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Abstract 9 

1. In face of global change and increasing forest disturbances, forest regeneration is crucial for 10 

ensuring future generations of trees and resilient forest ecosystems. However, spatially 11 

explicit information on the current availability and climate suitability of seedlings and 12 

saplings remains scarce. 13 

2. We assessed the potential to predict species-specific forest regeneration densities at high 14 

spatial resolution (1 ha) by calibrating generalized additive models (GAMs) using 15 

regeneration data from the German National Forest Inventory (NFI) and 44 environmental 16 

predictors. Regional regeneration gaps were then identified based on three indicators: low 17 

total density (<1,000 ha-1), low species richness (≤2 species) and a high proportion (≥75%) of 18 

regeneration at high future cultivation risk.  19 

3. For 22 tree species, we obtained regeneration density models that performed well in 20 

spatially blocked cross-validation. We were therefore able to generate regeneration density 21 

and indicator maps for a major part of the tree species. 22 



4. The indicator maps revealed considerable regeneration gaps. 13.4% of Germany’s forest area 23 

has low regeneration density, 47.1% has low species richness, and 25.2% of the Bavarian 24 

forest area lacks climate-adapted regeneration.  25 

5. Our study demonstrates the potential of NFI regeneration data and its applicability for 26 

monitoring forest regeneration over large spatial scales. The regeneration indicator maps 27 

show that silvicultural interventions should prioritise increasing tree species richness and the 28 

proportion of species adapted to climate change. However, as regeneration gaps vary from 29 

region to region, management and policy must be adapted accordingly to ensure future 30 

forest resilience. 31 

6. Synthesis and applications: Our study provides the first nationwide, high-resolution 32 

assessment of forest regeneration, offering a valuable baseline for monitoring forest 33 

development. The regeneration density and indicator maps enable forest managers and 34 

policymakers to identify regeneration deficits, prioritise adaptive management interventions, 35 

and contribute to the development of climate-resilient forests. 36 
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Introduction 40 

Forest ecosystems are increasingly affected by ongoing climate change. In Europe, repeated droughts 41 

have caused increased spread of pests and diseases, defoliation of trees (Potočić et al., 2021), 42 

reduced tree growth (Martinez del Castillo et al., 2022) and higher tree mortality (George et al., 43 

2022; Senf et al., 2020). The consequences are more open canopies and larger, more frequent 44 

disturbances (Senf & Seidl, 2021). This dynamic constitutes a partial loss of a forest generation, 45 



making it necessary to consider the subsequent generation, the regenerating trees that are in the 46 

seedling and sapling stage. 47 

Forest regeneration can ensure future forest resilience, even under increased disturbances and 48 

higher canopy mortality. A high density of regeneration can accelerate the regrowth of a closed 49 

canopy, avoid arrested succession (Royo & Carson, 2006) and serve as an advanced start of post-50 

disturbance forest reorganization (Seidl et al., 2024; Seidl & Turner, 2022). Furthermore, regeneration 51 

is key for the species composition and structure of future stands, and thus is targeted by 52 

management to adapt forests to climate change (Fischer et al., 2016). While natural regeneration is 53 

the dominant regeneration type in many European forest systems, seeding, planting and cutting are 54 

selectively applied to ensure forest regeneration, increase the proportion of climate-adapted species 55 

and create mixed stands (Erdozain et al., 2024). To assess how well forest regeneration is adapted to 56 

future climates and where targeted forestry measures would be necessary, regional quantification of 57 

regeneration is needed. 58 

One of the most important data sources on forests at large spatial scales are national forest 59 

inventories (NFIs). Besides statistically representative information on mature trees, most European 60 

NFIs also include assessments of forest regeneration. Regeneration is often measured as a local 61 

density by counting individuals below a threshold of diameter at breast height (dbh) per tree species 62 

within small sampling areas, e.g. from 12 m² to 79 m² (Gschwantner et al., 2024; McRoberts et al., 63 

2011). The potential of such NFI regeneration data is largely untapped and underestimated. First, 64 

despite the intense collection of such regeneration data, NFI reports either provide no information 65 

on forest regeneration (Lackner et al., 2023) or only its dominant type, such as natural regeneration 66 

or planting, at the national level (e.g. BMEL, 2024; Rigling & Schaffer, 2015). NFI reports thus lack 67 

information on the quantity and quality of forest regeneration. Second, it is a widespread perception 68 

that inference on forest regeneration and its patterns along large gradients using NFI data is 69 

challenging or impossible due to high spatial heterogeneity, many interacting processes (Shoemaker 70 



et al., 2020) and the relatively small size of regeneration plots. Nevertheless, inventory data on forest 71 

regeneration have been used to identify drivers of regeneration (Martini et al., 2024; Vayreda et al., 72 

2013) and calibrate empirical models of regeneration distributions (Hasenauer et al., 2000; Kolo et 73 

al., 2017). This suggests that NFI regeneration data may have potential to map the next generation of 74 

forests at large spatial scales. 75 

A common approach to creating maps from NFI sample plot data is to use species distribution 76 

models (SDMs; Xu et al., 2025), which make use of a species' ecological niche. However, these 77 

attempts (e.g. Bonannella et al., 2022; Dyderski et al., 2018) focus on large trees above the dbh 78 

threshold. Although the drivers of regeneration are becoming better understood, empirical models 79 

have not been applied to predict regeneration in space. The advantages of such regeneration maps 80 

would be their ability to provide information at unobserved locations, allowing for regional 81 

assessment of the regeneration and potential gaps of its quantity and quality. Species-specific 82 

regeneration maps could be used for early detection of post-disturbance reorganisation (Seidl et al., 83 

2024), initialisation of dynamic forest simulation models (Díaz-Yáñez et al., 2024) and deriving 84 

regeneration indicators to inform forest management (Fischer et al., 2016). 85 

Important indicators for the ability of forest regeneration to contribute to a more resilient next forest 86 

generation are its total density, species richness and proportion of climate-adapted species (Cerioni 87 

et al., 2024; König et al., 2022). High total regeneration density maintains the ability to establish the 88 

next forest generation (Hanbury-Brown et al., 2022). High species richness can reduce losses of 89 

productivity and biomass under more extreme climatic conditions (Jactel et al., 2017; Sebald et al., 90 

