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Abstract 30 

As the colder regions of the planet warm, species are moving northward and upward from the 31 

boreal forest to the tundra biome, a process that has been referred to as borealization. Here, we 32 

examine the diverse uses of the term borealization and propose the concept of tundra 33 

borealization for terrestrial environments to specifically describe shifts in species composition 34 

from boreal to tundra ecosystems. We summarise the evidence to date for borealization of plant 35 

and animal communities in tundra ecosystems and the different approaches that can be used to 36 

quantify borealization. We discuss how land-use change is interacting with climate change, leading 37 

to species and community reorganization in colder biomes, and the consequences of borealization 38 

for food webs, ecosystem functions and northern livelihoods. Our perspective brings together the 39 

different definitions and lines of evidence for borealization in terrestrial ecosystems to emphasize 40 

this important ecological process and rapidly evolving area of research. 41 

 42 

Introduction 43 

Climate and land-use changes are driving species redistributions globally 1. These shifts in species 44 

distributions imply a reshuffling of biotic communities and the breakdown of biogeographic 45 

barriers 2. With rapid warming at high latitudes and elevations 3, ecological transitions involving the 46 

redistribution of species are underway. The term ‘borealization’ has been used to describe some of 47 

these transitions, which are characterized by the expansion of boreal species into Arctic 48 

ecosystems 4,5. While boreal species can move northward and upward, Arctic and alpine species 49 

have limited escape routes. Therefore, understanding the causes and consequences of these 50 

ecological transitions is fundamental for the conservation of Arctic ecosystems. The term 51 

borealization has been widely used in marine systems to describe the northward range expansion 52 

of fish and zooplankton species 4,6. Similar species distribution shifts have been reported in 53 

terrestrial ecosystems 5 but in these cases the term borealization has not been consistently 54 

applied. 55 
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Here, we aim to call attention to the concept of borealization and its wide-ranging consequences. 56 

First, we review existing definitions of the term borealization across disciplines and establish a 57 

working definition to apply the concept to terrestrial ecosystems and the present-day latitudinal 58 

and elevational shifts of boreal species into tundra ecosystems, including Arctic, Oroarctic and 59 

alpine tundra 7. Second, we summarise different approaches to quantify borealization in terrestrial 60 

communities and review the patterns, drivers and consequences of borealization. Finally, we 61 

identify future research priorities, aiming to bring researchers together to understand climate and 62 

land-use change impacts in the rapidly warming tundra biome. 63 

 64 

Defining borealization 65 

Although shifts in the distribution of boreal and Arctic species have been a naturally recurring 66 

phenomenon in marine and terrestrial environments in past periods of cooling and warming, like in 67 

the early Holocene 8, the term borealization has not been widely used in the scientific literature 68 

(Figure 1). A search on Web of Science and Scopus on 29th January 2025 for the term 69 

“borealization” OR “borealisation” retrieved 75 unique documents published until the end of 2024. 70 

The first results include a few isolated cases dating back to the mid-1990s, with an increase in the 71 

use of the term in the 2000s by different disciplines. To the best of our knowledge, the term 72 

borealization was first used in 1944 9 to describe processes leading to the speciation of pear trees 73 

(Pyrus) in the colder environments of their northern range. In the 1990s, the term was used by the 74 

forest science community to describe the silvicultural practices favouring pine and spruce in 75 

central European forests, leading to an increased resemblance to northern taiga forests and the 76 

subsequent decline of species and features indicative of temperate deciduous forests 10. Similarly, 77 

the term has been used to describe the replacement of temperate tree species by boreal species in 78 

southern Sweden 11 and in the New England Acadian Forest 12. In these cases, borealization was 79 

interpreted as the movement of northern species to more southerly areas. Interestingly, this is the 80 

use of the term that has been adopted in the humanities, where the borealization of southern 81 

European literature reflects elements of northern influence 13. 82 
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 83 

Figure 1. The use of the term borealization in the scientific literature became more frequent after 2010, 84 
especially in marine sciences. A search in Scopus and Web of Science on 29th January 2025 retrieved 75 85 
articles published between 1994 and 2024. The number of scientific articles published each year is shown, 86 
coloured by scientific discipline. 87 

