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 8 

Genomic landscapes of introgression provide valuable information for how different 9 

evolutionary processes interact and leave signatures in genomes. The recent expansion of 10 

genomic datasets across diverse taxa, together with advances in methodological 11 

development, has created new opportunities to investigate the impact of introgression along 12 

individual genomes in various clades, making the precise identification of introgressed loci 13 

a rapidly evolving area of research. In this review, we summarize recent methodological 14 

progress within three major categories: summary statistics, probabilistic modeling, and 15 

supervised learning. We examine how these approaches have been applied to data beyond 16 

humans and discuss the challenges associated with their application. Finally, we outline 17 

future directions for each category, including accessible implementation, transparent 18 

analysis, and systematic benchmarking. 19 

 20 

Highlights 21 

• Recent advances in methods and tools have enabled the study of genomic landscapes of 22 

introgression across diverse and complex evolutionary scenarios, including adaptive and 23 

ghost introgression. 24 

• Despite their long history, summary statistics-based methods continue to evolve, with 25 

new implementations broadening their applicability across taxa. 26 
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• Probabilistic modeling is a major approach that provides a powerful framework to 27 

explicitly incorporate evolutionary processes and has yielded fine-scale insights across 28 

diverse species. 29 

• Supervised learning is an emerging approach with great potential, particularly when the 30 

detection of introgressed loci is framed as a semantic segmentation task. 31 

• Various methods have been applied across clades, revealing introgressed loci linked to 32 

immunity, reproduction, and environmental adaptation, especially in cases of adaptive 33 

and ghost introgression. 34 

 35 

Genomic Landscapes of Introgression 36 

Introgression (see Glossary) plays an important role in evolution. Beyond merely studying 37 

introgression events through phylogenetic approaches [1], understanding their genomic 38 

footprints—how introgressed loci are retained, eliminated, or distributed within genomes—is 39 

essential (Figure 1A), because these patterns are shaped by demographic histories, selective 40 

pressures, and genomic architectures. Although many methods for detecting introgressed loci 41 

have provided crucial insights into past gene flow from archaic hominins to contemporary 42 

human populations, they have largely been developed with modern and archaic human genomes 43 

[2]. 44 

With the increasing availability of genomic data from diverse taxa, such as hickories, peafowls, 45 

and corn earworms [3–5], studies on the detection of introgressed loci are becoming more 46 

prevalent in the field. Consequently, characterizing genomic landscapes of introgression offers 47 

deeper insights into the evolutionary forces driving hybridization outcomes and the functional 48 

roles of introgressed loci in different species (Figure 1B). Although developed in the pre-49 

genomic era, summary statistics-based approaches remain widely used. In recent years, 50 

substantial methodological advances have emerged from probabilistic modeling and supervised 51 

learning (Figure 2). These developments motivate a critical assessment of existing approaches 52 

and a comprehensive review of emerging strategies for decoding genomic landscapes of 53 

introgression. 54 
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 55 

Figure 1. Introgression and its genomic landscapes. (A) Individual genomes in the target population 56 

carry short introgressed segments because recombination breaks down long haplotypes. (B) Due to 57 

genetic drift, the frequency of these segments in the target population varies along chromosomes. 58 

(C) Population setting in the context of introgression: deriving from a common ancestor, lineage-59 

specific genetic variation arises over time in the diverging populations (color gradients). 60 

Introgression transfers this variation from the source population (blue) into the target population 61 

(orange). A reference population (green), more closely related to the target than the source 62 

population, is often used to determine non-introgressed variation in a lineage. Some methods use an 63 

outgroup (grey) to infer whether an allele is ancestral or derived within this topology. If no data is 64 

available from the source population, the scenario is referred to as ghost introgression. (D) Adaptive 65 

introgression represents a special case where introgressed ancestry surrounding an adaptive locus 66 

rises in frequency beyond the expectation under neutrality. When multiple source populations are 67 

involved, fragments from divergent origins may co-occur in the same genome, potentially 68 

confounding the detection of introgressed loci. Genomic landscapes of introgression might have 69 

different distribution patterns and dynamics in different clades (illustrated by different color 70 

gradients).  71 

Summary Statistics-based Methods 72 

Summary statistics are simple yet effective approaches for exploratory data analysis, commonly 73 

used to distill complex genomic data into simple numeric representations, including frequency-74 
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based, linkage-based, or topology-based measures (Figure 2A). The D statistic is a widely used 75 

method for detecting genome-wide evidence of introgression [6], based on asymmetries in 76 

derived allele sharing between the target and source populations relative to a reference 77 

population and an outgroup (Figure 1C). However, it is not well suited for pinpointing 78 

introgressed loci, as it can be biased in regions of low genetic diversity [7–9]. 79 

