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Abstract 8 

In light of global change and forest disturbances, there is an increasing recognition of the importance 9 

of forest regeneration to ensure future generations of trees. However, despite the importance of 10 

forest regeneration, there is a lack in spatial information on the current availability of trees in the 11 

seedling and sapling stage. In this study, we aimed to evaluate the potential to predict species-12 

specific forest regeneration densities using regeneration data typically recorded within National 13 

Forest Inventories (NFIs). We then calculated three indicators for regeneration quantity and quality 14 

to locate potential gaps of regeneration under a changing climate. We successfully calibrated 15 

regeneration density models for 22 tree species using generalised additive models (GAMs) using 16 

regeneration density data from the 2012 German NFI and 44 environmental predictors. 17 

Subsequently, the models were used to create regeneration density maps for the German forest area 18 

at high spatial resolution (1 ha). Regeneration gaps were evaluated in terms of low total density 19 

(<1,000 ha-1), low species richness (≤2 species) and a high proportion (≥75%) of regeneration at high 20 

future cultivation risk. Our results indicate gaps in terms of total regeneration density and species 21 

richness for 13.4% and 47.1% of the forest area of Germany, respectively. A lack of climate-adapted 22 

species was found for 25.2%, exemplarily assessed for the Bavarian forest area. Along this example, 23 

we show how such results can be used to identify areas that require additional silvicultural 24 



intervention in order to increase the resilience of future forests. Our study highlights the potential of 25 

NFI data, particularly that on forest regeneration, and demonstrates the applicability of regeneration 26 

indicator maps for forest management and policymakers in times of change. 27 
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Introduction 31 

Forests are ecosystems of global importance including their value for human well-being. However, 32 

forest ecosystems are increasingly affected by ongoing climate change. In Europe, repeated droughts 33 

have caused increased spread of pests and diseases, defoliation of trees (Potočić et al., 2021), 34 

reduced tree growth (Martinez del Castillo et al., 2022) and higher tree mortality (George et al., 35 

2022; Senf et al., 2020). The consequences are more open canopies and more and larger 36 

disturbances (Senf & Seidl, 2021). This dynamic constitutes a partial loss of a forest generation, 37 

which makes it necessary to consider the subsequent generation, the regenerating trees that are in 38 

the seedling and sapling stage. 39 

Forest regeneration determines present and future forest resilience under increasing disturbances 40 

and higher canopy mortality. A high density of seedlings and saplings can accelerate the regrowth of 41 

a closed canopy, avoid arrested succession (Royo & Carson, 2006) and serve as an advanced start of 42 

post-disturbance forest reorganization (Seidl et al., 2024; Seidl & Turner, 2022). Furthermore, 43 

regeneration is key for the species composition and stand structure of future mature stands, and 44 

thus is targeted by management to adapt forests to climate change (Fischer et al., 2016; Löf et al., 45 

2018). While natural regeneration is the dominant regeneration type in many European forest 46 

systems, seeding, planting and cutting treatments are selectively applied to ensure forest 47 

regeneration, increase the proportion of climate-adapted tree species and create more mixed forest 48 



stands (Erdozain et al., 2024; Löf et al., 2019). To assess how well forest regeneration is adapted to 49 

future climate developments and where targeted forestry measures would be necessary, regional 50 

quantification of regeneration is needed. Hence, it is essential to monitor small tree stages at large 51 

scales and at high spatial resolution. 52 

One of the most important data sources on forests at large spatial scales are national forest 53 

inventories (NFIs). Besides statistically representative information on mature trees at regular time 54 

intervals, most European NFIs also include assessments of regeneration, i.e. trees below the 55 

threshold of diameter at breast height (dbh; Gschwantner et al., 2022; McRoberts et al., 2011). 56 

Forest regeneration is often measured as local regeneration densities by counting individuals per tree 57 

species and size class within small sampling areas, e.g. from 12 m² to 79 m² (Gschwantner et al., 58 

2024; McRoberts et al., 2011). The potential of such NFI regeneration data is largely untapped and 59 

underestimated. First, despite the intense collection of forest regeneration information, the level of 60 

detail in the NFI reports is low. The reports either provide no information on forest regeneration 61 

(Lackner et al., 2023) or only the dominant type of regeneration, such as natural regeneration or 62 

planting, aggregated at the national level (e.g. Bundesministerium für Ernährung und Landwirtschaft, 63 

2024; Rigling & Schaffer, 2015). NFI reports thus lack information on the quantity and quality of 64 

forest regeneration, such as total seedling and sapling density, tree species richness or species 65 

composition. Second, it is a widespread perception that inference on forest regeneration and its 66 

patterns along large environmental gradients using NFI data is challenging or impossible due to high 67 

spatial heterogeneity, many interacting stochastic processes (Price et al., 2001; Shoemaker et al., 68 

2020) and the relatively small plot size for regeneration assessments. Nevertheless, NFI and regional 69 

inventory data on forest regeneration have been used to identify important drivers of regeneration 70 

(e.g. Axer et al., 2021; Martini et al., 2024; Vayreda et al., 2013) and to calibrate empirical models of 71 

regeneration distributions (Hasenauer et al., 2000; Kolo et al., 2017). This suggests that NFI 72 

regeneration data may have the potential to map the next generation of forests at large spatial 73 

scales. 74 



A common approach to creating continuous maps from NFI sample plot data is to use species 75 

distribution models (SDMs; Hernández et al., 2014; Xu et al., 2025), which make use of a species' 76 

ecological niche. SMDs are fitted for tree species at national and continental scale to create detailed 77 

maps of current tree species distributions (Blickensdörfer et al., 2024; Bonannella et al., 2022) and 78 

gain insights into potential tree species distributions under climate change (e.g. Dyderski et al., 2018; 79 

Lima et al., 2024). However, these attempts focus on large trees above the dbh threshold. Although 80 

the drivers of regeneration are becoming better understood (e.g. Axer et al., 2021; Martini et al., 81 

2024; Vayreda et al., 2013), empirical models have not been applied to predict regeneration in space. 82 

The advantages of such regeneration maps would be their ability to provide information at 83 

unobserved locations, allowing for regional assessment of the current status and potential gaps of 84 

regeneration quantity and quality at high spatial resolutions and at large spatial scales. Such species-85 

specific regeneration maps could be used for early detection of post-disturbance reorganisation 86 

(Seidl et al., 2024), initialisation of dynamic forest simulation models (Díaz-Yáñez et al., 2024) and 87 

deriving regeneration indicators to inform forest management (Fischer et al., 2016). 88 

Important indicators for the ability of forest regeneration to contribute to a more resilient next forest 89 

generation are its total density, species richness and proportion of climate-adapted species (Cerioni 90 

et al., 2024; König et al., 2022). High total regeneration density maintains the ability to establish the 91 

next forest generation (Hanbury-Brown et al., 2022). High species richness can reduce losses of 92 

productivity and biomass under more extreme climatic conditions and increased of disturbances 93 