More recently the term borealization has been adopted by the physical oceanography community, 88 

where it has been used to refer to the anomalous advection of water and biota from the Atlantic 89 

and Pacific Oceans into the Arctic Ocean 14. Some authors, however, restrict the use of the term 90 

borealization to the biotic response associated with the physicochemical changes in the marine 91 

environment, which are in turn referred to as atlantification 15. In this context, borealization implies 92 

the movement of species adapted to higher salinity and warmer waters, often associated with the 93 

retraction of Arctic specialist species, leading to changes in the ecology, distribution and 94 

phenology of local marine organisms 4,6. In marine biology, a variety of terms have been coined to 95 

describe species redistributions and the associated changes in fish assemblages depending on the 96 

thermal affinity of the species in the community, including: borealization and deborealization 97 

(reflecting, respectively, increases and decreases in cold-affinity), as well as tropicalization and 98 

detropicalization (reflecting increases and decreases in warm-affinity) 16,17. It is important to note 99 

that the use of the term borealization in physical oceanography and marine biology leads to 100 

opposite definitions, describing an increase in the representation of warm-adapted species in high 101 
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latitudes (sensu Fossheim et al. 4 or of cold-adapted species in temperate waters (sensu McLean et 102 

al. 17, depending on the geographical position from which the term is being defined (red arrows in 103 

Figure 2).  104 

 105 

 106 

Figure 2. Terms used to describe species redistributions across biome boundaries in marine and terrestrial 107 
environments as a response to climate change, including borealization and deborealization (as an increase 108 
and decrease of cold-affinity), tropicalization and detropicalization (as an increase and decrease of warm-109 
affinity), and thermophilization (increase in warm-adapted species with increasing temperatures). So far, 110 
there is no term describing the transition of Arctic species into the boreal biome. Importantly, borealization 111 
(red arrows) can represent opposite processes according to different sources. Here we define tundra 112 
borealization as the range expansion of boreal species into terrestrial tundra ecosystems, possibly 113 
accompanied by a loss of tundra specialist species. 114 

The term borealization has been used to a much lesser extent in the terrestrial realm 5,18. Instead, 115 

other terms describe processes analogous to those described in marine environments. For 116 

instance, the idea of temperature-driven changes in species distributions is directly related to the 117 

concept of thermophilization used to describe the increase of warm-adapted and the decline of 118 

cold-adapted species in terrestrial plant and animal communities as a response to warming 19,20; 119 

Figure 2). In turn, northward range shifts of cold-adapted Arctic species have been referred to as 120 

Arctic squeeze, as their ranges shrink with no possibility to expand further north 21. There has also 121 

been extensive literature reporting changes in the taiga-tundra boundary 22, particularly describing 122 
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shifts in the boreal treeline 23 and increases in primary productivity in tundra regions, the so-called 123 

Arctic greening 24. However, these changes have rarely been explicitly referred to as borealization. 124 

Similarly, the term borealization does not appear in the freshwater ecosystem literature despite 125 

analogous changes in Arctic freshwater fish communities. Instead, the increase in boreal species 126 

in these communities is typically linked to the concept of invasive species 25. Finally, the boreal 127 

biome only occurs in the Northern Hemisphere 26, therefore the term borealization in terrestrial 128 

ecosystems has not been used in the Southern Hemisphere, although similar processes are 129 

occurring in southern tundra regions 27. 130 

Due to all these inconsistencies and the multiple terms used to refer to similar processes, unifying 131 

terminology is important. We therefore define tundra borealization (hereafter ‘borealization’) as 132 

all biogeographic processes in tundra ecosystems or in the boreal-tundra transition zone 133 

characterized by the range expansion or increased abundance of boreal species, possibly 134 

accompanied by the simultaneous range retraction or decline in abundance of tundra specialist 135 

species, that lead to tundra ecosystems becoming more boreal-like in their community 136 

composition and functioning. This definition includes Arctic, Oroarctic (i.e., subarctic mountains) 137 

and alpine tundra, as ecological changes in these systems should be comparable. By the boreal-138 

tundra transition zone we refer to the broad geographic band at the cold edge of the boreal forest, 139 

where forest structure changes across a temperature gradient (both latitudinally and altitudinally), 140 

from forested to tundra landscapes 28. Borealization may involve gradual movements over time, or 141 

sporadic long-distance dispersal events that lead to the establishment of stable populations within 142 

the tundra. Although transient movements of species may not be considered borealization if 143 

populations do not establish, they may be indicative of future borealization. Our definition of 144 

tundra borealization also includes the establishment of species of boreal origin that are introduced 145 

