Behaviour expressed in any risky situation (but not new situations) 

where direct confrontation can be avoided (Réale et al. 2007). 
Activity/Exploration Behaviour directed toward acquiring information about the 

environment (Meyer 1998). 
We included activity as disentangle information gathering from pure 
movement is diƯicult and original paper did not make this diƯerence 
(Crawley 1985; Paré & Glavin 1993). 

Foraging Behaviour related to food acquisition. 
Neophilia Refer to the tendency to approach novel stimuli. DiƯer from 

‘Neophobia’ as it should be in a familiar/non-dangerous situation 
(Greenberg & Mettke-hofmann 2001; Mettke-Hofmann et al. 2002). 

Neophobia (1-Non neophobic) the mere preference for feeding on or visiting 
familiar foods, objects, or places. 
(2-Neophobic) the aversion or fear demonstrated to the same novel 
stimuli (e.g., new object, new colour, new type of food) in a foraging 
context.  
(Greenberg & Mettke-hofmann 2001; Mettke-Hofmann et al. 2002) 

COGNITION 
Innovation  
(also called problem solving 
or innovative problem 
solving) 

Adoption of behaviours that allow individuals to exploit newly 
available, previously used or familiar resources in a new way 
(Greenberg 2003). One apparatus used once to avoid learning 
eƯect. Per definition can be only contextual repeatability. 
We did not discard individuals that did not solve the problem because 
individuals who took the maximum time are still informative of the 
individual variation happening in the population (experimental artefact 
from the length of test) 

Associative learning  
(also called learning or 
repetitive problem solving) 

The ability of an organism to learn the correct association in a 
stimulus-reward contingencies (GriƯin et al. 2015). One apparatus 
re-use multiple time (minimum re-use is 2-trial for repeatability) 
We did not discard individuals that did not solve the problem because 
individuals who took the maximum time are still informative of the 
individual variation happening in the population (experimental artefact 
from the length of test) 

Reversal learning The ability of an organism to learn a reverse previously learned 
association in a stimulus-reward contingencies (Williams 1942). 

MORPHOLOGY 
Body mass Weight of the individual 
Testis size Width of the testis 
Fat score Amount of subcutaneous fat scaled from 0 to 8 (Dominoni et al. 2015) 
PHYSIOLOGY 
Corticosterone baseline Corticosterone measure without any intentional stress induced on 

animals (following the expertise of the authors of the paper) 
Corticosterone acute stress Corticosterone measure after an intentional stress induced on 

animals after a relatively short interval (following the expertise of the 
authors of the paper) 



Corticosterone long stress Corticosterone measure after an intentional stress induced on 
animals after a relatively long interval (following the expertise of the 
authors of the paper) 

Luteinizing hormone Luteinizing hormone concentration in plasma 
Body surface temperature Body surface temperature is measured on the periorbital region of 

the eye 
 

Text S5. Procedure of mean and variance extraction check 

Mean and variance estimates calculated via the linear mix models (LMM) were compared to the variance 
estimates obtained via classical mean and variance computations (mean() and var() function used in R 
on the raw dataset) to make sure our models accurately estimated our parameters. I calculated  a 
coeƯicient of deviation (ΔLMM) for each mean and variance estimates separately (see Equation 1).  

(Equation 1) ΔLMM=ିೌೞೞೌ

ೌೞೞೌ
× 100, where Xmodel represents the mean or variance estimated from the 

model and Xclassical represents the mean or variance estimated from the classical computations. 

We aimed that our LMM estimates did not deviate for more than 5% from the classical estimates.  

When 5% < ΔLMM < 6%, we checked the presence of ‘Influential Observations’ using the function 
check_model() from the performance package (Lüdecke et al. 2021). 

o If influential observations had a Leverage < 0.5, we checked the presence of outliers using 
the function check_model() and looking at the ‘Posterior Predictive Check’.  