(Mori et al., 2021; Sebald et al., 2021). For example, it can provide insurance, trait complementarity 94 

and facilitation (Jactel et al., 2017). A high proportion of climate-adapted species can indicate better 95 

resilience of the future mature forest stand and high economic value under climate change (Erdozain 96 

et al., 2024; Hanewinkel et al., 2013). Evaluation of these indicators at high spatial resolution is 97 

essential to assess regeneration as a potential for future forests. 98 



Here, we assess the potential of regeneration density models calibrated with NFI data to infer and 99 

evaluate the current quantity and quality of forest regeneration at high spatial resolution. We built 100 

flexible species-specific regeneration models using the untapped regeneration density data of the 101 

German NFI in combination with 44 environmental variables, describing the environmental 102 

preferences of the tree species in early life stages. Subsequently, we used the regeneration models to 103 

predict the regeneration density per tree species for the German forest area at a resolution of 1 ha 104 

(100 x 100 m). We then assessed indicators of potential regeneration gaps by quantifying the 105 

currently available total regeneration density. Additionally, we evaluated regeneration quality, which 106 

is defined as species richness and the proportion of climate-adapted tree species in early life stages, 107 

the latter indicated as a low proportion of regeneration at high cultivation risk. We show that NFI 108 

regeneration data and derived products have high potential to inform solutions to current challenges 109 

of forest management and global change at regional, national, and continental scales.  110 

Materials and Methods 111 

We combined regeneration density observations from the German NFI to map the forest 112 

regeneration across Germany and evaluate potential regeneration gaps using a three-step approach. 113 

First, we combined the NFI regeneration data with environmental data to construct species-specific 114 

regeneration models (Figure 1). Second, we evaluated the predictive performance of the 115 

regeneration models using 10-fold spatially blocked cross-validation and used the validated models 116 

to predict regeneration densities for the forest area of Germany. Third, we mapped indicators of 117 

regeneration quantity and quality, demonstrating their potential application for Bavaria. The full 118 

workflow of modelling and data analysis can be found at 119 

https://github.com/LeonieCG/GermanRegenerationMaps2012 and 120 

https://doi.org/10.5281/zenodo.15552196. 121 



 122 

Figure 1: Workflow and criteria for the identification of potential regeneration gaps across German forests. To generate 123 

species-specific maps of current forest regeneration, we calibrated species-specific regeneration density models using data 124 

from the German National Forest Inventory (NFI). These maps allowed us to identify regions where forest regeneration has 125 

too low total density, low species richness, or high future cultivation risk. Map lines delineate study areas and do not 126 

necessarily depict accepted national boundaries. 127 

Regeneration data 128 

We used forest regeneration data from the most recent published German NFI 129 

(Bundeswaldinventur), conducted in 2011 and 2012 (Thünen-Institut, 2015). The German NFI is 130 

conducted every ten years to assess tree and stand characteristics that are representative of the 131 

German forests. The sampling design is based on a regular grid with each cluster point consisting of 132 

four sample plots (survey design detailed in Riedel et al., 2017). We used regeneration counts 133 

assessed at each sample plot, with individuals counted per species and size category within subplots 134 



of 2 m radius (12.57 m²). The size categories for regeneration were defined as: Category 1: >50-130 135 

cm in height, Category 2: >130 cm in height - 4.9 cm dbh, Category 5: 5.0-5.9 cm dbh, Category 6: 136 

6.0-6.9 cm dbh. Individuals were counted regardless of regeneration type, i.e. no distinction was 137 

made between natural, sown or planted regeneration. For our analyses, we summed up the counted 138 

individuals per species across all categories and evaluated data availability and average abundance 139 

for each tree species. Within the German NFI, the most common tree species in the regeneration 140 

were Fagus sylvatica L. (29.9% of the total regeneration), Picea abies (L.) H.Karst. (16.9%) and Acer 141 

pseudoplatanus L. (8.7%; Table S2). The tree species Sorbus domestica L. had no records, although it 142 

would be part of the German NFI regeneration protocol and was therefore excluded from further 143 

analysis. In total, our regeneration dataset covered information of 43 tree species at 59,848 NFI plot 144 

locations. 145 

Predictors of regeneration patterns 146 

To calibrate the predictive species distribution models, we used 44 environmental predictors related 147 

to topography, soil, macroclimate, microclimate, stand structure, space and time (Table 1). The 148 

environmental predictor values were preferably obtained from the NFI (meta) data and, if not 149 

available, from a corresponding raster layer at each NFI plot location (Table 1). Predictor information 150 

at each plot location was retrieved by the Thünen-Institute, as the true plot locations are not 151 

published. The regeneration density and environmental datasets were then combined, and 152 

observations with missing predictor values were removed. The resulting dataset consisted of 52,305 153 

NFI plot observations used for model calibration (full dataset is available at 154 

https://doi.org/10.5281/zenodo.15550864).  155 

For the prediction of forest regeneration, we prepared information on the environmental variables 156 

for the entire forest area of Germany. The base raster layer of the forest area was created by 157 

recalculating the forest area map by Langer et al. (2022) to a 1 ha resolution and to the coordinate 158 

system of the cultivation risk maps (see below). Then, each predictor raster dataset was transformed 159 



using the base raster layer, and all datasets were set to the same coordinate system, extent and 160 

resolution. The predictors coordinate and conspecific basal area, were only available at NFI plot 161 

location and not as raster layers. Raster layers for x and y coordinates were created using the cell 162 

centroid coordinates of the base layer. Whereas the raster layers for conspecific basal area were 163 

derived using the NFI basal area data and the same modelling and prediction approach used for 164 

regeneration (see below). 165 

Table 1: Predictor variables used for the calibration of the species-specific regeneration density models. 166 

Category Variable Unit Spatial 
extent 

Spatial resolution Measurement 
time 

Reference 

Topography Eastness exposition - Europe 25 x 25 m 2011 Derived from 
Thünen-Institut 
(2015) or from 
European 
Environment 
Agency (2016)  

Northness exposition - 

Elevation above sea level meters Europe 25 x 25 m 2011 Thünen-Institut 
(2015) or 
European 
Environment 
Agency (2016)  

Soil Available water capacity % Europe 500 x 500 m 2009 Ballabio et al. 
(2016) Bulk density t m³ 

Clay % 

Coarse fragments % 

Sand % 

Silt % 

CaCO3 g kg-1 Europe 500 x 500 m 2009-2012 Ballabio et al. 
(2019) Cation exchange capacity  cmol kg-1 

C-N-ratio - 

K mg kg-1 

N g kg-1 

P mg kg-1 

pH in CaCl - 

Available water capacity in 
effective rooting depth 

mm Germany 250 x 250 m NA Duijnisveld (2015) 

Water and wetness probability 
index 

% Europe 20 x 20 m 2015 European 
Environment 
Agency (2018b) 

organic carbon % Europe 1000 x 1000 m 1800-2000 Jones et al. (2005) 

Total NH4 immission eq ha-1 a-1 Germany 1000 x 1000 m 2013-2015 Schaap et al. 
(2018) Total NO3 immission  eq ha-1 a-1 

