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Abstract: 10 

Long-term environmental monitoring is essential for detecting ecological trends and managing 11 

dynamic systems. In estuarine environments, where monitoring is often constrained by cost and 12 

logistics, efficient resource allocation is key to sustaining effective programs. We developed a 13 

framework to optimize spatial and temporal sampling in the Great Bay Estuary (New 14 

Hampshire/Maine, USA), identifying the minimum number of years and sites needed to detect 15 

long-term trends. Using 23 years of data on five water quality parameters from 10 sites, we 16 

applied a resampling-based trend detection algorithm to estimate minimum sampling effort. Our 17 

results show that trend detectability varies by parameter and location, with each requiring 18 

different sampling durations. These thresholds also depend on the user-defined level of statistical 19 

power (e.g., 80% vs. 100%). For example, nitrogen trends were detectable with as few as five 20 

years of data, while dissolved oxygen required up to seven. Additionally, 8–9 sites were 21 

sufficient to achieve 80% statistical power, suggesting spatial redundancy at some locations. 22 

Variance partitioning revealed that autocorrelation, slope error, and data variability each 23 

influenced sampling effort for reliable trend detection. Parameters such as dissolved oxygen and 24 

water temperature—both highly autocorrelated—required longer time series, while those with 25 

lower slope precision, like nitrogen, were sensitive to measurement error. These findings 26 

underscore the value of adaptive monitoring designs that align sampling strategies with the 27 

statistical and ecological characteristics of individual parameters. Our approach provides a 28 
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flexible, data-driven framework for refining estuarine monitoring programs, enabling managers 29 

to maintain ecological insight while optimizing resource use. 30 

Impact Statement: Monitoring environmental change is critical for managing estuaries, yet 31 

limited resources often constrain long-term data collection. Using two decades of water quality 32 

data from New Hampshire/Maine’s Great Bay Estuary, we developed a method to identify the 33 

minimum number of years and sites needed to detect long-term trends. Our approach shows that 34 

different environmental parameters require different monitoring strategies, and that some sites 35 

may be redundant. This data-driven framework helps optimize sampling design, allowing 36 

programs to reduce costs without sacrificing scientific insight. While demonstrated in one 37 

estuary, the approach should be tested in other systems to evaluate broader applicability. By 38 

aligning monitoring effort with the characteristics of each parameter, managers can make 39 

informed decisions, allocate resources efficiently, and support long-term monitoring. 40 

Keywords: environmental monitoring; estuarine systems; trend detection; sampling optimization; 41 

statistical power  42 



Introduction 43 

Long-term monitoring programs are the backbone of modern ecological research and ecosystem 44 

management (Possingham et al. 2012, Giron-Nava et al. 2017). Despite the cost and logistical 45 

complexities of maintaining long-term monitoring programs, past work has highlighted their 46 

importance (Maguran et al. 2010). Given the difficulty of long-term monitoring, the monitoring 47 

programs must be designed to address research questions of interest properly and for ecosystem 48 

management. Yet, many ecological monitoring programs are likely underpowered in terms of the 49 

number of years of sampling and their spatial scales (Legg and Nagy 2006, Field et al. 2007, 50 

Rhodes and Jonzen 2011, White 2019). Conversely, some monitoring programs may be spending 51 

unnecessary effort and resources (Caughlan 2001, Morant et al. 2020). These issues are 52 

potentially compounded by the fact that monitoring data may now be used for purposes that were 53 

not originally envisioned.  54 

Past work on the design of ecological monitoring programs has focused on the minimum number 55 

of years required to detect changes in population abundance (Caughlan 2001, Field et al. 2007, 56 

Lindenmayer and Likens 2010, Legg et al. 2017, White 2019). There is also a long history of 57 

studying the spatial scale of sampling in ecology (Legendre et al. 2002). There has been a 58 

renewed interest in this work given access to larger datasets, the combining of data from 59 

different monitoring programs, and the cost constraints of monitoring (Fletcher Jr. et al. 2019). 60 

The renewed interest in spatial monitoring questions is also evident with the proliferation of 61 

software, including the spsurvey R package, that helps facilitate the spatial design of monitoring 62 

programs (Barry et al. 2017, Regular et al. 2020). For example, Bashevkin (2022) examined how 63 

reduced sampling of fish populations in the San Francisco Bay Estuary would affect inference. 64 

He found that 10-20% reductions in the number of stations monitored would not alter the ability 65 

to detect long-term trends. However, Bashevkin (2022), and other work, have not assessed the 66 

variation in monitoring requirements across multiple variables within the same system.  67 

By their very nature, estuaries are dynamic ecosystems given their tidal fluxes and inputs from 68 

freshwater and terrestrial systems (Kalra et al. 2020, Mulukutla et al. 2021, Boynton et al. 2022). 69 

Thus, high-resolution monitoring, both temporally and spatially, may be required to capture the 70 

dynamics of estuarine systems. Given this variability, there is also potential for individual 71 

locations within any estuary to exhibit a great degree of variability from one another (PREP 72 

2023a). Given high levels of variability spatially and temporally in estuaries, it is important to 73 



carefully design their monitoring programs, considering the number of sampling locations and 74 

the frequency in which sampling should occur. In addition, the information gained from 75 

monitoring environmental changes in estuaries also must be weighed in comparison to the cost of 76 

maintaining several monitoring sites over time. All these considerations are likely to vary 77 

between environmental parameters. For example, even though temperature and dissolved oxygen 78 

may be collected on similar timescales, such as every 15 minutes by a sensor, the trends and 79 

variability in each may mean the data required for detecting change may be unique to each 80 

variable.   81 

To investigate sampling questions, we examined long-term monitoring data within Great Bay 82 