 If a clear right or left-skew distribution was present, we accepted the estimates as 
it is still very close to the 5% threshold of acceptation. we decided to not remove the 
outlier as we assumed that authors checked the biological validity of these outliers. 

 If we did not observe any outliers, the estimate was classified as unusable as we 
were not able to run a LMM giving an acceptable accuracy. 

o If influential observations had a Leverage ≥ 0.5, we rerun the model without the influential 
observations. In this case, we accepted the deletion of the influential observations even if the 
observations seemed biologically relevant. We prefer to stay conservative in our estimations 
with reduced amount of information on variation than calculate inaccurate variance 
estimations. The maximum deletion applied in a dataset was five datapoints. 

 If the new estimate reached the 5% threshold of acceptation, the new estimate was 
accepted. 

 If the new estimate did not reach the 5% threshold of acceptation, the estimate was 
classified as unusable as we were not able to run a LMM giving an acceptable accuracy. 

When ΔLMM > 6%, we performed the same procedure although if a clear right or left skew was observed 
we did not accept the estimates and instead tried to improve ΔLMM by removing outliers. 

We used ‘Homogeneity of variance’ to select which value were to be prioritized for removal. 
Observations with high fitted values and high standard deviation residuals were removed in priority. 

What we noticed is that outlier without repeated values had strong eƯect on the variance estimation. In 
addition, dataset with Poisson looking-like residual’s distribution had more chance to cause problems 
in variance estimation as well. 

 



Table S3. Summary of mean and variance check for intercept-only  linear mixed eƯects models 
(IO-LMM) and adjusted linear mixed eƯects models (AD-LMM) 

Paper Trait Data point 
removed 

Conclusion 

For IO-LMM 
Dominoni 
et al. 2015 

Luteinizing, Urban NA Accepted, could not fix but because high 
right skew and close to 5% I accepted. 

Dominoni 
et al. 2015 

Body mass, Urban 1 Corrected 

Garitano-
Zavala et 
al. 2022 

Latency to solve, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Number of flight, Urban NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Number of flight, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Number of hop, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Active scanning, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Prop. Perch visited, 
Urban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Prop. Ground visited, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Kozlovsky 
et al. 2017 

Latency to solve 
“repeat” problem 
solving 

NA Discarded, could not fix variance 

Mazza & 
Guenther 
2021 

Boldness, urban NA Accepted, could not fix but close to 5% I 
accepted. 

Petit 
unpubl. 

Prop. Activity, WM, 
NonUrban 

2 Corrected 

Petit 
unpubl. 

Body mass, WM, 
NonUrban 

3 Corrected 

Petit 
unpubl. 

Boldness, YM, 
NonUrban 

NA Discarded, could not fix mean 

Petit 
unpubl. 

Boldness, YM, Urban NA Discarded, could not fix the variance and 
mean 

Petit 
unpubl. 

Docility, YM, Urban NA Discarded, could not fix mean 

Rimbach 
unpubl. 

CORT, YM, Urban NA Discarded, could not fix the variance 

Rimbach 
unpubl. 

CORT, WM, NonUrban NA Discarded, could not fix the variance and 
mean 

Rimbach 
unpubl. 

CORT, BV, NonUrban 2 Corrected 

Solaro & 
Sarasola 
2019 

Innovation, latency, 
NonUrban 

NA Discarded, could not fix the variance 



Stansell et 
al. 2022 

Boldness, NonUrban 6 Corrected 

Thompson 
& Morand-
Ferron 
2019 

Latency solve, 
Nonurban, Juv 

NA Accepted, could not fix but because high 
right skew and close to 5% I accepted. 

Thompson 
& Morand-
Ferron 
2019 

Incorrect cache, 
Nonurban, Juv 

NA Accepted, could not fix but because high 
right skew and close to 5% I accepted. 

Thompson 
et al. 2018 

Hop duration, 
NonUrban, Adult 

3 Corrected 

For AD-LMM 
Bar-Ziv et 
al. 2023 

Boldness:FID:jackdal, 
Urban 

NA Discarded, could not fix the variance 

Dominoni 
et al. 2015 

Luteinizing, Urban NA Accepted, could not fix but because high 
right skew and close to 5% I accepted. 

