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Abstract 55 

Forecasts of vulnerability to climate warming require an integrative understanding of how species 56 

are exposed to, are damaged by, and recover from thermal stress in natural environments. The 57 

sensitivity of species to temperature depends on the frequency, duration, and magnitude of thermal 58 

stress. Thus, there is a generally recognised need to move beyond physiological metrics based 59 

solely on critical thermal limits and integrate them with natural heat exposure regimes. Here we 60 

propose the Thermal Load Sensitivity (TLS) framework, which integrates biophysical principles 61 

for quantifying exposure with physiological principles of the dynamics of damage and repair 62 

processes in driving sublethal impacts on organisms. Building upon the established Thermal Death 63 

Time (TDT) model, which integrates both the magnitude and duration of stress, the TLS 64 

framework attempts to disentangle accumulation of damage and subsequent repair processes that 65 

alter responses to thermal stress. With the aid of case studies and reproducible simulation 66 

examples, we discuss how the TLS framework can be applied to enhance our understanding of the 67 

ecology and evolution of heat stress responses. These include assessing thermal sensitivity across 68 

diverse taxonomic groups, throughout ontogeny, and for modular organisms, as well as integrating 69 

additional stressors in combination with temperature. We identify critical research opportunities, 70 

knowledge gaps, and new ways of integrating physiological measures of thermal sensitivity to 71 

improve forecasts of thermal vulnerability.  72 

I. Introduction 73 

Climate change is exposing species not just to gradual warming but also increases to the frequency 74 

and severity of extreme heat events that impose physiological stress on organisms. Thermal 75 

vulnerability to heat stress depends on two key processes – exposure and sensitivity (Huey et al., 76 

2012; Williams et al., 2008). Exposure reflects the extent to which organisms experience a 77 

potentially stressful environmental change. It is the outcome of the interaction between 78 

environmental factors and characteristics of the organism that determine body temperature. 79 

Exposure also incorporates the organism’s ability to select microenvironments. New developments 80 

in the field of biophysical ecology have largely resolved the conceptual and technical barriers to 81 

predicting exposure to heat stress, though uptake of these methods has been gradual (Briscoe et al., 82 

2023; Buckley & Kingsolver, 2021). Sensitivity describes the thermal responsiveness of an 83 

organism to temperature stress that are leads to physiological damage or death (Clusella-Trullas et 84 
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al., 2021; Jørgensen et al., 2022); it depends on life history and physiology (Buckley & 85 

Kingsolver, 2021). These factors are not independent: sensitivity can be moderated by the 86 

dynamics of exposure (intensity and duration) and by the capacity of species' thermal physiology 87 

to recover from thermal stress. We therefore need a general, quantitative framework to capture the 88 

physiological mechanisms of both damage and recovery if we are to effectively predict how 89 

increasingly erratic thermal regimes will impact function, survival, and reproduction of organisms. 90 

Approaches to assessing thermal sensitivity vary across taxonomic groups and research 91 

fields (Bennett et al., 2018; Geange et al., 2021). Assessments of static endpoints, such as critical 92 

thermal limits and the quantification of the cumulative impact of prolonged exposure to different 93 

(potentially stressful) temperature regimes, are common procedures (Klockmann et al., 2017). The 94 

large variation in body size and lifespan among organisms affect the feasibility of measuring 95 

thermal tolerance consistently; it is necessarily assessed on vastly different life stages (e.g., fruits, 96 

seeds, eggs, larvae, adults) and on different scales, from components of an individual (e.g., leaves, 97 

flowers), to whole individuals, and populations (e.g., bacterial colonies, Drosophila populations, 98 

soil seed banks) (Klockmann et al., 2017; Wahid et al., 2007).  99 

Effective assessment of the thermal vulnerability of populations thus requires an integrated 100 

knowledge of the mechanisms by which temperature-induced damage leads to functional 101 

incapacitation, reproductive failure, or death in individuals. In many cases, assessing lethal limits 102 

is not possible for logistical or ethical reasons (e.g., in vertebrates, or rare and long-lived species) 103 

and may not even be desired, given that we should be interested in detecting vulnerability at 104 

ecologically relevant thresholds prior to thermal death. To overcome this, researchers apply a 105 

range of proxies, such as thermal limits of biological processes, changes to activity budgets, and 106 

assessment of damage and mortality during extreme climatic events in nature (Marchin et al., 107 

2022b; Sinervo et al., 2010; Welbergen et al., 2008). There is need for developing integrative 108 

probabilistic and mechanistic models to characterise physiological responses to temperature with 109 

predictions that can be empirically tested and validated.  110 

Here we demonstrate the potential to combine physiological models of thermal sensitivity 111 

with general models of exposure dynamics to enhance our ability to understand and predict the 112 

effects of temperature on organisms. We use example cases to illustrate why considering repair 113 

together with damage is essential, and to highlight potential uses for the framework across 114 

disparate taxonomic groups and life stages to generate useful and testable predictions in the face of 115 

rapid global change. We identify key targets for focussed research, whereby taking a unified 116 
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approach with standardised terminology should improve predictive capacity. 117 

II. Thermal Death Time (TDT) models explicitly incorporate duration of 118 

heat exposure 119 

Critical thermal limits (e.g., CTmax) have been used widely as static point thresholds or endpoints 120 

to represent the temperature at which physiological processes cease to function (Bennett et al., 121 

2018). In some cases, critical temperatures are explicitly lethal (Lutterschmidt & Hutchison, 122 

1997), but they can also range from the temperature at which an insect can no longer right itself or 123 

is knocked down (van Heerwaarden et al., 2016), to onsets of spasms in lizards (Taylor et al., 124 

2021), loss of equilibrium in fish (Ern et al., 2023), or dysfunction of photosynthetic machinery in 125 

plants (Arnold et al., 2021). For some comparative research questions, there are benefits to using 126 

point estimates as they are relatively easy to obtain, which permits large comparisons of thermal 127 

tolerances among taxa (Bennett et al., 2021; Camacho et al., 2024; Sunday et al., 2011) or sites 128 

(Dewenter et al., 2024; Sunday et al., 2019). The use of different indices and limitations of point 129 

estimates and endpoints, like CTmax, have been comprehensively reviewed and critiqued since at 130 

least the 1990s (Clusella-Trullas et al., 2021; Jørgensen et al., 2021; Jørgensen et al., 2019; 131 

Lutterschmidt & Hutchison, 1997; Ørsted et al., 2022; Rezende et al., 2020; Rezende et al., 2014; 132 

Santos et al., 2011; Terblanche et al., 2011). The consistent opinion from these works is that 133 

derived point estimates – which are often collapsed into a mean lethal temperature for a population 134 

– can be dependent on methodological differences (e.g. in heating rate; Arnold et al., 2021; Payne 135 

et al., 2025). Consequently, variance from non-biological sources can be high, and calls into 136 

question the validity of broad comparative studies that use vastly different methods without 137 

adjusting for these (discussed in Perez et al., 2021).  138 

Finding a singular temperature threshold to define thermal limits inherently overlooks the 139 

interplay between the intensity and duration of temperature exposure that leads to compounding 140 

physiological dysfunction (Hochachka & Somero, 2002; Jørgensen et al., 2021; Michaelsen et al., 141 

2021; Rezende et al., 2020; Rezende et al., 2014). The need to explicitly capture the intensity and 142 

duration of exposure (also referred to as thermal dosage, cumulative heat sum, heat load, or heat 143 

dose), along with integrating such information with dynamic, realistic thermal environments, have 144 

all led to the rise of the Thermal Death Time (TDT) model in ecology. 145 

The TDT is not a new concept – it was first explicitly introduced in the 1920s to ensure 146 
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that bacteria were killed during the canning process of food (Ball, 1923). Subsequently, it has been 147 

applied to ectothermic animals to estimate survival times under various acclimation and exposure 148 

temperatures (Maynard Smith, 1957; Mellanby, 1954). Relating thermal tolerance with exposure 149 

time re-emerged as a contemporary tool in thermal ecology in the past two decades (Armstrong et 150 

al., 2009; Rezende et al., 2014; Santos et al., 2011). Essentially, the TDT became an extension of 151 

the typical thermal performance curve – which provides insight into the optimal temperature, 152 

upper and lower limits, and temperature breadth for performance (Angilletta, 2006; 2009) – with 153 

the added dimension of exposure time to thermal stress (Rezende et al., 2014). The TDT model 154 

has since been applied to several insects to understand thermal impacts on fertility and survival 155 