Estuary (GBE). GBE is dynamic tidal estuary on the New Hampshire coast fed by seven rivers 83 

(Jones 2000). The extreme tidal fluxes provide various types of habitats (e.g., mudflats, 84 

saltmarshes) that support numerous species (Jones 2000, Cook et al. 2019). There have been 85 

various water quality monitoring programs in GBE over the past few decades, largely in the form 86 

of monthly grab samples across the estuary. The grab samples are expensive to collect and 87 

process. Therefore, GBE presents an interesting case study to investigate questions of sampling 88 

effort optimization. In addition to the grab samples, approximately eight of the estuarine stations 89 

have automated sensors collecting parameters such as temperature, salinity and dissolved 90 

oxygen; however, these sondes do not collect information on nutrient species, a critical 91 

parameter in this estuary.  92 

The Great Bay Estuary receives nitrogen loading from both point sources (i.e. 13 waste water 93 

treatment facilities (WWTF) draining to GBE) as well as numerous nonpoint sources throughout 94 

the watershed. As such, the Environmental Protection Agency (EPA) Region 1 issued a total 95 

nitrogen general permit for these WWTFs that release effluent to the Great Bay (EPA Great Bay 96 

TN General Permit). These increased nitrogen inputs drive growth of phytoplankton and, along 97 

with increases in suspended solids, has been partly responsible for a decrease in eelgrass 98 

(Zostera marina), a key indicator species in GBE (PREP 2023a). Environmental monitoring in 99 

GBE, both sondes and traditional grab samples, aim to track these variables that are believed to 100 

be affecting the health of eelgrass. 101 

In this paper, we examine data on environmental parameters (e.g., dissolved oxygen, 102 

temperature) from 2000-2023 in Great Bay Estuary, New Hampshire. Using non-random 103 

resampling techniques, we tested several interrelated questions: 1) What is the minimum number 104 



of years needed to detect long-term trends for each environmental parameter?,  2) What is the 105 

minimum number of monitoring sites required to detect long-term trends for each environmental 106 

parameter?, 3) Which monitoring sites provide the most unique trend information, and which are 107 

most redundant relative to estuary-wide trends?, and 4) What factors influence the minimum 108 

sample size estimation? We hypothesized that parameters that were less variable between years 109 

and across sites, as well as those that had strong temporal trends, would require less data. We 110 

provide general recommendations for sampling these types of systems and potential next steps 111 

for research.  112 

Methods 113 

Environmental Data 114 

We extracted environmental data from the Great Bay Estuary in New Hampshire, USA, using the 115 

Piscataqua Region Estuaries Partnership (PREP) database at: http://data.prepestuaries.org/data-116 

explorer/. This particular dataset includes five environmental parameters: dissolved oxygen (both 117 

concentration and saturation), nitrite and nitrate levels, suspended solids, and water temperature. 118 

Data were collected year-round through monthly grab samples at 10 sites within the Great Bay 119 

Estuary (Fig. 1). For more details on data and sampling methods, see the PREP 2023 State of 120 

Our Estuaries Extended Report (PREP 2023b). We then calculated the yearly averages for each 121 

environmental parameter at every sampled site within the estuary. Quality assurance project 122 

plans on various monitoring programs in GBE can be found at: https://scholars.unh.edu/prep/. 123 

Data Cleaning 124 

We identified active sites with sufficient years sampled for each environmental parameter using 125 

the following criteria: (1) at least 15 years of data collected starting in 2000. For each parameter, 126 

2000 is the earliest year commonly sampled across sites. (2) at least one year sampled between 127 

2019 and 2023. This is to ensure the sites are recently sampled (or in other words, active). (3) 128 

less than 25% missing data (or less than ¼ of the years unsampled). This selection yielded 10 129 

active sites (Fig. 1). 130 

After identifying the sampling sites, we evaluated the most suitable method for imputing missing 131 

values, grouping the data by site and environmental parameter. We used Multivariate Imputation 132 

by Chained Equations (MICE) to compare three methods: Predictive Mean Matching (PMM), 133 
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Classification and Regression Trees (CART), and Lasso Linear Regression (Lasso). Among 134 

these, PMM provided the best fit to the original data. Therefore, missing values in the dataset 135 

were imputed using PMM. 136 

Minimum Time 137 

We conducted non-random resampling of the Great Bay Estuary dataset spanning from the year 138 

2000 to 2022 using the Broken Window algorithm (Bahlai et al. 2021) to determine the 139 

minimum time required for trend detection (Fig. 2). This method, involves partitioning the data 140 

into a series of smaller samples for comparative analysis (White 2019, White and Bahlai 2021, 141 

Bahlai et al. 2021). We subdivided the 22-year dataset into contiguous chunks of varying lengths 142 

for each environmental parameter. These subsamples included one 22-year subsample, two 21-143 

year subsamples, three 20-year subsamples, and so forth. Subsequently, we computed the 144 

population trend for each subsample by determining the slope through a linear regression model, 145 

with year as a fixed effect, site as a random effect, and environmental values as the response 146 

variable. Each subsample slope would then be compared to the slope derived from the complete 147 