Dominoni 
et al. 2015 

Body mass, Urban 1 Corrected 

Huang et 
al. 2020 

Number of flight, Urban NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Number of flight, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Number of hop, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Active scanning, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Prop. Perch visited, 
Urban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Prop. Ground visited, 
NonUrban 

NA Accepted, could not fix but close to 5% I 
accepted. 

Huang et 
al. 2020 

Number of hop, urban 2 Corrected 

Kozlovsky 
et al. 2017 

Latency to solve 
“repeat” problem 
solving 

NA Discarded, could not fix variance 

Petit 
unpubl. 

Prop. Activity, WM, 
NonUrban 

2 Corrected 

Petit 
unpubl. 

Body mass, WM, 
NonUrban 

3 Corrected 

Petit 
unpubl. 

Boldness, YM, 
NonUrban 

NA Discarded, could not fix mean 

Petit 
unpubl. 

Boldness, YM, Urban NA Discarded, could not fix the variance and 
mean 

Petit 
unpubl. 

Docility, YM, Urban NA Discarded, could not fix mean 

Petit 
unpubl. 

Active_total_proportion, 
nonurban, WM 

1 Corrected 

Petit 
unpubl. 

Active_total_proportion, 
nonurban, YM 

NA Accepted, could not fix but a little skew 
but close to 5% I accepted. 



Petit 
unpubl. 

Mass, urban, YM NA Accepted, could not fix but a little skew 
but close to 5% I accepted. 

Prasher et 
al. 2019 

Latency, nonurban, 
juvenile 

NA Accepted, could not fix but because 
binomial like skew and close to 5% I 
accepted. 

Rimbach 
unpubl. 

CORT, YM, Urban NA Discarded, could not fix the variance 

Rimbach 
unpubl. 

CORT, WM, NonUrban NA Discarded, could not fix the variance and 
mean 

Rimbach 
unpubl. 

CORT, BV, NonUrban 2 Corrected 

Rimbach 
unpubl. 

Mass, urban 2 Corrected 

Solaro & 
Sarasola 
2019 

Innovation, latency, 
NonUrban 

NA Discarded, could not fix the variance 

Stansell et 
al. 2022 

Boldness, NonUrban NA Discarded nonurban because oƯ with 
20% 

Thompson 
& Morand-
Ferron 
2019 

Latency to solve, 
Nonurban, Juv 

NA Accepted, could not fix but because high 
right skew and close to 5% I accepted. 

Thompson 
& Morand-
Ferron 
2019 

Incorrect cache, 
Nonurban, Juv 

NA Accepted, could not fix but because high 
right skew and close to 5% I accepted. 

Thompson 
& Morand-
Ferron 
2019 

Latency learning, urban, 
adult 

1 
 

Corrected 

Thompson 
et al. 2018 

Hop duration, 
NonUrban, Adult 

3 Corrected 

Thompson 
et al. 2018 

Number of tree visited, 
nonurban, adult 

NA Accepted, could not fix but close to 5% I 
accepted. 

Thompson 
et al. 2018 

Flight duration, 
nonurban, adult 

NA Accepted, could not fix but a little skew 
but close to 5% I accepted. 

Thompson 
et al. 2018 

Hop duration, urban, 
adult 

1 Corrected 

Tüzün et 
al. 2017 

Mass, urban 2 Corrected 

 

Table S4. Summary of estimates discarded due to impossibility of variance estimation 