To address this, alternative statistics that are calculated in windows along the genome have been 80 

developed. The dynamic estimator of the proportion of introgression (fd) and the distance fraction 81 

(df) both scale the observed excess of shared derived alleles but differ in their normalization 82 

approaches: fd uses the maximum possible level of derived allele sharing due to introgression, 83 

whereas df normalizes against the expected derived allele sharing under the species tree topology 84 

[7,8]. Both reduce the bias of D by avoiding direct dependence on the genetic distance between 85 

the reference and target populations [8]. The D+ statistic further extends D by incorporating both 86 

shared derived and ancestral alleles, thereby increasing the number of informative sites and 87 

reducing variance [9]. Additionally, fd has a bounded variant, fdM, which ranges from −1 to 1, and 88 

is symmetrically distributed around zero under no introgression [10]. 89 

To detect loci under adaptive introgression (Figure 1D), additional methods have been 90 

introduced that also leverage allele sharing patterns between the target and source populations. 91 

These include the number of uniquely shared sites (U) and the quantile of derived allele 92 

frequency distributions (Q) [11]. Such methods retain variants shared between target and source 93 

populations that are rare or absent in the reference population, thereby enriching for candidates 94 

likely introduced via introgression. While adaptive variants in the target population often reach 95 

high frequency due to positive selection, these methods are primarily sensitive to such cases and 96 

may miss beneficial alleles that are at low or intermediate frequencies. 97 

In cases of ghost introgression, where source samples are unavailable, inference relies on alleles 98 

present in the target but absent in the reference population. S* was initially developed to detect 99 

archaic introgression in human populations without a source genome, by identifying clusters of 100 

private mutations in strong linkage within the target population [12]. However, S* does not 101 

account for local mutation or recombination rate variation. To handle this, one approach involves 102 

simulating data under varying local rates, fitting a generalized additive model to the resulting 103 

S* scores, and using this model to estimate expected values and assess significance in real data 104 
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[13,14]. Another approach, S', modifies the calculation of S* by incorporating local mutation and 105 

recombination rates [15]. 106 

Instead of frequency-based or linkage-based information, Twisst and its upgraded version 107 

Twisst2 summarize subtree topologies, each formed by selecting one sample per species, to 108 

assess how often gene trees support alternative species tree relationships [16,17]. This topology 109 

weighting approach indirectly captures discrepancies between gene trees and the species tree, 110 

which are explicitly tested by D [9]. While D is limited to four taxa, Twisst can in principle 111 

handle any number, but becomes increasingly impractical with more than six due to the large 112 

number of possible species tree topologies [16]. 113 

Probabilistic Model-based Methods 114 

Probabilistic modeling enables model-based inference of introgressed loci by defining the 115 

relationship between observed genetic variation and underlying evolutionary processes through 116 

probability distributions and performing inference under likelihood-based or Bayesian 117 

frameworks (Figure 2B). For example, IBDmix estimates the probability of identity-by-descent 118 

between the target and source populations at each locus, thereby eliminating the need for a 119 

reference population [19]. It surpasses S* on simulated data, especially in scenarios where 120 

introgressed fragments are also present in the reference population [19]. 121 

Probabilistic methods can also address compound scenarios such as adaptive introgression from 122 

a ghost population. VolcanoFinder is a likelihood-based method designed for this setting [20]. It 123 

identifies genomic regions exhibiting a characteristic “volcano” pattern of genetic diversity, 124 

which is marked by reduced diversity at the selected site flanked by elevated diversity, reflecting 125 

a selective sweep on an introgressed, highly divergent haplotype. However, it often fails to 126 

distinguish adaptive introgression from classic selective sweeps in both real and simulated data 127 