22-year dataset, which served as the "true trend" for comparison. 148 

We assessed whether a sample trend accurately represented the complete trend by evaluating if 149 

the sample slope fell within 1 standard deviation of the complete slope, indicating 150 

representativeness in magnitude (Fig. 2). The proportion of subsamples of a specific length 151 

exhibiting the same overall magnitude as the complete time series constituted the statistical 152 

power (typically set at 0.8, Cohen 1992). We identified which subsample length was required to 153 

achieve certain thresholds of statistical power: 0.8 (with 80% of the subsample slopes matching 154 

the complete slope) and 1 (with 100% of them matching the complete slope). This subsample 155 

length would become the minimum time series length required to detect trends. 156 

To explore why certain environmental parameters exhibited shorter or longer minimum times for 157 

trend detection, we conducted variance partitioning using four metrics: 1) slope strength, which 158 

reflects the magnitude of change; 2) slope standard error, which measures the precision of the 159 

trend estimate; 3) data variability, measured as the standard deviation, which captures the natural 160 

fluctuation in the data; and 4) lag-1 autocorrelation, which accounts for the influence of temporal 161 

dependence between observations. We also calculated the coefficient of variation for each 162 



environmental parameter to allow standardized comparison across parameters with different 163 

units and scales. 164 

 165 

For the variance partitioning analysis, we first ran linear regression models for each 166 

environmental parameter at each site to extract variance components, along with the minimum 167 

time at the 100% representativeness threshold associated with each parameter-site combination. 168 

These site-level variance components served as replicates for each parameter and were used as 169 

predictor terms in a second regression model. The response variable was the minimum time 170 

required. We quantified the relative contribution of each variance metric by calculating the 171 

percentage of variance it explained, determined by dividing the sum of squares for each term by 172 

the total sum of squares in the model. 173 

Minimum Site 174 

To determine the minimum number of sites necessary for trend detection, we adapted the Broken 175 

Window algorithm (as detailed in the Minimum Time section) to systematically partition 176 

sampled sites into groups of varying sizes for each environmental variable. The protocol follows 177 

a two-step process. First, for each level of site reduction (starting with the removal of 10% of 178 

sites), we generated all possible combinations of the remaining sites. For each combination, we 179 

applied a linear regression model to the environmental data, with the model structure depending 180 

on the number of sites included. If a combination contained three or more sites, we fit a mixed-181 

effects model with year as a fixed effect, site as a random effect, and the environmental 182 

parameter as the response. If a combination included fewer than three sites, we fit a simpler 183 

linear model without random effects, as fewer than three levels do not provide sufficient 184 

information to estimate variance reliably in a random term. This process was repeated for 185 

increasing levels of site removal in 10% increments (e.g., 20%, 30%, and so on). 186 

In the second step, following the same approach outlined in the Minimum Time section, we 187 

compared the slope from each reduced model to the slope from the full model, which included 188 

all sites and treated site as a random effect, to assess whether the subset trend accurately 189 

represented the complete trend. A reduced model was considered representative if its slope fell 190 

within one standard deviation of the full-model slope. For each level of site reduction, we 191 

calculated the proportion of subset combinations that met this criterion. We then identified the 192 

minimum number of sites required to achieve 80% representativeness (i.e., 80% of subset slopes 193 



falling within one standard deviation of the full-model slope) and 100% representativeness (i.e., 194 

all subset slopes within this threshold). These thresholds defined the minimum number of sites 195 

necessary to reliably detect trends for each environmental parameter. 196 

We ran a variance partitioning analysis for minimum site requirements using a similar approach 197 

to the one described in the minimum time section. However, instead of modeling each 198 

environmental parameter-site combination, we treated each environmental parameter as a single 199 

replicate and used the number of sites required to reach the 100% trend representativeness 200 

threshold as the response variable. Due to the limited number of replicates and associated 201 

statistical power, we included only three variance components as predictors: lag-1 202 

autocorrelation, slope standard error, and data standard deviation. These components were 203 

extracted at the parameter level and entered into a single regression model to evaluate their 204 

relative influence on the minimum number of sites required. To quantify the contribution of each 205 

predictor, we calculated the percentage of variance explained by dividing the sum of squares for 206 

each term by the total sum of squares in the model. 207 

Site Uniqueness 208 

To determine which site(s) provided the most or least unique information for trend detection at 209 

the 80% representativeness threshold, we used linear regression analysis across all environmental 210 

parameters and sites. For each site, we compared the slope from a reduced model (with the site 211 

removed) to the slope from the full model (including all sites). The absolute difference between 212 

the reduced model slope and the full model slope was used as a measure of that site's deviation 213 

from the estuary-wide trend. These slope differences were then standardized (z-scored) to enable 214 

comparison across parameters. 215 

The most unique site was defined as the one with the largest standardized slope difference (i.e., 216 

the most positive z-score), indicating that its removal caused the greatest deviation from the full-217 

model trend. A positive z-score reflects that the site's data differ meaningfully from the estuary-218 

wide pattern and contribute uniquely to trend detection. 219 

In contrast, the least unique site was defined as the one with the smallest standardized slope 220 

difference (i.e., the most negative z-score), indicating strong agreement with the full-model 221 

trend. A negative z-score reflects that removing the site caused a smaller-than-average change in 222 

the overall slope, suggesting that its contribution is largely redundant with other sites and adds 223 

limited additional information to the network. 224 



To identify the most representative combination of sites when a smaller number of sites is 225 

considered sufficient for monitoring (as determined by the minimum site analysis), we applied 226 

linear regression analysis to all possible combinations of that site count. We then compared the 227 

slope from each subset model to the slope from the full model. The combination with the 228 

smallest standardized slope difference was considered the most representative of the estuary-229 

wide trend. 230 

Data and Code 231 

All data, analyses, and visualizations were performed in RStudio (version 2024.09.1+394). All 232 

code used in this study is available at https://github.com/QuantMarineEcoLab/prep-sampling-233 

optimization. 234 

Results 235 

Our results indicate that trends vary across sites by parameter, and that each parameter requires a 236 

different minimum sampling effort for trend detection. Importantly, the estimated minimum 237 

depends on the user-defined threshold for representativeness—in this case, 80% or 100%. 238 