2021). A high proportion of climate-adapted species indicates better resilience of the future stand 91 

and higher economic value (Erdozain et al., 2024; Hanewinkel et al., 2013). Evaluation of these 92 

indicators at high spatial resolution is essential to assess whether regeneration can secure future 93 

forests and maintain their multifunctionality in a changing climate. 94 



Here, we assess the potential of regeneration density models calibrated with NFI data to infer and 95 

evaluate the current quantity and quality of forest regeneration at high spatial resolution (Figure 1). 96 

We built flexible species-specific regeneration models using the untapped regeneration density data 97 

of the German NFI in combination with 44 environmental variables, describing the environmental 98 

preferences of tree species in early life stages. Subsequently, we used the regeneration models to 99 

predict the regeneration density per tree species for the German forest area at a resolution of 1 ha. 100 

We then assessed potential regeneration gaps by calculating the currently available total 101 

regeneration density as a measure for regeneration quantity and two indicators for regeneration 102 

quality. For the latter, we derived species richness and the proportion of climate-adapted tree 103 

species in early life stages, indicated as a low proportion of regeneration at high cultivation risk.  104 

 105 

Figure 1: Workflow and indicators for the identification of potential regeneration gaps across German forests. To generate 106 

species-specific maps of current forest regeneration, we calibrated regeneration density models using data from the 107 



German National Forest Inventory (NFI). These maps allowed us to identify regions where forest regeneration has low total 108 

density, low species richness, or high future cultivation risk. 109 

Materials and Methods 110 

Regeneration data 111 

We used forest regeneration data from the most recent published German NFI, conducted in 2011 112 

and 2012 (Thünen-Institut, 2015). The German NFI is conducted every ten years to assess tree and 113 

stand characteristics that are representative of the German forests. The sampling design is based on 114 

a regular grid with each cluster point consisting of four sample plots (survey design detailed in Riedel 115 

et al., 2017). We used regeneration counts of trees between 50 cm height and 7 cm dbh assessed per 116 

species within subplots of 2 m radius (12.57 m²). All individuals were counted, whether they were 117 

naturally regenerated, sown, or planted. In total, our regeneration dataset covered information of 43 118 

tree species at 59,848 NFI plot locations. 119 

Predictors of regeneration patterns 120 

To calibrate predictive species distribution models, we used 44 environmental predictors related to 121 

topography, soil, macroclimate, microclimate, stand structure, space and time (Table S1). Besides 122 

previously used predictors for regeneration (e.g. Martini et al., 2024; Vayreda et al., 2013), we 123 

included the variables month and year of NFI measurement to account for seasonal differences in 124 

growing conditions and detection probability, plot coordinates to account for unobserved spatial 125 

predictors and federal state to account for potential management differences between states. 126 

The environmental predictor values were preferably obtained from the NFI (meta)data and, if not 127 

available, from a corresponding raster layer (Table S1). Predictor information at each plot location 128 

was retrieved by the Thünen-Institute, as only anonymized plot locations on a 1 x 1 km grid are 129 

available (Hennig, 2022). The regeneration density and environmental datasets were then combined, 130 

and observations with missing predictor values were removed. The resulting dataset consisted of 131 



52,305 NFI plot observations used for model calibration (available at Zenodo Data URL). For 132 

prediction we used raster layers of the same predictors (see Supporting information S1). 133 

Model calibration 134 

As predictive species-specific models of forest regeneration density, we calibrated generalized 135 

additive models (GAMs; Wood, 2017) with a negative binomial distribution and a log link function. 136 

We used GAMs with cubic regression splines (Wood et al., 2016) to allow for a broad spectrum of 137 

non-linear relationships between regeneration densities and our chosen environmental predictors 138 

(Table S1). Month and year of NFI measurement and federal state were included as random effects 139 

and plot coordinates as a tensor product smooth. GAM smoothness selection and estimation of the 140 

negative binomial functions theta value were performed using fast restricted maximum likelihood 141 

estimation. Basis dimensions of smoothing splines were kept at moderate complexity for 142 

environmental fixed effects (k = 10) and were set to 25 and 50 in x and y direction, respectively. We 143 

allowed fixed effects to be shrunk to zero, serving as a variable selection technique (Wood, 2017), 144 

and used a ridge penalty for random effects. To interpolate conspecific basal area for the German 145 

forest area as an additional predictor for regeneration, the same model structure was used (see 146 

Supporting information S1). 147 

Models were fitted with the function bam() suited for large data sets (Wood et al., 2015) from the R 148 

package mgcv (v.1.9.1, Wood, 2023). 149 

Model evaluation 150 

Statistical assumptions of the regeneration models were assessed based on simulated residuals 151 

generated with the package DHARMa (v.0.4.6, Hartig, 2022). We visually evaluated distributional and 152 

residual assumptions as well as zero-inflation resulting in no critical violations (plots of simulated 153 

residuals can be found in Supporting information S3). To ensure that the observations are spatially 154 

independent, we tested for spatial autocorrelation within simulated residuals. We found a tendency 155 



towards spatial autocorrelation for the regeneration models of 4 tree species (see Table S2). However, 156 

given the models' satisfactory performance in cross-validation (see subsequent paragraph), we assume 157 

that they generalize across space and likely capture meaningful spatial patterns. 158 

Predictive model performance was assessed using 10-fold spatially blocked cross-validation with the 159 

blockCV package (v.3.1.4; Valavi et al., 2019). Blocks were set up with hexagonal block shapes and 160 

block sizes corresponding to the spatial autocorrelation range of the regeneration densities. Where 161 

block sizes were found to be too large, resulting in less than 10 blocks for some species, we set the 162 

range to 300 km resulting in 11 blocks across Germany (Table S2). The mean absolute error (MAE) as 163 

an indicator for model performance (Chai & Draxler, 2014) and pseudo-R² (Cameron & Windmeijer, 164 