[21,22]. This limitation may stem from its reliance on a specific demographic model that 128 

assumes a beneficial allele first undergoes fixation via a selective sweep in the source population 129 

before introgressing into the target population, where it sweeps again. A recent study suggests 130 

that VolcanoFinder performs well only under conditions of strong selection and high divergence 131 

between source and target populations [22].  132 

Probabilistic models can further capture gene tree discordance with fine resolution. For example, 133 

ancestral recombination graphs (ARGs) provide a more detailed representation of ancestry and 134 
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can be interpreted as a sequential model of local genealogies along the genome, which is also 135 

known as a tree sequence [23,24]. ARGweaver-D is a recent method that applies ARGs to detect 136 

introgressed loci. In addition to identifying Neanderthal and Denisovan introgressed loci in 137 

modern human genomes, it also detects putative introgressed loci from a super-archaic ghost 138 

population into Denisovans [25]. However, its Bayesian framework results in high computational 139 

cost, limiting its scalability to larger sample sizes and more complex demographic models. 140 

Although recent methods have improved the scalability of ARG inference [23], most are 141 

designed to reconstruct genealogies rather than directly detecting introgressed loci, which 142 

requires additional implementation to extract such signals. 143 

While ARGs explicitly represent the full genealogical history, hidden Markov models 144 

(HMMs)—a classical probabilistic model for sequential data in machine learning [26]—treat 145 

ancestry as a latent state to be inferred from observed sequences. HMMs have long been used for 146 

local ancestry inference (LAI) [27]; early applications for detecting introgressed loci adapted 147 

these methods, which rely on a reference panel (i.e., the source population in this review) to label 148 

ancestry [28]. However, they are unsuitable for detecting ghost introgression where the source 149 

population is unavailable and their performance may be also questionable when the source 150 

population is represented by only a few samples. More recent work has designed HMMs 151 

specifically for introgression detection, including applications without source populations, in 152 

multi-source scenarios, and using low-coverage, contaminated sequencing data, as well as for 153 

jointly inferring adaptive introgression and the strength of natural selection acting on the 154 

introgressed loci [29–33]. 155 

Supervised Learning-based Methods 156 

The emergence of machine learning, particularly deep learning, reflects a broader trend across 157 

disciplines, including genetics [34]. As large-scale genomic data become available for an 158 

expanding range of populations and taxa, traditional model-based methods increasingly struggle 159 

with both processing feasibility and the challenge of constructing detailed models for each group. 160 

Moreover, as sample sizes and variant densities grow, the curse of dimensionality may further 161 

limit the effectiveness of traditional methods [26]. As these approaches do not scale well, data-162 

driven alternatives that forgo explicit mechanistic models of the evolutionary process are gaining 163 

importance for their scalability and flexibility in analyzing high-dimensional genomic data. 164 
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Supervised learning, a machine learning paradigm that maps inputs to labeled outputs, has 165 

attracted growing interest in population genetics method development [35]. For detecting 166 

introgressed loci, current approaches comprise two main groups: those that use predefined 167 

summary statistics, such as the ones discussed above, as input features, and those that 168 

automatically extract features from raw data. These methods frame the detection of introgressed 169 

loci as a classification problem, aiming to determine whether a given genomic region, variant, or 170 

allele is introgressed. Methods such as ArchIE, FILET, and MaLAdapt belong to the first group, 171 

employing logistic regression or Extra-Trees classifiers [36–38]. In contrast, genomatnn, 172 

ERICA, and IntroUNET represent the second group, using convolutional neural networks to 173 

directly learn from genotype matrices [39–41]. 174 

A major challenge for applying supervised learning in evolutionary biology is the lack of labeled 175 

data, that is, ground truth indicating whether a locus is introgressed. To overcome this limitation, 176 

simulated datasets are used to train machine learning models, which are then applied to empirical 177 

data for prediction (Figure 2C). Although simulated data may not perfectly reflect reality, several 178 

supervised methods have demonstrated promising results. For example, ArchIE has been shown 179 

to surpass S* and S' by incorporating genetic distance between genomes from the reference and 180 

target populations [36]. Similarly, MaLAdapt outperforms the U statistic, the Q statistic, and 181 

VolcanoFinder under a Neanderthal introgression model, and have revealed novel candidates for 182 

adaptive introgression in modern human populations [38]. 183 

By intersecting introgressed regions predicted by summary statistic-based outlier detection, 184 

MaLAdapt, and genomatnn, circadian loci have been implicated as adaptively introgressed from 185 

archaic hominins [42]. Moreover, genomatnn, MaLAdapt, and the U and Q statistics all support 186 