Total N immission eq ha-1 a-1 

Macroclimate Climatic water balance over the 
GDD period 

mm Europe 30 x 30 arcsec 1979–2013 Heiland et al. 
(2022) 

Climatic water balance mm 

Growing degree days  °C d 

Mean annual precipitation mm Global 30 x 30 arcsec 1981-2010 Karger et al. 
(2017, 2018) Precipitation seasonality % 

Mean daily minimum air 
temperature of the coldest 
month 

°C 



Mean annual air temperature °C 

Annual range of air temperature °C 

Mean diurnal air temperature 
range 

°C 

Temperature seasonality 0.01 °C 

Aridity index - Global 30 x 30 arcsec 1970-2000 Trabucco and 
Zomer (2019) Potential evapotranspiration 0.0001 mm 

Microclimate Minimum temperature of the 
coldest month 

°C Europe 25 x 25 m 2000-2020 Haesen et al. 
(2023) 

Mean annual temperature °C 

Annual temperature range °C 

Mean diurnal temperature range °C 

Temperature seasonality 0.01 °C 

Stand structure Tree cover density % Europe 20 x 20 m 2011-2013 European 
Environment 
Agency (2018a) 

Conspecific basal area 
(from angle count unit 1 and 2) 

m² ha-1 Germany 100 x 100 m 2011-2012 Thünen-Institut 
(2015) and this 
study 

Space Federal state of Germany - Germany none and 100 x 
100 m 

2013 and 2022 Thünen-Institut 
(2015) and 
derived from 
Bundesamt für 
Kartographie und 
Geodäsie (2022) 

NFI plot coordinate x and y value 
(anonymized) 

- Germany 1000 x 1000 m 2016 Thünen-Institut 
(2015) and this 
study 

Time Month and year of NFI 
measurement 

- Germany none 2011-2012 Thünen-Institut 
(2015) 

Regeneration models 167 

As predictive species-specific models of forest regeneration density, we calibrated generalized 168 

additive models (GAMs; Wood, 2017) with a negative binomial distribution and a log link function. 169 

We used GAMs with cubic regression splines (Wood et al., 2016) to allow for a broad spectrum of 170 

non-linear relationships between regeneration densities and our chosen environmental predictors. In 171 

addition, we included variables of space and time in our models. The time variable is used to account 172 

for seasonal differences in growing conditions and detection probability during the sampling period 173 

and consists of month and year of NFI measurement. We used the anonymized plot coordinates 174 

provided by the NFI to account for unobserved spatial predictors. These anonymized plot coordinates 175 

are the actual plot coordinates that have been transferred to a 1 x 1 km grid and then returned as 176 

grid cell coordinates (Hennig, 2022). We also included federal state as a predictor to account for 177 

potential differences in incentives of regeneration establishment and management of regeneration 178 

between states. Environmental predictors were included as fixed effects, whereas month and year of 179 



NFI measurement and federal state were included as random effects in our models. Plot coordinates 180 

were included using a tensor product smooth to account for unexplained spatial variability in the 181 

regeneration densities. GAM smoothness selection and estimation of the negative binomial functions 182 

theta value was performed using fast restricted maximum likelihood estimation. Basis dimensions of 183 

smoothing splines were kept at moderate complexities for environmental fixed effects (k = 10) and 184 

were set to 25 in x and 50 in y direction for spatial effects. We allowed fixed effects to be shrunk to 185 

zero, serving as a variable selection technique (Wood, 2017), and used a ridge penalty for random 186 

effects. 187 

To interpolate conspecific basal area for the German forest area to predict regeneration, the same 188 

model structure with basal area as the response, a Tweedie distribution and a log link function was 189 

used. We calibrated basal area models for each regeneration tree species which remained after 190 

model evaluation (see below) and used the same prediction approach as described for regeneration 191 

density, without cross-validation. The plausibility of the species-specific basal area distributions was 192 

assessed by visual comparison with distribution maps of the European atlas of forest tree species 193 

(Caudullo et al., 2016). 194 

Models were fitted with the function bam() suited for large data sets (Wood et al., 2015) from the R 195 

package mgcv (v.1.9.1, Wood, 2023). 196 

Model evaluation 197 

Statistical assumptions of the regeneration models were assessed based on simulated residuals 198 

generated with the package DHARMa (v.0.4.6, Hartig, 2022). We visually evaluated distributional and 199 

residual assumptions as well as zero-inflation resulting in no critical violations (plots of simulated 200 

residuals can be found in Supplementary Material 1). To ensure that the observations are spatially 201 

independent, even though we are having a clustered sampling design for the NFI, we tested for spatial 202 

autocorrelation within scaled simulated residuals per cluster. We found a tendency for spatial 203 

autocorrelation for the regeneration models of Betula pendula Roth, Betula pubescens Ehrh., Quercus 204 



petraea (Matt.) Liebl. and Tilia spp. (T. platyphyllos Scop. and T. cordata Mill.; see Table S1). However, 205 

given the models' satisfactory performance in cross-validation (see the subsequent paragraph), we 206 

assume that they generalize across space and likely capture meaningful spatial patterns. 207 

In a next step, predictive model performance was assessed using a 10-fold spatially blocked cross-208 

validation with the package blockCV (v.3.1.4; Valavi et al., 2019, 2024). Blocks were set up with 209 

hexagonal block shapes and block sizes corresponding to the spatial autocorrelation range of the 210 

response variables. Block sizes were found to be too large for some species, resulting in less than 10 211 

blocks. In these cases, we set the range to 300 km resulting in 11 blocks for Germany (Table S1). For 212 

each fold, the mean absolute error (MAE) as an indicator for model performance (Chai & Draxler, 213 

2014) and pseudo-R² (Cameron & Windmeijer, 1997) as an indicator of explanatory power were 214 

computed for the test and training data. For MAE, we calculated the relative MAE from the test and 215 

training MAE (
𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛
). The median was used to aggregate values of relative MAE and test pseudo-216 

R2 across all folds. We considered models where the following criteria were met: median relative 217 

MAE ≤2 and median pseudo-R² ≥0.1.  218 

Predictions 219 

After the evaluation of model assumptions and predictive model performance, regeneration models 220 

for 22 tree species were available to be used for prediction (Table 2). Regeneration density maps 221 

across German forests were created using raster layers covering the forest area of Germany for each 222 

environmental predictor. The time variable month and year of NFI measurement was excluded from 223 

the predictions, which results in predictions corresponding to average conditions. Finally, we 224 

converted the predicted regeneration counts per 2 m radius plot (approximately 12.6 m²) to 225 

regeneration densities (counts per hectare). 226 



Derived regeneration indicators 227 

We selected three indicators to measure whether regeneration can secure future forests and 228 

maintain their multifunctionality in a changing climate. These indicators include sufficient total 229 

regeneration density to ensure regrowth of forests e.g. after disturbance, sufficient species richness 230 

to distribute the risk of various possible future climate trajectories, and species composition with a 231 

low proportion of regeneration at high future cultivation risk. 232 

The total regeneration density was calculated by summing up the densities for all 22 tree species per 233 

grid cell. We defined <1,000 ha-1 as insufficient, 1,000-2,000 ha-1 as intermediate and ≥2,000 ha-1 as 234 

sufficient evaluation thresholds. Since reports of sufficient regeneration density thresholds vary, e.g. 235 