Paper Traits Habitat Model type 
Bar-Ziv et al. 2023 Boldness:FID:jackdal urban 

urban & non-urban 
IO-LMM 
FE-LMM 

Dominoni et al. 2015 Testis size urban & non-urban 
urban & non-urban 

IO-LMM 
FE-LMM 

Garitano-Zavala et 
al. 2022 

Innovation: Latency to solve non-urban IO-LMM 



Grunst et al. 2014 CORT_contextA urban & non-urban 
non-urban 

IO-LMM 
FE-LMM 

Harten et al. 2021 Boldness: prop. Landing (female) non-urban 
non-urban 

IO-LMM 
FE-LMM 

Heppner et al. 2023 Body mass (Juvenile) urban & non-urban IO-LMM 
Huang et al. 2020 Neophobia: latency score 

diƯerences 
urban 
urban 

IO-LMM 
FE-LMM 

Huang et al. 2020 CORT_contextB urban 
urban 

IO-LMM 
FE-LMM 

Kozlovsky et al. 2017 Neophobia: Latency to approach urban & non-urban IO-LMM 
 

Kozlovsky et al. 2017 Associative learning: Latency to 
solve 

urban IO-LMM 

Mazza & Guenther 
2021 

Activity/exploration: prop. Of 
activity 

urban FE-LMM 

Mazza & Guenther 
2021 

Innovation: Latency to solve urban FE-LMM 

Ouyang et al. 2019 CORT_temporal (Juvenile) urban & non-urban IO-LMM 
Ouyang et al. 2019 Body mass (Juvenile) urban & non-urban IO-LMM 
Papp et al. 2015 Innovation: Latency to solve non-urban 

non-urban 
IO-LMM 
FE-LMM 

Petit unpubl. Boldness: Latency to emerge 
(Apodemus sylvaticus) 

urban 
urban 

IO-LMM 
FE-LMM 

Petit unpubl. Activity/exploration: prop. Of 
activity (Apodemus sylvaticus) 

non-urban IO-LMM 

Prasher et al. 2019 Innovation: Latency to solve 
(Juvenile) 

urban & non-urban 
urban & non-urban 

IO-LMM 
FE-LMM 

Prasher et al. 2019 Innovation: Latency to solve (Adult) urban 
 

FE-LMM 

Rimbach unpubl. CORT_temporal urban 
urban 

IO-LMM 
FE-LMM 

Tabh et al. 2022 Body surface temperature non-urban IO-LMM 
Thompson & 
Morand-Ferron 2019 

Associative learning: Latency to 
solve (Juvenile) 

urban & non-urban 
urban & non-urban 

IO-LMM 
FE-LMM 

Thompson & 
Morand-Ferron 2019 

Associative learning: Latency to 
solve (Adult) 

urban & non-urban 
non-urban 

IO-LMM 
FE-LMM 

Thompson & 
Morand-Ferron 2019 

Associative learning: Incorrect 
cache (Juvenile) 

urban & non-urban 
non-urban 

IO-LMM 
FE-LMM 

Thompson & 
Morand-Ferron 2019 

Associative learning: Incorrect 
cache (Adult) 

urban & non-urban 
urban 

IO-LMM 
FE-LMM 

Thompson et al. 
2018 

Activity/exploration: Flight duration 
(Juvenile) 

non-urban 
non-urban 

IO-LMM 
FE-LMM 

Thompson et al. 
2018 

Activity/exploration: Flight duration 
(Adult) 

urban IO-LMM 

Thompson et al. 
2018 

Activity/exploration: Hop duration 
(Juvenile) 

non-urban IO-LMM 

Thompson et al. 
2018 

Activity/exploration: Number of 
tree (Juvenile) 

non-urban IO-LMM 

 

 



Text S6. Copyright usage 

Pictures from Nicolas Venner (material link: https://flic.kr/p/2phKm3X and https://flic.kr/p/2ppn7XJ) 
and Gonzalo Arias (material link: https://flic.kr/p/2hK3YoE) are in public domain and copyright free (CC0 
1.0 Universal). Picture from Vipin Baliga follows the copyright CC BY 2.0 and is free to share and adapt 
even for commercially purpose (material link: https://flic.kr/p/nsgk5Z). Picture of Tim Worfolk follows 
the copyright CC-BY-ND 2.0 and is free to share without derivatives even for commercially purpose 
(material link: https://flic.kr/p/2oYSvD7). Picture of Brian Gratwicke follows the copyright CC BY 2.0 and 
is free to share and adapt even for commercially purpose (material link: https://flic.kr/p/a8poSD). 