BNC2, a gene associated with human pigmentation and previously identified as a target of 187 

positive selection in modern Europeans [43,44], whereas VolcanoFinder does not detect such a 188 

signal [20]. While ERICA employs deep learning, it shares a core principle with Twisst by 189 

predicting the proportions of gene tree topologies within a genomic region to identify 190 

introgressed loci through gene tree discordance [40].  191 

Among these approaches, IntroUNET is particularly interesting, as it frames the identification of 192 

introgressed alleles from the ghost population as a semantic segmentation task, which is a 193 

fundamental problem in modern compute vision [45], and thus, in principle, enables high-194 
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resolution predictions at the allele level (Figure 3A), which may be difficult to achieve using 195 

other approaches. This capability may be valuable for precisely delineating the boundaries of 196 

introgressed segments. 197 

 198 

Figure 2. Conceptual overview of computational approaches for detecting introgressed loci. (A) 199 

Underlying genomic data from different individuals representing different populations, where 200 

variants can be observed within sliding windows along the genome. The star denotes a private 201 

variant that is observed in genomes of the target population and absent in the reference population. 202 

(B) Summary statistics-based methods summarize genomic information into statistic values (S) from 203 

the reference and target genomes, and optionally from a source genome. They typically apply outlier 204 

detection to identify putative introgressed loci based on a threshold (T). An outlier is highlighted 205 

with three asterisks. (C) Probabilistic model-based methods describe how the data are generated 206 

under a probabilistic framework, based on various strategies to determine different patterns. For 207 

example, an HMM represents transitions between hidden states, where S1 denotes the non-208 

introgressed state and S2 denotes the introgressed state. The model defines how these states emit 209 

observations, such as number of private variants, enabling likelihood estimation and model fitting to 210 
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observed data. (D) Supervised learning-based methods rely on labeled training data to learn models 211 

that predict the introgression status of regions or variants in target genomes. For example, in 212 

genotype matrices of ancestral (grey) and derived (colored) alleles, an artificial neural network 213 

predicts whether alleles are introgressed or non-introgressed. Labels are typically generated from 214 

computer simulations. 215 

Recent Applications beyond Humans 216 

Recent methodological innovations have provided a variety of tools for decoding the genomic 217 

landscapes of introgression beyond humans (Figure 3B). A wide range of taxa have been 218 

investigated with summary statistics-based methods [46–55]. These approaches are now widely 219 

used thanks to recent implementations like Dsuite [56], and a comprehensive survey is beyond 220 

scope. Still, recent studies offer notable examples of adaptive introgression: fdM plus selection 221 

scans identified flowering-time genes in Brassica napus; and the U and Q statistics detected 222 

sperm function genes in sticklebacks and high-altitude candidates in Tibetan cattle [46,49,54]. 223 

These findings highlight recurrent targets among genes involved in key biological functions. 224 

Probabilistic model-based approaches are also extensively utilized in non-human species, 225 

demonstrating their versatility across diverse introgression scenarios. For example, IBDmix has 226 

inferred introgressed fragments in baboons and bears [58–60]. hmmix has identified loci from 227 

ghost introgression in orcas, canids, and the extinct Columbian mammoth, and in great apes 228 

when combined with the S* statistic, underscoring the benefits of integrative analyses 229 

[3,50,53,61–63]. In Tibetan canids, the high-altitude adaptation gene EPAS1, previously linked to 230 

Denisovan introgression in humans, may also derive from a ghost lineage [62,64]. admixfrog, 231 

leveraging both ancient and modern genomes, has estimated ancestry proportions in ancient 232 

bears, detected immunity-related introgression in Alpine ibex, and resolved fine-scale 233 

introgression patterns in chimpanzees using non-invasive fecal samples resembling degraded 234 

ancient DNA [65–67]. For adaptive introgression, VolcanoFinder has identified candidate loci 235 

from ghost lineages in gorillas, hickories, and pigs, associated with bitter taste perception, 236 

defense response, and commercial traits, respectively [3,53,68]. AHMM-S has detected 237 

insecticide-resistance loci in fruit flies, though its multi-locus extension, AHMM-MLS, suggests 238 

AHMM-S may overestimate selection coefficients [32,33]. 239 

To date, supervised learning-based methods have been applied to a limited number of non-human 240 

taxa, such as fruit flies, butterflies, and rice [37,40,41]. In these applications, the primary goal 241 
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has been to assess whether model predictions align with results from previous approaches, rather 242 

than to investigate new biological questions. Nonetheless, ERICA has identified multiple 243 

domestication-related loci in rice as candidates for adaptive introgression. This limited scope is 244 

likely due to the technical complexity of machine learning, as most implementations are tailored 245 

to specific datasets and are not easily applied beyond their original training context, reflecting 246 

broader challenges in software development within evolutionary biology [69,70]. As population-247 

scale genomic datasets and machine learning algorithms continue to develop, broader application 248 

across diverse lineages is expected. Such efforts will help refine our understanding of 249 

introgression landscapes and population interactions throughout evolutionary history. 250 