(e.g., Ørsted et al., 2024; Youngblood et al., 2025). It has also been applied to plants to optimise 156 

weed management in agriculture where thermal treatments were applied to soil to eradicate weed 157 

seeds (Dahlquist et al., 2007) and to determine the effects of thermal load on the function of 158 

photosystems (Cook et al., 2024). 159 

The TDT explicitly models how both exposure time and exposure temperature affect lethal 160 

limits (e.g., LT50 – the lethal temperature limit when 50% mortality occurs), which captures such 161 

relationships as:  162 

 163 

𝑇  =  𝐶𝑇"#$%&   −  𝑧 ∙ log%'(𝑡)     (Equation 1) 164 

 165 

where, T = temperature for, say, 50% mortality (LT50), CTmax1h is the critical thermal maximum 166 

(°C), z = thermal sensitivity and t = time (in hours) before reaching the 50% damage threshold. 167 

Note that because log10(1) = 0, the intercept of Equation 1, CTmax1h, corresponds to the lethal 168 

temperature for 1 h of exposure. While we standardise CTmax to 1 h, time can be scaled to other 169 

units (e.g., minutes) depending on what is biologically relevant to the organism’s ecology. Given 170 

that survival follows a typical dose-response curve, logarithmic transformation makes the 171 

relationship between lethal temperature and time approximately linear (Rezende et al., 2014).  172 

Alternatively, we can flip the axes to account for the fact that temperature is the main 173 

factor manipulated in experiments allowing one to re-parametrise the TDT curve as follows: 174 

 175 

 log%'(𝑡)   =  𝛼  +  𝛽 ∙ 𝑇     (Equation 2) 176 

 177 

In the above equation, time to reach 50% mortality, t, is on the y-axis and temperature, T, on the x-178 
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axis. We can recover CTmax1h and z by back-transformation using the new slope (β) and intercept 179 

(α) from this relationship as follows: 𝐶𝑇"#$%& = − (
)
 and 𝑧  = − %

)
. The parameterisation of the TDT 180 

curve as in Equation 2 is useful because it allows one to capture how damage accumulates over 181 

time as follows (see Jørgensen et al., 2021; Ørsted et al., 2024): 182 

 183 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑑𝑎𝑚𝑎𝑔𝑒 = 	∑ %''∙(,!"#-,!)

%'$%∙'()$*!; *!"#-".-
//0/0
12%    (Equation 3) 184 

 185 

where the equation calculates the accumulated damage (as a %) from time, 𝑡1 to time 𝑡13%, using 186 

the parameters from the TDT curve (Equation 2). The accumulated damage function assumes 187 

overheating risk and injury occurrence when 𝑇4 (the exposure temperature) exceeds 𝑇5 (the 188 

assumed critical temperature above which heat injury accumulates) (Ørsted et al., 2024). When the 189 

accumulated damage reaches 100%, the lethal limit (that is, the defined threshold; LT50 in this 190 

example) has been reached. 191 

Potential for extending the TDT model to explore sublethal effects 192 

Generally, TDT models are sensitive to the chosen endpoint, are phenomenological in nature, are 193 

usually quantified at the whole-organism level, and they assume that survival declines 194 

exponentially with exposure duration. However, mortality may not occur immediately under 195 

moderately stressful temperatures and there can be both direct and immediate effects on other 196 

fitness components (Buckley & Huey, 2016). It is also possible that organisms can cope with 197 

moderately stressful temperatures for a relatively long time, where survival remains at 100%, 198 

before they suddenly succumb to the stress (e.g., Gómez-Gras et al., 2022). The thermal conditions 199 

that organisms are exposed to during their development and at crucial life stages prior to – or in 200 

conjunction with – heat stress can substantially alter fitness outcomes beyond simple mortality. 201 

Generating predictions from dose-response curves could allow for a range of different limit 202 

thresholds to be used. For example, sublethal measurements (e.g., critical fertility limits and 203 

functional inhibition thresholds) can be used in conjunction with and can extend the value of TDT 204 

models (Cook et al., 2024; Faber et al., 2024; Ørsted et al., 2024). 205 

While predictions for mortality thresholds align well with empirical data in ramping assays 206 

they may not predict the survival probability curve if temperatures fluctuate (Rezende et al., 2020). 207 

This is partly due to the unknown capacity for repair processes to offset damage or injury 208 
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accumulation during reprieves from damaging temperatures (Huey & Kearney, 2020; Jørgensen et 209 

al., 2021; Ørsted et al., 2022). Dynamic, probabilistic modelling approaches attempt to circumvent 210 

this problem, and they seem to predict mortality under fluctuating conditions quite well when the 211 

empirical survival curves obtained at constant temperatures are adequately described (Rezende et 212 

al., 2020). These approaches offer exciting potential and will require additional empirical study to 213 

validate the net effect of damage-repair processes on physiological function that determine 214 

survival probability, and what other impacts these – and other natural, interacting processes – have 215 

on the fitness of individuals and populations. TDT does not provide much insight into the 216 

amelioration of thermal stress (although recent studies are exploring acclimation, e.g., Baeza Icaza 217 

et al., 2025; Wehrli et al., 2024; Youngblood et al., 2025), which is a function of damage, repair, 218 

and acclimation. For this reason and for linguistic accuracy as the framework is used for broader 219 

applications, we propose a conceptual renaming of Thermal Death Time to Thermal Load 220 

Sensitivity (TLS) when used as a general framework that is inclusive of non-lethal measures and 221 

applied to different organisms. 222 
 223 

III. Damage and repair: The physiological cost of extreme temperatures 224 

The TLS framework allows for modelling approaches to be integrated with, or used to predict, 225 

both lethal and sublethal limits (i.e., not necessitating death as in Thermal Death Time). It places 226 

specific emphasis on disentangling the processes of damage and repair through time in dynamic 227 

environmental conditions. Specifically, we make the distinction that damage accumulates during 228 

stress, and may be increasingly apparent following stress, while repair occurs during as well as 229 

between stresses, and the relative magnitude of these processes determines the extent to which the 230 

organism recovers at a given time point (Buckley et al., 2025; Williams et al., 2016). The shift to a 231 

TLS perspective is important as we progress our understanding of the effects of thermal stress 232 

accumulation, variability, and extremes on vital physiological processes that in turn affect 233 

demographic and ecological processes. There is growing empirical evidence of the important role 234 

of recovery from physiological damage following thermal stress (Bai et al., 2019; Curtis et al., 235 

2014; Malmendal et al., 2006).  236 

 Ørsted et al. (2022) reviewed the nature of damage processes in ectotherms that occur 237 

beyond the ‘permissive’ temperature range in which normal function is possible (i.e., the 238 

‘stressful’ range). As homeostasis is disrupted under thermal stress, there is a balance of two 239 
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antagonistic processes: damage (injury accumulation) and repair. It is assumed that these processes 240 

may occur simultaneously; they both depend on the severity and duration of the thermal stress and 241 

legacy or carryover effects of environmental conditions prior to and following thermal stress 242 

(Buckley et al., 2025; Ørsted et al., 2022). If damage accumulates from a given heat load, it will 243 

need to be partially or completely repaired to re-establish homeostasis, both during and after 244 

cessation of stressful conditions. The buildup of heat load over longer time periods will not only 245 

result in damage accumulation but will also limit the extent of repair (Ørsted et al., 2022). Life 246 

processes are governed by complex chemical transformations within and between cells mediated 247 

by protein and membrane integrity. Mechanisms of heat damage generally involve increasingly 248 

misfolded or unfolded proteins (Feder & Hofmann, 1999; Wahid et al., 2007) and oxidative 249 

damage to DNA, lipids, and proteins that ultimately compromises cellular function (Georgieva & 250 

Vassileva, 2023; Hasanuzzaman et al., 2013; Ritchie & Friesen, 2022; Tuteja et al., 2001). All 251 

these phenomena are influenced by temperature through the laws of thermodynamics (Michaletz & 252 

Garen, 2024). 253 

The TDT model captures repair and damage occurring simultaneously in the stressful range 254 