1,591 ha-1 (Kolo et al., 2017) or 2,000 ha-1 (Bayerisches Staatsministerium für Ernährung, 236 

Landwirtschaft und Forsten, 2023), we chose an intermediate total regeneration density of 1,000-237 

2,000 ha-1. 238 

Tree species richness was calculated as the number of species with at least 5% of the total number of 239 

regeneration (Mages et al., 2020). For Central European conditions, a species richness of three or 240 

four species has been proposed to be sufficient (Lindner et al., 2025; Mages et al., 2020). Since our 241 

analysis included only a part of the available tree species, i.e. 22 out of 43 species, we defined ≤2 242 

species within the regeneration layer as insufficient, 3-4 species as intermediate and ≥5 species as 243 

sufficient. 244 

To more precisely assess how the current regeneration fits future conditions, we used Bavaria, a 245 

federal state located in southwest Germany, as a case study (see Box 1). We combined our species-246 

specific regeneration density maps with the cultivation risk maps provided by the Bavarian State 247 

Institute of Forestry (Falk et al., 2013, 2019). These were developed as an information and planning 248 

tool for forest practitioners throughout Bavaria and are actively used to select tree species 249 

considering climate projections and local site conditions. The cultivation risk maps are based on 250 

predicted occurrence probabilities of adult trees in the year 2100 assuming an average warming of 251 



1.9°C and an average precipitation decrease of 4.4 mm compared to the period of 1971-2000 (for 252 

details see: Falk & Mellert, 2011; Falk & Hempelmann, 2013; Thurm et al., 2018). The maps are 253 

available for 32 tree species and provide information on cultivation risk in five categories ranging 254 

from very low to very high risk. For 17 of these species or species groups, we also obtained 255 

regeneration distribution maps (Table 2). In the case of the genus Tilia L., the NFI did not differentiate 256 

between Tilia platyphyllos and T. cordata, but cultivation risk maps were available for both. We 257 

combined the two maps by transforming the five cultivation risk categories into values ranging from 258 

1 to 5 (from very low to very high risk), calculating the mean risk for each grid cell, and back 259 

transforming the values into the former categories. If the mean was between risk categories, we 260 

chose the lower category. 261 

As a next step, we aggregated the cultivation risk assessment per grid cell by calculating the 262 

percentage of regeneration density at high cultivation risk. To this end, we combined the risk 263 

categories very high risk and high risk into a high-risk category, and the categories increased risk, low 264 

risk and very low risk into a low-risk category. The percentage of regeneration at high cultivation risk 265 

𝑅ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 was calculated as:  266 

𝑅ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘[%] =
𝑁ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘

𝑁𝑡𝑜𝑡𝑎𝑙
∗ 100 267 

Here, 𝑁ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 is the regeneration density summed up over the species with high cultivation risk and 268 

𝑁𝑡𝑜𝑡𝑎𝑙  the total regeneration density across all species of the grid cell. We defined ≥75% of the total 269 

regeneration density at high cultivation risk as problematic. 270 

Box 1: Bavaria (Germany) – A case study for identifying regeneration gaps. 271 

Using Bavaria as an example, we demonstrate the potential use of regeneration indicator maps to 272 

identify regeneration gaps and hotspots (Figure 2) and derive recommendations for silvicultural 273 

interventions. Bavaria, a federal state in the southeast of Germany, has a forest coverage of 36.9% 274 

(Klemmt et al., 2014). This corresponds to 22.8% of Germany’s total forest area (Bundesministerium 275 

für Ernährung und Landwirtschaft, 2016). Recent climate change induced summer droughts and 276 



subsequent bark beetle outbreaks have led to a loss of tree canopies, especially in Norway spruce 277 

(Picea abies) dominated areas (Thonfeld et al., 2022). We chose Bavaria as a case study because 278 

detailed maps of future cultivation risk are available for many tree species, which allowed us to 279 

derive not only the total regeneration density and species richness but also the proportion of 280 

regeneration at high future cultivation risk. 281 

For Bavaria, we found a high total regeneration density (≥2,000 ha-1) in the southern part and 282 

towards the eastern and northwestern edges of the state (Figure 2A). Only few regions, amounting to 283 

3.5% of the forest area, showed a total regeneration density deficit of <1,000 ha-1. Species richness of 284 

the regeneration was generally low (≤2 tree species) to intermediate (3-4 species) throughout 285 

Bavaria (Figure 2B). Forests with a deficit in species richness covered 50.0% of the Bavarian forest 286 

area, mainly in the low mountain ranges. The proportion of regeneration at high future cultivation 287 

risk (Figure 2C) was calculated on the basis of 17 species regeneration density maps (Table 2), 288 

covering 74.9% of the Bavarian NFI regeneration data and 76.8% of the Bavarian forest area. The 289 

proportion of species at high cultivation risk in the regeneration was heterogeneous across Bavaria 290 

(Figure 2C). Half of the analysed forest area had a cultivation risk lower than 37.7% (Figure 2D), for 291 

instance in the Bavarian Alps (Figure 2C). Regeneration at high risk (i.e. proportions ≥75%) dominated 292 

on 25.2% (489,385 ha) of the forest area, e.g. in the northeast. This pattern was mainly driven by 293 

Picea abies, amounting to 94.5% of all regeneration densities at high risk (Table S3). 294 

Such spatially resolved results on the quantity and quality of forest regeneration indicate 295 

regeneration gaps and allow for targeted silvicultural measures and incentives that can significantly 296 

contribute to the adaptation of forests to climate change. For example, regions like the Frankenwald 297 

and the Bavarian Alps (Figure 2A) are major hotspots for climate change impacts and adaptation in 298 

Bavarian forests. Severe large-scale disturbances are a significant issue in the Frankenwald (Viana-299 

Soto & Senf, 2024), while the Alps are increasingly prone to rockfall due to climate change, making 300 

forests especially valuable for protection (e.g. Hillebrand et al., 2023; Moos et al., 2021). Combining 301 



this information with forest regeneration indicators allows priorities to be set for forest 302 

management: In the Frankenwald with a notable regeneration gap in species richness and climate-303 

adapted tree species (Figure 2B and C), selective cutting of the existing regeneration and planting of 304 

additional climate-adapted tree species should be encouraged to increase species richness and 305 

reduce future cultivation risk. In contrast, the few local gaps in total regeneration density (Figure 2A) 306 

and species richness (Figure 2B) in the Bavarian Alps should be addressed by promoting natural 307 

regeneration and planting. Overall, regions with severe regeneration gaps should be prioritized, e.g. 308 

the forest area in the Frankenwald. 309 

 310 

Figure 2: Indicator maps on quantity and quality of forest regeneration for Bavaria: (A) total density, (B) species richness and 311 

(C) proportion of regeneration at high cultivation risk. (D) shows the distribution of proportion of regeneration at high 312 

cultivation risk. (A) and (B) were derived from regeneration density maps of 22 tree species, while (C) and (D) are based on 313 