Beyond analyzing empirical datasets, some studies have explored how different approaches 251 

perform in non-human scenarios using simulated data. For example, both S* and S' perform well 252 

under a Neanderthal introgression model, but only S* remains effective in a bonobo ghost 253 

introgression scenario [18]. This difference may be due to its recent implementation, sstar, which 254 

provides a flexible computational framework applicable to diverse demographic scenarios, 255 

whereas SPrime, the implementation of S′, is hard-coded with parameters specific to an out-of-256 

Africa Neanderthal-admixture model [18,71]. Furthermore, a recent study suggests that the Q 257 

statistic performs comparably or better than genomatnn, MaLAdapt, and VolcanoFinder under 258 

non-human demographic models, indicating that summary statistics continue to be valuable even 259 

when more advanced methods are available [22,39]. 260 
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 261 

Figure 3. Methodological features of different open-source implementations. (A) Different 262 

prediction levels across genomes refer to the resolution at which an introgressed label is assigned. 263 

Window level: fixed-length genomic windows, defined by base pairs or by number of variants, are 264 

typically summarized across all variants and samples without individual-level resolution. Segment 265 

level: continuous introgressed haplotypes of varying lengths are inferred for each individual genome. 266 

Variant level: individual genomic variants, such as single nucleotide polymorphisms, are classified as 267 

introgressed or not. Allele level: the status of each allele at a segregating site is individually 268 

determined. (B) Feature assessment of implementations representing different methodological 269 

approaches. Implementations with summary statistics-based methods include Dsuite 270 

(https://github.com/millanek/Dsuite) for the df, fd, and fdM statistics; sai (https://github.com/xin-271 

huang/sai) for the U and Q statistics; sstar (https://github.com/xin-huang/sstar) for the S* statistic; 272 

SPrime (https://github.com/browning-lab/sprime) for the S' statistic; and Twisst2 273 

(https://github.com/simonhmartin/twisst2) for topology weighting. Implementations with 274 

probabilistic model-based methods comprise IBDmix 275 

(https://github.com/PrincetonUniversity/IBDmix), VolcanoFinder 276 

https://github.com/millanek/Dsuite
https://github.com/xin-huang/sai
https://github.com/xin-huang/sai
https://github.com/xin-huang/sstar
https://github.com/browning-lab/sprime
https://github.com/simonhmartin/twisst2
https://github.com/PrincetonUniversity/IBDmix
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(https://degiorgiogroup.fau.edu/vf.html), ARGweaver-D 277 

(http://compgen.cshl.edu/ARGweaver/doc/argweaver-d-manual.html), admixfrog 278 

(https://github.com/BenjaminPeter/admixfrog), ArchaicSeeker 2.0 (https://github.com/Shuhua-279 

Group/ArchaicSeeker2.0), AHMM-S (https://github.com/jesvedberg/Ancestry_HMM-S), AHMM-280 

MLS (https://github.com/genicos/ahmm_mls), hmmix 281 

(https://github.com/LauritsSkov/Introgression-detection). Implementations with supervised 282 

learning-based methods encompass ArchIE (https://github.com/sriramlab/ArchIE), FILET 283 

(https://github.com/kr-colab/FILET), MaLAdapt (https://github.com/xzhang-popgen/maladapt), 284 

ERICA (https://github.com/YuboZhangPKU/ERICA), genomatnn 285 

(https://github.com/grahamgower/genomatnn), IntroUNET 286 

(https://github.com/SchriderLab/introNets). For methods with multiple implementations such as 287 

the df, fd, and S* statistics, whether by the same or different authors, only the most recent version is 288 

assessed. “Assumes a demographic model” refers to using a specific model to tune parameters 289 

