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Abstract: Global biodiversity is changing at unprecedented rates during the Anthropocene. Whereas 

current biodiversity patterns can be observed directly, information from the recent past is far less 

easily retrieved yet urgently needed to understand present observations and predict future 

developments. For plants, herbaria offer such a unique glimpse into the past. Evaluation of plant 

specimens allows determining a wide range of attributes like species identity, morphological and 

phenological traits and even signs of biotic interactions. Specimen’s labels convey data such as species 

identity (and identification history), date and locality of collection, as well as the surrounding biotic 

and abiotic environment. Current methodological developments in sensor technology and computer 

vision increasingly enable us to extract this information in a high throughput and automated way. 

Equally vast developments in data science allow to integrate data from other sources for much more 

comprehensive analyses than before. With millions of specimens already digitized and digitization 

schemes running in many institutions, we will be increasingly able to determine characteristics of 
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species and link them via distribution records to large-scale climate change scenarios. This allows us 

to better predict species’ threat levels, and to develop scenarios on the consequences of biodiversity 

change for ecosystem functioning. The present contribution reviews recent herbaria research and 

describes potential avenues with respect to Museomics and the Extended Specimen, and we propose 

Collectomics as a new framework to unravel, understand, and cope with the Anthropocene 

biodiversity change. 
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1. Introduction 1 

The term Anthropocene and its exact start are still under debate, but clearly humans have 2 

become a major force on planet Earth. This is defined by easily traceable golden spikes in geological 3 

records (Lewis and Maslin 2015, Zalasiewicz et al. 2015), e.g. the discovery of the so called “New 4 

World”, and the 16th century subsequent spread of infectious diseases as well as exchange of 5 

biodiversity between continents (Lewis and Maslin 2015), or the radioactivity peak after launch of the 6 

first nuclear weapons, i.e., 1950 or 1964 (Lewis and Maslin 2015, Zalasiewicz et al. 2015). Whichever 7 

date will be finally agreed upon, humanity has become a major driving force of change in life on Earth, 8 

which has subsequently and irreversibly changed at unprecedented rates during the Anthropocene. 9 

Not only have human actions caused a shift in global nutrient cycles as well as climate conditions (IPCC 10 

2007, Hoegh-Guldberg et al. 2018) but they have also triggered a massive decline in biodiversity 11 

(Johnson et al. 2017). It is now widely acknowledged that these changes started to affect the 12 

functioning of entire ecosystems and will do more so in the future. This may ultimately also threaten 13 

the well-being of humankind. 14 

While few long-term datasets span decades or even centuries, natural history collections offer valuable 15 

archives to study the changes during the Anthropocene (Meineke et al. 2019b). Such information from 16 

the past is urgently needed to analyse and understand patterns and drivers of biodiversity change. 17 

Based on this, we can build better models that can predict the future consequences of global change 18 

and take measures to mitigate the impact of our actions. In this work, we want to outline novel 19 

approaches that we propose to summarise under the term Collectomics, which aims to ever more 20 

strongly combining scientific collections with informatics (Sigwart et al. 2025). This ‘omics’ approach 21 

does not only allow to retrieve and use data from natural history collections where we have digital 22 

specimens, but also to do this automatically and thus very quickly, opening the avenue for high-23 

throughput data analyses for a vastly extended values chain. We also aim to highlight the impacts of 24 

Anthropocene changes on plant life as documented in herbaria. Based on this, we present our vision 25 

for modern ways of analysing these changes, and apply this framework to e.g., zoological collections 26 

as well. 27 

 28 

 29 

2. Historical Herbarium collections − unlocking the treasure trove 30 

Since the 16th century, scientists have collected herbarium specimens mainly of vascular plant 31 

species, but also of bryophytes and other cryptogams, and the value of these collections for modern 32 

science is widely acknowledged in various fields of biodiversity research (Johnson et al. 2011, Lavoie 33 

2013, Meineke et al. 2018, Lang et al. 2019, Raxworthy and Smith 2021, Baldini et al. 2022, Davis 2023, 34 

Flannery 2023, Jones et al. 2024, Karbstein et al. 2024). These specimens are preserved and curated in 35 
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herbaria, which do not only house the plant material itself, but for most specimens (at least from the 36 

19th century onwards) also preserve records on where, when and by whom specimens were collected. 37 