in the tundra by human activity.  146 

Quantifying borealization  147 

The definition of tundra borealization as the increased representation of boreal species in tundra 148 

requires first defining what makes a species or its traits boreal, and by opposition, what makes a 149 

species a tundra species. Species may be classified as boreal, tundra or tundra-boreal based on 150 

the predominant biome in their current distribution ranges, as defined by occurrence data (e.g., 151 
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GBIF data 29; Figure 3) or range maps (e.g., IUCN range maps 5). For some taxa, such 152 

categorizations have been developed based on expert knowledge, as for vascular plants 30, 153 

songbirds 31 or multiple taxa 32. Similarly, species traits can be used to quantify borealization based 154 

on the relative abundance of boreal traits in the community. In marine biology, traits like body size, 155 

diet and habitat preference 33 or trophic position 34 have been used to characterize boreal and 156 

Arctic species. In terrestrial systems, traits like the thermal niche, specific leaf area or plant height 157 

(Figure 3) could be used, but a better characterization of boreal and tundra traits is currently 158 

missing. 159 



 

8 

 

 160 

Figure 3. Based on their geographical distribution, species can be classified as typically tundra (brown) or 161 
boreal (green). Here, pairs of key tundra and boreal plant species filling similar ecological niches (left: 162 
Cassiope tetragona and Vaccinium myrtillus; right: Salix polaris and Salix lanata) show different geographic 163 
extents (a, b) within Arctic tundra and boreal biomes 35. Their thermal niches (mean temperature of the 164 
warmest quarter; c, d) and traits like specific leaf area (SLA, e) and plant height (f) may or may not overlap. 165 
Data for species occurrence come from GBIF 29, climate data to calculate thermal niches come from Fick 166 
and Hijmans 36 and traits from Kattge et al. 37. 167 
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Similar to species’ traits being characterized as ‘boreal’ or ‘tundra’, gene variants can be qualified 168 

as ‘warm’ or ‘cold’ adapted. Thus, borealization can be quantified at the genetic level with the 169 

occurrence and frequency of 'warm adapted' alleles introgressed into tundra (sub-)species from 170 

hybridization with their boreal sister species 38. For instance, populations of snowshoe hares 171 

(Lepus americanus) in regions with shorter snow-covered seasons increasingly show a brown 172 

winter coat instead of their characteristic white coat, following the introgression and increase in 173 

frequency of an allele from black-tailed jackrabbit 39. Another example is the Atlantic puffin 174 

(Fratercula arctica), in which hybridization has been described between large-bodied High Arctic 175 

and temperate subspecies 40. Still, evidence for recent hybridization events in the Arctic remains 176 

scarce. 177 

At the community level, borealization can be seen as an increase in the presence or the relative 178 

abundance of boreal species or their traits in tundra communities, as well as the concomitant 179 

range retractions of tundra specialist species. Indices like the Community Thermophilization Index 180 

(CTI) have been widely applied to measure borealization of marine 17 and freshwater fish 41, and 181 

terrestrial plant communities 19. CTI measures the mean thermal affinity of a community and has 182 

been used to characterize responses to climate change 16. An alternative approach could involve 183 

directly measuring colonization or increasing abundance of boreal species 42, to capture the 184 

transition of tundra ecosystems toward more boreal-like conditions. 185 

Finally, at the ecosystem level the rates and patterns of some ecosystem processes can abruptly 186 

change across the biome boundary. For example, background invertebrate herbivory on woody 187 

plants is eight times higher in the boreal forest than in the tundra 43. Changes in the rates of such 188 

processes could be interpreted as indicators of borealization. Similarly, declines in mean carbon 189 

residence times in tundra and amplification of seasonal changes in CO2 concentration have been 190 

interpreted as a transition toward a boreal carbon cycle regime 44. Characterizing which ecosystem 191 

processes reflect borealization is not straightforward, but such approaches could help in assessing 192 

the pervasiveness of borealization of tundra ecosystems and better understand its consequences. 193 

New technologies can further improve our monitoring of borealization, from genomics to novel 194 