(where damage outweighs repair) through z, but repair will be far more important and impactful 255 

outside of the stressful range. Repair mechanisms can be diverse, but many are thought to be 256 

conserved between plants and animals (Tuteja et al., 2001). They include the regulation of shock 257 

proteins and other chaperone proteins to refold or to degrade misfolded proteins (Liu & Howell, 258 

2016; Wahid et al., 2007). Repair pathways are known for excising damaged DNA resulting from 259 

bursts of oxidative stress (e.g., base excision repair; Tuteja et al., 2001) and replacement of 260 

oxidised fatty acids (e.g., Wagner & Chitnis, 2023), but the details of repair are less well 261 

understood compared to factors contributing to damage. Repair rates are known to be temperature-262 

dependent in flies (Bowler & Kashmeery, 1979; Dingley & Maynard Smith, 1968; Ørsted et al., 263 

2022), bacteria (Iandolo & Ordal, 1966; McKellar et al., 1997), and plants (Curtis et al., 2014). 264 

Theoretical advances allow for simulations of the dynamics of physiological damage and 265 

repair depending on temperature (Michaletz & Garen, 2024), which are needed to predict 266 

sensitivity and vulnerability to stress in nature (Ørsted et al., 2024). For example, Klanjscek et al. 267 

(2016) developed a damage and repair model for oxidative stress that could potentially be applied 268 

to heat stress. Jørgensen et al. (2021) developed a mathematical model for estimating accumulated 269 

injury from thermal stress using static and dynamic knockdown data in TDT models. Rezende et 270 

al. (2020) also showed that dynamic TDT models, which assume that individuals that survived the 271 
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thermal stress can repair damage between bouts of heat stress (e.g., overnight), could estimate 272 

survival probability of drosophilids in the laboratory and field. Such studies are foundational to 273 

test and validate that there is a dynamic interplay between damage and repair processes through 274 

exposure to thermal stress that varies in frequency, duration, and intensity.  275 

Modelling the dynamics of damage and repair using the Thermal Load 276 
Sensitivity (TLS) framework  277 

Modelling damage and repair in natural ecosystems requires us to connect physiological sensitivity 278 

with realistic thermal exposure at sufficiently fine resolution. Biophysical models can now 279 

approximate microclimates at hourly resolution globally, which can be coupled with models of 280 

thermoregulatory behaviours to predict operational temperatures of organisms (Kearney et al., 281 

2020; Kearney & Leigh, 2024; Klinges et al., 2022; Meyer et al., 2023). This relatively new 282 

capacity to predict the temperatures to which organisms are exposed can be combined in the TLS 283 

framework to make more nuanced predictions of risk to thermal stress at fine scales or under 284 

scenarios with dynamic and extreme environmental conditions. The inclusion of damage and 285 

repair enables the cumulative impacts of thermal stress to be modelled under natural, fluctuating 286 

conditions including stress and reprieve. The rate of repair and the decay in the rate of repair, 287 

resulting from temperature stress or reduced physiological condition, can both be explicitly 288 

incorporated into simulations using the TLS framework. Such feedback processes are expected to 289 

alter organism function and homeostasis during exposure to heat stress and benign temperatures 290 

that facilitate repair (e.g., overnight or during periods of reprieve from heat).  291 

To illustrate how the feedback processes of damage and repair could play out theoretically, 292 

we simulated the effects of temperature on physiological function while altering repair rates and 293 

their dependence on physiological function (additional details in Supporting Information). We 294 

estimated the thermal sensitivity of a hypothetical ectotherm (Fig. 1a), then simulated damage rate 295 

increasing rapidly with temperature (Fig. 1b). We applied a Sharpe-Schoolfield Arrhenius model 296 

to simulate repair rates based on a repair rate coefficient (�̇�) to set the rate of repair at 20°C 297 

(Fig. 1c).  298 

It is essential to recognise that damage and repair have non-linear relationships with 299 

temperature and that both processes will occur simultaneously. Outside the stressful range of 300 

temperatures, repair outstrips damage, whereas inside the stressful range, damage outstrips repair. 301 

TDT focuses mainly on the balance within the stressful zone but ignores repair outside the 302 
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stressful range, within the permissive range. Although damage may be the net result of exposure to 303 

high temperature, repair processes such as protein synthesis and chaperoning to limit protein 304 

misfolding, are occurring whenever temperatures permit (Santra et al., 2019). Therefore, we 305 

calculated the damage/repair ratio (Fig. 1d), and the net damage rate (Fig. 1e), based on the 306 

balance between damage and repair at different temperatures, to predict the range of temperatures 307 

across which damage outweighs repair and vice versa. The processes that facilitate repair are 308 

likely also dependent on physiological condition, such that the repair rate itself declines when an 309 

organism is in poor physiological condition from accumulating thermal damage (Fig. 1f). 310 

We applied this model to gridded hourly estimates of air temperature from the 311 

microclimOZ dataset (Kearney, 2019) to predict body temperatures of our hypothetical ectotherm 312 

for four weeks, including three days that reach damaging extreme temperatures (Fig. 1g). 313 

Predicted body temperatures were assumed to equal shaded air temperature, as in a small insect 314 

(note that heat budgets can be computed with the ectotherm model of NicheMapR (Kearney & 315 

Porter, 2020) for more complex scenarios where this simplifying assumption would not hold). 316 

Next, we integrated repair rate into probabilistic dynamic thermal ‘tolerance landscape’ models 317 

(Rezende et al., 2020). Note that the actual magnitude of the thermal stress is contingent on the 318 

temperature trajectories throughout the day. Thus, we simulate how the cumulative dosage of 319 

sublethal heat stress compromises physiological function, which is altered by (and further alters) 320 

the balance between damage and repair during the thermal regime (Fig. 1h). Finally, we visualised 321 

the assumed dependence of repair rate on physiological condition as a feedback process that 322 

reduces the repair rate coefficient (�̇�) when damage accumulates from exposure to heat (Fig. 1i; 323 

details in Supporting Information). Box 1 provides an example application of the TLS framework 324 

incorporating damage and repair feedback for Drosophila suzukii, and an additional example for 325 

weed seeds is provided in the Supporting Information. 326 

 327 
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 328 
Figure 1. Simulations of the counteracting processes of damage and repair during heat exposure of a hypothetical 329 
ectotherm. (a) The underlying thermal sensitivity curve for the ectotherm with intercept CTmax1h (critical thermal 330 
maximum of 1 h of exposure) and slope z (thermal sensitivity) parameters. (b) Damage rate as an approximately 331 
exponential function of temperature. (c) Repair rates as a function of temperature, simulated for the hypothetical 332 
ectotherm with no (black), low (orange), moderate (blue), and high (green) repair capacity using Arrhenius functions. 333 
(d) The damage/repair ratio as a function of temperature, where the dashed black line represents a 1:1 damage/repair 334 
ratio. (e) The net damage rate as a function of temperature (the balance between damage and repair processes), where 335 
the dashed black line represents equal damage and ratio. (f) The repair rate coefficient (�̇�), which is the rate of repair 336 
at 20°C, as a function of the organism’s physiological function. (g) The modelled body temperature during summer 337 
over a four-week time course. Dashed red lines in panels g–i represent extreme heat days during the time course. (h) 338 
Physiological function (%), the proportion of full performance possible following exposure to physiological stress that 339 
accumulates over the time course, simulated with different repair rates using the TLS framework, illustrating how this 340 
response may substantially impact the outcome of thermal stress events over time. (i) The dependence of repair rate 341 
coefficient (�̇�) on physiological function over the four-week time course. 342 
 343 
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 344 

Box 1. Application of the TLS framework to Drosophila suzukii 345 

Drosophila suzukii is a globally invasive pest that is a prime candidate species for studies of 346 

thermal load sensitivity. We used raw data for productivity of female flies from Ørsted et al. 347 

(2024) to explore damage accumulation and repair under combinations of temperature and 348 

exposure duration. Productivity of females is a crucial (sublethal) contributor to population 349 

viability that is more sensitive to temperature than thermal coma or death.  350 

Using these data, we show how the relationship between temperature and exposure 351 

duration determines the conditions under which reproduction can potentially occur or fail (Box 1 352 

Figure a). To illustrate the potential for repair to alter heat failure rates and outcomes, we used 353 

metaDigitise (Pick et al., 2019) in the R Environment for Statistical Computing v4.3.1 (R Core 354 