We can use this data as information from the past, especially in the light of global change. Worldwide, 38 

herbarium collections currently house nearly 400 million specimens (Davis 2023, Thiers 2024), and they 39 

continue to grow. We are still just beginning to unlock this vast treasure trove, and further progress 40 

offers the possibility to shape the future of biodiversity research. 41 

Herbarium specimens have been used mainly in taxonomy and floristics (e.g., species description 42 

and identification, biogeography, floristic accounts), but these fields had been increasingly declining as 43 

many herbaria faced cut of funding; entire collections were closed which also led to a lack of 44 

taxonomists and curators (Miller et al. 2020, Edwards et al. 2024). More recently, herbaria have, 45 

however, experienced a renaissance for more advanced scientific research (e.g., molecular systematics, 46 

macroecology and evolution, future predictions), as a wider circle of scientists has begun to recognize 47 

their value. Herbarium specimens can document shifts in geographic ranges of plant species, with many 48 

studies reporting shifts to higher elevation and latitude in the course of ongoing climate warming 49 

(Graham et al. 2004, Newbold 2010, Feeley 2012). A particularly easily monitored facet of 50 

Anthropocene biodiversity change is the arrival of neophytes. Since new plant species have always 51 

been of vast interest to collectors, their distribution has been particularly well recorded (Lavoie et al. 52 

2007, Crawford and Hoagland 2009). The analysis of historic plant material from herbaria can 53 

furthermore help to assess whether a species is naturally rare or has declined due to anthropogenic 54 

activities (Albani Rocchetti et al. 2021, Vörös et al. 2025), one of the several applications for 55 

assessments in the context of IUCN Red Lists (Zizka et al. 2021, Zizka et al. 2022). It is also estimated 56 

that more than 50% of undescribed species are already harboured in our herbaria and simply need to 57 

be identified (Little et al. 2020). 58 

We can also derive information beyond species identity, facilitated by rapidly developing techniques 59 

for studying specimens (Figure 1). Changes in species morphology and physiology due to changes in 60 

temperature, increases in nitrogen and heavy metal depositions and the rising CO2 concentration of 61 

the atmosphere can be documented over time, using samples derived from the preserved plant tissues 62 

such as stomatal imprints or isotopic signals (Woodward 1987, Law and Salick 2005, Miller-Rushing et 63 

al. 2009, Bonal et al. 2011, Leger 2013, Lang et al. 2019, Heberling 2022). Genomic DNA can be 64 

extracted from the preserved plant material to study phylogenetic relationships, phylogeographic 65 

patterns, population and range dynamics, or the spread of plant diseases (Gugerli et al. 2005, Wandeler 66 

et al. 2007, Yoshida et al. 2013, Meineke et al. 2018, Gutaker et al. 2019, Burbano and Gutaker 2023). 67 

Modern spectroscopic methods allow for determination of nutrient concentrations in leaves without 68 

the necessity of destructive sampling (Kothari et al. 2023, Kühn et al. 2024, Kühn et al. 2025). Likewise, 69 

specific secondary compounds of plants can be analysed, and the evolution of metabolic pathways thus 70 
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be monitored (Lankau et al. 2009, Mendes Resende et al. 2020, Barnes et al. 2023). Herbaria have 71 

proven instrumental in studies on various aspects of plant phenology, the recurring events in life history 72 

such as flowering or senescence, and collections thus allowed to extend the time span of phenological 73 

observations into the past (Primack et al. 2004, Bolmgren and Lönnberg 2005, Miller-Rushing et al. 74 

2006, Everill et al. 2014, Ramirez-Parada et al. 2022, Ahlstrand et al. 2023, Lee et al. 2024, Iwanycki 75 

Ahlstrand et al. 2025). Some studies also use plant collections to assess the impact of insect herbivory 76 

of the past with admittedly varying degrees of success (Meineke et al. 2018, Meineke et al. 2019a, 77 

Kozlov et al. 2020, Ward 2024), or the interactions between flowering species and their pollinators 78 

themselves (Ziska et al. 2016, Streher et al. 2024). First studies also showed success in reviving already 79 

extinct plant species from propagules, which are sometimes included in herbarium specimens (Abeli 80 

et al. 2020). Not only has the range of biodiversity facets that can be studied with specimens increased, 81 

but also are the data almost exclusively digital, enabling a completely new level of integration.  82 