Appendix - Results 

Overall meta-analysis of lnCVR (phenotypic variation coming from AD-LMM) 

 

Figure S2. Overall model estimates for lnCVR assessing diƯerences between urban and non-urban 
populations for between-individual variation calculated from AD-LMM (Model 1). Positive values on the x axis 
represent higher between-individual variation in urban populations than in non-urban populations whereas 
negative values represent the opposite phenomena. The large grey point represents the overall model estimate. 
The thick black line shows the 95% confidence intervals. Transparent small grey dots show the raw data (their size 
is scaled according to their sample size from which they were estimated). k is the number of observations 
supplemented with the number of studies between brackets. 

Table S5. Meta-analytic model estimates explaining overall variation in lnCVR of between-individual 
variation (Model 1, i.e. diƯerences in between-individual variance between urban and non-urban populations 
calculated using AD-LMM). CI stands for confidence interval, I² for heterogeneity and k for the number of 
observations. 

Fixed EƯect 

Intercept 

estimate 95% CI 

-0.046 -0.191 0.098 
    
Random eƯect & residual variance 
 
 
Study ID 

estimate I² k 

0.000 0.00 29 
Phylogeny 0.000 0.00 21 
Species ID 0.049 20.43 21 
Observation ID 0.167 69.07 84 
 I²total: 89.50  



 

 

Figure S3. Overall model estimates for lnCVR assessing diƯerences between urban and non-urban 
populations for within-individual variation calculated from AD-LMM (Model 3). Positive values on the x axis 
represent higher within-individual variation in urban populations than in non-urban populations whereas negative 
values represent the opposite phenomena. The large grey point represents the overall model estimate. The thick 
black line shows the 95% confidence intervals. Transparent small grey dots show the raw data (their size is scaled 
according to their sample size from which they were estimated). k is the number of observations supplemented 
with the number of studies between brackets. 

Table S6. Meta-analytic model estimates explaining overall variation in lnCVR of within-individual variation 
(Model 3, i.e. diƯerences in within-individual variance between urban and non-urban populations calculated using 
AD-LMM). CI stands for confidence interval, I² for heterogeneity and k for the number of observations. 

Fixed EƯect 

Intercept 

estimate 95% CI 

-0.062 -0.165 0.041 
    
Random eƯect & residual variance 
 
 
Study ID 

estimate I² k 

0.000 0.00 29 
Phylogeny 0.000 0.00 21 
Species ID 0.012 7.86 21 
Observation ID 0.134 84.75 84 
 I²total: 92.61  

 



Meta-analysis of lnCVR per trait (phenotypic variation coming from AD-
LMM) 
Table S7. Meta-analytic model estimates explaining variation in lnCVR of between-individual variation per 
phenotypic trait (Model 2, i.e. diƯerences in between-individual variance per phenotypic trait between urban and 
non-urban populations calculated using AD-LMM). CI stands for confidence interval, I² for heterogeneity and k for 
the number of observations. 

Fixed EƯect 

Behaviour 
Cognition 
Morphology 
Physiology 

estimate 95% CI 

-0.038 
-0.133 
-0.081 
0.297 

-0.211 
-0.494 
-0.403 
-0.182 

0.136 
0.227 
0.241 
0.777 

    
Random eƯect & residual variance 
 
 
Study ID 

estimate I² k 

0.000 0.00 29 
Phylogeny 0.000 0.00 21 
Species ID 0.051 20.99 21 
Observation ID 0.168 68.66 84 
 I²total: 89.65  

 

Table S8. Meta-analytic model estimates explaining variation in lnCVR of within-individual variation per 
phenotypic trait (Model 4, i.e. diƯerences in within-individual variance per phenotypic trait between urban and 
non-urban populations calculated using AD-LMM). CI stands for confidence interval, I² for heterogeneity and k for 
the number of observations. 