1997) as an indicator of explanatory power were computed for the test and training data of each 165 

fold. For MAE, we calculated the relative MAE from the test and training MAE (
𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛
). The 166 

median was used to aggregate values of relative MAE and test pseudo-R2 across all folds. We 167 

considered models where median relative MAE ≤2 and median pseudo-R² ≥0.1.  168 

Predictions 169 

After model evaluation, regeneration models for 22 tree species (Table 1) were available to be used 170 

for predicting regeneration densities across German forests. For creating regeneration maps, the 171 

variable month and year of NFI measurement was excluded, which results in predictions 172 

corresponding to average conditions. We converted the predicted regeneration counts per 2 m 173 

radius plot (approximately 12.6 m²) to regeneration densities ha-1. 174 

Table 1: Evaluation and summary statistics of regeneration density models for 43 tree species. The availability of predicted 175 

regeneration density maps (Germany) or cultivation risk maps (only Bavaria; Falk & Mellert, 2011; Thurm et al., 2018) is 176 

indicated by a dot (available) or a circle (not available). Regeneration density maps were predicted when the model 177 



performance criteria of median relative MAE ≤2 and median pseudo-R² ≥0.1 were met, as determined by 10-fold spatially 178 

blocked cross-validation. 179 

Species Model 
performance 

Regeneration 
density map 
availability 
(Germany) 

Regeneration 
density [#/ha] 

Cultivation 
risk map 
availability 
(Bavaria) Median 

relative 
MAE 

Median 
pseudo-
R² 

Mean SD 

Abies alba 1.02 0.48 ● 167 819 ● 
Abies grandis 1.06 0.07 ○ 

  
● 

Acer campestre 0.83 0.31 ● 18 345 ● 
Acer platanoides 0.91 0.12 ● 8 154 ● 
Acer pseudoplatanus 0.99 -0.01 ○ 

  
● 

Alnus glutinosa 1.12 0.16 ● 23 324 ● 
Alnus incana 1.06 0.39 ● 84 9122 ○ 
Betula pendula 1.00 -0.12 ○ 

  
● 

Betula pubescens 0.05 0.43 ● 25 533 ○ 
Carpinus betulus 0.84 0.20 ● 208 1108 ● 
Castanea sativa 1.01 0.32 ● 1 12 ● 
Fagus sylvatica 1.05 0.26 ● 1192 1940 ● 
Fraxinus excelsior 0.90 0.15 ● 329 1900 ● 
Larix decidua 0.75 0.06 ○ 

  
● 

Larix kaempferi 0.30 0.44 ● 7 88 ● 
Malus sylvestris 

  
○ 

  
○ 

Picea abies 0.75 0.16 ● 985 1572 ● 
Picea sitchensis 0.20 0.09 ○ 

  
○ 

Pinus mugo 
  

○ 
  

○ 
Pinus nigra 0.50 -0.28 ○ 

  
● 

Pinus strobus 0.47 -0.01 ○ 
  

○ 
Pinus sylvestris 0.33 0.29 ● 257 805 ● 
Populus alba 0.28 0.08 ○ 

  
○ 

Populus nigra 0.13 0.20 ● 120 12213 ○ 
Populus tremula 0.86 0.07 ○ 

  
○ 

Populus trichocarpa x maximoviczii 0.35 -0.98 ○ 
  

○ 
Populus x canescens 0.06 -0.09 ○ 

  
○ 

Prunus avium 1.00 0.25 ● 11 43 ● 
Prunus padus 0.54 -0.57 ○ 

  
○ 

Prunus serotina 0.33 0.11 ● 349 5338 ○ 
Pseudotsuga menziesii 0.91 0.21 ● 26 101 ● 
Pyrus communis 

  
○ 

  
● 

Quercus petraea 0.74 0.02 ○ 
  

● 
Quercus robur 1.06 0.20 ● 77 150 ● 
Quercus rubra 0.84 0.15 ● 5 39 ● 
Robinia pseudoacacia 1.09 0.45 ● 75 3850 ● 
Salix spp. 1.04 0.03 ○ 

  
○ 

Sorbus aria 0.89 0.12 ● 2 32 ○ 
Sorbus aucuparia 0.99 -0.10 ○ 

  
● 

Sorbus torminalis 
  

○ 
  

● 
Taxus baccata 

  
○ 

  
○ 

Tilia spp. 0.92 0.29 ● 38 582 ● 
Ulmus spp. 0.60 -0.02 ○ 

  
● 

All species n = 22       4006 17015.5   

 180 

Regeneration indicators 181 

Total regeneration density was calculated by summing up the densities for all 22 tree species per grid 182 

cell. Since reports of sufficient regeneration density thresholds vary, e.g. 1,591 ha-1 (Kolo et al., 2017) 183 



or 2,000 ha-1 (StMELF, 2023), we chose an intermediate total regeneration density of 1,000-2,000 ha-1 184 

and defined <1,000 ha-1 as insufficient and ≥2,000 ha-1 as sufficient. 185 

Tree species richness was calculated as the number of species with at least 5% of the total 186 

regeneration (BaySF, 2020). For Central European conditions, a species richness of three or four 187 

species has been proposed to be sufficient (BaySF, 2020; Lindner et al., 2025). Since our analyses 188 

included only 22 out of 43 species, we defined ≤2 species within the regeneration as insufficient, 3-4 189 

species as intermediate and ≥5 species as sufficient. 190 

To more precisely assess how the current regeneration fits future conditions, we used the federal 191 

state Bavaria as a case study. We combined our species-specific regeneration density maps with 192 

cultivation risk maps based on predicted occurrence probabilities of adult trees in the year 2100 (Falk 193 

& Mellert, 2011; Thurm et al., 2018). These were developed as a planning tool for forest practitioners 194 

throughout Bavaria and are actively used to select tree species considering climate projections and 195 

local site conditions. The maps categorize cultivation risk into five groups and are available for 32 tree 196 

species. Of these, 17 are also available as regeneration distribution maps (Table 1). For each grid cell, 197 

we calculated the percentage of regeneration density at high cultivation risk 𝑅ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 as:  198 

𝑅ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘[%] =
𝑁ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘

𝑁𝑡𝑜𝑡𝑎𝑙
∗ 100 199 

Here, 𝑁ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 is the regeneration density summed up over the species with the risk categories very 200 

high risk and high risk and 𝑁𝑡𝑜𝑡𝑎𝑙  the total regeneration density across all species of the grid cell. We 201 

defined 𝑅ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 ≥75% as problematic. The analysis of regeneration cultivation risk was possible for 202 