17 tree species. Maps are available online at https://easi.users.earthengine.app/view/regeneration-maps and available for 314 

Frankenwald 

Bavarian Alps 



download at https://doi.org/10.5281/zenodo.15550864. Map lines delineate study areas and do not necessarily depict 315 

accepted national boundaries. 316 

Programs used 317 

All calculations were conducted in R v.4.4.1 (R Core Team, 2024). Spatial data processing was carried 318 

out using the R-package terra (v.1.7.78; Hijmans, 2024) and sf (v.1.0-16; Pebesma et al., 2024). 319 

Results 320 

Regeneration density models 321 

From the 43 calibrated species-specific regeneration density models, 22 met the performance 322 

criteria (Table 2), i.e. median pseudo-R² ≥0.1 and median relative MAE ≤2 from 10-fold spatially 323 

blocked cross-validation. We used these to predict the regeneration density for 78.5% (8,615,918 ha) 324 

of the German forest area at a resolution of 1 ha. The 22 species represented 74.9% of the 325 

regeneration measured within the NFI. We found that, across Germany, the most common tree 326 

species within the regeneration were Fagus sylvatica, Picea abies and Prunus serotina Ehrh. with 327 

mean densities of 1,192, 985 and 349 individuals per hectare, respectively (Table 2). Species with 328 

lowest abundance in the regeneration throughout Germany were Quercus rubra L., Sorbus aria (L.) 329 

Crantz and Pinus strobus L. with average densities of 5, 2, and 1 individual(s) per hectare. 330 

Of all 43 calibrated regeneration models, five did not converge and 16 did not meet the performance 331 

criteria (total 21; Table 2). Out of these, 15 were rare tree species, with total regeneration density 332 

<1% within the German NFI (Table S2). The other six were common tree species Acer pseudoplatanus 333 

L., Sorbus aucuparia L., Betula pendula, Quercus petraea (Matt.) Liebl., Populus tremula L. and Prunus 334 

padus L. (Table S2), that nevertheless could not be sufficiently modelled with our approach (Table 2). 335 

The median pseudo-R² criterion was the primary factor in determining the model quality, as the 336 

median relative MAE criterion was consistently met (Table 2). 337 



Table 2: Evaluation and summary statistics of regeneration density models for 43 tree species. The availability of 338 

regeneration density maps (Germany) or cultivation risk maps (only for Bavaria; Falk et al., 2013, 2019) is indicated by a dot 339 

(available) or a circle (not available). Regeneration density maps were predicted when the model performance criteria of 340 

median relative MAE ≤2 and median pseudo-R² ≥0.1 were met, as determined by 10-fold spatially blocked cross-validation. 341 

Species Model 
performance 

Regeneration 
density map 
availability 
(Germany) 

Regeneration 
density [#/ha] 

Cultivation 
risk map 
availability 
(Bavaria) Median 

relative 
MAE 

Median 
pseudo-
R² 

Mean SD 

Abies alba 1.02 0.48 ● 167 819 ● 
       
Abies grandis 1.06 0.07 ○ 

  
● 

Acer campestre 0.83 0.31 ● 18 345 ● 
Acer platanoides 0.91 0.12 ● 8 154 ● 
Acer pseudoplatanus 0.99 -0.01 ○ 

  
● 

Alnus glutinosa 1.12 0.16 ● 23 324 ● 
Alnus incana 1.06 0.39 ● 84 9122 ○ 
Betula pendula 1.00 -0.12 ○ 

  
● 

Betula pubescens 0.05 0.43 ● 25 533 ○ 
Carpinus betulus 0.84 0.20 ● 208 1108 ● 
Castanea sativa 1.01 0.32 ● 1 12 ● 
Fagus sylvatica 1.05 0.26 ● 1192 1940 ● 
Fraxinus excelsior 0.90 0.15 ● 329 1900 ● 
Larix decidua 0.75 0.06 ○ 

  
● 

Larix kaempferi 0.30 0.44 ● 7 88 ● 
Malus sylvestris 

  
○ 

  
○ 

Picea abies 0.75 0.16 ● 985 1572 ● 
Picea sitchensis 0.20 0.09 ○ 

  
○ 

Pinus mugo 
  

○ 
  

○ 
Pinus nigra 0.50 -0.28 ○ 

  
● 

Pinus strobus 0.47 -0.01 ○ 
  

○ 
Pinus sylvestris 0.33 0.29 ● 257 805 ● 
Populus alba 0.28 0.08 ○ 

  
○ 

Populus nigra 0.13 0.20 ● 120 12213 ○ 
Populus tremula 0.86 0.07 ○ 

  
○ 

Populus trichocarpa x maximoviczii 0.35 -0.98 ○ 
  

○ 
Populus x canescens 0.06 -0.09 ○ 

  
○ 

Prunus avium 1.00 0.25 ● 11 43 ● 
Prunus padus 0.54 -0.57 ○ 

  
○ 

Prunus serotina 0.33 0.11 ● 349 5338 ○ 
Pseudotsuga menziesii 0.91 0.21 ● 26 101 ● 
Pyrus communis 

  
○ 

  
● 

Quercus petraea 0.74 0.02 ○ 
  

● 
Quercus robur 1.06 0.20 ● 77 150 ● 
Quercus rubra 0.84 0.15 ● 5 39 ● 
Robinia pseudoacacia 1.09 0.45 ● 75 3850 ● 
Salix spp. 1.04 0.03 ○ 

  
○ 

Sorbus aria 0.89 0.12 ● 2 32 ○ 
Sorbus aucuparia 0.99 -0.10 ○ 

  
● 

Sorbus torminalis 
  

○ 
  

● 
Taxus baccata 

  
○ 

  
○ 

Tilia spp. 0.92 0.29 ● 38 582 ● 
Ulmus spp. 0.60 -0.02 ○ 

  
● 

All species n = 22       4006 17015.5   



Species-specific regeneration maps for Germany 342 

The predicted density maps showed distinct patterns in the availability of regeneration for each tree 343 

species (Figure 3, for all other tree species maps see Figure S1). For example, the regeneration of 344 

Fagus sylvatica was widely distributed with very high abundance in the centre of Germany and lower 345 

densities towards the east and the western lowlands (Figure 3). Similarly, the regeneration of Picea 346 

abies was widely abundant across German forests but showed lower densities (<100 individuals per 347 

hectare) towards the northeast. Abies alba Mill. - a less common tree species (mean density of 167 348 

ha-1; Table 2) that is considered climate-resilient in low mountain ranges - showed a clear north-349 

south trend with no occurrence in the northern half of Germany and a gradual increase in 350 

regeneration from the centre towards the south. In the South, Abies alba is particularly abundant in 351 

low mountain ranges. 352 

 353 

Figure 3: Regeneration densities exemplarily shown for three important tree species in Central Europe, i.e. Abies alba, 354 