Fixed EƯect 

Behaviour 
Cognition 
Morphology 
Physiology 

estimate 95% CI 

-0.073 
0.125 
0.053 
-0.227 

-0.205 
-0.173 
-0.222 
-0.619 

0.059 
0.423 
0.329 
0.165 

    
Random eƯect & residual variance 
 
 
Study ID 

estimate I² k 

0.000 0.00 29 
Phylogeny 0.000 0.00 21 
Species ID 0.019 11.80 21 
Observation ID 0.131 80.98 84 
 I²total: 92.78  

 

 



Meta-analysis of lnCVR per behaviour (phenotypic variation coming from 
AD-LMM) 
Table S9. Meta-analytic model estimates explaining variation in lnCVR of within-individual variation per 
behavioural trait (Model 5, i.e. diƯerences in within-individual variance per behavioural trait  between urban and 
non-urban populations calculated using AD-LMM). CI stands for confidence interval, I² for heterogeneity and k for 
the number of observations. 

Fixed EƯect 

Activity/Exploration 
Aggression 
Boldness 

estimate 95% CI 

-0.069 
0.025 
0.010 

-0.251 
-0.302 
-0.268 

0.113 
0.351 
0.288 

    
Random eƯect & residual variance 
 
 
Study ID 

estimate I² k 

0.000 0.00 16 
Phylogeny 0.000 0.00 13 
Species ID 0.022 13.03 13 
Observation ID 0.136 80.88 52 
 I²total: 93.91  

Meta-analysis of lnCVR with all moderators (phenotypic variation coming 
from AD-LMM) 

Table S10. Meta-analytic model estimates explaining variation in lnCVR of between-individual variation 
including all moderators of interest (Model 6, i.e. diƯerences in between-individual variance between urban and 
non-urban populations calculated using AD-LMM). CI stands for confidence interval, I² for heterogeneity and k for 
the number of observations. 

Fixed EƯect 
 
 
Intercept (Behaviour_Both_short_1) 
Cognition 
Morphology 
Physiology 
Field 
Lab 
Interval_veryshort 
Number of factor in AD-LMM 

estimate 95% CI 

-0.634 
-0.061 
0.000 
0.382 
0.001 
-0.055 
0.138 
0.209 

-1.499 
-0.437 
-0.361 
-0.108 
-0.805 
-0.851 
-0.198 
0.044 

0.231 
0.315 
0.360 
0.872 
0.807 
0.742 
0.474 
0.374 

    

Random eƯect & residual variance 
 
 
Study ID 

estimate I² k 

0.040 17.19 29 
Phylogeny 0.004 1.86 21 
Species ID 0.000 0.00 21 
Observation ID 0.162 70.03 84 
 I²total: 89.08  



Table S11. Meta-analytic model estimates explaining variation in lnCVR of within-individual variation 
including all moderators of interest (Model 7, i.e. diƯerences in within-individual variance between urban and 
non-urban populations calculated using AD-LMM). CI stands for confidence interval, I² for heterogeneity and k for 
the number of observations. 

Fixed EƯect 
 
 
Intercept (Behaviour_Both_short_1) 
Cognition 
Morphology 
Physiology 
Field 
Lab 
Interval_veryshort 
Number of variable in AD-LMM 

estimate 95% CI 

-0.447 
0.118 
0.137 
-0.218 
0.080 
0.163 
0.129 
0.055 

-1.175 
-0.204 
-0.184 
-0.632 
-0.595 
-0.507 
-0.164 
-0.085 

0.281 
0.441 
0.458 
0.196 
0.755 
0.832 
0.422 
0.195 

    
Random eƯect & residual variance 
 
 
Study ID 

estimate I² k 

0.000 0.00 29 
Phylogeny 0.000 0.00 21 
Species ID 0.023 13.81 21 
Observation ID 0.133 79.24 84 
 I²total: 93.05  

Sensitivity analysis 

IOM-LMM versus AD-LMM 
Table S12. Meta-analytic model estimates explaining variation in lnCVR of between-individual variation 
comparing variance partitioning done via IOM-LMM with variance partitioning done via AD-LMM. a) 
Comparison between model 8 and model 1. b) Comparison between model 9 and model 2. CI stands for 
confidence interval, I² for heterogeneity and k for the number of observations. 