(SPrime), condition inference (ARGweaver-D and VolcanoFinder), or simulate training data (sstar 290 

and supervised learning-based methods). 291 

Challenges 292 

Despite substantial methodological progress, decoding genomic landscapes of introgression is 293 

still fraught with challenges due to confounding factors, model misspecification, and analysis 294 

opacity that can bias or obscure inference. One major source of confounding arises from 295 

evolutionary processes that mimic the genomic signatures of introgression. For example, 296 

incomplete lineage sorting (ILS) can produce gene tree discordance similar to that expected 297 

under introgression. Although the D statistic is expected to distinguish ILS and introgression at 298 

the whole-genome level, this is not the case at the locus level [9]. Also, population structure in 299 

unsampled or ancestral lineages can generate spurious signals resembling ghost introgression, 300 

even in the absence of gene flow [72]. A long-standing debate in human evolution concerns 301 

whether ghost introgression occurred in African populations, with different conclusions from 302 

different demographic inference approaches, although one study nonetheless applied ArchIE to 303 

examined putatively introgressed fragments [73–75]. Furthermore, long-term balancing 304 

selection may give rise to patterns that resemble adaptive introgression [76,77]. 305 

Another challenge is model misspecification, which can arise in several forms. First, some 306 

methods embed rigid assumptions in their model design. For instance, hmmix assumes the 307 

https://degiorgiogroup.fau.edu/vf.html
http://compgen.cshl.edu/ARGweaver/doc/argweaver-d-manual.html
https://github.com/BenjaminPeter/admixfrog
https://github.com/Shuhua-Group/ArchaicSeeker2.0
https://github.com/Shuhua-Group/ArchaicSeeker2.0
https://github.com/jesvedberg/Ancestry_HMM-S
https://github.com/genicos/ahmm_mls
https://github.com/LauritsSkov/Introgression-detection
https://github.com/sriramlab/ArchIE
https://github.com/kr-colab/FILET
https://github.com/xzhang-popgen/maladapt
https://github.com/YuboZhangPKU/ERICA
https://github.com/grahamgower/genomatnn
https://github.com/SchriderLab/introNets
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presence of both introgressed and non-introgressed hidden states in the data [29]. If introgression 308 

is absent, the model may nonetheless infer false signals simply by fitting its predefined state 309 

structure. Second, methods like SPrime or VolcanoFinder often assume simplified or idealized 310 

demographic models. Such assumptions may not hold in more complex or less ideal evolutionary 311 

scenarios, potentially limiting applicability. Third, in supervised learning, performance may 312 

degrade if the demographic model used to simulate training data differs substantially from the 313 

test scenario [78]. Finally, some deep learning architectures, such as convolutional neural 314 

networks, have architectural constraints such as requiring fixed input shapes and being sensitive 315 

to the order of input samples, which may limit their flexibility across various datasets [34]. 316 

In practice, a third challenge is analysis opacity. While current critiques of machine learning 317 

often focus on their interpretability [79], a lack of transparency can also arise from the analysis 318 

procedure, including undocumented preprocessing steps, hard-coded parameters, or 319 

discrepancies between published methods and their actual implementations [57,70,77]. These 320 

issues, not only relevant for machine learning [57], frequently force researchers to inspect source 321 

code directly to verify correctness, thereby impeding reproducibility and slowing scientific 322 

progress. For example, the performance of IntroUNET may be affected by training data that 323 

inadvertently retained information of polymorphic sites from an unintended fourth population, as 324 

it reused the demographic model from ArchIE for training, which was described as a three-325 

population model but in fact included a fourth, and by repeated training datasets caused by 326 

unexpected behavior in its modified simulator [70,77]. This challenge can be addressed through 327 

transparent reporting, reproducible workflows, and community standards. Furthermore, the lack 328 

of accessible and robust implementations has hindered consistent benchmarking, which is 329 

essential for method evaluation. For example, the performance of the Q statistic differs between 330 

two studies [22,38]. The lack of standardized Q statistic implementations and transparent 331 

documentation makes it difficult to determine whether discrepancies result from implementation, 332 

data processing, or demographic models. Moreover, studies have used different approaches to 333 

detect adaptive introgression, either by combining introgression signals with selection scans or 334 

by applying dedicated methods [21,38]. However, it is still uncertain which approach performs 335 

best, or under what circumstances each should be applied. The recent emergence of machine 336 

learning benchmarks provides a valuable reference and highlights the importance of structured 337 
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comparison and shared standards when evaluating the performance of different methods 338 