76.8% of the Bavarian forest area. 203 

The full workflow of modelling and data analysis can be found at GitHub URL and Zenodo Code URL. 204 

All analyses were conducted using R v.4.4.1 (R Core Team, 2024). 205 



Results 206 

Regeneration density models 207 

From the 43 calibrated species-specific regeneration density models, 22 met the performance 208 

criteria of median pseudo-R² ≥0.1 and median relative MAE ≤2 from cross-validation (Table 1). We 209 

used these models to predict the regeneration density for 78.5% (8,615,918 ha) of the German forest 210 

area. The 22 species represented 74.9% of the regeneration measured within the NFI. In predictions 211 

across Germany, the most common tree species within the regeneration were Fagus sylvatica L., 212 

Picea abies (L.) H.Karst and Prunus serotina Ehrh. with mean densities of 1,192, 985 and 349 213 

individuals ha-1, respectively (Table 1). Species with lowest abundance in the regeneration 214 

throughout Germany were Quercus rubra L., Sorbus aria (L.) Crantz and Pinus strobus L. with average 215 

densities of ≤5 individuals ha-1. 216 

Of all 43 calibrated regeneration models, five did not converge and 16 did not meet the performance 217 

criteria (total 21; Table 1). Out of these, 15 were rare tree species with total regeneration density 218 

<1% within the German NFI (Table S3). The other six were common tree species Acer pseudoplatanus 219 

L., Sorbus aucuparia L., Betula pendula Roth, Quercus petraea (Matt.) Liebl., Populus tremula L. and 220 

Prunus padus L. (Table S3), that nevertheless could not be sufficiently modelled with our approach 221 

(Table 1). Median pseudo-R² was the primary factor to exclude models, as the median relative MAE 222 

criterion was consistently met. 223 

Species-specific regeneration maps for Germany 224 

The predicted density maps showed distinct patterns in the availability of regeneration for each tree 225 

species (Figure 2, for all other tree species see Figure S1). For example, the regeneration of Fagus 226 

sylvatica was widely distributed with very high abundance in the centre of Germany and lower 227 

densities towards the east and the western lowlands (Figure 2). Similarly, the regeneration of Picea 228 

abies was widely abundant across Germany but showed lower densities towards the northeast. Abies 229 



alba Mill., a less common tree species, showed a clear north-south trend with no occurrence in the 230 

northern half of Germany and a gradual increase in regeneration towards southern low mountain 231 

ranges. All maps can be explored online at Google Earth Engine URL. 232 

 233 

Figure 2: Regeneration densities shown for three important Central European tree species, i.e. Fagus sylvatica, Picea abies 234 

and Abies alba, in 1 ha grid cells for Germany (for remaining tree species maps see Figure S1). Maps are available for 235 

exploration at Google Earth Engine URL and for download at Zenodo Data URL. 236 

Indicators of regeneration quantity and quality  237 

The quantity of regeneration, evaluated as the total regeneration density based on 22 tree species, 238 

showed an average of 4,006 individuals ha-1 (Table 1). We found a clear trend of insufficient (0-1,000 239 

ha-1) and intermediate (1,000-2,000 ha-1) total regeneration densities in parts of Mid and North 240 

Germany (Figure 3, for continuous density scale see Figure S2), whereas the South mainly displayed 241 

sufficient regeneration (≥2,000 ha-1). Overall, 60.1% of the predicted forest area had sufficient 242 

regeneration density, 26.4% had an intermediate density and 13.4% had an insufficient density. 243 



 244 

Figure 3: Spatial patterns of total regeneration density for the forest area of Germany based on 22 tree species. Colours 245 

indicate insufficient (0-1,000 ha-1), intermediate (1,000-2,000 ha-1) and sufficient (≥2,000 ha-1) total regeneration densities 246 

(for continuous scale see Figure S2). The map is available for exploration at Google Earth Engine URL and for download at 247 

Zenodo Data URL. 248 

As part of the quality assessment of the regeneration, we evaluated species richness (Figure 4, for 249 

continuous species richness scale see Figure S3), which was generally low with an average of 2.8 250 

species ha-1 across Germany. A total of 47.1% of the predicted forest area had too few (≤2) tree 251 

species in the regeneration (Figure 4B), while 43.5% and 9.4% of the area contained an intermediate 252 

(3-4) and sufficient number of species (≥5), respectively. Forests that were particularly species-rich in 253 

the regeneration were found towards the northeast (Figure 4A) but were otherwise restricted to 254 

local hotspots. Forests with a species richness of ≤2 were particularly common in low mountain 255 

ranges. 256 



 257 

Figure 4: Tree species richness of regeneration for the forest area of Germany based on 22 tree species. The map (A) shows 258 

spatial patterns, the histogram (B) indicates the distribution of species richness values. Colours indicate insufficient (1-2), 259 

intermediate (3-4) and sufficient (≥5) regeneration species richness (for continuous scale see Figure S3). We considered a 260 

species present in a 1 ha-grid cell if its density was at least 5% of the total density. The map is available for exploration at 261 

Google Earth Engine URL and for download at Zenodo Data URL. 262 

Regeneration quality was additionally assessed as the future suitability of tree species in the 263 

regeneration. We showcase this – and the identification of regeneration gaps and potential 264 

management strategies more generally – in Box 1. 265 

Box 1: Bavaria (Germany) – A case study for identifying and managing regeneration gaps. 266 

Using Bavaria as an example, we demonstrate the potential use of regeneration indicator maps to 267 

identify regeneration gaps (Figure 5) and derive regional recommendations for silvicultural 268 

interventions. Bavaria, a federal state in the southeast of Germany, has recently been affected by 269 

severe summer droughts and subsequent bark beetle outbreaks, which have led to a loss of tree 270 

canopies, especially in Norway spruce (Picea abies) forests (Thonfeld et al., 2022). We chose Bavaria 271 

because detailed cultivation risk maps are available for many tree species, which allowed us to derive 272 

not only the total regeneration density and species richness but also the proportion of regeneration 273 

at high future cultivation risk. 274 



In Bavaria, only few regions, amounting to 3.5% of the forest area, showed a deficit of total 275 

regeneration density <1,000 ha-1 (Figure 5A). Species richness of the regeneration was critically low 276 