Environmental Parameters 239 

Across the 2000–2020 period, most environmental parameters exhibited weak or non-significant 240 

linear trends (Fig. 3). Dissolved oxygen concentration, dissolved oxygen saturation, nitrite + 241 

nitrate, and water temperature all showed minimal directional change over time, with none 242 

reaching statistical significance (p > 0.05). While some exhibited slight declining or flat trends, 243 

interannual variability was relatively high. The exception was suspended solids, which displayed 244 

a statistically significant increasing trend (p = 0.001), indicating a consistent rise in concentration 245 

over time. 246 

To better understand spatial variability in water quality trends, we examined how site-level 247 

patterns differed across the estuary (Fig. 4). For dissolved oxygen saturation, nitrite + nitrate, and 248 

water temperature, most sites (> 7) exhibited negative z-scores, indicating broadly consistent 249 

temporal trends across the estuary. In contrast, dissolved oxygen concentration and suspended 250 

solids showed greater site-level variability, with more positive z-scores (> 5) suggesting more 251 

spatially localized trends. 252 



Across parameters, the Route 9 Bridge and Squamscott River consistently emerged as the most 253 

unique sites, with positive z-scores (ranging from 1.6 to 2.7) indicating trends that deviated 254 

notably from those observed elsewhere. Conversely, Adams Point frequently exhibited negative 255 

z-scores (ranging from –0.19 to –0.86), reflecting patterns more closely aligned with the 256 

estuarine average and likely more representative of system-wide behavior. 257 

Minimum Time 258 

Monitoring duration should be at least 7 years to ensure reliable trend detection across all 259 

parameters (Table 1). However, the minimum required duration varies by parameter. For 260 

instance, nitrite + nitrate achieved 100% representativeness with just 5 years of data, whereas 261 

both dissolved oxygen metrics and water temperature required the full 7 years. Furthermore, the 262 

difference between the thresholds we used—80% and 100% representativeness—was typically 263 

minimal, varying by only about one year. 264 

We identified four key drivers influencing the minimum time required for trend detection: slope 265 

magnitude, slope standard error, data standard deviation, and lag-1 autocorrelation. Although 266 

minimum durations were broadly similar across parameters, the primary drivers behind those 267 

durations differed. Lag-1 autocorrelation was the strongest driver for both dissolved oxygen 268 

metrics, which also had the lowest coefficients of variation. For dissolved oxygen saturation, 269 

slope standard error emerged as the second most influential factor. In contrast, water 270 

temperature, nitrite + nitrate, and suspended solids exhibited high residual variance, with nearly 271 

half of their variation unexplained. Water temperature was influenced almost equally by data 272 

standard deviation and autocorrelation. Nitrite + nitrate was primarily driven by slope standard 273 

error and autocorrelation, while suspended solids were influenced solely by data standard 274 

deviation. Interestingly, nitrite + nitrate and suspended solids had the highest coefficients of 275 

variation (exceeding 100%), indicating that the standard deviation was greater than the mean. 276 

Despite this high variability, these parameters required the shortest monitoring periods to detect 277 

trends. 278 

Minimum Site 279 

To achieve 100% trend representativeness across all environmental parameters, monitoring all 10 280 

sites is necessary. However, if 80% representativeness is deemed sufficient, only 8 to 9 sites are 281 



required (Table 2). For dissolved oxygen concentration, monitoring just 8 sites is adequate 282 

(Table 3), with Adams Point and Oyster River identified as the most redundant—and therefore 283 

the least essential to include (Table 4). For the remaining four environmental parameters, 9 sites 284 

are sufficient to maintain trend accuracy, with Adams Point once more appearing as the least 285 

necessary site in two of those cases (nitrite + nitrate and suspended solids). In the case of 286 

dissolved oxygen saturation and water temperature, Route 9 Bridge (Central Avenue) and 287 

Squamscott River, respectively, were identified as the least essential sites. 288 

We identified three key drivers influencing the number of sites required to detect long-term 289 

trends at the 100% representativeness threshold: lag-1 autocorrelation, slope standard error, and 290 

data standard deviation. Across all environmental parameters, these predictors contributed 291 

relatively evenly to the variance in minimum site requirements. Lag-1 autocorrelation accounted 292 

for the largest share, explaining 38% of the variance, while slope standard error and data 293 

standard deviation each contributed 26%. The remaining 9% of the variation was unexplained by 294 

the model. 295 

Discussion 296 

Long-term environmental monitoring programs are essential for understanding ecological trends 297 

and managing dynamic systems like the Great Bay Estuary (Wolfe et al. 1987, Cloern and Jassby 298 