Team, 2023) to digitise Fig. 5c from Ørsted et al. (2022), extract preliminary repair values (%) at 355 

six ‘repair temperatures’ for D. suzukii, and convert them to repair rate per minute (% min-1). 356 

These repair values correspond to the improvement of knockdown time relative to a first heat 357 

exposure after 6 h of recovery at different temperatures to allow for repair before another 358 

knockdown assay. We recognise that these data are preliminary and correspond to knockdown 359 

rather than reproductive viability (Ørsted et al., 2022), but there is little empirical data on 360 

temperature-dependent repair rates available. We developed a simple model to simulate repair 361 

rates, where repair is modelled using the Sharpe-Schoolfield Arrhenius model (Schoolfield et al., 362 

1981) that uses a repair rate coefficient (�̇�) to set the rate of repair at 20°C (de facto optimum), 363 

such that instantaneous repair rates are high at optimal temperatures but drop rapidly at thermal 364 

extremes (equation and fitted parameters in Supporting Information). The six reported repair rate 365 

data points derived from Ørsted et al. (2022) correspond closely with the Arrhenius model for 366 

repair rate (Box 1 Figure b). 367 

Using a six-day simulation of realistic body temperatures (that ranged 6-34°C; Fig. S1) 368 

derived from NicheMapR (Kearney & Porter, 2020), we applied the damage accumulation function 369 

(Equation 3) to demonstrate the accumulation of damage up to the T50 threshold (50% reproductive 370 

viability), which is reached after around 81 h (Box 1 Figure c). With no repair, a dynamic 371 

‘tolerance landscape’ function (Rezende et al., 2014) shows that 50% probability of reproductive 372 

failure is reached around 100 h. Accounting for repair reduces the probability of reproductive 373 
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failure to below 50% for the entire simulation (Box 1 Figure d). Thus, these models using data for 374 

heat failure with and without repair provide markedly different fitness outcomes.  375 

 376 

 377 

Conceptual and practical application of the Thermal Load Sensitivity (TLS) framework to female Drosophila suzukii 378 
reproduction. (a) Regression between temperature (y-axis) and time (h) to event (in this case T50, x-axis) data is then 379 
used to estimate the CTmax1h (intercept of curve) and thermal sensitivity z (slope of the log10-linear relationship). (b) 380 
Repair rates as a function of temperature. Points are estimates for D. suzukii repair rate from Ørsted et al. (2022) and 381 
the curve is modelled repair rates using an Arrhenius function. (c) Simulating temperature exposure across six days 382 
with cool nights and applying the accumulated damage model (Equation 3) to illustrate how damage accumulates up 383 
to reach the threshold T50. (d) Predicted cumulative probability of reproductive failure as using dynamic tolerance 384 
landscape models without repair (orange) and with repair (green) that is occurring both during stress and also outside 385 
of the stressful range of temperatures. 386 

 387 
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 388 

While these process-based simulations of TLS are useful for generating plausible 389 

predictions about the balance between damage and repair on physiological function for a broad 390 

range of organisms, heat exposure scenarios, and different scales, they need further empirical 391 

characterisation and validation. Both the general shape of the recovery curve as a function of 392 

temperature and the dependence of recovery on physiological function or temperature are, to our 393 

knowledge, still largely unknown (although the Arrhenius function in Box 1 appears to capture 394 

this well for D. suzukii). Various mathematical functions could be used to model the assumed 395 

temperature-dependence of damage and repair, much like the suite of plausible functions that can 396 

be fit to thermal performance curves (Padfield et al., 2021); the most appropriate function will 397 

likely differ among life forms (Ørsted et al., 2022). It will therefore be necessary to design 398 

experiments to quantify damage and repair rates to parameterise and to validate these models, 399 

which remains challenging for real organisms (Bai et al., 2019; Huey & Kearney, 2020; 400 

Kingsolver & Woods, 2016; Klanjscek et al., 2016). Broad taxonomic groups might have similar 401 

sensitivity responses due to evolutionary conserved mechanisms of cellular damage and repair, but 402 

this is yet to be tested. We recognise that varying these damage and repair assumptions could 403 

significantly alter model outcomes (e.g., Youngblood et al., 2025), and this is an exciting area for 404 

investigation for which we advocate targeted investigations into damage-repair processes across 405 

diverse taxa.  406 

IV. TLS could help address key outstanding questions in global change 407 

biology and thermal ecology 408 

Global change biology and thermal ecology inherently need to consider multiple stressors in 409 

combination, and the impacts of the timing and magnitude of these stressors in an organisms’ life. 410 

Below we provide an exploratory, conceptual overview of some of the emerging areas of research 411 

for which the TLS framework could be used for both theoretical and empirical insight. 412 

A. Sublethal measures of thermal sensitivity and impacts on modular systems of an 413 

organism 414 

The role of heat exposure in causing sublethal detrimental effects on organism fertility has come 415 
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into sharp focus as an important climate change impact on population growth, extinction risk, and 416 

species distributions (Bretman et al., 2024; van Heerwaarden & Sgrò, 2021; Walsh et al., 2019). 417 

The TLS framework allows investigations into potential spatial distributions based on thermal 418 

effects on sublethal traits (Box 2). Thermal sensitivity to heat stress in animals usually focuses on 419 

whole-organism physiology and ignores more vulnerable modular organs and life stages (Bennett 420 

et al., 2018). The thermal sensitivity of essential organs and primary biological functions like 421 

reproduction are arguably more ecologically valuable to understanding the potential vulnerability 422 

of organisms to global change stressors than are their lethal endpoints (van Heerwaarden & Sgrò, 423 

2021).  424 

In plants, most of the thermal vulnerability indices are calculated for leaves or cut leaf 425 

sections and thus describe thermal limits at the functional level at a very fine scale (e.g., 426 

photosynthetic machinery). The temperature ranges realised in most plant species’ geographic 427 

range are far narrower than measured thermal limits (Lancaster & Humphreys, 2020) and there is 428 

little evidence that extreme temperatures alone kill adult plants, especially trees (Marchin et al., 429 

2022a). Both the onset of functional impairment of photosystems and the damage to leaf tissue are 430 

clearly dependent on thermal exposure time (Cook et al., 2024; Faber et al., 2024; Neuner & 431 

Buchner, 2023). However, we know little about how accumulated thermal damage to modular 432 

organs like leaves then affects the state of larger components such as a tree crown or the entire 433 

tree, and what the resource or energy costs are for repair or discarding dead tissue and 434 

regenerating. To illustrate these concepts, we used data from a heatwave during the dry summer of 435 

2020 in Sydney, Australia. Daily maximum air temperature exceeded 45°C on multiple occasions 436 

during a period of no rainfall, within which it is too dry to repair the damage from heat stress 437 

(orange area of Fig. 2a), resulting in crown dieback (Fig. 2b). Although there were then small 438 

rainfall events, extreme temperatures were still occurring and these conditions remain 439 

unfavourable for substantial repair (blue area of Fig. 2a), but crown cover loss was less dramatic 440 

(Fig. 2b). Larger rainfall events coupled with a reduction in maximum air temperature then 441 

provided conditions that allow repair of damage (green area of Fig. 2a) and then at least two 442 

species of urban trees had capacity to regenerate their crown, while others were too damaged 443 

(Fig. 2b). 444 

  445 



 17 

 446 
Figure 2. Example of (mostly) sublethal effects of heat on modular components of organisms (e.g., leaves on trees). 447 
(a) Extreme heat during dry conditions in Sydney, Australia during the 2019-2020 austral summer. Black line is the 448 
daily maximum air temperature and blue bars are rainfall events. (b) Recovery of tree crown foliage from heat stress 449 
in urban tree species during this time was conditional on heat tolerance and water availability. Responses were 450 
species-specific: some trees died when maximum air temperature surpassed physiological thresholds (Banksia 451 
integrifolia, blue), while surviving trees began recovering by resprouting new leaves in the weeks after rainfall (Acer 452 
rubrum, red; Syzygium floribundum, purple). The young leaves of some species were vulnerable to further heat 453 
damage (Liriodendron tulipifera, green), and full recovery of lost foliage of trees that accumulated substantial heat 454 
damage took multiple years for many individuals (data adapted from Marchin et al. (2022b)). 455 
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 457 
Box 2: Estimating the potential spatial distribution of the invasive pest 458 