Fagus sylvatica and Picea abies in 1 ha grid cells for Germany (for remaining tree species maps see Figure S1). All maps are 355 

available online at https://easi.users.earthengine.app/view/regeneration-maps and available for download at 356 

https://doi.org/10.5281/zenodo.15550864. Map lines delineate study areas and do not necessarily depict accepted 357 

national boundaries. 358 



Indicators of total quantity and quality of forest regeneration 359 

The quantity of regeneration, evaluated as the total regeneration density based on 22 tree species, 360 

showed an average of 4,006 individuals per hectare (Table 2). A clear trend of insufficient (0-1,000 361 

ha-1) and intermediate (1,000-2,000 ha-1) total regeneration densities in parts of Mid and North 362 

Germany was visible (Figure 4, for continuous density colour scale see Figure S2), whereas the South 363 

mainly displayed sufficient regeneration (≥2,000 ha-1). Overall, we found 60.1% of the predicted 364 

forest area to have sufficient, 26.4% of intermediate and 13.4% of insufficient regeneration densities. 365 

As part of the quality assessment of the regeneration, we evaluated regeneration species richness 366 

(Figure 5, for continuous species richness colour scale see Figure S3), which was generally low with 367 

an average of 2.8 species per hectare across Germany. A total of 47.1% of the predicted forest area 368 

included insufficient (≤2 species) number of tree species in the regeneration (Figure 5B), while 43.5% 369 

of the area contained intermediate species numbers (3-4 species) and 9.4% contained sufficient 370 

species richness (≥5 species). Forests that are particularly species rich in the regeneration, i.e. ≥5 371 

species, were found towards the northeast (Figure 5A) and are otherwise restricted to local hotspots 372 

across Germany. Forests with a species richness ≤2 were particularly common in low mountain 373 

ranges. 374 

Regeneration quality was additionally assessed as the future suitability of tree species in the 375 

regeneration. We showcase this – and the identification of regeneration gaps and hotspots and 376 

potential management strategies more generally – using the example of the German federal state 377 

Bavaria (Box 1). 378 



 379 

Figure 4: Spatial patterns of total regeneration density (ha-1) for Germany based on 22 tree species. Colour categories 380 

describe insufficient (0-1,000 ha-1), intermediate (1,000-2,000 ha-1) and sufficient (≥2,000 ha-1) total regeneration densities 381 

(for continuous colour scale see Figure S2). Map is available online at 382 

https://easi.users.earthengine.app/view/regeneration-maps and available for download at 383 

https://doi.org/10.5281/zenodo.15550864. Map lines delineate study areas and do not necessarily depict accepted 384 

national boundaries. 385 

 386 

Figure 5: Regeneration tree species richness for the forest area of Germany based on 22 tree species. The map (A) shows 387 

spatial patterns, and the histogram (B) describes the distribution of species richness values. Colour categories describe 388 

insufficient (1-2), intermediate (3-4) and sufficient (≥5) regeneration species richness (for continuous colour scale see Figure 389 



S3). We considered a species present in a 1 ha-grid cell if its density was at least 5% of the total regeneration density. Map 390 

is available online at https://easi.users.earthengine.app/view/regeneration-maps and available for download at 391 

https://doi.org/10.5281/zenodo.15550864. Map lines delineate study areas and do not necessarily depict accepted 392 

national boundaries. 393 

Discussion 394 

Our results demonstrate the potential to predict forest regeneration density at high spatial resolution 395 

from species-specific models calibrated with NFI regeneration data. Using the regeneration density 396 

maps predicted for Germany, we evaluated indicators of regeneration quantity and quality, defined 397 

here as total regeneration density, species richness and proportion of climate-adapted tree species. 398 

The indicators revealed regional gaps and hotspots in forest regeneration. 399 

Predicting forest regeneration at large spatial scale 400 

We successfully predicted forest regeneration density for a large part of the modelled tree species in 401 

Central Europe. This contrasts with previous models of forest regeneration. These included only few 402 

species (Hasenauer et al., 2000; Kolo et al., 2017), covered only small environmental gradients 403 

(Hasenauer et al., 2000) and achieved low predictive accuracy at high spatial resolution because of 404 

only few environmental predictors (Zhu et al., 2014). Previous models were therefore not suited to 405 

reliably predict community composition and diversity across large environmental gradients. Even 406 

more, none of these studies had produced forest regeneration maps at regional or national scales 407 

that could be used to assess the quantity and quality of regeneration. 408 

The model approach of our study distinguishes itself by successfully cross-validating 22 of the 43 tree 409 

species models (Table 2). This is likely due to the large environmental gradients covered in the NFI 410 

data, the large number of environmental predictors (i.e. n = 44), partly at high spatial resolution, and 411 

the flexibility of our modelling approach (i.e. GAMs). We conclude that even though forest 412 

regeneration is subject to a variety of stochastic processes (Price et al., 2001; Shoemaker et al., 2020) 413 

and is measured on small sampling plots (i.e. 12.57 m²), there is enough signal in local regeneration 414 



densities to successfully model and predict the regional availability of forest regeneration at large 415 

spatial scales. 416 

Tree species coverage of the regeneration models 417 

The predicted regeneration density maps (Figure 3 and Figure S2) cover a major part, i.e. 74.9%, of 418 

the regeneration sampled within the German NFI. Therefore, our indicators derived from the 419 

regeneration maps draw a reliable picture of the dominant forest regeneration state and its gaps. 420 

Nevertheless, it would be desirable to expand the range of tree species modelled, especially since a 421 

large species pool and rare species will play a greater role as climate change progresses (Huth et al., 422 

2025). In this study, we could not successfully calibrate regeneration models or did not reliably 423 

predict observed regeneration densities for 21 tree species (Table 2). Out of these, 15 species are 424 

rare and occur at average densities <1% in the German NFI regeneration dataset (Table S2). Because 425 

the NFI sample plots for regeneration are small, rare species are not well covered, and the amount of 426 

data is not sufficient to uncover the environmental preferences of these tree species and to calibrate 427 

predictive regeneration models. To improve data availability for these species, information including 428 

regeneration data from previous German NFI surveys, other European NFIs or local inventories could 429 

be used in future studies. 430 

In addition to rare species, we could also not reliably predict the regeneration density for more 431 

generalist species Acer pseudoplatanus, Betula pendula, and Sorbus aucuparia. These have wide 432 

realized niches and are found across large environmental gradients (Caudullo et al., 2016). This may 433 

have made it difficult to relate the regeneration densities of these species to the environmental 434 

predictors available to us. As another strategy to predict regeneration density for more species in the 435 

future, models could include even more predictors to better reflect environmental niches.  436 



Predictors of forest regeneration 437 

Our regeneration models were calibrated using 44 predictive variables describing the environment 438 

with respect to topography, soil, microclimate, macroclimate, stand structure and spatial patterns 439 

(Table 1). Previous studies have related forest regeneration to similar environmental variables, such 440 

as elevation (Kolo et al., 2017; Kupferschmid et al., 2019; Thom et al., 2023), soil texture (Kolo et al., 441 

2017), mean annual temperature (Harris et al., 2024; Kolo et al., 2017; König et al., 2025; 442 