2012, Kennish 2019). Efficient resource allocation is also critical for the success of these 299 

programs, particularly in estuarine systems where cost and logistical constraints often limit the 300 

scope of data collection (Caughlan and Oakley 2001). This study offers a framework for 301 

optimizing spatial and temporal monitoring by identifying the minimum effort needed to detect 302 

long-term trends across multiple environmental parameters in the Great Bay Estuary. 303 

Temporal Monitoring 304 

Our findings reveal that the minimum number of years required to detect long-term trends varies 305 

by environmental parameter, largely depending on the strength and variability of the signal. 306 

While most parameters required up to seven years of data to reach 100% trend 307 

representativeness, nitrite + nitrate achieved this threshold in just five years. Interestingly, both 308 

nitrite + nitrate and suspended solids exhibited the highest coefficients of variation, suggesting 309 



that high variability does not necessarily extend the time needed for trend detection. These 310 

results suggest that factors beyond overall variability, such as autocorrelation and slope standard 311 

error, play a more critical role in determining the monitoring duration needed. 312 

In particular, the influence of autocorrelation underscores the need for caution when estimating 313 

sample size and interpreting trend reliability. Autocorrelation within ecological time series 314 

reduces the amount of independent information, making it appear as though the sample size is 315 

larger than it truly is. This misrepresentation inflates the apparent degrees of freedom, leading to 316 

overconfident slope estimates and potentially premature conclusions about trend significance. 317 

Sturludóttir (2015) further demonstrated that failing to account for autocorrelation can 318 

dramatically inflate type I error rates in changepoint detection. For example, with a true 319 

autocorrelation of ρ = 0.5 in a 50-point time series, the false positive rate increased from 10%—320 

when autocorrelation was properly modeled—to 60% when it was ignored. These findings 321 

highlight the critical importance of properly modeling temporal dependence when designing 322 

monitoring programs and interpreting trend analyses. 323 

The influence of different factors—such as slope strength, slope standard error, data variability, 324 

and autocorrelation—on monitoring duration reflects the distinct temporal behavior of each 325 

parameter. For example, dissolved oxygen metrics were strongly influenced by lag-1 326 

autocorrelation, indicating that values in one year are closely linked to those in the previous year. 327 

This temporal inertia suggests that the factors affecting dissolved oxygen levels are persistent 328 

over time rather than driven by random or isolated events. Such persistence is likely due to 329 

recurring seasonal patterns and consistent environmental conditions, including thermal 330 

stratification (Keeling et al. 2010, Kwiatkowski et al. 2020) and chronic nutrient loading and 331 

accumulation (Klump et al. 2018, Hanson et al. 2023). This temporal dependency makes it 332 

harder to detect long-term trends without longer time series.  333 

In contrast, parameters like nitrite + nitrate were more influenced by slope standard error, 334 

suggesting that while interannual values may fluctuate more widely, the trend itself follows a 335 

clear, consistent trend, thus allowing for shorter monitoring periods. Nitrogen compounds such 336 

as nitrite and nitrate typically exhibit short-term variability due to factors like seasonal biological 337 

uptake, rainfall-driven runoff, and land use activity within the watershed (Hubertz and Cahoon 338 

1999, Chen et al. 2005, Jani and Toor 2018). For example, concentrations often spike after storm 339 

events that transport fertilizers and other nitrogen sources into the estuary, but decline during 340 



periods of intense phytoplankton growth, when nitrogen is assimilated to support biomass 341 

production (Chen et al. 2005, Glibert and Burkholder 2006). Given that nitrite + nitrate 342 

concentrations follow a relatively consistent long-term trajectory despite high short-term 343 

variability, slope standard error may be a more relevant indicator of trend detectability—as 344 

capturing the reliability of the trend direction becomes more important than accounting for raw 345 

variability alone. 346 

Suspended solids, on the other hand, were primarily influenced by overall data variability (i.e., 347 

standard deviation), rather than by temporal structure or trend strength. This parameter exhibited 348 

high short-term fluctuations, likely driven by episodic events such as stormwater runoff, tidal 349 

resuspension, or construction-related sediment inputs (Burton and Johnston 2010, Corbett 2010, 350 

Phlips et al. 2020). Despite this variability, suspended solids showed a clear and steady increase 351 

over time, likely reflecting ongoing anthropogenic inputs to the estuary. Similar to nitrite + 352 

nitrate, its high variability did not obscure the underlying trend, which enabled early detection of 353 

long-term change. 354 

While water temperature was influenced by both data standard deviation and autocorrelation, this 355 

reflected a combination of high short-term variability and persistent long-term patterns. 356 

Fluctuations can be driven by seasonal cycles, tidal changes, storm-driven freshwater inflows, 357 

and extreme events such as marine heatwaves and cold snaps (Shi et al. 2024). Despite this 358 

variability, temperature trends change slowly, exhibiting high temporal autocorrelation due to the 359 

large heat capacity of water and the gradual influence of climate warming, both of which 360 

promote continuity across years (Lefcheck et al. 2017). As a result, detecting long-term 361 

temperature trends requires extended monitoring periods, even in the presence of frequent short-362 

term fluctuations. 363 

 364 

Spatial Monitoring 365 

Similar to our results on temporal sampling requirements, spatial optimization analyses revealed 366 

that different environmental parameters require different numbers of sites for accurate trend 367 

detection. While all 10 sites are needed at the 100% representativeness threshold, 8–9 sites are 368 

sufficient when an 80% threshold is acceptable. Dissolved oxygen concentration, for instance, 369 



could be effectively monitored with only 8 sites, and Adams Point and Oyster River were 370 

identified as the most redundant. Here, redundant means that removing the sites did not have a 371 

major effect on the overall temporal trend. For other parameters, including nitrite + nitrate and 372 

suspended solids, Adams Point again appeared among the least essential, reinforcing the idea 373 

that certain sites may be overrepresented in current monitoring efforts. 374 

To understand what drives these differences in minimum site requirements across parameters, we 375 

conducted a variance partitioning analysis. Lag-1 autocorrelation, slope standard error, and data 376 

standard deviation each contributed almost equally to explaining the number of sites needed. 377 