 IOM-LMM AD-LMM 
a) Intercept    model 8    model 1 

 
Intercept 

estimate 95% CI estimate 95% CI 
0.0073 -0.137 0.151 -0.046 -0.191 0.098 

       
Random eƯect estimate I² k estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.000 
0.000 
0.030 
0.234 

0.00 
0.00 

10.94 
85.97 

27 
20 
20 
78 

0.00 
0.00 

0.049 
0.167 

0.00 
0.00 

20.43 
69.07 

29 
21 
21 
84 

b) Type of trait    model 9    model 2 
 estimate 95% CI estimate 95% CI 
Behaviour 
Cognition 
Morphology 
Physiology 

0.002 
-0.294 
0.076 
0.501 

-0.146 
-0.650 
-0.292 
-0.098 

0.149 
0.062 
0.444 
1.101 

-0.038 
-0.133 
-0.081 
0.297 

-0.211 
-0.494 
-0.403 
-0.182 

0.136 
0.227 
0.241 
0.777 

       



 

Table S13. Meta-analytic model estimates explaining variation in lnCVR of within-individual variation 
comparing variance partitioning done via IOM-LMM with variance partitioning done via AD-LMM. a) 
Comparison between model 10 and model 3. b) Comparison between model 11 and model 4. c) Comparison 
between model 12 and model 5. CI stands for confidence interval, I² for heterogeneity and k for the number of 
observations. 

 

 

 

Random eƯect estimate I² k estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.00 
0.00 

0.009 
0.239 

0.00 
0.00 
3.60 

93.12 

27 
20 
20 
78 

0.000 
0.000 
0.051 
0.168 

0.00 
0.00 

20.99 
68.66 

29 
21 
21 
84 

 IOM-LMM AD-LMM 
a) Intercept    model 10    model 3 

 
Intercept 

estimate 95% CI estimate 95% CI 
-0.053 -0.155 0.048 -0.062 -0.165 0.041 

       
Random eƯect estimate I² k estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.000 
0.000 
0.017 
0.095 

0.00 
0.00 

14.10 
77.13 

27 
20 
20 
78 

0.00 
0.00 

0.012 
0.134 

0.00 
0.00 
7.86 

84.75 

29 
21 
21 
84 

b) Type of trait    model 11    model 4 
 estimate 95% CI estimate 95% CI 
Behaviour 
Cognition 
Morphology 
Physiology 

-0.057 
0.062 
0.001 
-0.162 

-0.184 
-0.197 
-0.257 
-0.606 

0.071 
0.321 
0.276 
0.281 

-0.073 
0.125 
0.053 
-0.227 

-0.205 
-0.173 
-0.222 
-0.619 

0.059 
0.423 
0.329 
0.165 

       
Random eƯect estimate I² k estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.000 
0.000 
0.024 
0.095 

0.00 
0.00 

18.52 
73.20 

27 
20 
20 
78 

0.000 
0.000 
0.019 
0.131 

0.00 
0.00 

11.80 
80.98 

29 
21 
21 
84 

c) Type of behaviour   model 12    model 5 
 estimate 95% CI estimate 95% CI 
Activity/exploration 
Aggression 
Boldness 

0.001 
0.011 
-0.072 

-0.154 
-0.278 
-0.298 

0.156 
0.301 
0.154 

-0.069 
0.025 
0.010 

-0.251 
-0.302 
-0.268 

0.113 
0.351 
0.288 

       
Random eƯect estimate I² k estimate I² k 
 Study ID 
 Phylogeny 
 Species ID
 Observation_ID 