Kupferschmid et al., 2019; Vayreda et al., 2013; Zhu et al., 2014), conspecific basal area (Axer et al., 443 

2021; Martini et al., 2024; Zhu et al., 2014) and microclimatic variables (Caron et al., 2021; Thom et 444 

al., 2023). However, it has been shown that forest regeneration density is also related to other 445 

predictors such as browsing intensity (Axer et al., 2021; Kupferschmid et al., 2019; Martini et al., 446 

2024; Vayreda et al., 2013), understory light availability (Harris et al., 2024; Martini et al., 2024) or 447 

silvicultural management and ownership (Kolo et al., 2017).  448 

We could not account for these additional predictors in our forest regeneration maps because they 449 

are not (yet) available as spatial datasets for the entire German forest area (e.g. understory light 450 

availability or silvicultural management) or only available at low spatial resolution and not 451 

homogenized across federal states (e.g. browsing intensity). We consider it promising to evaluate 452 

how much these additional predictors can contribute to the predictability of forest regeneration, and 453 

to invest in datasets for these predictors with better spatial coverage in case of considerably 454 

improved predictions. Although our approach already accounts for a high level of flexibility (i.e. 455 

GAM), the complexity of environmental relationships could be further enhanced by using machine 456 

learning algorithms (Pichler & Hartig, 2023), in addition to expanding model predictors (Xu et al., 457 

2025). 458 

Application of regeneration density and indicator maps 459 

Creating species-specific regeneration density maps was motivated by the potential to identify 460 

regional gaps and hotspots in regeneration quantity and quality thus to assess the potential 461 



contribution of forest regeneration to a more resilient next forest generation. To this end, we used 462 

three indicators that are widely used in forest management and planning: total regeneration density, 463 

species richness and proportion of climate-adapted tree species (Cerioni et al., 2024; König et al., 464 

2022). Typically, these indicators are assessed for individual stands by local forest practitioners and 465 

managers, but not at larger scales. Our regeneration indicator maps demonstrate the potential to 466 

monitor these indicators at national scales and to identify regional differences in forest regeneration. 467 

For Germany, we found that regeneration gaps are small in terms of total regeneration density 468 

(Figure 4) but are of concern regarding species richness, with a deficit for almost half of the German 469 

forest area (Figure 5). In addition, one quarter of the forest area in Bavaria is affected by a lack of 470 

climate-adapted tree species (Figure 2D). While the forest regeneration indicator maps cannot 471 

replace a local, on-site assessment of regeneration for stand level silvicultural decisions, they can 472 

provide an indication of potential regeneration gaps at the regional scale (Box 1). Such gaps can help 473 

forest policymakers identify potential priority areas and target actions to reduce future risks, increase 474 

species richness and regeneration density through selective cutting, promoting natural regeneration, 475 

or planting climate-adapted tree species. These actions can be implemented through direct hands-on 476 

management or through incentives for silvicultural practices that promote regeneration (Huth et al., 477 

2025). 478 

Beyond practical applications, our species-specific regeneration density maps can be used to improve 479 

dynamic forest models, where the importance of regeneration processes is increasingly recognized 480 

(e.g. Díaz-Yáñez et al., 2024; Hanbury-Brown et al., 2022; König et al., 2025). Incorporating 481 

comprehensive information on regeneration availability, especially when including information of 482 

species composition and spatial variability, can limit bias and increase the robustness of dynamic 483 

models (Díaz-Yáñez et al., 2024). This has a high potential to make more reliable predictions of stand 484 

development trajectories and potential future stands, providing valuable information for 485 



policymakers and forest managers. In turn, the incorporation of regeneration data into dynamic 486 

forest models also allows for the evaluation of different regeneration management strategies. 487 

Conclusions 488 

This study demonstrates the potential of using NFI regeneration data to predict species-specific 489 

regeneration densities at high spatial resolution, from which indicators of regeneration quantity and 490 

quality can be derived. The resulting maps of regeneration indicators help to identify regional gaps in 491 

total regeneration density, species richness, and climate-adapted species composition. Consequently, 492 

our approach allows to estimate whether regeneration can secure future forests and maintain their 493 

multifunctionality, which is particularly important in the context of climate change and increased 494 

disturbances (Cerioni et al., 2024). We strongly encourage the evaluation of regeneration patterns 495 

across Europe and the monitoring of changes in forest regeneration between two consecutive 496 

inventories. To achieve such continuous European forest regeneration monitoring, it is essential to 497 

prioritize homogenization of forest inventory data and suitable environmental predictor datasets. 498 
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Supplementary Material 

Table S1: Spatial autocorrelation of each calibrated model and set up for spatially blocked cross-validation. Spatial 
autocorrelation of the model was assessed by using the R-package DHARMa (Hartig, 2022) and spatial autocorrelation 
range of the response was calculated with the package blockCV (Valavi et al., 2019, 2024). 

Species Model spatial autocorrelation Spatially blocked cross-validation 

Observed 
Morans I 

p-value Spatial 
autocorrelation 
range [m] 

Used spatial 
range [m] 

