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Abstract

Marine life is under multiple pressures, including climate change and overfishing. Environmental change and
variability can threaten fishery sustainability, especially when it results in large, abrupt and persistent shifts in
productivity  of  fish  stocks.  Reports  of  abrupt  shifts  in  marine  systems  are  not  uncommon,  but  a  global
assessment  of  their  occurrence  and  drivers  is  seriously  lacking.  Here,  we  systematically  classified  the
temporal dynamics of fish stock productivity from agency-assessed fisheries worldwide. Among the 315 fish
stocks with time series available, we detected at least one productivity abrupt shift for more than a quarter of
the  stocks.  Using  an  integrative  modeling  approach  including  life  history,  environmental  conditions,  and
fishing intensity variables, we showed that abrupt declines are over-represented in stocks where sea surface
temperature increases have been larger during the period covered by fish stock monitoring, while abrupt
increases are more likely under lower fishing intensity. We investigated the link between productivity abrupt
shifts and stock collapses. We found that abrupt declines in productivity preceded stock collapses by ten to
twenty years in 25% of the cases, suggesting that some major stock collapses could be anticipated if abrupt
shift  were  more  systematically  detected  and  examined.  Overall,  our  results  highlight  the  importance  of
considering  productivity  abrupt  shifts  to  prevent  a  pervasive  risk  of  fish  population  collapse  in  warming
oceans.

Significance Statement

Using the largest global stock assessment dataset for marine fisheries, we found a large proportion of abrupt
shifts in the trajectories of productivity time series for 315 fish stocks. We evidenced that abrupt productivity
declines were over-represented in marine regions with highest warming rates. We also demonstrate that
abrupt  productivity  declines preceded stock collapses by about a decade in a quarter  of  the stocks that
shifted. Our results shed light on a likely warming-related timeline to fisheries collapse and call  for more
systematic examination and early detection of abrupt  shifts.  This paper contributes to setting priorities in
managing stocks that would be more likely to undergo strong and persistent shifts in their productivity.
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Introduction

Marine ecosystems are facing intense anthropogenic pressure (Georgian et al., 2022; Halpern et al., 2008),

putting the survival of marine species along with the food security and economies of many coastal human

populations at risk  (FAO, 2022). Although the capture of wild fish from the oceans has been maintained at

high  levels  since  its  peak  in  the  1990s  (Pauly  and  Zeller,  2016),  it  does  not  imply  that  all  stocks  are

sustainably  exploited  (FAO, 2022).  Indeed,  despite  the overall  success  of  some management  strategies

(Frank and Oremus, 2023; Melnychuk et al., 2021), overexploitation and stock collapses are still major threats

(Georgian et al., 2022) with no guarantee that recent improvements in fishery sustainability  (Hilborn et al.,

2020) can be maintained in the face of climate change.

One  particular  challenge  for  fisheries  management  is  the  ability  to  avoid  abrupt,  strong,  and  persistent

declines of exploited stocks, which undermine sustainability goals  (King et al., 2015; Levin and Möllmann,

2015). Even though the existence of such so-called “regime shifts” in fisheries has long been documented

(deYoung et al., 2004; Hare and Mantua, 2000; Steele, 1998), such events have yet to be broadly integrated

within stock assessment and management  (Conversi et al., 2015; Sguotti  et al., 2022). Regime shifts are

usually considered at the ecosystem level involving the synchronous change in multiple variables from fish to

phytoplankton (deYoung et al., 2008). But it has been argued that abrupt shifts at the level of fish populations

could  be indicative of  putative regime shifts  (Daskalov et  al.,  2007;  Pedersen et  al.,  2020).  In  fisheries,

examples of once plentiful stocks that crashed to very low levels are not uncommon, notably with the case of

the Peruvian anchoveta (Idyll, 1973), North Atlantic cod (Myers et al., 1997), or Western Atlantic bluefin tuna

(Safina and Klinger, 2008). However, beyond these emblematic examples the extent to which regime shifts in

fisheries occurred in recent decades might be underestimated.