 83 

3. Herbarium digitization 84 

Soltis (2017) gives a nice overview on the use of digitization in herbaria and argues that just 85 

like fine wine, the value of these collections increases with age (Soltis 2017, Younis et al. 2020b, 86 

Karbstein et al. 2024). Herbarium collections are only recently used in Computer Science or in 87 

collaborations between informatics and biodiversity research, which opens new directions of 88 

herbarium research. Given the new methods available in computer vision, a huge field of potential and 89 

fruitful collaborations emerges (Heberling et al. 2019, Hedrick et al. 2020, Hardisty et al. 2022), 90 

especially with respect of analysing species and trait responses to Anthropocene biodiversity change. 91 

During the past decades, many herbaria conducted massive digitization efforts of their collections 92 

(Willis et al. 2017, Hedrick et al. 2020). Meanwhile, information on millions of herbarium specimens 93 

available through research platforms such as the Global Biodiversity Information Facility (GBIF, 94 

https://www.gbif.org/), the integrated Digitized Biological Collections (iDigBio, 95 

https://www.idigbio.org/) or the pan-European Research Infrastructure Distributed System of Scientific 96 

Collections (DiSSCo, https://www.dissco.eu) will greatly facilitate global access to specimens avoiding 97 

personal travels and shipment of loans (Davis 2023). Digitization efforts also lead to a decentralisation 98 

and a more democratic use of herbarium specimens, which can empower a more diverse research 99 

community (Drew et al. 2017). This also helps to address colonial legacies of many herbaria (Park et al. 100 

2023) and allows for much more equal access. Dedicated software for curation of specimens is 101 

developed and matching protocols are pivotal for a joint effort in digitizing herbaria and to implement 102 

the FAIR principles of data collection and accessibility (data must be Findable, Accessible, Interoperable 103 

and Reusable; Borsch et al. 2020, Manzano and Julier 2021). Currently, even metadata such as sampling 104 

locality and date of collection are available for less than 30% of the specimens within herbaria, whereas 105 

https://www.dissco.eu/
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for less than 10% are digital images available (Park et al. 2023). German herbaria hold around 23 million 106 

specimens, 87% of which are not yet digitized (Borsch et al. 2020). One of the biggest issues now is that 107 

digitized specimens are hosted on different data portals. Therefore, there is an urgent need for a global 108 

federated collection management system which facilitates the effective mobilization of already 109 

digitized specimens (Weaver and Smith 2023).  110 

This digital information is very valuable, as information and specimens from very remote places and 111 

from long ago are now available and can be accessed remotely, thus from anywhere in the world. The 112 

biggest game-changer is, however, not only the improved accessibility and connectivity, but the 113 

increasingly comprehensive information that can be gained from specimens. Manual data assembly 114 

from specimens used to be very laborious, but information from herbarium collections can now be 115 

assessed using machine learning, such as deep learning, artificial neural networks, and optical 116 

character recognition (Albani Rocchetti et al. 2021, Goëau et al. 2022, Hussein et al. 2022). However, 117 

until now, comprehensive benchmark datasets of herbarium specimens with annotations for algorithm 118 

training are still scarce, and those published mostly focus on the species identification (Tan et al. 2019, 119 

de Lutio et al. 2022). This could serve as starting point for the development of new techniques, but 120 

would require an enormous effort to find suitable, representative specimens and to perform thorough 121 

data annotation of individual plant organs (Hussein et al. 2022). These and any subsequent efforts need 122 

strong collaborations between biologists and computer scientists to bring this research field forward. 123 

 124 

4. Applications of artificial intelligence (AI) in herbaria 125 

One of the most promising avenues are AI methods using herbarium collections are summarized 126 

in Figure 1. In the following, we will exemplify the potential of these new applications and address 127 

some of the still existing obstacles. 128 

With respect to the metadata, the information provided on the label can be deciphered using 129 

handwriting recognition tools, and can be automatically transferred to the metadata of the collection 130 

(Weaver et al. 2023). Automatic species identification with AI tools (Carranza-Rojas et al. 2017b, 131 