(https://iclr.cc/virtual/2024/invited-talk/21799). 339 

Outlook 340 

As introgression detection continues to mature as a methodological field, future progress will 341 

rely on extending current approaches—including statistical, probabilistic, and supervised 342 

learning-based methods—to accommodate increasingly complex evolutionary scenarios and data 343 

types. Owing to their simplicity, interpretability, and computational efficiency, summary 344 

statistics-based methods remain attractive. In particular, those incorporating linkage 345 

disequilibrium (LD) information may prove useful in more complex cases. However, no 346 

existing summary statistic can currently distinguish loci resulting from multi-source 347 

introgression (Figure 3B). Extending such approaches toward locus-level detection, especially 348 

under selection or multiple pulses of gene flow, remains an open and important challenge. 349 

By modeling introgression under explicitly defined evolutionary scenarios, probabilistic methods 350 

allow key processes such as mutation, recombination, and natural selection to be incorporated 351 

into a unified framework. This capacity enables not just detection of introgressed loci but also 352 

quantitative characterization of their properties, such as estimating the age of introgressed 353 

variants, the length distribution of introgressed fragments, or the strength of selection acting on 354 

them. Extending these probabilistic models to decode genomic landscapes of introgression 355 

shaped by multiple evolutionary forces continues to be a key area of development [58,80,81]. 356 

Further efforts may focus on improving scalability to large datasets and enhancing robustness to 357 

model misspecification. 358 

Supervised learning, and machine learning more broadly, holds great potential. In principle, these 359 

approaches can integrate diverse data types and achieve high-resolution predictions. However, 360 

current applications require high-quality input data and do not support polyploid datasets (Figure 361 

3B). While other approaches are also limited in this regard, machine learning approaches, being 362 

data-driven, may offer greater flexibility for accommodating such complexities in the future. 363 

Extending these implementations to support low-coverage data and to unify the analysis of 364 

neutral, adaptive, ghost, and multi-source introgression would be highly desirable. Most 365 

importantly, such implementations should be accessible to the community and not tailored to a 366 

specific species. Beyond model performance, software engineering is critical for ensuring that 367 

https://iclr.cc/virtual/2024/invited-talk/21799
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machine learning methods are reproducible, maintainable, and broadly usable across datasets and 368 

research groups. 369 

Another open question is how well machine learning models can generalize across demographic 370 

conditions. Although supervised learning-based methods typically employ simulations to 371 

generate labeled training data but indeed make no demographic assumptions during inference. 372 

Performance degradation under mismatched test scenarios is likely caused by current 373 

implementations relying on training data simulated under a specific demographic model, which 374 

may lead to overfitting. To mitigate this, training on a diverse set of demographic models may 375 

improve generalizability, allowing models to integrate signals from multiple evolutionary 376 

processes. For example, ERICA was trained on data with a range of ILS and gene flow settings, 377 

which makes it adaptable to diverse scenarios, although it may underperform compared to 378 

models trained under the exact test scenario [40]. 379 

Alongside supervised learning, unsupervised learning and self-supervised learning also show 380 

promise, as these paradigms do not use labeled data and therefore avoid the requirement to 381 

generate simulated training data. For instance, outlier detection, which is central to summary 382 

statistics-based methods, can be naturally extended using deep generative models such as 383 

variational autoencoders [82]. Similarly, recent extensions of LAI have incorporated deep 384 

learning architectures [27,34], raising the possibility that these approaches could be repurposed 385 

for detecting introgressed loci. Additionally, recent trends in genetics involve developing 386 

genomic language models using self-supervised learning [83,84]. This paradigm has 387 

demonstrated strong generalization ability across diverse scenarios and could help improve the 388 

robustness and transferability of machine learning models for detecting introgressed loci [85]. 389 

The integration of different methodological paradigms also presents an important opportunity. 390 

For example, summary statistics-based and probabilistic model-based approaches, which are 391 

typically interpretable and grounded in explicit evolutionary assumptions, can serve as valuable 392 

baselines for assessing the performance and reliability of emerging machine learning-based 393 

methods, while also helping to improve interpretability and robustness. Furthermore, developing 394 

standardized benchmark datasets that span a range of demographic scenarios and evolutionary 395 

processes will be crucial for systematic comparisons across methods. Such integrative efforts 396 

will not only support methodological advancement but also accelerate biological discovery. 397 
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Concluding Remarks 398 