Accounting for regime shifts within fisheries management can be hindered by two major knowledge gaps.

First,  they are hard to detect.  The search for regime shifts in time series often relies on the sole use of

breakpoint detection algorithms without relevant alternative non-abrupt models  (Spake et al., 2022), which

can limit the confidence in the conclusions (Rudnick and Davis, 2003). Second, regime shifts are overlooked

in most stock assessments,despite evidence that regime shift models are frequently a better descriptor of

stock dynamics  (Vert-pre et  al.,  2013).  Attempts to account for regime shifts and non-stationarity remain
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scarce and insufficient to improve current practices (Levin and Möllmann, 2015; Sguotti et al., 2022). Instead,

the usual standard for evaluating the sustainability of management strategies relies on fixed thresholds –

related to biological reference points like minimal biomass or maximal fishing mortality – to trigger actions

(Walters and Martell, 2004), despite recent efforts to introduce more dynamic reference points (Berger, 2019;

Hodgdon et al., 2022).

Although the notions of regime shifts and stock collapses appear strongly connected, they are not equivalent.

Regime  shifts  are  usually  characterized  by  an  abrupt  temporal  trajectory  with  a  final  state  potentially

persistent in time (Bestelmeyer et al., 2011). In contrast, stock collapses relate to stock depletion based on

fixed arbitrary thresholds related to stock size or catch (Yletyinen et al., 2018) that give no indication about the

circumstances preceding the collapse nor the persistence of the collapse state. For instance, (Vert-pre et al.,

2013) showed that abrupt shifts from high to low surplus production levels – a proxy for stock productivity

corresponding to the change in abundance in the absence of fishing (Walters et al., 2008) – can happen quite

regularly and were unrelated to abundance levels for a substantial proportion of stocks. Although this finding

implies that abrupt shifts in productivity do not necessarily lead to stock collapse, the relationship between the

two  phenomena  has  not  been  systematically  explored.  In  addition  to  not  fully  understanding  the

consequences of abrupt shifts in productivity, we also poorly understand what causes them. The relative

contributions  of  climate  and  exploitation  to  stock  collapse  has  been  well  investigated  (Möllmann  and

Diekmann, 2012), but usually focused on a few data-rich stocks  (Beaugrand et al., 2022; Pershing et al.,

2015). Broader syntheses of stock collapse mostly focus on a single pressure at a time, either fishing intensity

(Essington et al., 2015), climate change (Free et al., 2019), or life history (Pinsky et al., 2011) but rarely all

pressures together (Pinsky and Byler, 2015). Overall, we lack a global overview of the prevalence of abrupt

shifts in fisheries productivity, along with information on their drivers, and potential link with stock collapses.

The aim of this study is to identify potential regime shifts in fish stocks globally, by looking at abrupt shifts in

productivity. Here, we systematically classify the dynamics of 315 productivity time series, estimated from

assessments  of  marine  fish  stocks  from around  the  world,  to  address  the  following  questions:  (i)  How

prevalent are productivity abrupt shifts (PAS) and how are they distributed in space and time? (ii) Are PAS

3

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

3



related to species life history, environmental conditions or fishing pressure? (iii)  Are PAS associated with

stock collapses?

Results

Productivity Abrupt Shifts (PAS) prevalence and distribution

We classified 315 fish stock productivity time series into basic trajectory types based on shape and trend and

found all  types of trajectories over the period 1950–2020 (Fig.  1).  Quality scores indicated that  selected

models, especially for abrupt and quadratic trajectories, performed well and were robust to the removal of

individual data points (Fig. 1, Fig. S1). Still, the variance explained by the models remained low given the

intrinsically high variability of productivity time series (Fig. S1). The full list of trajectories is available in the

supplement (Table S1).