Drosophila suzukii as a function of damage accumulation and repair capacity  459 

Drosophila suzukii is a globally invasive pest that would have devasting consequences to 460 

agricultural industries if it were to establish in Australia. Current pest risk analysis reports indicate 461 

it would have major impacts on berry, stone fruit, and viticulture; collectively worth at least $5.4 462 

billion AUD (DAFF, 2013). To identify regions where D. suzukii could maintain productivity 463 

(positive population growth), we extend the example from Box 1 to estimate the spatial extent in 464 

which female D. suzukii could remain productive for seven days in January in Australia (summer) 465 

using gridded microclimate data from microclimOZ (Kearney, 2019). First, we fitted a traditional 466 

static 50% threshold (CTmax1h = 36.3°C) model to determine the spatial extent within which D. 467 

suzukii could remain productive (grey background area in Box 2 Figure a; Fig. S2). Then, we fitted 468 

dynamic thermal landscape models from Rezende et al. (2020) and dynamic CTmax models from 469 

Jørgensen et al. (2021), each with and without implementing the damage-repair feedback (details 470 

in Supplementary Information), applied to each grid cell. The size of the green circles in Box 2 471 

Figure a indicate the probability of females producing offspring based on the dynamic tolerance 472 

landscapes model with repair (for maps of each model see Fig. S3). Box 2 Figure b shows the 473 

density (proportion of grid cells) of producing offspring according to the four models. This shows 474 

that the different models generally behave similarly, while including repair increases the 475 

proportion of locations with productivity above 85%. Box 2 Figure c left panel shows that there is 476 

relatively little difference between the Rezende and Jørgensen modelling approaches (also shown 477 

by: Youngblood et al., 2025), while the right panel shows that there is up to 12% difference in 478 

productivity probability when repair is included. The damage accumulated over the seven-day 479 

simulation was reduced when we included damage-repair dynamics. Thus, applying the TLS 480 

damage-repair model provides a more detailed perspective on the intensity of sublethal heat stress, 481 

highlighting geographic areas where persistence of D. suzukii may depend on repair processes. 482 

Such insights could be used to more effectively identify growing regions that might be susceptible 483 

to incursion and population establishment. Our model examples suggest that even during a hot 484 

week in summer, female D. suzukii could still reproduce in large portions of Australia’s most 485 

productive agricultural regions. For example, the predicted distribution of the area where the fly 486 

could reach high productivity includes significant areas for growing strawberry in southeast 487 
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Queensland, and grape and stone fruit growing regions in eastern New South Wales, eastern 488 

Victoria, and much of Tasmania. 489 

 490 

 491 
(a) Spatial map for potential extent for Drosophila suzukii to remain productive during a hot week in summer in 492 
Australia. (b) Density plots of productivity probability across the grid cells and (c) of pairwise comparisons between 493 
different models with and without repair. 494 

 495 

B. Demographic scaling across life stages 496 

The need for more ecologically relevant measures of temperature stress has given rise to the 497 

adoption of other less extreme (sublethal) indices of thermal vulnerability, like thermal fertility 498 

limits (Walsh et al., 2019). Different life stages clearly have different temperature stress 499 

thresholds, typically with pollen development and seedling stages being the most thermally 500 

sensitive in plants (Ladinig et al., 2015; Rosbakh et al., 2018) and sperm the most thermally 501 

sensitive in animals (Dahlke et al., 2020; van Heerwaarden & Sgrò, 2021). Early life stages that 502 

are sessile can be more vulnerable to overheating and may have lower heat tolerance (e.g., 503 

butterfly eggs (Klockmann et al., 2017), tadpoles (Ruthsatz et al., 2022), and intertidal gastropods 504 

(Truebano et al., 2018)). However, in other cases, less mobile instars and pupal stages of insects 505 

can be more tolerant than eggs or adults due to their reliance on inherent heat resistance rather than 506 

(a)

(b)

(c)
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behavioural heat avoidance (Bowler & Terblanche, 2008; Kingsolver et al., 2011). Small and large 507 

organisms (including the same species at different stages of growth) can have size-dependent body 508 

temperature and thermal resistance due to thermal inertia and changes to boundary layer properties 509 

(Kearney et al., 2021). Organisms around the millimetre scale, including larval stages of 510 

invertebrates, may have very subtle and fine-scale microclimates available to them to avoid 511 

overheating (Pincebourde & Woods, 2020). In plants, the life stage at which the plant is exposed 512 

to thermal stress is crucial in determining the impact of that stress on individual plant responses, 513 

their reproductive success, and subsequent population dynamics (Everingham et al., 2021; 514 

Notarnicola et al., 2021; 2023; Satyanti et al., 2021). However, most available thermal tolerance 515 

data are measured on adults, largely ignoring earlier life stages or actively reproducing individuals, 516 

both of which are crucial for assessing the true vulnerability of a population to environmental 517 

stress (Bennett et al., 2018). 518 

Climate warming will expose different life stages to different intensity of heat events due 519 

to variation in microclimates, sessility, and thermoregulatory behaviour (Levy et al., 2015). In 520 

reptiles with temperature-dependent sex determination, nesting habitats that are exposed to 521 

consistently warmer temperatures or fluctuating extreme heat events may no longer support 522 

balanced sex ratios necessary for population stability (Valenzuela et al., 2019). Shifts in 523 

developmental rates and timing of reproduction could also dissociate species’ trophic interactions 524 

or interspecific dependencies that make environments viable (Kronfeld-Schor et al., 2017). 525 

Ecologically relevant evaluations of thermal sensitivity and vulnerability across life stages are 526 

needed to effectively model impacts on population demographics. As an illustrative example, we 527 

simulated life-stage specific sensitivity to thermal load in a hypothetical plant (Fig. 3a,b) and 528 

applied a simple matrix population model (Fig. 3c) to simulate demographic projections (Fig. 529 

3d,e). This approach (see also Salguero-Gómez et al., 2015) is a basis for allowing TLS to alter 530 

probabilities for transition within matrices (Fig. 3b,c) if thermal stress occurs during a given life 531 

stage (see also Wiman et al., 2014). Further integrations of sublethal thermal effects on growth and 532 

reproduction informed by TLS could be built into trait-based demographic models (e.g., Falster et 533 

al., 2016). 534 

 535 
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 536 
Figure 3. Simulation of how thermal load sensitivity can differ across life stages in sensitive and tolerant populations 537 
of a hypothetical plant species with four distinct life stages: seed, seedling, vegetative (non-reproductive adult), and 538 
reproductive (actively flowering adult). (a) As cumulative thermal load increases toward prolonged high temperature, 539 
the probability of progression to later life stages and reproducing is reduced. Left panel shows probability declining 540 
with cumulative thermal load in a sensitive population and the right panel shows the same for a tolerant population. 541 
(b) Vectors of probabilities for transition to next life stage in the populations at the thermal load indicated by the 542 
dashed line. (c) Life stage transition matrix showing the proportion of each life stage transitioning to the next life stage 543 
or reproducing at each time step (e.g., that 10% of seeds remain seeds, 30% become seedlings, which implies 60% fail 544 
to establish as seedlings, while 60% of reproductive plants remain in reproductive stage, 30% stop flowering and 545 
return to vegetative stage, 10% die, and each reproductive plant in the reproductive stage at the time step produces 20 546 
viable seeds that return to the seedbank). (d) Predicted population dynamics through time as the number of individuals 547 
in each life stage from 100 simulations under a scenario where a heat event equivalent to the thermal load indicated in 548 
(a) occurs at four of the time steps (indicated by sun symbol with arrows). (e) Initial population size at time step 0 and 549 
the final population at time step 20, showing the persistent effects of different sensitivity of life stage to cumulative 550 
thermal load that could have persistent or lag effects on population dynamics.  551 

C. Phenotypic plasticity and thermal legacies 552 

Prior exposure to stressors can result in plastic changes that make organisms (intragenerational) or 553 

their offspring (intergenerational) less sensitive to future stress events through acclimation, or 554 

developmental or transgenerational plasticity. For example, acclimation through heat hardening is 555 

expected to mitigate damage through ‘resistance’ mechanisms that protect cells, such as 556 

upregulation of heat shock proteins (Moseley, 1997). Early growth environments alter 557 

development of offspring (Monaghan, 2007) through developmental plasticity – the ability for an 558 

organism to alter its phenotype in response to its environment during development (West-559 
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Eberhard, 2003). Thus, exposure to heat stress early in life could lead to altered sensitivity to heat 560 

stress (i.e., thermal load) later in life via stress priming (e.g., Hoffman et al., 2018; Hossain et al., 561 