This even distribution suggests that no single statistical property drives spatial sampling needs. 378 

Rather, a combination of temporal structure, trend precision, and overall variability shapes how 379 

many sites are required to achieve trend representativeness. This outcome is expected, as the 380 

minimum site analysis is based on the minimum time algorithm and treats environmental 381 

parameters as replicates. As such, it reflects both shared and unique statistical characteristics 382 

across parameters. 383 

Patterns of site uniqueness—measured by the influence of individual sites on estuary-wide trend 384 

estimates—also varied by parameter and were shaped by ecological dynamics. For parameters 385 

like dissolved oxygen saturation, nitrite + nitrate, and water temperature, the majority of sites 386 

exhibited negative z-scores, suggesting that site-level trends closely mirrored the overall 387 

estuarine trend. This consistency may reflect parameters that are more uniformly influenced by 388 

system-wide drivers such as seasonal cycles and broad-scale hydrodynamics, rather than 389 

localized conditions. For example, DO saturation is a temperature-corrected metric and thus 390 

tends to reflect broader oxygen availability patterns, while water temperature itself is strongly 391 

governed by seasonal insolation and mixing. Nitrite + nitrate, while subject to short-term 392 

fluctuations, may show uniform long-term declines across sites due to coordinated reductions in 393 

upstream nutrient loading and estuary-wide uptake by primary producers. 394 

In contrast, dissolved oxygen concentration and suspended solids showed more site-specific 395 

variability, with more positive z-scores, indicating that removing individual sites more often 396 

altered the estuary-wide trend. This localized behavior may reflect site-specific biological 397 

activity (e.g., eelgrass photosynthesis, respiration, and organic matter degradation) and 398 

differences in physical conditions, such as depth, mixing, and sediment resuspension. Suspended 399 

solids, in particular, are highly sensitive to localized inputs and disturbances, including river 400 



discharge, stormwater runoff, and proximity to vegetated habitats like eelgrass beds, which 401 

promote sediment settling. 402 

Two sites—Route 9 Bridge and Squamscott River—stood out as particularly unique, consistently 403 

showing the highest positive z-scores (ranging from 1.6 to 2.7 across parameters), suggesting 404 

that their trends diverged significantly from the system-wide average. This divergence is likely 405 

due to their location in highly developed subwatersheds, where impervious surfaces, stormwater 406 

runoff, and altered flow regimes increase variability in parameters like nutrients and suspended 407 

sediments. In contrast, Adams Point often had the most negative z-scores (ranging from –0.19 to 408 

–0.86), suggesting that it may serve as a reasonable proxy for estuary-wide trends—likely due to 409 

its central location at a hydrodynamic chokepoint. 410 

Implications for Monitoring Programs 411 

Our findings highlight the potential value of adaptive monitoring designs that align sampling 412 

effort with the statistical and ecological characteristics of each parameter. By identifying 413 

parameters and sites that require less intensive monitoring, programs can reallocate resources 414 

toward more variable or less predictable parameters, enhancing efficiency without compromising 415 

scientific value. 416 

Monitoring additional environmental parameters typically does not increase field effort 417 

substantially, as multiple parameters are measured during the same sampling event. For example, 418 

water quality monitoring often involves collecting data on a suite of parameters 419 

simultaneously—whether through grab samples or deployed sondes. As a result, choosing not to 420 

monitor a parameter solely based on its short minimum time requirement may not lead to 421 

significant cost savings. Instead, it may be more effective to base the overall temporal 422 

monitoring strategy on the parameter that requires the longest time series to detect trends. Doing 423 

so ensures sufficient data are collected for all parameters of interest without fragmenting the 424 

sampling timeline or creating inconsistent records across variables. 425 

In contrast, reducing the number of monitoring sites can meaningfully lower effort and cost. 426 

While adding more sites can improve statistical precision, each additional site contributes less to 427 

overall trend detection after a certain point, resulting in diminishing returns relative to the added 428 

cost (Fairweather 1991, Caughlan and Oakley 2001). Our spatial optimization results support this 429 



principle: some sites, like Adams Point, contribute little unique information and are redundant 430 

across multiple parameters. Removing such sites from routine sampling could significantly 431 

reduce personnel time, transportation costs, and logistical complexity—especially in estuarine 432 

systems where site access is resource-intensive. When redundancy spans multiple parameters, 433 

the justification for streamlining becomes even stronger. 434 

However, statistical redundancy does not always equate to management irrelevance. In the case 435 

of Adams Point, for example, its location at a narrow constriction between Great Bay and the rest 436 

of the estuary, makes it a strategically important site for capturing water quality as it flows out of 437 

the bay during ebb tides to downstream ecosystems. Additionally, the presence of laboratory 438 

facilities nearby makes it one of the most logistically convenient sites to sample. These factors 439 

underscore that practical, ecological, or management priorities may, at times, outweigh purely 440 

statistical optimization in long-term monitoring design. 441 

There are also opportunities to reduce costs by re-evaluating sampling methods (Hawker et al. 442 