Globally, PAS were found for more than a quarter of stocks (25.7%, N=81), with roughly equal numbers of

negative (13.3%, N=42) and positive (12.4%, N=39) PAS (Fig. 2A). The other types of trajectories (quadratic,

linear, and no change) were found in similar proportions. Balanced proportions between different trajectory

types were also found at the scale of FAO major fishing areas (Fig. 2B), with no significant difference across

areas (Chi-square test,  p = 0.32). The direction of shifts was however unevenly distributed in space (Chi-

square test, p = 0.02), with regions like the North-West Atlantic and North-West Pacific comprising a higher

proportion of negative PAS (30% and 29% respectively), whereas the region with most positive PAS (32%)

was the South-West Pacific. Similar patterns were found using large marine ecosystems (LMEs) as grouping

areas (Fig. S2). Considering taxonomic groups, we found significant differences in the proportions of PAS

against non-abrupt trajectories across the five most numerous orders in number of stocks (Chi-square test,

p =  0.01),  with  notably  a  higher  proportion  of  positive  PAS  in  Perciformes  and  of  negative  PAS  in

Clupeiformes (Fig. S3).

Over time, the occurrence of positive PAS were spread from the 1960’s to the 2010’s and the distribution did

not  differ  significantly  from  the  coverage  of  time  series  (Fig.  2C,  Kolmogorov-Smirnov  test,  p = 0.32).

However, the distribution of negative PAS differed from coverage (Kolmogorov-Smirnov test, p = 0.04) and

tended to cluster during the 1980’s (Fig. 2D),  before the maximum of time series available was reached
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between 1994 and 2000. The observation of PAS being less frequent after 2010 could arise from a lack of

available data along with the difficulty of detecting very recent shifts.

Drivers of Productivity Abrupt Shifts (PAS)

We tested which drivers among life history, environment (sea surface temperature, SST), and fishing intensity

(exploitation rate, ER) were more related to the occurrence of PAS using generalized additive mixed models

to  account  for  phylogeny and spatial  location.  We found that  the main drivers  of  PAS differed between

negative and positive PAS. Negative PAS were mostly influenced by environmental conditions like positive

trends in SST occurring before the shift (p = 0.005, Fig. 3A) and marginally by lower average SST (p = 0.054,

Fig. 3A) compared to other trajectories. Positive PAS were influenced by fishing intensity and life history and

were associated with higher trends in ER (p = 0.005, Fig. 3B), higher age at maturity (p = 0.048, Fig. 3B), and

marginally lower trends in SST (p = 0.054, Fig. 3B).

Clearly, as both models for negative and positive productivity abrupt shifts explained between 13% and 14%

of the total variance, the occurrence of PAS was only partly explained by the variables selected. But the

identity and relative importance of those variable is not a matter of model structure. Indeed, analysis of PAS

using an entirely different method (hierarchical partitioning) identified the same significant predictors (Table

S2–S3).

Productivity Abrupt Shifts PAS and stock collapse

We also tested the extent to which negative PAS were associated with stock collapse defined as being below

25% of the average stock biomass recorded to date following (Essington et al., 2015). While not all negative

PAS led to stock collapse (only 11 out of 42 stocks did, 26%, Fig. 4A), among the stocks that did collapse, we

found a higher proportion of negative PAS (23%, Fig. 4A) compared to those that did not collapse (12%, Fig.

4A). Collapsed stocks also tended to have more decreasing and fewer increasing productivity trajectories

(Fig. 4A). On average, collapsed stocks experienced a stronger magnitude of negative PAS than stocks that

did not collapse (t-test p = 0.06, Fig. 4B). Most of the negative PAS occurred between 4 to 12 years before

the stock collapsed, while no such temporal lags were found for positive PAS (Fig. 4C).