(≤2 tree species; Figure 5B) in 50.0% of the Bavarian forest area, mainly found in the low mountain 277 

ranges. Regeneration at high cultivation risk (i.e. proportions ≥75%) dominated on 25.2% (489,385 278 

ha; Figure 5D) of the forest area, e.g. in the northeast (Figure 5C), which is mainly the result of Picea 279 

abies, responsible for 94.5% of the regeneration densities at high risk (Table S4). Half of the analysed 280 

forest area had a proportion of less than 37.7% at high cultivation risk (Figure 5D), with a 281 

considerable area with no future risk in the regeneration. All indicators showed high spatial 282 

heterogeneity (Figure 5). 283 

Such spatially resolved results on the quantity and quality of forest regeneration indicate 284 

regeneration gaps and allow for targeted silvicultural measures and incentives that can significantly 285 

contribute to the adaptation of forests to climate change. Regions like the Frankenwald and the 286 

Bavarian Alps (Figure 5A) are climate impact and adaptation hotspots, with the Frankenwald facing 287 

large-scale disturbances (Viana-Soto & Senf, 2024) and the Alps being increasingly prone to rockfall 288 

(e.g. Hillebrand et al., 2023). Combining this with forest regeneration indicators helps to prioritize 289 

forest management: In the Frankenwald, where species richness and climate-adapted tree species 290 

are lacking (Figure 5B and C), selective thinning and planting of additional climate-adapted tree 291 

species should be promoted. In the Bavarian Alps, smaller gaps in total regeneration density (Figure 292 

5A) and species richness (Figure 5B) can be addressed by promoting natural regeneration and 293 

targeted planting. Overall, regions with severe regeneration gaps like the Frankenwald should be 294 

prioritized. 295 



 296 

Figure 5: Maps of regeneration quantity and quality for Bavaria: (A) total density, (B) species richness, and (C) proportion of 297 

regeneration at high cultivation risk. (D) shows the distribution of values in (C). (A) and (B) were derived from regeneration 298 

density maps of 22 tree species, (C) and (D) are based on 17 tree species. Maps are available for exploration at Google Earth 299 

Engine URL and for download at Zenodo Data URL. 300 

Discussion 301 

Our results demonstrate the potential to predict forest regeneration density at high spatial resolution 302 

from species-specific models calibrated with NFI regeneration data. Using the regeneration density 303 

maps predicted for Germany, we evaluated indicators of regeneration quantity and quality and 304 

identified regional gaps in forest regeneration. 305 

Frankenwald 

Bavarian Alps 



Predicting forest regeneration at large spatial scale 306 

We successfully predicted forest regeneration density for a large part of the modelled tree species in 307 

Central Europe. This contrasts with previous models of forest regeneration. These included only few 308 

species (Hasenauer et al., 2000; Kolo et al., 2017), covered only small environmental gradients 309 

(Hasenauer et al., 2000) and achieved low predictive accuracy at high spatial resolution (Zhu et al., 310 

2014). Previous models were therefore not suited to reliably predict community composition and 311 

diversity across large environmental gradients.  312 

Our modelling approach distinguishes itself by successfully cross-validating 22 of the 43 tree species 313 

models (Table 1). This is likely due to the large environmental gradient of the NFI data, the large 314 

number of environmental predictors (n = 44), partly at high spatial resolution, and the flexibility of 315 

our modelling approach (GAMs). We conclude that even though forest regeneration is subject to a 316 

variety of stochastic processes (Shoemaker et al., 2020) and is measured on small sample plots 317 

(12.57 m²), there is enough signal in local regeneration densities to successfully predict the regional 318 

availability of forest regeneration. 319 

Tree species coverage of the regeneration models 320 

The predicted regeneration density maps (Figure 2 and Figure S1) cover a major part of the 321 

regeneration sampled within the German NFI. Therefore, our indicators derived from the 322 

regeneration maps provide reliable information about the dominant forest regeneration. 323 

Nevertheless, it would be desirable to expand the range of tree species modelled, especially since a 324 

large species pool and rare species will play a greater role as climate change progresses (Huth et al., 325 

2025). Fifteen species (Table 1) that could not be modelled occurred at average densities <1% in the 326 

German NFI regeneration dataset (Table S3) and are therefore not well represented by the small NFI 327 

sample plots. To better cover the environmental preferences of such rare tree species, future 328 

predictive regeneration models, could be calibrated with regeneration data from previous German 329 

NFI surveys, other European NFIs or local inventories. 330 



We could also not reliably predict the regeneration density for more generalist species such as Acer 331 

pseudoplatanus and Betula pendula found across large environmental gradients (Caudullo et al., 332 

2016). This may have made it difficult to relate the regeneration densities of these species to the 333 

environmental predictors available to us. Future models could include even more predictors to better 334 

reflect environmental niches.  335 

Predictors of forest regeneration 336 

The regeneration models were calibrated using 44 predictive variables describing the environment 337 

with respect to topography, soil, microclimate, macroclimate, stand structure and spatial patterns 338 

(Table S1). However, it has been shown that forest regeneration density is also related to other 339 

predictors such as browsing intensity (Martini et al., 2024; Vayreda et al., 2013), understory light 340 

availability (Harris et al., 2024; Martini et al., 2024) or silvicultural management and ownership (Kolo 341 

et al., 2017). 342 

We could not include these additional predictors in our forest regeneration maps because they are 343 

not (yet) available as spatial datasets for the German forest area, only available at low spatial 344 

resolution or not homogenized across federal states. We consider it promising to evaluate how much 345 

these additional predictors can contribute to the predictability of forest regeneration, and to invest 346 

accordingly in datasets for these predictors with better spatial coverage. Although our approach 347 

already allows for highly flexible effects (GAM), the complexity of environmental relationships could 348 

be further enhanced using machine learning (Pichler & Hartig, 2023). 349 

Application of regeneration density and indicator maps 350 

Creating species-specific regeneration density maps was motivated by the need to assess the 351 

potential contribution of forest regeneration to a more resilient next forest generation. To this end, 352 

we used three indicators that are widely used in forest management and planning: total regeneration 353 

density, species richness and proportion of climate-adapted tree species (Cerioni et al., 2024; König 354 



et al., 2022). Typically, these indicators are assessed for individual stands by forest practitioners. Our 355 

results demonstrate the potential to monitor these indicators at national scales and to identify 356 

regional differences in forest regeneration. 357 

For Germany, we found that regeneration gaps are small in terms of total density (Figure 3) but are of 358 

concern regarding species richness, with a deficit for almost half of the German forest area (Figure 359 