Earth observation products. For example, genomic differentiation between Arctic species and their 195 

boreal sister (sub-)species can be used to identify the introgression of adaptive alleles and target 196 
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their functions 40. On the other end of the gradient, hyperspectral imaging in combination with 197 

computer vision and machine learning, enables more accurate tracking of land use and land cover 198 

changes 45, mapping ranges of individual species 46 and measuring vegetation traits 47. Increasingly 199 

common low-cost hyperspectral sensors on Unoccupied Aerial Vehicles 48 and small satellites now 200 

within the budget of academic groups 49 make it possible to target regions of interest most relevant 201 

to questions on borealization. 202 

 203 

Patterns of borealization 204 

The borealization of tundra ecosystems can manifest in different ways. Clear examples of tundra 205 

borealization include treeline advance, range expansions and increases in abundance of boreal 206 

mammals and invertebrate herbivores, along with the associated range contractions of tundra 207 

specialist species. Early estimates of treeline advance based on dynamic vegetation models 208 

predicted that more than 40% of Arctic tundra could be lost by 2100 50. Site-specific studies have 209 

shown an elevational treeline advance of three meters per decade in alpine areas in Maine, USA 210 

(Tourville et al. 2023), and a latitudinal advance of 340 meters per year of birch treelines in northern 211 

Norway 51. However, treeline advance is far from universal and most observations do not match 212 

these rapid rates 23,52. Yet, other changes at treeline, such as increased productivity, survival or 213 

recruitment might be early indicators that these transitions are already underway 53.  214 

Borealization of plant communities can also be detected at macroecological scales 53. Richness of 215 

typically boreal plant species has increased across sites in the Russian Arctic 54, and the previously 216 

herbaceous-dominated communities in interior Alaska, USA, have transformed into shrub-217 

dominated boreal communities with poorly drained and acidic soils 18. Similarly, poleward range 218 

contractions have been reported for Arctic plants, such as Beringian endemic species 55. However, 219 

reports to date come from site-specific studies, and biome-wide assessments are largely lacking 220 

(but see García Criado et al. 42. In general, the species most likely to expand into the tundra are 221 

boreal species that already have established outlier populations in the Arctic 32. Similar patterns 222 

have been found in marine ecosystems, where migration contributed less than resident species in 223 

community reassembly 16. 224 
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Animal communities in the Arctic also show evidence of borealization 5,56. For example, moose 225 

(Alces alces 57), beaver (Castor canadensis 58), snowshoe hares (Lepus americanus 59), red fox 226 

(Vulpes vulpes 56,60), boreal bird species 31 and forest geometrid moths 61 have expanded into the 227 

tundra. In turn, range contractions and northward shifts in the distribution ranges of Arctic birds 228 

and mammals have also been reported 30, including range retractions of Arctic specialist lemmings 229 
62 and freshwater crustaceans 63. Invertebrate herbivores also appear to track climate effects, with 230 

population outbreaks expanding northward to tundra habitats 64. 231 

Some of the observed species distribution changes may not directly represent borealization but 232 

can foster ecosystem or biome shifts. For example, one of the most conspicuous processes of 233 

vegetation change in low Arctic and alpine regions is the increase in height, width, dominance and 234 

expansion of shrubs, a process known as shrubification 65. In some cases, shrubification can 235 

represent borealization, for instance when dwarf shrubs are replaced by tall boreal shrubs or when 236 

the more thermophilic (southern) species increase in abundance more than the northern, cold-237 

adapted shrub species. Shrubification usually comes at the expense of other non-shrub functional 238 

groups, such as bryophytes, lichens and forbs 66,67, but it can also promote borealization through 239 

enhancing the establishment of trees on peatlands 68, and increasing habitat availability for boreal 240 

species in the tundra 31,69. As shrubification progresses we expect a transformation of ecological 241 

communities, with greater prevalence of species that have warmer ranges that extend further into 242 

the boreal forest 5,70, and wildlife such as moose and beaver 57,58. 243 

 244 

Drivers of borealization 245 

Many of the species distribution shifts and changes in abundance described above have been 246 

related to climate change, as species follow the poleward and upslope shift of isotherms to track 247 

their climate niches 71. Paleoecological studies have shown that the position of Arctic and alpine 248 

treelines has shifted synchronously with climate in the past 72 and similar distribution shifts have 249 

been reported for animal communities in both terrestrial and marine environments from subfossil 250 

bone remains 8. Indeed, in Arctic ecosystems the transition between the tundra and forested 251 
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systems is assumed to be controlled primarily by climate and its associated changes in permafrost 252 
73, so ongoing and projected climate change in the Arctic is expected to affect this biome boundary.  253 

In addition to climate, other factors such as direct human management can contribute to the 254 

expansion of boreal species into tundra. For example, the northward spread of red foxes into the 255 