5

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

5



The influence of SST on PAS and collapse was further investigated at the scale of large marine ecosystems

(LMEs). We evaluated the relationship between warming rate (SST change) between 1950 and 2020 and the

proportion of stocks that underwent a PAS or a collapse. We found a significant positive linear relationship

between negative  PAS and warming  rate  (p = 0.006,  Fig.  4D),  meaning  that  LMEs with  the most  rapid

warming rate were also those with the highest proportion of stocks that underwent negative PAS. However,

we  only  found  a  not  significant  positive  linear  relationship  between  warming  rate  and  the  proportion  of

collapsed stocks (p = 0.205, Fig. 4F), even when using different definitions of collapse (0.25 < p < 0.44, Fig.

S4).  That is, the LMEs warming most rapidly had more frequent negative PAS, but this did not translate into

more frequent collapse of stocks in these LMEs.

Discussion 

In this work we distinguished productivity abrupt shifts (PAS) in fisheries time series from gradual productivity

trajectories using a systematic classification of trajectory types based on shape and trend (no change, linear,

quadratic, abrupt). We found that PAS were detected in more than 25% of stocks worldwide and that PAS

occurrence varied in space and time. We provide evidence that large negative PAS frequently preceded stock

collapses and were associated with a higher warming rate. Those findings could have critical implications for

fisheries management in warming oceans.

Our results expand on the well-documented examples of regime shifts (e.g., (Blöcker et al., 2023; Möllmann

et  al.,  2021)),  giving  a  more  complete  picture  of  the  prevalence  of  such  shifts.  Our  classification  aptly

identifies stocks like Newfoundland cod  (Myers et al., 1997), Baltic sea cod  (Möllmann et al., 2021), or

Japanese sardine  (Watanabe et al., 1995), which underwent among the most prominent and rapid abrupt

collapses previously characterized (full list available in Table S1). More importantly, we also identify others

that were surprisingly not extensively treated in the literature (e.g., Greenland halibut off Labrador Shelf -

Grand Banks in the 1990s). Assuming that retrospective analyses of productivity trajectories can give good

insights into how stocks are likely to react in the future, our approach enables the identification of stocks that

could be more prone to abrupt decline and thus require more careful management.

6

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

6



The prevalence of abrupt shifts we found (25%) is somewhat below those from previous analyses (46% for

(Sellinger et al., 2024), 39% for (Vert-pre et al., 2013)). The differences in prevalence could be explained by

the set of stocks analyzed, the different relationships considered (stock-recruitment in (Sellinger et al., 2024)),

the different models used (productivity-abundance relationship in (Vert-pre et al., 2013)), and perhaps most

importantly  because  our  classification  involved  the  congruence  of  two  independent  models  to  confirm a

trajectory as abrupt, making the attribution of abruptness more strict  but also probably more reliable. Our

trajectory classification without the confirmation step doubles the prevalence of abrupt shifts (51%, Fig. S5).

Among the life history, climate change, fishing intensity related factors that have been proposed to affect

stock collapses either regionally or globally, we found that trend in SST to be the most significant variable

related to the occurrence of negative PAS. Climate change, alone or in conjunction with other factors, had

already been stated as one of the most prominent drivers of marine regime shifts (Rocha et al., 2015) and

stock collapses  (Pinsky and Byler,  2015).  Interestingly,  the large marine ecosystems that  underwent  the

largest SST increases between 1982 and 2006 (> 1°C, (Belkin, 2009)) are also those for which we found the

largest proportions of stocks with negative PAS during the same period, namely the Baltic and North Sea, the

East China Sea and Sea of Japan, and Newfoundland - Labrador Shelf. As fishing intensity alone did not

explain negative PAS, we did not explore potential interactions between fishing and temperature that have

previously  been examined  for  global  (Pinsky  and  Byler,  2015) and regional  (Rouyer  et  al.,  2014) stock

collapses. However, we found an effect of fishing intensity related to positive PAS. This effect might in fact

correspond to the early stages of a fishery when the productivity of unfished stocks is usually low because the

stock is assumed to be near carrying capacity. It corresponds to the basic principle of maximum sustainable

yield,  that  productivity  is  maximized  for  intermediate  levels  of  fish  abundance  corresponding  to  fishing

mortality rates near those associated with maximum sustainable yield (FMSY, (Walters and Martell, 2004)). No

sign of abrupt recovery after collapse was found in the data, except for the herring in the North Sea, which

recovered rapidly following reduction in fishing pressure - a result already documented by (Dickey-Collas et

al., 2010).