2022). For instance, automated data sondes have been shown to offer a cost-effective alternative 443 

to manual grab sampling in many contexts. These sondes enable high-frequency, continuous data 444 

collection with reduced labor demands and the potential for real-time data transmission, which 445 

can significantly cut operational costs and expand spatial monitoring without increasing field 446 

effort (Kumar et al. 2024, Rozemeijer et al. 2025). However, these advantages come with trade-447 

offs. Sondes require a high initial investment and can incur substantial long-term maintenance 448 

costs, including calibration, sensor replacement, and data quality control. They are also limited in 449 

the range of parameters they can measure in situ, especially for nutrients, trace metals, toxins, 450 

and microbial contaminants, which are crucial in regulatory compliance and public health 451 

monitoring. Their readings can also be affected by optical interferences like turbidity, biofouling, 452 

or colored dissolved organic matter (Downing et al. 2012, Robinson 2024).  453 

In contrast, grab sampling remains the gold standard for many of water quality parameters due to 454 

its high analytical precision, flexibility in accommodating a wide range of laboratory techniques, 455 

and regulatory acceptance for parameters that require confirmatory lab testing (Erickson et al. 456 

2013, Kmush et al. 2022). Moreover, grab samples can capture complex water chemistry 457 

interactions that sondes cannot detect and provide critical context in event-based monitoring or 458 

source tracking. Therefore, a hybrid strategy—using sondes for baseline, continuous monitoring 459 



and strategic grab samples for periodic, targeted analysis—strikes an effective balance between 460 

cost-efficiency, temporal resolution, and comprehensive water quality assessment. 461 

Our findings also suggest that different statistical drivers—particularly autocorrelation and slope 462 

standard error—have distinct implications for monitoring design. When autocorrelation strongly 463 

influences trend detection, as observed for dissolved oxygen parameters, it signals that year-to-464 

year measurements are not fully independent. This means that simply collecting more data points 465 

over time may not increase statistical power as much as expected, especially if measurements are 466 

temporally clustered or influenced by persistent seasonal processes. To mitigate this, monitoring 467 

programs may benefit from ensuring temporal spacing that captures independent variability—for 468 

instance, sampling across seasons, hydrological conditions, or climatic regimes. Additionally, 469 

distributing sampling effort spatially across sites with distinct hydrodynamic or ecological 470 

conditions can reduce the risk of temporal autocorrelation dominating the signal. 471 

In contrast, when slope standard error emerges as a dominant factor—as seen for nitrite + 472 

nitrate—it implies that the precision of the estimated trend is the limiting factor for detection. 473 

This suggests that improving consistency in measurement techniques, reducing sampling noise, 474 

or increasing sample size during high-variability periods could sharpen trend estimates. In such 475 

cases, attention to quality assurance, sensor calibration, and minimizing measurement error may 476 

yield greater benefits than simply extending the duration of monitoring. 477 

Together, these insights emphasize that optimizing a monitoring design is not just about “how 478 

long” or “how often” to sample, but also about how well the data structure aligns with the 479 

characteristics of each parameter. Programs should not assume that the same sampling design 480 

will be equally effective across all parameters—instead, tailoring strategies based on underlying 481 

statistical behavior can improve efficiency and reliability in detecting meaningful ecological 482 

trends. 483 

Overall, these findings support a flexible, data-driven approach to long-term environmental 484 

monitoring—one that balances the need for rigorous trend detection with the practical realities of 485 

staffing, funding, and logistics. 486 

Limitations and Future Directions 487 



This study focused on detecting linear long-term trends using annual average data—a 488 

simplification that helps identify broad directional changes over time but does not fully capture 489 

the complexity of estuarine systems (Rigal et al. 2020). Estuaries are shaped by interacting 490 

processes that vary on multiple timescales, including seasonal cycles, tidal fluctuations, storm 491 

events, and anthropogenic inputs (McLusky and Elliott 2004). Aggregating data into annual 492 

averages smooths out this intra-annual variability (White and Hastings 2020), potentially 493 

masking important ecological signals such as seasonal hypoxia, nutrient pulses, or life-stage-494 

specific biological responses. Moreover, linear trend models assume steady, incremental change 495 

and may overlook non-linear dynamics, threshold effects, or regime shifts—phenomena that are 496 

increasingly relevant in the context of climate change and coastal development (Ellis and Post 497 

2004, McGlathery et al. 2013). For example, Bruel and White (2021) used a resampling 498 

approach to understand the temporal data requirements to detect changepoints in biodiversity 499 

data. They showed that additional temporal sampling during periods of rapid change can be more 500 

effective than sampling in equally spaced intervals. For management questions that require an 501 

understanding of fine-scale variability—such as identifying critical habitat windows, detecting 502 

early warning signs of stress, or evaluating compliance with water quality standards—annual 503 

averages and linear models may be insufficient. 504 

These limitations are further compounded when sampling is infrequent. Low-frequency designs 505 

may fail to capture short-term or episodic events, leading to systematic underestimation of key 506 

processes. For example, Anderson et al. (2024) found that missing storm-driven nutrient pulses 507 

in wetlands substantially underestimated nutrient export, mischaracterizing ecosystem function. 508 