Block number 

Abies alba -0.00019 0.32 n.s. 2,502 2,502 16,616 

Abies grandis -0.00030 0.08 n.s. 5,682 5,683 8,645 

Acer campestre -0.00013 0.60 n.s. 39,754 39,754 303 

Acer platanoides -0.00028 0.10 n.s. 71,751 71,752 108 

Acer pseudoplatanus -0.00017 0.42 n.s. 24,913 24,914 732 

Alnus glutinosa -0.00012 0.66 n.s. 41,710 41,710 279 

Alnus incana -0.00021 0.25 n.s. 9,450 9,450 4,163 

Betula pendula -0.00035 0.03 * 13,295,247 300,000 11 

Betula pubescens -0.00035 0.03 * 3,078,096 300,000 11 

Carpinus betulus 0.00003 0.54 n.s. 31,648 31,649 465 

Castanea sativa -0.00014 0.53 n.s. 531 532 18,181 

Fagus sylvatica -0.00003 0.87 n.s. 51,183 51,184 191 

Fraxinus excelsior -0.00030 0.07 n.s. 50,850 50,851 193 

Larix decidua -0.00032 0.05 n.s. 224,055 224,056 16 

Larix kaempferi -0.00009 0.80 n.s. 20,003,371 300,000 11 

Malus sylvestris 
      

Picea abies -0.00004 0.92 n.s. 104,926 104,927 58 

Picea sitchensis -0.00029 0.08 n.s. 466,836 300,000 11 

Pinus mugo 
      

Pinus nigra -0.00015 0.50 n.s. 15,141 15,142 1,822 

Pinus strobus -0.00024 0.18 n.s. 6,477,058 300,000 11 

Pinus sylvestris -0.00007 0.89 n.s. 110,621 110,621 52 

Populus alba 0.00006 0.42 n.s. 10,705 10,706 3,368 

Populus nigra -0.00017 0.41 n.s. 42,140 42,141 269 

Populus tremula -0.00015 0.50 n.s. 74,889 74,890 99 

Populus trichocarpa x maximoviczii -0.00011 0.66 n.s. 1,854,565 300,000 11 

Populus x canescens -0.00008 0.88 n.s. 47,026 47,026 220 

Prunus avium -0.00002 0.82 n.s. 29,395 29,395 535 

Prunus padus -0.00020 0.29 n.s. 17,820 17,821 1,367 

Prunus serotina -0.00011 0.67 n.s. 103,071 103,072 59 

Pseudotsuga menziesii -0.00012 0.63 n.s. 104,926 104,927 58 

Pyrus communis 
      

Quercus petraea -0.00035 0.03 * 240,624 240,625 15 

Quercus robur -0.00014 0.53 n.s. 77,579 77,580 94 

Quercus rubra -0.00018 0.36 n.s. 10,775 10,776 3,348 

Robinia pseudoacacia -0.00017 0.39 n.s. 105,582 105,583 56 

Salix spp. -0.00024 0.18 n.s. 26,742 26,742 640 

Sorbus aria -0.00012 0.64 n.s. 10,119 10,120 3,721 

Sorbus aucuparia -0.00012 0.63 n.s. 15,991,026 300,000 11 

Sorbus torminalis 
      

Taxus baccata 
      

Tilia spp. -0.00038 0.02 * 30,387 30,388 500 

Ulmus spp. -0.00007 0.94 n.s. 27,193 27,193 616 

  



Table S2: Forest regeneration densities per tree species from the German national forest inventory of 2012. The availability 
of predicted regeneration density maps is indicated by a dot (available) or a circle (not available). 

Species Density 
proportion 
[%] 

Mean 
[#/ha] 

SD 
[#/ha] 

Map 
availability 

Fagus sylvatica 29.9 1052 5085 ● 

Picea abies 16.9 594 3546 ● 

Acer pseudoplatanus 8.7 305 2481 ○ 

Fraxinus excelsior 7.0 245 2121 ● 

Sorbus aucuparia 6.8 240 1617 ○ 

Carpinus betulus 4.2 148 1686 ● 

Betula pendula 4.0 140 1668 ○ 

Pinus sylvestris 3.8 132 1380 ● 

Prunus serotina 3.5 124 1467 ● 

Abies alba 2.3 81 931 ● 

Quercus robur 1.6 56 582 ● 

Quercus petraea 1.4 48 1022 ○ 

Populus tremula 1.2 41 804 ○ 

Prunus padus 1.1 40 849 ○ 

Tilia spp. 0.9 32 511 ● 

Salix spp. 0.8 29 637 ○ 

Acer campestre 0.6 22 407 ● 

Acer platanoides 0.6 22 593 ● 

Pseudotsuga menziesii 0.6 21 569 ● 

Alnus glutinosa 0.6 20 477 ● 

Alnus incana 0.6 19 651 ● 

Ulmus spp. 0.5 19 366 ○ 

Prunus avium 0.5 19 341 ● 

Betula pubescens 0.4 15 437 ● 

Quercus rubra 0.4 13 364 ● 

Robinia pseudoacacia 0.3 9 243 ● 

Larix decidua 0.1 5 126 ○ 

Sorbus aria 0.1 4 143 ● 

Pinus strobus <0.1 3 131 ○ 

Larix kaempferi <0.1 3 108 ● 

Picea sitchensis <0.1 2 126 ○ 

Pinus mugo <0.1 2 147 ○ 

Populus nigra <0.1 2 164 ● 
Populus trichocarpa x 
maximoviczii 

<0.1 2 226 
○ 

Castanea sativa <0.1 2 94 ● 

Sorbus torminalis <0.1 2 76 ○ 

Pinus nigra <0.1 1 77 ○ 

Populus x canescens <0.1 1 70 ○ 

Pyrus communis <0.1 1 38 ○ 

Malus sylvestris <0.1 0 24 ○ 

Abies grandis <0.1 0 30 ○ 

Taxus baccata <0.1 0 19 ○ 

Populus alba <0.1 0 37 ○ 

Sorbus domestica 0.0 0 0 ○ 

  



Table S3: Proportion of regeneration in Bavaria at high cultivation risk for 17 tree species. 

Species 

Regeneration 
at high 
cultivation risk 
[%] 

Abies alba 0.49 

Acer campestre <0.01 

Acer platanoides <0.01 

Alnus glutinosa 0.26 

Carpinus betulus <0.01 

Castanea sativa <0.01 

Fagus sylvatica <0.01 

Fraxinus excelsior <0.01 

Larix kaempferi <0.01 

Picea abies 94.48 

Pinus sylvestris 4.52 

Prunus avium 0.19 

Pseudotsuga menziesii 0.01 

Quercus robur <0.01 

Quercus rubra 0.02 

Robinia pseudoacacia <0.01 

Tilia spp. <0.01 

 



 

Figure S1: Total regeneration density maps of remaining tree species not displayed in Error! Reference source not found.. 
Regeneration density scale was cut off at the 99% percentile across all species map values (1,186 ha-1). All maps are 
available online at https://easi.users.earthengine.app/view/regeneration-maps and available for download at 
https://doi.org/10.5281/zenodo.15550864. Map lines delineate study areas and do not necessarily depict accepted 
national boundaries. 



 

Figure S2: Spatial patterns of total regeneration density (ha-1) for Germany based on 22 tree species. Map lines delineate 
study areas and do not necessarily depict accepted national boundaries. 

 

 

Figure S3: Regeneration tree species richness for the forest area of Germany based on 22 tree species. The map (A) shows 
spatial patterns, and the histogram (B) describes the distribution of species richness occurrence. We considered a species 
present in a 1 ha-grid cell if its density was at least 5% of the total regeneration density. Map lines delineate study areas 
and do not necessarily depict accepted national boundaries. 
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.04
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.04
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.088
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.32
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.856
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.008
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.752
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.064
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.704
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.2
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.624
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.272
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.672
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.856
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.512
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Simulated values, red line = fitted model. p−value (two.sided) = 0.88
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.72
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.56
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expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.872
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.056
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.544
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0

F
re

qu
en

cy

0 1 2 3 4

0
10

20
30

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.792

F
re

qu
en

cy

50250 50300 50350 50400 50450

0
5

10
15

Carpinus betulus



4100000 4200000 4300000 4400000 4500000 4600000 4700000

54
00

00
0

56
00

00
0

58
00

00
0

60
00

00
0

DHARMa Moran's I test for distance−based autocorrelation

x

y
Carpinus betulus



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.70848
Deviation  n.s.

Outlier test: p= 0.92164
Deviation  n.s.

Dispersion test: p= 0.392
Deviation  n.s.

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted

DHARMa residual
Castanea sativa



DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.392
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.576
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.288
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted
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Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.912
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.624
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expected zeros with simulation under H0 = fitted
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Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.144
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.232
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.976
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.088
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.968
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.072
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.336
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.8

F
re

qu
en

cy

0 10 20 30 40 50

0
50

10
0

15
0

20
0

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.984
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.008
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.912
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.08
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0.776
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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Simulated values, red line = fitted model. p−value (two.sided) = 0.512
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DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.024
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1
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