2018). A comprehensive meta-analysis of ectotherms found that developmental temperatures often 562 

slightly increased heat tolerance but did not consistently result in persistent effects on later life 563 

stages (Pottier et al., 2022a). It is not always the case that developmental environments shift 564 

responses to temperature, and it is not yet clear if and how thermal sensitivity is altered by 565 

marginally stressful thermal histories. Thermal tolerance and plasticity can have complex patterns 566 

throughout ontogeny, further altered by the history of exposure to chronic or acute thermal stress. 567 

These ‘thermal legacy’ effects can alter threshold-based thermal tolerance and physiological 568 

plasticity (Geange et al., 2021; Lancaster & Humphreys, 2020; Marasco et al., 2023; Payne et al., 569 

2025), and will therefore likely also modify the rates and sensitivity of both damage and repair 570 

processes (Burton et al., 2022; Einum & Burton, 2023). 571 

D. Multi-stressor integration 572 

The TLS framework can be extended to understand the combined effects of multiple stressors, 573 

whether biotic (e.g., competition, disease) or abiotic (e.g., salinity, nutrient, water). Such an 574 

approach is feasible given that exposure to additional stressors may affect similar underlying 575 

physiological processes of damage and repair through cross-tolerance (Bryant et al., 2024; Hossain 576 

et al., 2018; Katam et al., 2020). In natural environments, a range of potential abiotic and biotic 577 

stressors frequently co-occur and interact with thermal stress, increasing the challenge of 578 

predicting cumulative effects of thermal stress. Thermoregulation in plants is complex and highly 579 

dynamic, with significant differences in realised temperatures and leaf-to-air offsets that depend 580 

on canopy structure and scale (Arnold et al., 2025; Dong et al., 2017; Guo et al., 2023), however it 581 

is clear that water availability will moderate responses to high temperatures (Ruehr et al., 2016). 582 

For example, heatwaves often occur during droughts. Experiments have found that at moderate 583 

levels of water stress, plants may exhibit a priming response that increases heat tolerance but, at 584 

extreme levels, water stress greatly decreases the ability of plants to cool their leaves and so may 585 

exacerbate heat stress (Cook et al., 2021; Marchin et al., 2022a). Other biotic interactions such as 586 

pathogen infection that occurs simultaneously with heat stress can not only suppress resilience to 587 

the pathogen but also reduce the heat tolerance of the host in invertebrates (Hector et al., 2021) 588 

and plants (Desaint et al., 2021).  589 
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Ultimately, when organisms are exposed to two or more stressors the cumulative effect of 590 

all stressors can be additive, synergistic, or antagonistic (Orr et al., 2020) (Fig. 4a,b), and 591 

disentangling multi-stressor effects on heat tolerance should be a major focus of future work. 592 

Exposure to additional stressors will alter the TLS parameters, along with damage and repair rates, 593 

and thresholds for enzyme inactivity, potentially in complex or non-linear ways. As a simple 594 

(linear) example, a change in intercept (CTmax1h) with no change in slope (z) with the addition of 595 

non-thermal stressors implies an additive effect of the stressors (Fig. 4b). Changes in slope, with 596 

or without changes in intercept, imply an interactive effect, either synergistic or antagonistic 597 

(Fig. 4b), as the extra effect of the non-thermal stress can also be temperature-dependent (Duncan 598 

& Kefford, 2021). For these simplified examples, multi-stressor effects on CTmax1h and z can be 599 

evaluated by including interaction terms in statistical models. The limited empirical data available 600 

with multiple abiotic stressors (e.g., Enriquez & Colinet, 2017; Maynard Smith, 1957; Verberk et 601 

al., 2023; Youngblood et al., 2025) suggest the slope can change, implying an interactive effect. 602 

 603 

Figure 4. Conceptual depiction of the effects of heat stress in combination with additional stressors within the TLS 604 
framework. (a) Different coloured lines represented potential changes in the CTmax1h and/or z parameters of the TLS 605 
curves when subject to additional stressors. (b) The difference between the TLS curves with heat stress alone (black 606 
solid line) and the TLS curves of heat stress with other stressors individually (A, yellow dotted line and B, orange 607 
dotted line). From these lines we would predict that the effect of all three stressors (heat, A, and B) is additive by 608 
summing the difference between heat stress only and heat stress with one stressor (orange solid line). If the net effect 609 
of the three stressors is more extreme than the additive effect, then the stressors accumulate synergistically, but if the 610 
effect of all three is less than the additive effect, then the stressors are antagonistic, and the net effect is less than the 611 
sum of their individual effects. 612 
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V. Conclusions and agenda 613 

The Thermal Load Sensitivity framework provides a step towards reconciling the ways in which 614 

organisms deal with natural dynamics of heat stress, whether that be temperature alone or in 615 

combination with other stressors. The TLS framework achieves this through the integration of the 616 

dynamics of thermal stress exposure with the dynamics of physiological damage and repair. The 617 

following five key areas, as discussed above, stand out as being particularly important foci for 618 

investigation, extension, and application of the TLS framework to better understand and predict 619 

thermally mediated impacts on plants and animals: 620 

 621 

1. Adopt TLS terminology because it is inclusive of sublethal effects and applies across 622 

developmental states and the tree of life. As discussed above, we advocate a shift in 623 

language and inherent focus on lethal effects to sublethal effects that are more ecologically 624 

relevant, which includes taxonomic groups for which it is difficult or undesirable to 625 

estimate whole organism death. Large datasets for diverse thermal tolerance limits are 626 

emerging, mostly for ectothermic animals (e.g., Bennett et al., 2018; Lancaster & 627 

Humphreys, 2020; Pottier et al., 2022b). While these provide a foundation, there is a need 628 

to expand them to cover a more representative sample of life. Improving understanding of 629 

the biological processes that underpin a given sublethal effect and testing assumptions to 630 

better parameterise models will improve the efficacy of thermal vulnerability predictions 631 

for a given species. 632 

2. Apply emerging tools to identify universal damage and repair mechanisms that impact 633 

recovery from thermal stress. Disentangling damage and repair mechanisms is crucial 634 

(Ørsted et al., 2022). Integrative computational models for genome-scale protein folding 635 

and stress responses are emerging for microbes (Chen et al., 2017; Zhao et al., 2024), 636 

however empirical data and understanding of these dynamic biological process remains 637 

very limited for complex life forms. Developing effective methods for measuring rates of 638 

damage and repair in plants and animals could be tackled with multifaceted flow cytometry 639 

approaches using consensus panel markers of stress, damage, and repair (Buerger et al., 640 

2023). By determining the conditions under which proteins unfold and inactivate, oxidative 641 

stress responses are expressed, and by mapping programmed cell death pathways during 642 

and after thermal stress (Chen et al., 2020; Roychowdhury et al., 2023), we can begin to 643 
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understand mechanisms of damage and repair reciprocity. Repair will be particularly 644 

important when damage is low, and we therefore need to better understand the trade-offs 645 

between repairing or replacing damaged cells and tissues, and how these depend on 646 

metabolic repair costs (Rennolds & Bely, 2023). Linking bioenergetics at the cellular level 647 

to physiological and ecological functions and fitness is a crucial research frontier 648 

(Sokolova, 2021). We need, however, empirical data to build a deeper understanding of the 649 

complex cellular processes underlying damage and repair to construct and evaluate 650 

mechanistic models. 651 

3. Ascertain principles determining how multiple stressors, both abiotic and biotic, affect 652 

thermal load sensitivity. Different stressors and biological interactions are expected to 653 

impact the damage and repair processes by acting through common mechanisms across 654 

plants and animals (Wek et al., 2023). However, combinations of stressors and/or biotic 655 

interactions and their timing may have complex effects on damage accumulation that must 656 

be factored into assessments of vulnerability (Georgieva & Vassileva, 2023; Prasch & 657 