Canadian Arctic has been facilitated by human presence and anthropogenic food subsidies 60. 256 

Studies in Fennoscandia show that changes in reindeer management that increase the availability 257 

of carcasses over winter can favour red fox colonization and survival in the tundra 74. As well, 258 

human activities and infrastructure can promote the establishment and spread of non-native 259 

vascular plants in Arctic and alpine areas 75,76. Humans can also actively contribute to borealization 260 

by planting boreal tree species onto treeless areas 77, or by facilitating natural regeneration where 261 

boreal species had been suppressed by land use and forest harvest 78. Similarly, land-use changes, 262 

such as the abandonment of slash-and-burn cultivation or grazing by sheep and cattle in northern 263 

Europe, can lead to natural forest regeneration and borealization 11, especially in areas where 264 

grazing management has driven the expansion of semi-natural treeless areas 79. 265 

Many observations of species distribution shifts however do not match increases in temperature. 266 

Only about half (52%) of the circumpolar treelines are advancing while the rest remain stable or 267 

recede 52. Further, the northward advance of treelines is much slower than would be expected if 268 

vegetation remained in equilibrium with climate 52, except in some notable cases where favourable 269 

conditions allow for rapid expansion 80. The heterogeneous responses of the tundra-forest 270 

boundary to climate change depend on local variations in biotic and abiotic conditions 81. For 271 

example, herbivory can mitigate treeline advance 82 as animals select more palatable and 272 

nutritious species which are in turn the ones responding more strongly to warming 83. Other 273 

disturbances, like water-logging and ground subsidence induced by permafrost thaw 84 or altered 274 

fire regimes 85, could counteract trends of increasing plant productivity and shrubification 275 

associated with early indications of borealization of tundra ecosystems. Finally, landscape 276 

modification by humans can be an important barrier to climate-induced species distribution shifts 277 
71. Further research to disentangle the effects of climate and land-use change on species 278 

distribution changes in boreal and tundra ecosystems is needed 56.  279 

 280 
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Consequences of borealization  281 

Borealization will have wide-ranging consequences, from feedbacks to local and regional climate, 282 

to altered trophic interactions, changes in biodiversity and impacts to local livelihoods (Figure 4). 283 

Vegetation shifts from tundra to boreal forest have profound bioclimatic implications for land-284 

surface processes and climate feedbacks 50. The tundra-boreal forest boundary represents a 285 

marked shift in plant structure and stature, resulting in stark contrasts in surface characteristics 286 

and ground thermal regimes, which are especially pronounced during snow-covered season 73,86. 287 

While tall-statured canopy has a cooling effect on the ground temperature in summer, snow 288 

trapping by trees and tall shrubs insulates the ground and has a strong warming effect during the 289 

cold season 86. Further, the transition zone between tundra and forest has lower summer and 290 

winter albedo compared to shrub tundra 73. These differences in snow cover and albedo enhance 291 

net radiation in forests relative to tundra with broad implications for local and regional climate 73,86. 292 

At the same time, land-use change 87 or warming 88 can increase nitrogen fixation in tundra soils, 293 

enhancing fertility and driving plant community shifts towards woody dominance. Woody plant 294 

encroachment can in turn alter soil community composition and functioning through root 295 

structure, rhizodeposition, and litter quality and quantity 89, further promoting borealization of the 296 

tundra. In addition, the expansion of boreal species into tundra can compound or counteract the 297 

effects of climate change. For example, the range expansion of beavers in the Arctic has been 298 

associated with increased permafrost thaw due to pond formation 58 and increased methane 299 

emissions 90 that further accelerate warming. In contrast, the expansion of outbreaking boreal 300 

insect pests 61 can reduce plant productivity and shrubification associated with climate change. 301 

Range shifts of boreal species into the tundra restructure Arctic communities and alter trophic 302 

interactions 91. Northward expanding boreal predators like the red fox (Vulpes vulpes) are often 303 

opportunistic generalists. Unlike tundra predators, which tend to be specialists relying on small 304 

mammals as prey, and reproduce only during peak prey abundance 92, generalists can maintain 305 

relatively stable populations during low rodent cycles by exploiting alternative food sources, such 306 

as ground-nesting birds 56,92. This alternative prey mechanism can also lead to apparent 307 

competition among prey species 93, which arises when two organisms share the same predator. 308 