4). In addition, one quarter of the forest area in Bavaria is affected by a lack of climate-adapted tree 360 

species (Figure 5D). While the forest regeneration indicator maps cannot replace a local, on-site 361 

assessment for stand level silvicultural decisions, they can provide an indication of potential 362 

regeneration gaps at the regional scale (cf. Box 1). Such knowledge can help forest policymakers 363 

identify potential priority areas to reduce future risks, increase species richness and regeneration 364 

density. These actions can be implemented through direct hands-on management or through 365 

incentives for silvicultural practices that promote regeneration of a diverse set of climate-adapted 366 

species (Huth et al., 2025). 367 

Beyond practical applications, our species-specific regeneration maps can be used to increase the 368 

robustness of projections of future forest dynamics by incorporating comprehensive information on 369 

regeneration availability and species composition (e.g. Díaz-Yáñez et al., 2024). In turn, this also 370 

allows for the evaluation of different regeneration management strategies. 371 

Conclusions 372 

Currently available forest regeneration appears insufficient to secure future forests and maintain 373 

their multifunctionality in a changing climate. Furthermore, the nature of gaps in regeneration 374 

quantity and quality varies spatially. Here, we demonstrated this using the German NFI regeneration 375 

data as an example to build predictive models of species-specific regeneration densities. We strongly 376 

encourage the evaluation of regeneration patterns and the regional assessment of total regeneration 377 



density, species richness, and climate-adapted species across other countries and at continental 378 

scales. 379 
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Supporting information S1 – Additional Methods 

Predictor rasters 

For the prediction of forest regeneration, we prepared information on the environmental variables 

for the entire forest area of Germany. The base raster layer of the forest area was created by 

recalculating the forest area map by Langer et al. (2022) to a 1 ha resolution and to the coordinate 

system of the cultivation risk maps (see Methods). Then, each predictor raster dataset was 

transformed using the base raster layer, and all datasets were set to the same coordinate system, 

extent and resolution. The predictors coordinate and conspecific basal area, were only available at 

NFI plot location and not as raster layers. Raster layers for x and y coordinates were created using the 

cell centroid coordinates of the base layer. Whereas the raster layers for conspecific basal area were 

derived using the NFI basal area data and the same modelling and prediction approach used for 

regeneration. 

Basal area interpolation 

To interpolate conspecific basal area for the German forest area to predict regeneration, the same 

model structure with basal area as the response, a Tweedie distribution and a log link function was 

used. We calibrated basal area models for each regeneration tree species which remained after 

model evaluation (see Methods) and used the same prediction approach as described for 

regeneration density, without cross-validation. The plausibility of the species-specific basal area 

distributions was assessed by visual comparison with distribution maps of the European atlas of 

forest tree species (Caudullo et al., 2016). 
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Supporting information S2 - Additional Figures and Tables 

Table S1: Predictor variables used for the calibration of species-specific regeneration density models. 

Category Variable Unit Spatial 
extent 

Spatial resolution Measurement 
time 

Reference 

Topography Eastness exposition - Europe 25 x 25 m 2011 Derived from 
Thünen-Institut 
(2015) or from 
EEA (2016)  

Northness exposition - 

Elevation above sea level meters Europe 25 x 25 m 2011 Thünen-Institut 
(2015) or EEA 
(2016)  

Soil Available water capacity % Europe 500 x 500 m 2009 Ballabio et al. 
(2016) Bulk density t m³ 

Clay % 

Coarse fragments % 

Sand % 

Silt % 

CaCO3 g kg-1 Europe 500 x 500 m 2009-2012 Ballabio et al. 
(2019) Cation exchange capacity  cmol kg-1 

C-N-ratio - 

K mg kg-1 

N g kg-1 

P mg kg-1 

pH in CaCl - 

Available water capacity in 
effective rooting depth 

mm Germany 250 x 250 m NA Duijnisveld (2015) 

Water and wetness probability 
index 

% Europe 20 x 20 m 2015 EEA (2018b) 

organic carbon % Europe 1000 x 1000 m 1800-2000 Jones et al. (2005) 

Total NH4 immission eq ha-1 a-1 Germany 1000 x 1000 m 2013-2015 Schaap et al. 
(2018) Total NO3 immission  eq ha-1 a-1 

Total N immission eq ha-1 a-1 

Macroclimate Climatic water balance over the 
GDD period 

mm Europe 30 x 30 arcsec 1979–2013 Heiland et al. 
(2022) 

Climatic water balance mm 

Growing degree days  °C d 

Mean annual precipitation mm Global 30 x 30 arcsec 1981-2010 Karger et al. 
(2018) Precipitation seasonality % 

Mean daily minimum air 
temperature of the coldest 
month 

°C 

Mean annual air temperature °C 

Annual range of air temperature °C 

Mean diurnal air temperature 
range 

°C 

Temperature seasonality 0.01 °C 

Aridity index - Global 30 x 30 arcsec 1970-2000 Trabucco and 
Zomer (2019) Potential evapotranspiration 0.0001 mm 

Microclimate Minimum temperature of the 
coldest month 

°C Europe 25 x 25 m 2000-2020 Haesen et al. 
(2023) 

Mean annual temperature °C 

Annual temperature range °C 

Mean diurnal temperature range °C 

Temperature seasonality 0.01 °C 

Stand structure Tree cover density % Europe 20 x 20 m 2011-2013 EEA (2018a) 



Conspecific basal area 
(from angle count unit 1 and 2) 

m² ha-1 Germany 100 x 100 m 2011-2012 Thünen-Institut 
(2015) and this 
study 

Space Federal state of Germany - Germany none and 100 x 
100 m 

2013 and 2022 Thünen-Institut 
(2015) and 
derived from BKG 
(2022) 

NFI plot coordinate x and y value 
(anonymized) 

- Germany 1000 x 1000 m 2016 Thünen-Institut 
(2015) and this 
study 

Time Month and year of NFI 
measurement 

- Germany none 2011-2012 Thünen-Institut 
(2015) 

 

Table S2: Spatial autocorrelation of each calibrated model and set up for spatially blocked cross-validation. Spatial 

autocorrelation of the model was assessed by using the R-package DHARMa (Hartig, 2022) and spatial autocorrelation 

range of the response was calculated with the package blockCV (Valavi et al., 2019). 