In dynamic coastal systems, such underestimation could result in flawed assessments or missed 509 

signals of degradation. These findings underscore the importance of considering both sampling 510 

frequency and data resolution when designing monitoring programs, especially for parameters 511 

influenced by short-term hydrologic variability. 512 

Additionally, while our analysis offers insight into sampling design in the Great Bay Estuary, its 513 

applicability to other systems remains an open question. Future studies should apply this 514 

framework to other estuaries with different physical, chemical, hydrodynamic, and biological 515 

characteristics to determine how broadly these findings can be generalized. Comparative 516 

analyses across multiple systems could reveal whether certain parameters or sampling strategies 517 

consistently perform well or whether design recommendations must be tailored to local 518 



conditions. Incorporating systems that vary in size, salinity gradient, watershed development, 519 

and monitoring history would also help refine guidelines for transferable and adaptive 520 

monitoring programs. 521 

Expanding this work to include seasonal resolution, event-based sampling, or multi-system 522 

comparisons would provide a more nuanced understanding of how monitoring design can 523 

support adaptive management in dynamic coastal environments. As environmental change 524 

accelerates, designing monitoring programs that are both efficient and responsive to diverse 525 

ecological conditions will be increasingly critical. 526 
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Tables 711 

Table 1. Minimum time required to monitor each environmental variable across sites (out 712 

of 22 years). Minimum Years (80% correct) corresponds to the minimum number of years with 713 

80% of sub-sample slopes matching the long-term slope and Minimum Years (100% correct) 714 

corresponds to the minimum number of years with a 100% match. 715 

 716 

  717 



Table 2. Percentage of variance explained by five variance metrics in relation to the 718 

minimum number of years required to detect trends for each environmental parameter. 719 

The variance metrics include: slope (overall trend magnitude), slope standard error (SE; 720 

precision of the trend estimate), data standard deviation (SD, variability in observed values), 721 

lag-1 autocorrelation (temporal dependence across years), and residuals (unexplained variation 722 

from the trend model). The two rows labeled “Minimum Years (80%)” and “Minimum Years 723 

(100%)” indicate the number of years required to achieve 80% and 100% trend 724 

representativeness, respectively. The final row shows the coefficient of variation, which 725 

provides a normalized measure of variability relative to the mean. 726 

 727 

 728 

  729 



Table 3. Minimum number of sites required to monitor each environmental variable across 730 

years (out of 10 sites). Minimum Sites (80% correct) corresponds to the minimum number of 731 

sites with 80% of sub-sample slopes matching the long-term slope and Minimum Sites (100% 732 

correct) corresponds to the minimum number of sites with a 100% match. 733 

 734 

  735 



Table 4. Least unique site combinations at the 80% trend representativeness threshold for 736 

each environmental parameter. The table identifies the combination with the smallest slope 737 

difference relative to the full dataset. It includes the minimum number of sites needed, the total 738 

number of sampled sites, the site(s) removed (or deemed unnecessary when that minimum is 739 

used), the resulting subsample slope compared to the full-sample slope, and the absolute 740 

difference between these slopes. 741 

 742 

  743 



Table 5. Most and least unique sites for each environmental parameter. The most unique site 744 

was identified as the one whose removal resulted in the largest difference from the full-model 745 

trend, indicating that it contributed the most unique information to the overall signal. Conversely, 746 

the least unique site exhibited the smallest difference when removed, suggesting strong 747 

agreement with the full-model trend and limited additional contribution beyond what was 748 

captured by other sites. 749 

 750 



Figures 751 

 752 

Figure 1. Map of sampling locations at the Great Bay Estuary, New Hampshire, USA. 753 

  754 



755 
Figure 2. Illustration of the Broken Window algorithm used to determine the minimum time 756 

required for trend detection. Panel A shows the full time series with a linear regression line 757 

representing the “complete” slope and a shaded band indicating ±1 standard deviation (SD). 758 

Panels B–D illustrate the variability in trend estimates across all possible moving windows of 5 759 

years (B), 10 years (C), and 15 years (D), with each red line representing a linear model fit to 760 

one subsample. Panel E shows the percentage of subsample slopes that fall within ±1 SD of the 761 

complete slope across increasing window lengths. In this example, the intersection of the dashed 762 

horizontal (red) and vertical (blue) lines identifies the minimum number of years required to 763 

detect a trend with 80% statistical power. 764 

  765 



 766 

 767 

Figure 3. Long-term time series for each environmental parameter averaged across sites. 768 

Slopes are unstandardized, with units corresponding to each parameter. (A) Dissolved Oxygen 769 



Concentration (mg/L). (B) Dissolved Oxygen Saturation (%). (C) Dissolved Nitrite + Nitrate 770 

(mg/L). (D) Suspended Solids (mg/L). (E) Water Temperature (°C). 771 

 772 

Figure 4. Spatial heterogeneity in site-level temporal trends for each environmental 773 

parameter. These values represent relative deviation in site-level trends from estuary-wide 774 

behavior, represented as z-score standardized slope differences. “System z” denotes the system-775 

wide minimum possible z-score—i.e., the standardized slope difference corresponding to a 776 

perfect match with the full model trend (slope difference = 0). Positive z-scores indicate greater 777 



divergence from the estuary-wide trend, while negative values reflect stronger alignment with 778 

overall system behavior. (A) Dissolved Oxygen Concentration (mg/L). (B) Dissolved Oxygen 779 

Saturation (%). (C) Dissolved Nitrite + Nitrate (mg/L). (D) Suspended Solids (mg/L). (E) Water 780 

Temperature (°C). 781 
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