Sonnewald, 2015; Taborsky et al., 2022). Few studies have evaluated how additional 658 

stressors modify thermal load sensitivity and given that stresses co-occur in nature, this is 659 

an essential avenue for future investigations. 660 

4. Integrate plasticity in response to past stress to determine mechanisms and scale of stress 661 

priming. A clearer understanding is required of the biological mechanisms and 662 

environmental cues that contribute to priming and the plasticity of responses to stress. 663 

Plasticity in damage and repair processes, and the time course or rates of these plastic 664 

responses can alter sensitivity and lead to differences in vulnerability of populations 665 

(Burton et al., 2022; Dupont et al., 2024; Einum & Burton, 2023). Thus, exploring timing 666 

of stresses and rates of plastic responses will be pivotal to being able to model and predict 667 

how environmental exposure affects individuals throughout ontogeny and then scales up to 668 

affect the vulnerability of populations. 669 

5. Improving understanding of the plastic and evolutionary potential of thermal tolerance 670 

will inform conservation and management decision making, and breeding for food 671 

security. Finally, we need a better understanding of genetic variation in stress tolerance 672 

across diverse taxa. The genetic variation underlying thermal sensitivity likely depends on 673 

multiple complex mechanisms acting over different time scales (González-Tokman et al., 674 

2020; Logan & Cox, 2020). Quantitative genetics can reveal evolutionary constraints, 675 
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selection, and heritability of thermal load sensitivity parameters (Leiva et al., 2024). 676 

Understanding phenotypic and genetic variation in thermal sensitivity among populations 677 

is essential for predicting how they could adapt to future environmental conditions, which 678 

facilitates strategic conservation planning and adaptive management (Bennett et al., 2019; 679 

Rilov et al., 2019). Breeding crops that are resilient to thermal extremes from climate 680 

change while maintaining yield to meet food security demands will rely on building a deep 681 

understanding of the adaptive signatures and genetic mechanisms underlying thermal 682 

sensitivity before making use of synthetic biology tools and quantitative genomics (Lohani 683 

et al., 2020; Razzaq et al., 2021).  684 

 685 

Researchers need to recognise the cumulative effects of thermal load on damage and repair 686 

processes and how they will interact to affect biological responses to global change. The TLS 687 

framework builds on the established principles of the TDT model used in ecophysiology (Ørsted et 688 

al., 2022; Rezende et al., 2014), forming a strong basis for further research into additional 689 

dimensions (e.g., sublethal effects, tissue types, life stages, spatial models, multiple stressors), that 690 

impact sensitivity and the underlying molecular and genetic architecture. We hope that a broader 691 

focus through the TLS framework will provide opportunities to better predict organism 692 

vulnerability in a time of profound global change. Death is just one, albeit severe, consequence of 693 

thermal stress; predicting loss of individual reproduction and ecological function while 694 

realistically incorporating dynamic environmental and biological processes is much more 695 

challenging but arguably more important. Integrating these essential components into our 696 

theoretical and modelling frameworks is a step towards better understanding organism 697 

vulnerability to significant environmental stressors.  698 
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Note that a digital tutorial-style version of this supplementary information, which includes all R code and 

modified functions to recreate the developed TLS models, as well as figures in the main text and supporting 

information is available here: 

https://pieterarnold.github.io/thermalloadsensitivity/.  

The data and other files that support the analyses and figures are available here: 

https://github.com/pieterarnold/thermalloadsensitivity.  
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Notes on repair rate model 
Potential repair rate (Fig. 2c of main text) was modelled using a typical four-parameter Sharpe-Schoolfield 

Arrhenius model (Schoolfield et al., 1981) with an additional repair rate parameter, in the form of: 

 

𝑦(𝑇) = 	 �̇�647 ∙ exp	(
𝑇8
𝑇647

−
𝑇8
𝑇
) ∙
(1 + exp	( 𝑇89𝑇647

− 𝑇89𝑇9
) + exp	(𝑇8:𝑇:

− 𝑇8:
𝑇647

)

(1 + exp	(𝑇89𝑇 − 𝑇89𝑇9
) + exp	(𝑇8:𝑇:

− 𝑇8:𝑇 )
 

(Equation S1) 

 

To parameterise our models, we fitted a Thermal Death Time (TDT) function based on parameters for 

female Drosophila suzukii productivity reported in Ørsted et al. (2024). We fitted a ‘thermal landscape’ 

function to estimate survival probability over time of exposure to heat stress to derive the intercept (a) and 

slope (b) parameters. We use a and b terminology here for clarity because different applications of the 

TDT model refer to intercept, slope, CTmax and z differently due to fitting either temperature or time as the 

response variable, which substantially alters how one would interpret the parameters. 

 

Fitted model parameters for simulation in Figure 1. 

Parameter Description, unit Value 
𝑇8 Arrhenius temperature, K 14065 
𝑇9 Arrhenius temperature lower threshold, K 283.65 
𝑇: Arrhenius temperature upper threshold, K 301.65 
𝑇89 Arrhenius temperature lower, K 50000 
𝑇8: Arrhenius temperature upper, K 100000 
𝑇647 reference temperature, K 293.15 
𝑇 sequence of temperatures over which to model, K 273.15 - 323.15 
�̇�647 repair rate at Tref, % min-1 0.007; 0.0111; 0.02 
�̇�;45  repair rate decline, dimensionless 3 
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Fig. S1. Simulation of body temperatures over six days for the D. suzukii example in Box 1. Left panel is 

damage without allowing repair and the right panel includes repair as in Box 1 figure b. Colours correspond to 

accumulated damage as in Box 1 figure c. The increase in ‘brown’ colouration shows how damage is higher at 

the end of the six-day period without considering repair compared with the repair scenario.  
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Extended Box 2: Estimating the potential spatial distribution of the invasive 

pest Drosophila suzukii as a function of damage accumulation and repair 

capacity 

 
To identify regions where D. suzukii could maintain productivity (positive population growth), we extend 

the example for Box 1 to estimate the spatial extent in which female D. suzukii could remain productive for 

seven days in January in Australia (summer) using gridded microclimate data from microclimOZ (Kearney, 

2019). The maximum air temperatures at 120 cm during this seven-day period are shown in Fig. S2a. We 

fitted a traditional static threshold (CTmax1h = 36.3°C) model to determine the spatial extent within which D. 

suzukii could remain productive at first (Fig S2b).  

 

 
Fig. S2. (a) Map of maximum air temperatures at 120 cm (°C) across Australia over the seven-day period used 

for the simulation for Drosophila suzukii. (b) Subset map of Australia showing the areas that did not exceed 

CTmax1h for productivity during the simulation. 
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Application of Jørgensen et al. and Rezende et al. models 
For applying Jørgensen et al. (2021) models for Box 2, we integrated equation 2 from Jørgensen et al. 

(2021) by fixed time steps. The lethal dose (dL) function integrates the parameters for the critical 

temperature causing 50% mortality in 24 hours (CTmax24h) and the temperature causing 50% mortality in 1 

hour (CTmax1h) to determine the lethal dose of heat, such that: 

𝑑9 =	exp
<	∙	> 1*234#5

1*234675
	-	%?

  

(Equation S2) 

𝑘 =
log(10)
−𝛽-%

 

(Equation S3) 

𝐶𝑇"#$@A& =
log%'(24) − 	𝛼

𝛽
 

(Equation S4) 

𝐶𝑇"#$%& =
log%'(1) − 	𝛼

𝛽
 

(Equation S5) 

Specifically, the parameters for the D. suzukii model used in Box 2 were:  

Intercept (a) = 11.902, slope (b) = –0.3058, z = 3.27. 

 

The Rezende et al. (2020) models apply the ad hoc dynamic.landscape function (details in Supplementary 

Information, p. 12 of Rezende et al. (2020). We then modified this function (dynamic.landscape2) to add 

the Sharpe-Schoolfield Arrhenius model for repair to the ‘alive’ term (range: 0-100) to indicate the status of 

the organism or sublethal component thereof. As the value of ‘alive’ reduced below 0.99, the function 

implements a decay in repair rate (�̇�647!) to simulate the decline in repair capacity due to accumulation of 

injury or physiological damage. 