Species Model spatial autocorrelation Spatially blocked cross-validation 

Observed 
Morans I 

p-value Spatial 
autocorrelation 
range [m] 

Used spatial 
range [m] 

Block number 

Abies alba -0.00019 0.32 n.s. 2,502 2,502 16,616 

Abies grandis -0.00030 0.08 n.s. 5,682 5,683 8,645 

Acer campestre -0.00013 0.60 n.s. 39,754 39,754 303 

Acer platanoides -0.00028 0.10 n.s. 71,751 71,752 108 

Acer pseudoplatanus -0.00017 0.42 n.s. 24,913 24,914 732 

Alnus glutinosa -0.00012 0.66 n.s. 41,710 41,710 279 

Alnus incana -0.00021 0.25 n.s. 9,450 9,450 4,163 

Betula pendula -0.00035 0.03 * 13,295,247 300,000 11 

Betula pubescens -0.00035 0.03 * 3,078,096 300,000 11 

Carpinus betulus 0.00003 0.54 n.s. 31,648 31,649 465 

Castanea sativa -0.00014 0.53 n.s. 531 532 18,181 

Fagus sylvatica -0.00003 0.87 n.s. 51,183 51,184 191 

Fraxinus excelsior -0.00030 0.07 n.s. 50,850 50,851 193 

Larix decidua -0.00032 0.05 n.s. 224,055 224,056 16 

Larix kaempferi -0.00009 0.80 n.s. 20,003,371 300,000 11 

Malus sylvestris 
      

Picea abies -0.00004 0.92 n.s. 104,926 104,927 58 

Picea sitchensis -0.00029 0.08 n.s. 466,836 300,000 11 

Pinus mugo 
      

Pinus nigra -0.00015 0.50 n.s. 15,141 15,142 1,822 

Pinus strobus -0.00024 0.18 n.s. 6,477,058 300,000 11 

Pinus sylvestris -0.00007 0.89 n.s. 110,621 110,621 52 

Populus alba 0.00006 0.42 n.s. 10,705 10,706 3,368 

Populus nigra -0.00017 0.41 n.s. 42,140 42,141 269 

Populus tremula -0.00015 0.50 n.s. 74,889 74,890 99 

Populus trichocarpa x maximoviczii -0.00011 0.66 n.s. 1,854,565 300,000 11 

Populus x canescens -0.00008 0.88 n.s. 47,026 47,026 220 

Prunus avium -0.00002 0.82 n.s. 29,395 29,395 535 

Prunus padus -0.00020 0.29 n.s. 17,820 17,821 1,367 

Prunus serotina -0.00011 0.67 n.s. 103,071 103,072 59 

Pseudotsuga menziesii -0.00012 0.63 n.s. 104,926 104,927 58 

Pyrus communis 
      

Quercus petraea -0.00035 0.03 * 240,624 240,625 15 

Quercus robur -0.00014 0.53 n.s. 77,579 77,580 94 

Quercus rubra -0.00018 0.36 n.s. 10,775 10,776 3,348 

Robinia pseudoacacia -0.00017 0.39 n.s. 105,582 105,583 56 

Salix spp. -0.00024 0.18 n.s. 26,742 26,742 640 

Sorbus aria -0.00012 0.64 n.s. 10,119 10,120 3,721 

Sorbus aucuparia -0.00012 0.63 n.s. 15,991,026 300,000 11 

Sorbus torminalis 
      



Taxus baccata 
      

Tilia spp. -0.00038 0.02 * 30,387 30,388 500 

Ulmus spp. -0.00007 0.94 n.s. 27,193 27,193 616 

 

Table S3: Forest regeneration densities per tree species from the German national forest inventory of 2012. The availability 

of predicted regeneration density maps is indicated by a dot (available) or a circle (not available). 

Species Density 
proportion 
[%] 

Mean 
[#/ha] 

SD 
[#/ha] 

Map 
availability 

Fagus sylvatica 29.9 1052 5085 ● 

Picea abies 16.9 594 3546 ● 

Acer pseudoplatanus 8.7 305 2481 ○ 

Fraxinus excelsior 7.0 245 2121 ● 

Sorbus aucuparia 6.8 240 1617 ○ 

Carpinus betulus 4.2 148 1686 ● 

Betula pendula 4.0 140 1668 ○ 

Pinus sylvestris 3.8 132 1380 ● 

Prunus serotina 3.5 124 1467 ● 

Abies alba 2.3 81 931 ● 

Quercus robur 1.6 56 582 ● 

Quercus petraea 1.4 48 1022 ○ 

Populus tremula 1.2 41 804 ○ 

Prunus padus 1.1 40 849 ○ 

Tilia spp. 0.9 32 511 ● 

Salix spp. 0.8 29 637 ○ 

Acer campestre 0.6 22 407 ● 

Acer platanoides 0.6 22 593 ● 

Pseudotsuga menziesii 0.6 21 569 ● 

Alnus glutinosa 0.6 20 477 ● 

Alnus incana 0.6 19 651 ● 

Ulmus spp. 0.5 19 366 ○ 

Prunus avium 0.5 19 341 ● 

Betula pubescens 0.4 15 437 ● 

Quercus rubra 0.4 13 364 ● 

Robinia pseudoacacia 0.3 9 243 ● 

Larix decidua 0.1 5 126 ○ 

Sorbus aria 0.1 4 143 ● 

Pinus strobus <0.1 3 131 ○ 

Larix kaempferi <0.1 3 108 ● 

Picea sitchensis <0.1 2 126 ○ 

Pinus mugo <0.1 2 147 ○ 

Populus nigra <0.1 2 164 ● 
Populus trichocarpa x 
maximoviczii 

<0.1 2 226 
○ 

Castanea sativa <0.1 2 94 ● 

Sorbus torminalis <0.1 2 76 ○ 

Pinus nigra <0.1 1 77 ○ 

Populus x canescens <0.1 1 70 ○ 

Pyrus communis <0.1 1 38 ○ 

Malus sylvestris <0.1 0 24 ○ 

Abies grandis <0.1 0 30 ○ 

Taxus baccata <0.1 0 19 ○ 

Populus alba <0.1 0 37 ○ 

Sorbus domestica 0.0 0 0 ○ 

 



Table S4: Proportion of regeneration in Bavaria at high cultivation risk for 17 tree species. 