0.003 
0.000 
0.009 
0.094 

2.58 
0.00 
7.55 

81.32 

17 
13 
13 
51 

0.000 
0.000 
0.022 
0.136 

0.00 
0.00 

13.03 
80.88 

16 
13 
13 
52 



Bird versus all other taxa combined 
Table S1. Meta-analytic model estimates explaining variation in lnCVR of a) between-individual and b) 
within-individual variation comparing eƯect size coming only from bird taxa with eƯect size coming only 
from other taxa than bird. CI stands for confidence interval, I² for heterogeneity and k for the number of 
observations. 

 

Publication bias 
Table S2. Meta-analytic model estimates explaining variation in lnCVR due to small-study eƯect of a) 
between-individual and b) within-individual variation. CI stands for confidence interval, I² for heterogeneity and 
k for the number of observations, R² is the marginal coeƯicient of determination. 

 Only bird All other taxa combined 
a) Between-individual   model 13    model 15 

 
Intercept 

estimate 95% CI estimate 95% CI 
-0.030 -0.299 0.240 -0.074 -0.217 0.068 

       
Random eƯect estimate I² k estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.000 
0.000 
0.138 
0.179 

0.00 
0.00 

39.74 
51.39 

17 
11 
11 
52 

0.00 
0.002 
0.000 
0.122 

0.00 
1.35 
0.00 

84.90 

12 
10 
10 
32 

b) Within-individual   model 14    model 16 

Intercept 
estimate 95% CI estimate 95% CI 
-0.069 -0.200 0.063 -0.074 -0.244 0.096 

       
Random eƯect estimate I² k estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.00 
0.00 

0.007 
0.154 

0.00 
0.00 
4.00 

88.06 

17 
11 
11 
52 

0.000 
0.000 
0.028 
0.105 

0.00 
0.00 

19.76 
73.57 

12 
10 
10 
32 

Small-study eƯect 
a) Between-individual 

 
Intercept 
sqrt_inv_eƯ_ss 

estimate 95% CI R² 
0.088 
-0.437 

-0.404 
-1.967 

0.581 
1.092 

 
0.006 

    
Random eƯect estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.000 
0.000 
0.050 
0.168 

0.00 
0.00 

20.72 
68.89 

29 
21 
21 
84 

b) Within-individual 

Intercept 
sqrt_inv_eƯ_ss 

estimate 95% CI R² 
-0.049 
-0.355 

-0.317 
-1.501 

0.416 
0.791 0.006 

    
Random eƯect estimate I² k 
 Study ID 0.00 0.00 29 



 

Table 16. Meta-analytic model estimates explaining variation in lnCVR due to decline eƯect of a) between-
individual and b) within-individual variation. CI stands for confidence interval, I² for heterogeneity and k for the 
number of observations, R² is the marginal coeƯicient of determination. 

 

  

 Phylogeny 
 Species ID 
 Observation_ID 

0.00 
0.010 
0.137 

0.00 
6.44 

86.19 

21 
21 
84 

Decline eƯect 
a) Between-individual 

 
Intercept 
pub_year_c 

estimate 95% CI R² 
-0.054 
0.024 

-0.202 
-0.028 

0.093 
0.076 

 
0.013 

    
Random eƯect estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.000 
0.000 
0.052 
0.166 

0.00 
0.00 

21.49 
68.11 

29 
21 
21 
84 

b) Within-individual 

Intercept 
pub_year_c 

estimate 95% CI R² 
-0.061 
-0.008 

-0.166 
-0.050 

0.044 
0.034 0.002 

    
Random eƯect estimate I² k 
 Study ID 
 Phylogeny 
 Species ID 
 Observation_ID 

0.00 
0.00 

0.014 
0.135 

0.00 
0.00 
8.49 

84.23 

29 
21 
21 
84 
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