The detection of introgressed loci has evolved into a diverse methodological field encompassing 399 

summary statistics, probabilistic modeling, and supervised learning. Each class of methods offers 400 

distinct advantages: summary statistics remain efficient and interpretable for initial scans, 401 

probabilistic modeling enables principled inference under explicit evolutionary assumptions, and 402 

machine learning offer scalability and potential for discovering patterns beyond predefined 403 

models. Rather than converging on a single best method, future progress will likely depend on 404 

leveraging the complementarity between approaches, improving transparency and benchmarking, 405 

and developing tools that are robust to real-world complexity (see Outstanding questions). As 406 

evolutionary datasets continue to expand in scale and scope, refining the approaches for 407 

decoding genomic landscapes of introgression is essential for understanding how gene flow has 408 

shaped genomes across the tree of life. 409 

 410 

Outstanding Questions 411 

• Are there shared patterns of introgression landscapes across species that could inform 412 

general evolutionary principles? 413 

• How can the biological interpretability and analytical transparency of introgressed loci 414 

inferred by complex models, especially those using machine learning, be improved? 415 

• How can the potential of machine learning, including genomic language models, be fully 416 

leveraged to decode introgression landscapes, and under what conditions do these 417 

approaches outperform traditional methods? 418 

• How can computational tools be developed to be accessible, generalizable across species, 419 

and robust under variation in data quality, confounding factors, and model 420 

misspecification? 421 

• Can different methods be systematically evaluated under diverse demographic models 422 

and confounding factors to clarify performance discrepancies across studies, establish 423 

consistent benchmarks, and identify which methods are best suited to specific scenarios 424 

for accurate and reliable inference? 425 

 426 
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Glossary 427 

Adaptive introgression: the transfer of genetic variants from one distant lineage into another via 428 

gene flow, followed by natural selection favoring those variants in the recipient population. 429 

Ancestral recombination graph: a graph-based data structure that exhaustively represents the 430 

evolutionary relationships between a set of genomes, accounting for both coalescent and 431 

recombination events. 432 

Convolutional neural network: a type of artificial neural network that is particularly effective 433 

for grid-like data. 434 

Deep generative model: generative models that use deep neural networks to learn and sample 435 

from complex data distributions. 436 

Deep learning: a machine learning approach that utilizes deep neural networks to learn 437 

hierarchical representation from data. 438 

Extra-Trees classifier: an ensemble machine learning algorithm that builds multiple decision 439 

trees using random splits and the entire training dataset to reduce variance and enhance 440 

generalization. 441 

Generalized additive model: a statistical model that captures non-linear relationships between 442 

inputs and outputs by combining smooth functions additively, while preserving interpretability. 443 

Genomic language model: a machine learning model adapted from natural language processing 444 

to investigate genomic problems. 445 

Ghost introgression: gene flow from a population which is not directly represented in genomic 446 

data, as either unsampled or extinct but inferred from recipient populations. 447 

Identity-by-descent: identical genomic segments shared among individuals that are inherited 448 

from a common ancestor without being broken by recombination. 449 

Incomplete lineage sorting (ILS): the phenomenon where gene trees fail to match the species 450 

tree because ancestral polymorphisms are retained and randomly sorted through rapid speciation 451 

events. 452 

Introgression: the phenomenon of transferring genetic material across genetically divergent 453 

populations. 454 
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Linkage disequilibrium (LD): the discrepancy between the probability to observe two alleles at 455 

two loci together and the probability to observe them independently. 456 

Local ancestry inference (LAI): the process that determines the ancestral origin of genomic 457 

segments along the genome in admixed individuals. 458 

Logistic regression: a statistical model that estimates the probability that a given input belongs 459 

to one of two categories using a logistic function. 460 

Long-term balancing selection: a form of natural selection that maintains ancestral genetic 461 

variants over long evolutionary timescales, even across speciation events, resulting in trans-462 

species polymorphisms. 463 

Machine learning: an algorithmic approach that automatically learns patterns or structures from 464 

data to make predictions or decisions. 465 

Positive selection: a form of natural selection that increases the frequency of beneficial 466 

mutations. 467 

Self-supervised learning: a machine learning paradigm that learns patterns or structures from 468 

data through automatically generated labels derived from the data itself. 469 

Semantic segmentation: a machine learning task that determines the category of each individual 470 

pixel in an image. 471 

Unsupervised learning: a machine learning paradigm that learns patterns or structures from data 472 

without using labeled examples. 473 

Variational autoencoder: a deep generative model that learns a probabilistic latent 474 

representation of data by combining artificial neural networks with variational inference. 475 
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