Hussein et al. 2022, Shirai et al. 2022, Karbstein et al. 2024) helps, within certain limitations, to filter 132 

out specimens which are incorrectly identified or were not identified at all (de Lutio et al. 2022, Chulif 133 

et al. 2023). This is particularly valuable, since botanists who can identify plants are becoming 134 

increasingly rarer as described above (Miller et al. 2020, Edwards et al. 2024). Artificial intelligence also 135 

increasingly contributes to keep pace with the growing knowledge in taxonomy, as it can automatically 136 

compare existing accepted taxonomies (i.e., taxonomic synopses and revisions, national checklists), as 137 

well as valid nomenclatural names and their synonyms (reviewed in Hussein et al. (2022)). With AI-138 

tools improving further, increasingly precise automated species identification, correct assignment of 139 

previously unresolved names and misinterpreted homo- and heterotypic synonyms, and pattern 140 
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recognition from the non-digital literature (i.e., diagnoses, descriptions, handwritten annotations, 141 

taxonomic keys, etc.) together will open new avenues. Since the labels typically include information 142 

about the sampling locality and the date of collection, occurrence data on present and past distribution 143 

of the plants can be extracted and compared (Jones et al. 2024). Sometimes, further information such 144 

as on the habitat where the specimen was collected is indicated, providing information on species’ 145 

ecology and e.g., potential shifts of its ecological niche. Furthermore, the name of the collector is given 146 

on the label opening the possibility to analyse the collection from a cultural and historical perspective. 147 

If the collector is not specified, handwriting recognition may assist in identifying the author and thus 148 

contribute to unveil the history of the collection. 149 

Artificial intelligence will also boost working with specimens themselves. Standardized scans 150 

provide a scale and a colour code to assist in analysing the size and colour of the specimen, or of more 151 

specific size-related traits such as leaf area or the diameter of inflorescence (Rehman et al. 2019). 152 

Although herbarium specimens exhibit notable changes in colour and appearance caused by drying, 153 

pressing and other conserving treatments, important information can be gained from them. Based on 154 

the colour of the leaves, potentially performance traits such as chlorophyll content could also be 155 

evaluated. This also makes it easier to analyse the phenological stage of the specimen, such as 156 

flowering, fruiting or senescence (Hardisty et al. 2022). Based on the colour, not only the visible 157 

spectrum and size of the flowers, but also potential pollination syndromes such as bird or bee 158 

pollination can be inferred (Streher et al. 2024). Pattern recognition allows to segment and analyse 159 

different plant organs to infer information (e.g., Younis et al. 2020b). Additionally, the herbivory status 160 

of the plants can be assessed to some extend or a potential infestation with pathogens such as gall 161 

wasps or fungal infections can be detected, and thus biotic interactions can be analysed. Moreover, X-162 

ray techniques allow to determine leaf venation, which gives valuable insights into predicting the 163 

effects of climate change as it relates to water supply and demand (Schneider et al. 2017, Schneider et 164 

al. 2018).  165 

In the past years, with the development of modern techniques, an increasing number of tools for 166 

automated specimen analysis have been published, yet most of them focus on specific aspects of plants 167 

such as species identification (Carranza-Rojas et al. 2017a, Carranza-Rojas et al. 2017b, Karbstein et al. 168 

2024), morphological traits (Carranza-Rojas et al. 2017a, Zhu et al. 2017, Weaver and Smith 2023) or 169 

growth phenology (Goëau et al. 2022). There are applications available such as the LeafMachine2 – a 170 

program comprising a suite of modular machine learning and computer vision tools which 171 

automatically extract leaf traits from digitized herbarium specimens and texts from labels (Weaver and 172 

Smith 2023). However, we envision the extraction of a specimens’ information as a whole and propose 173 

an automatic link of these results to other relevant databases as outlined below, which is described by 174 

the Collectomics approach (Sigwart et al. 2025). 175 
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 176 

5. Extending the Extended Specimen – a technical perspective 177 

On account of the wealth of different specimen-related data sources, Webster (2017) 178 

introduced a new concept, describing the Extended Specimen as a combination of specimen and data 179 

types, which aims at representing the multidimensional phenotype and genotype of a physical 180 

specimen. Here, we propose to further analyse and combine these Extended Specimens. 181 

The European Research Infrastructure Distributed System of Scientific Collections (DiSSCo) developed 182 

its foundational data model, the Digital Specimen, in close coordination with both the Extended 183 