Apparent competition has been considered a main driver of population declines in North American 309 
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caribou (Rangifer tarandus), especially at its southern distribution range where caribou overlaps 310 

with the northward expansion of boreal herbivores like moose (Alces alces) and white-tailed deer 311 

(Odocoileus virginianus). These forest ungulates are followed by their main predator, the grey wolf 312 

(Canis lupus) resulting in an indirect increased predation pressure on caribou 94.  313 

The influx of boreal species leads to increases in biodiversity, but these might only be a transitory 314 

phase followed by declines driven by losses and redistribution of Arctic species, as described in 315 

marine environments 15. Further, boreal species are likely to be less tolerant to Arctic conditions, 316 

such as the occurrence of extreme climatic events, preventing the long-term establishment of their 317 

populations 95. In marine systems, the reorganization of community structure associated with 318 

borealization has been related to loss of resilience of the new communities 96. Similarly, a species’ 319 

genetic diversity may first increase from hybridization between boreal and tundra species, yet, the 320 

resilience of hybrids to extreme events is often lower than the specialized native species 40. Positive 321 

selection that favors these hybrid genotypes remains rarely documented in the Arctic. While 322 

positive selection of some alleles favorable to the warmer conditions may fix them in Arctic 323 

populations 39,40, the long-term outcome may be an overall reduction in genetic diversity 40. 324 

Ultimately, if tundra species decline, hybridization could rescue some Arctic genes from going 325 

extinct 38. The consequences of borealization-associated biodiversity changes for tundra 326 

community composition and ecosystem functions remain to be addressed. 327 

Finally, borealization will have socio-ecological and socio-economic consequences. For example, 328 

projections of future biomass production under climate change suggest the potential expansion of 329 

economic activities like sheep farming in Southwest Greenland 97. In turn, increases in the 330 

abundance of tall shrubs in tundra and changes in snow properties can alter migratory routes and 331 

food resources of reindeer and caribou affecting the livelihoods that depend on them 98. Incoming 332 

boreal species, particularly predators like wolves and bears, raise safety concerns for local 333 

communities and negatively impact regional economies by attacking semi-domestic reindeer or 334 

entering fishing grounds 99. Conversely, declines in tundra species threaten food security of Arctic 335 

communities that use native flora and fauna for subsistence 100. With ongoing changes in climate 336 

and patterns of human use, the susceptibility of Arctic and alpine environments to invasive species 337 

is likely to increase 30, posing additional threats to biodiversity and people’s overall quality of life. 338 
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 339 

 340 

Figure 4. Borealization of tundra ecosystems will have wide-ranging consequences, from feedbacks to 341 

regional and global climate, to altered trophic interactions, changes in biodiversity and socioecological and 342 

socioeconomic impacts. 343 

 344 

Conclusions and future research 345 

As the climate continues to warm, species reorganize across biome boundaries, with northward 346 

and upward movement from the boreal biome into tundra, leading to restructured food webs, 347 

altered ecosystem functions, and significant impacts to northern livelihoods. Here, we define the 348 

process of tundra borealization as the range expansion or increased abundance of boreal species, 349 

possibly accompanied with the range retraction or decline in abundance of tundra specialist 350 

species. With the loss of tundra ecosystems, we also lose the values, ecosystem services, and 351 

biodiversity unique to these environments. Key areas of research to better understand and predict 352 

the ecological impacts of borealization on tundra ecosystems include examining trait distributions 353 
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of boreal and tundra species and documenting hybridization in tundra species, as well as 354 

comprehensive syntheses and biome-wide assessments of borealization across tundra plant and 355 

animal communities. Despite growing interest in borealization, little is known about the responses 356 

of non-vascular plants, fungi, and microbial communities, or the consequences of borealization to 357 

phenological synchrony between interacting organisms. Additionally, research is needed on the 358 

functional pathways driving borealization and its effects on ecosystem processes and species 359 

interactions. A critical knowledge gap remains regarding the consequences of biodiversity shifts 360 

driven by borealization, particularly their impacts on community composition and ecosystem 361 

functioning. Further efforts are also needed to disentangle the effects of climate and land-use 362 

changes, examine anthropogenic influences, and evaluate socio-ecological and economic 363 

consequences of tundra borealization. However, to make progress in this field we need consensus 364 

on terminology, methods and research scope. Only with this consensus perspective can we move 365 

forward to uncover the borealization that is transforming tundra ecosystems with accelerating 366 

climate change. 367 
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