�̇�647! =	 �̇�647 ∙ F�̇�647
<̇8/0
#C1D4G 

(Equation S6) 

Where �̇�;45 is an arbitrary parameter for defining the steepness of the decay in repair rate. Each iteration of 

model fitting then uses the �̇�647! term as the repair parameter for each time step.  
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Fitted model parameters 
 

Fitted model parameters for simulation in Box 1 Figure. 

Parameter Description, unit Value 
𝑇8 Arrhenius temperature, K 3516.25 
𝑇9 Arrhenius temperature lower threshold, K 283.65 
𝑇: Arrhenius temperature upper threshold, K 300.15 
𝑇89 Arrhenius temperature lower, K 50000 
𝑇8: Arrhenius temperature upper, K 83333 
𝑇647 reference temperature, K 293.15 
𝑇 sequence of temperatures over which to model, K 273.15 - 323.15 
�̇�647 repair rate at Tref, % min-1 0.095 
�̇�;45  repair rate decline, dimensionless 3 

 
 

In the Box 2 models, we applied the repair rate Arrhenius model (shown in Box 1 Figure, which includes 

the decay in repair rate based on damage accumulation impacting physiological function) to the dynamic 

tolerance landscape model (modified R function). Allowing the probability of successful productivity to 

increase when temperature conditions facilitated partial repair at a rate that is dependent on temperature and 

accumulated damage (see Box 1 Figure) reduced the damage accumulated over the seven-day simulation. 

Maps for the distribution of productivity are based on the dynamic tolerance landscape model without 

repair (Rezende et al., 2020) (Fig. S3a), the dynamic CTmax model without repair (Jørgensen et al., 2021) 

(Fig. S3b), the dynamic tolerance landscape model with repair rate (Fig. S3c), and productivity probability 

difference between the tolerance landscape models with and without repair (Fig. S3d).  
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Fig. 

S3. Maps of Australia showing areas of viable productivity of Drosophila suzukii based on different models over 

the seven-day period used for the simulation. In all maps, the grey background area is based on CTmax1h shown in 

Fig S1b. Circles of different sizes show productivity probability (%), where larger symbols indicate higher 

probability of producing offspring. Maps are based on (a) the dynamic tolerance landscape model without repair 

(Rezende et al., 2020), in dark blue and (b) the dynamic CTmax model without repair (Jørgensen et al., 2021), in 

light blue; (c) the dynamic tolerance landscape model with repair rate (estimated in Box 1 and modelled with 

damage-repair feedback from Fig. 1), in green. (d) Productivity probability difference between models shown in 

(a) and (c), in pink.  
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Fig. S4. Density plots of productivity probability across the grid cells, faceted into quartiles. 
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Additional detailed example of the TDT model and TLS framework:  

Weed management by solarisation 
 

The TDT model can already be applied broadly. For example, it can be used to optimise weed management 

in agriculture where thermal treatments are applied to soil to eradicate weed seeds. Developing strategies to 

deplete weed seed banks and their germination potential is a grand challenge in agronomic management 

(Chauhan, 2020). Soil solarisation is a non-chemical approach to biocide that uses passive solar heating 

under plastic to disinfect soil of crop pests and weeds (Stapleton, 2000).  

As an example of applying the TDT model, we illustrate the relationship between heat exposure 

over time and seed mortality or germination failure. We extracted LT80 (temperature at which 80% of seeds 

are killed and fail to germinate) data from Dahlquist et al. (2007) and used metaDigitise (Pick et al., 2019) 

in the R Environment for Statistical Computing v4.3.1 (R Core Team, 2023) to estimate TDT curves to 

evaluate thermal sensitivity for three weed species. The proportion of seed mortality in Sisymbrium irio 

(London rocket) is strongly dependent on both temperature and time (Fig. S5a). To achieve 80% seed 

mortality at 42°C requires about 85 h of cumulative heat treatment, whereas, at 50°C, this time required 

reduces drastically to 4 h. Applying the TDT model to three weed species predicts that, on average, 

treatment temperatures need to reach 57°C for at least 1 h for seed mortality to reach LT80 (Fig. S5b). Seed 

mortality has the same qualitative response to thermal dosage but there are interspecific differences in 

critical thermal maximum at 1 h (CTmax1h) and thermal sensitivity (z) resulting from differences among 

species (Fig. S5b). If we simulate a heat treatment ramping to approximately 50°C, then it would need to be 

maintained for 20 h on average to eradicate 80% of all seeds, but each species requires very different 

thermal dosages to accumulate the target (‘100% damage’), which here actually refers to reaching LT80 

(Fig. S5c). Damage accumulates at different rates based on both CTmax1h and z: S. irio seeds reach LT80 by 

the treatment after 10 h of treatment, while Solanum nigrum (black nightshade) seeds reach LT80 after 27 h, 

and Amaranthus albus (tumble pigweed) do not reach LT80 even after 30 h of heat treatment (Fig. S5d). 

While A. albus has higher CTmax1h than S. nigrum, the greater sensitivity z of S. nigrum (Fig. S5b) results in 

slower damage accumulation under the treatment regime (Fig. S5c,d). The effectiveness of solarisation 

techniques therefore relies heavily on the thermal dosage being applied at the necessary intensity and 

duration. 
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Figure S5. Conceptual and practical application of the Thermal Death Time (TDT) model to seed mortality. (a) 

Experiments measure seed mortality (as % not germinating after heat stress application) for varying amounts of time 

and across a range of temperature treatments. A dose-response curve can be estimated for each temperature via 

logistic regression. Fitted response curves to estimate LT80 (time for 80% mortality) of an example weed species taken 

from Dahlquist et al. (2007). (b) Biologically relevant thresholds, such as LT80, that are derived from (a) are then used 

to estimate a TDT curve for three weed species that differ in their thermal ecology. A linear regression between 

temperature (y-axis) and log10 Time (h) to event (in this case LT80, x-axis) data is then used to estimate the CTmax1h 

(intercept of TDT curve) and thermal sensitivity z (slope of the TDT curve). (c) Simulating a ramping temperature 

profile for an approximate 50°C heat solarisation treatment for 30 h and applying the damage model (Equation 3) 

predicts how accumulating damage could differ by species. (d) As temperature slowly increases to approximately 

50°C, damage accumulates towards LT80 at different rates depending on species thermal sensitivity. 
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Different threshold values can be used for estimating the effects of thermal damage. As an example, 10%, 

50% and 90% mortality could be useful to understand the efficacy of a treatment. We applied the TDT 

models for two of the weed species (Fig. S6a,b) across a natural cyclic temperature regime that reaches 

high temperatures during the day but cools overnight, allowing for damage to stop accumulating (Fig. 

S6c,d). Finally, we can add in a simple version of the Arrhenius repair function to allow the accumulated 

damage to be reduced when temperatures permit repair to occur (Fig. S6e,f). In reality, it may be unlikely 

for a seed to repair damage inflicted by high temperatures, however in this example, we use a relatively 

high value of �̇� purely for illustrative purposes. Repair can be seen to ameliorate the damage accumulation, 

and it delays the time that it takes for S. irio to reach any LT threshold by 24 h, but the end result of the 120 

h temperature regime is the same due to the extreme temperatures reached. 

  



 12 

 

Figure S6. Conceptual and practical application of the Thermal Load Sensitivity (TLS) framework to seed mortality, 
including a basic repair function, using TDT estimates derived from dose-response curves in Fig. S5,, this time using 
fitted response curves to estimate three thresholds: LT10, LT50, and LT90 (time for 10%, 50%, and 90% mortality, 
respectively) of two weed species (Solanum nigrum and Sisymbrium irio) from Dahlquist et al. (2007). (a) 
Relationship between temperature (y-axis) and time (h, x-axis) to reach the three thresholds. (b) Log-linear 
relationship between temperature (y-axis) and log10 Time (h, x-axis) to reach the three thresholds. (c) Simulating a 
dynamic, cyclic temperature profile for 120 h and applying the damage model predicts how accumulating damage 
could differ by species. (d) Accumulated damage rate over time differs between species depending on thermal 
sensitivity, and depending on the threshold used. (e) Simulating the same temperature profile for 120 h and applying 
the damage model predicts how accumulating damage could differ by species and threshold, while repair is allowed to 
reduce damage that has accumulated. (f) Accumulated damage over time differs between species depending on 
thermal sensitivity, the threshold used, and damage is ameliorated by repair occurring during temperatures that are not 
stressful.  
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