Specimen concept and the FAIR Digital Objects (FDO) approach (Alliance for biodiversity knowledge 184 

2017). These offer a technical implementation path for policies associated with FAIR principles for 185 

complex digital objects distributed over the internet (Islam et al. 2020, Hardisty et al. 2022). The goal 186 

is to bundle the disparate information about such an object into one cohesive package (Wittenburg et 187 

al. 2023). In line with this approach, a Digital Specimen as an FDO type contains or persistently links 188 

relevant information artefacts about the physical specimen including sequence data, images, 189 

descriptions of locations and habitats, geochemical measurements or taxonomic determinations 190 

(Hardisty et al. 2021). These resources can be available locally as files, or are linked and stored in 191 

domain-specific repositories such as the European Nucleotide Archive (Leinonen et al. 2010). In this 192 

manner, an object-centred and machine-interpretable digital twin of the physical specimen and its 193 

relationships is realized. Concepts of the Extended Specimen and “Holistic Sampling” provide the 194 

structure for modelling the specimen’s domain-specific content (Schindel and Cook 2018, Lendemer 195 

et al. 2020), while compliance with FDO specifications enables software agents or, in brief, machines 196 

to autonomously process the Digital Specimen and makes it therewith FAIR and AI-ready at the same 197 

time (Jacobsen et al. 2020). Building on this unified data model, the concept of “Machine learning as a 198 

Service” (MLaaS) was developed within the context of DiSSCo (Grieb et al. 2021). As shown in Figure 199 

2, MLaaS facilitates the integration of Machine Learning-assisted services for data enrichment 200 

embedded by DiSSCo partners into the central Digital Specimen architecture (DSArch, Koureas et al. 201 

2024).  202 

As an extension of a previous study on extracting specimen data from herbarium sheets (Younis et al. 203 

2020b), we developed an initial service for the implementation of the Collectomics concept using the 204 

Digital Specimen concept and DSArch as blueprints (Figure 2). Features extracted by the pipelines of 205 

the service, such as plant organs and morphological traits, are stored in addition to contextual data in 206 

a digital object model based on our previous studies (Grieb et al. 2021). Reusing an annotated dataset 207 

(Younis et al. 2020a), the study was further extended to perform plant organ segmentation to uniquely 208 

identify and extract additional information of each object in the digital herbarium specimen. In 209 

accordance with similar studies (Sapkota et al. 2024), we switched the model from Mask R-CNN to 210 
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YOLO11, because the latter that performed better for our use case (He et al. 2017, Jocher et al. 2024). 211 

YOLO11 is then applied and trained on the annotated dataset from the previous study. The segmented 212 

organs are further used for morphological analysis such as surface area calculation from digital images. 213 

To perform surface area calculation, the YOLO11 detection model is trained to detect scales from the 214 

herbarium images. Following scale detection, the tesseract OCR (Smith 2007) is applied on detected 215 

scales to calculate the pixel distance between the digits. The relative pixel distance is transformed into 216 

an absolute measurement in square centimetre (cm²) using the detected scale. Then the transformed 217 

absolute measurement is applied on segmented organs and surface area is calculated for segmented 218 

regions of interest as an additional feature (Figure 3). To promote the reusability of the digitization 219 

output, we store the annotations together with the processed images in a container format compatible 220 

with the FDO approach called RO-Crate (Soiland-Reyes et al. 2024). This enables lightweight packaging 221 

of research outputs along with structured metadata. The RO-Crate comprising the complete dataset 222 

on which Figure 3 is based and is provided as supplementary material. It includes the processed images 223 

and annotations semantically mapped to the Flora Phenotype Ontology, a framework which allows 224 

cross-domain re-usability and enables the consecutive analysis of plant trait data (Hoehndorf et al. 225 

2016). 226 

 227 

6. Conclusions – towards a digital Collectomics framework 228 

The renewed interest in herbaria is not without problems, as some methods require destructive 229 

sampling. As curators, we strongly advocate to handle specimens as sustainably as possible (Davis et 230 

al. 2024), and we also trust that technology will increasingly develop more and more non-destructive 231 

approaches such as NIRs technology or X-ray (Schneider et al. 2018, Kühn et al. 2024). We do, however, 232 

firmly believe in benefits of active research for collection maintenance and development, and thus new 233 

opportunities should be welcomed. Therefore, the present contribution is also an appeal to the 234 

scientific community to collect more specimens in current ecological and biological projects and to 235 

acknowledge the valuable contribution of natural history collections such as nicely summarized in 236 