Species 

Regeneration 
at high 
cultivation risk 
[%] 

Abies alba 0.49 

Acer campestre <0.01 

Acer platanoides <0.01 

Alnus glutinosa 0.26 

Carpinus betulus <0.01 

Castanea sativa <0.01 

Fagus sylvatica <0.01 

Fraxinus excelsior <0.01 

Larix kaempferi <0.01 

Picea abies 94.48 

Pinus sylvestris 4.52 

Prunus avium 0.19 

Pseudotsuga menziesii 0.01 

Quercus robur <0.01 

Quercus rubra 0.02 

Robinia pseudoacacia <0.01 

 Tilia spp. <0.01 

 



 

Figure S1: Total regeneration density maps of remaining tree species not displayed in Figure 2. Regeneration density scale 

was cut off at the 99% percentile across all species map values (1,186 ha-1). All maps are available for exploration at Google 

Earth Engine URL and for download at Zenodo Data URL. 



 

Figure S2: Spatial patterns of total regeneration density (ha-1) for Germany based on 22 tree species. 

 

Figure S3: Regeneration tree species richness for the forest area of Germany based on 22 tree species. The map (A) shows 

spatial patterns, and the histogram (B) describes the distribution of species richness occurrence. We considered a species 

present in a 1 ha-grid cell if its density was at least 5% of the total regeneration density. 
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.04
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.04
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.088
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.32
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.856
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.008
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.752
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.064

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
20

40
60

80

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1

F
re

qu
en

cy

52120 52130 52140 52150 52160 52170 52180 52190

0
5

10
15

20

Betula pubescens



4100000 4200000 4300000 4400000 4500000 4600000 4700000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

DHARMa Moran's I test for distance−based autocorrelation

x

y
Betula pubescens



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.13435
Deviation  n.s.

Outlier test: p= 0.78676
Deviation  n.s.

Dispersion test: p= 0.704
Deviation  n.s.

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted

DHARMa residual
Larix decidua



DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.704

F
re

qu
en

cy

0 2 4 6 8 10

0
10

20
30

40
50

60

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.976
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.2
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Simulated values, red line = fitted model. p−value (two.sided) = 0.968
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.624
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Simulated values, red line = fitted model. p−value (two.sided) = 0.952
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.272
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F
re

qu
en

cy

52190 52200 52210 52220 52230 52240

0
2

4
6

8
10

12

Pinus strobus



4100000 4200000 4300000 4400000 4500000 4600000 4700000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

DHARMa Moran's I test for distance−based autocorrelation

x

y
Pinus strobus



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.01363
Deviation  significant

Outlier test: p= 0.34998
Deviation  n.s.

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted

DHARMa residual
Pinus sylvestris



DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.672
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.856
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F
re

qu
en

cy

52284 52286 52288 52290 52292 52294 52296

0
10

20
30

40

Pinus nigra



4100000 4200000 4300000 4400000 4500000 4600000 4700000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

DHARMa Moran's I test for distance−based autocorrelation

x

y
Pinus nigra



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 5e−05
Deviation  significant

Outlier test: p= 8e−05
Deviation  significant

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted

DHARMa residual
Picea abies



DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.512
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Simulated values, red line = fitted model. p−value (two.sided) = 0.88
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.72
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.56
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Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.872
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.056
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.544
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.392
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Simulated values, red line = fitted model. p−value (two.sided) = 0.88
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.576
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.288
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expected zeros with simulation under H0 = fitted
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Simulated values, red line = fitted model. p−value (two.sided) = 1

F
re

qu
en

cy

52285 52290 52295 52300

0
5

10
15

20
25

30

Populus x.canescens



4100000 4200000 4300000 4400000 4500000 4600000 4700000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

DHARMa Moran's I test for distance−based autocorrelation

x

y
Populus x.canescens



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.16497
Deviation  n.s.

Outlier test: p= 0.34998
Deviation  n.s.

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted

DHARMa residual
Populus tremula



DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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expected zeros with simulation under H0 = fitted
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Simulated values, red line = fitted model. p−value (two.sided) = 0.912
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.624
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Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.144
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Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.232
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expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.976
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.088
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Simulated values, red line = fitted model. p−value (two.sided) = 0.968
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.336

F
re

qu
en

cy

51050 51100 51150 51200

0
5

10
15

20

Prunus serotina



4100000 4200000 4300000 4400000 4500000 4600000 4700000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

DHARMa Moran's I test for distance−based autocorrelation

x

y
Prunus serotina



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.48783
Deviation  n.s.

Outlier test: p= 0.73061
Deviation  n.s.

Dispersion test: p= 0.8
Deviation  n.s.

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted

DHARMa residual
Sorbus aria



DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.8
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expected zeros with simulation under H0 = fitted
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Simulated values, red line = fitted model. p−value (two.sided) = 0.984

F
re

qu
en

cy

52150 52160 52170 52180 52190 52200 52210

0
2

4
6

8
10

Sorbus aria



4100000 4200000 4300000 4400000 4500000 4600000 4700000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

DHARMa Moran's I test for distance−based autocorrelation

x

y
Sorbus aria



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.17177
Deviation  n.s.

Outlier test: p= 0.92164
Deviation  n.s.

Dispersion test: p= 0.008
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted

DHARMa residual
Prunus avium



DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.008
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expected zeros with simulation under H0 = fitted
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Simulated values, red line = fitted model. p−value (two.sided) = 0.912
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.08
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expected zeros with simulation under H0 = fitted
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Simulated values, red line = fitted model. p−value (two.sided) = 0.776
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.024
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Simulated values, red line = fitted model. p−value (two.sided) = 1
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