Miller et al. (2020). Research from German herbaria could demonstrate, for example, that there is a 237 

current reduction of specimens being collected, especially when it comes to other species than rare 238 

ones or neophytes, which will obviously imply a bias in future studies (Renner and Rockinger 2016). Of 239 

course, broadening the perspective requires additional resources, such as those for storage and 240 

curation of the collections as well as digitization, but we are firmly convinced this is worth investing. 241 

When handled wisely, preserved specimens in herbaria offer a unique opportunity to do both, study 242 

the past and predict the future of ecosystems and species distributions. We propose to link modern 243 

data retrieval techniques, AI-data science approaches and biodiversity research to analyse patterns in 244 

plant biodiversity and the changes of plant life throughout the Anthropocene using herbarium 245 
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specimens. We strongly rely on the continued efforts to digitize and collect such specimens worldwide, 246 

but we are confident that more and more become available online, as this was already identified as a 247 

huge need by the scientific community (Borsch et al. 2020).  248 

In the new era, we can take digital Extended Specimens even one step further and envision the 249 

automatic link between the information extracted from the specimens such as plant name, sampling 250 

locality, etc. with further information such as climate data, the species’ distributional range, genetic 251 

data or threat levels. This will significantly expand the concept of Museomics, which currently mainly 252 

involves extracting DNA data from specimens (Raxworthy and Smith 2021). We thus echo pleas to think 253 

in a larger framework, recently being termed Collectomics by Sigwart et al. (2025). In that view, 254 

Collectomics is not only more precise than Museomics, as it specifically addresses collections and does 255 

not invoke other core museum activities such as for example exhibitions. It is also not restricted to 256 

biological specimens only. Collectomics also embraces the ground-breaking idea of the Extended 257 

Specimen and puts this in context of a full-scale values chain ranging from specimens to derived data 258 

ultimately inform fields as diverse as large-scale modelling, or studies on cultural history (Sigwart et al. 259 

2025, and examples therein such as (Tobias et al. 2022)).  260 

Herbaria already play a pioneering role not only because imaging techniques are well and taxonomical 261 

backbones are relatively stable. Concepts such as trait-based analysis (Díaz et al. 2016), phenological 262 

studies (Parmesan and Yohe 2003) or non-invasive measurement of nutrient contents (Kühn et al. 2024) 263 

are particularly advanced in plant biodiversity research, and the pivotal role of plants for ecosystem 264 

primary production also makes plants crucial for Earth System Modelling (Thavhana et al. 2024). In this 265 

way, we expect that herbarium research will make big step forward, enabling us to process large 266 

amounts of data in a fast, yet meaningful manner, thereby opening the treasure trove of scientific plant 267 

collections to the scientific community. Lessons learnt will ultimately benefit other natural historical 268 

collections, and potentially even collections of cultural or technical artefacts. 269 
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Figure 1: Schematic display of an herbarium specimen and its use as an Extended Specimen. 587 

  588 
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 589 

Figure 2: Blueprint for the integration of an annotation service into DiSSCo’s core Digital Specimen 590 

architecture (DSArch). Identifiability, traceability and persistence of the processed research element is 591 

realized by a specific identifier, the digital SpecimenID, which is proposed as an extension for the 592 

Darwin Core vocabulary.   593 

https://github.com/tdwg/dwc/issues/530#top
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 609 

Figure 3: Detection of regions of interest (ROI) corresponding to categorized plant organs (leaf, flower, 610 

fruit, seed, stem, root) and subsequent instance segmentation of identified organs of two plant genera 611 

(Rubus, Taraxacum). Based on the segmentation in addition to scale bar detection, the visible surface 612 

area in cm² of the plant organs is computed and included in the resulting digital object. Shown are 613 

predicted annotations for two example specimens (A: Rubus pruinosus Arrh.; B: Taraxacum subalpinum 614 

Hudziok) from a compiled example dataset of 100 specimens from the Herbarium Senckenbergianum 615 

– Herbarium Haussknecht (JE).  616 
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