We accounted for life history essentially through maturity related metrics and principal habitat, but in contrast

with previous studies (Pinsky et al., 2011; Pinsky and Byler, 2015) we found no significant effect of those life
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history traits on negative shifts. Only the age at maturity (which is negatively correlated with somatic growth

rate,  Fig.  S6A)  tended  to  be  positively  associated  with  positive  shifts,  meaning  that  rapid  productivity

increases were more often found in slower growing, later maturing species. This pattern is consistent with the

periodic life history strategy  (Winemiller and Rose, 1992) where delayed maturation and consequent large

numbers of eggs can result in occasional very large recruitment events when these eggs encounter favorable

conditions for early life survival. These periodic strategists often exhibit years of minimal or even negative

productivity punctuated by occasional large year classes that create a period of high productivity as the year

class ages and grows.

We also found support for a link between negative PAS and subsequent stock collapse for a quarter of the

stocks that shifted negatively. This sequence of events could be expected with productivity decline impacting

stock abundance and biomass. However, collapse following negative PAS was far from inevitable, a fact likely

explained by the high prevalence of harvest control  rules, which reduced fishing pressure as abundance

declines (Punt, 2010). Our results also suggest that gradual stock collapses were associated with lower levels

of warming, while areas that underwent rapid warming were more likely to experience negative abrupt shifts.

There is evidence for such warming-driven declines notably in the case of insufficient management adaptation

(Pershing et al., 2015) but a more extensive coverage of stocks with lower warming rate would be necessary

to confirm this. These results are all robust to different definitions of stock collapse (Fig. S7).

Additional analyses would be needed to ascertain whether the abrupt shifts in productivity of individual fish

stocks that we detected here correspond with ecosystem-wide regime shifts. , Such analysis would require

time series of other ecosystem components, many of which (e.g., zooplankton abundance) are  unavailable at

a global scale (deYoung et al., 2008; Lees et al., 2006). Still, the fact that abrupt shifts occur is meaningful,

even in the absence of a broader regime shift, as they have serious implications for management regardless

of the mechanisms driving such shifts (Beaugrand et al., 2022; Möllmann and Diekmann, 2012). 

While the RAM Legacy database, on which this analysis was based, has broad geographic coverage, it does

not reflect the actual distribution of fisheries worldwide and is biased towards intensively monitored stocks
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mostly from wealthy nations at temperate latitudes (Ricard et al., 2012). Fisheries from tropical latitudes are

more often data limited or monitored for a lower amount of time, which limits  reliable shift detection. Yet, the

correlation we found between warming rate and negative PAS suggests that marine areas like the North-West

and South Atlantic, or South Indian Oceans that are projected to be hotspots of rapid temperature increase in

the next decades (Cheng et al., 2022) require careful monitoring and management. This is a challenging task

since it  has been suggested that  regional fisheries agencies are still  struggling to account effectively for

climate change in their practices (Sumby et al., 2021). As our results contribute to the understanding of fish

stock long-term dynamics, they could pave the way for advancing the anticipation of productivity abrupt shifts

to improve effective fishing regulation in the face of rising global change pressures.

Materials and Methods

Fisheries data

Time  series  of  catch  and  stock  biomass  were  download  from the  freely  available  RAM  Legacy  Stock

Assessment database (RAMLDB v4.61, (Ricard et al., 2012)). From those, we estimated stock productivity (or

surplus production)  time series,  which is  a biological  variable  particularly  relevant  to  investigate  putative

regime shifts (Vert-pre et al., 2013). Abrupt shifts in productivity time series have been used as hallmark of

regime shift in some particular fish stocks (Blöcker et al., 2023; Möllmann et al., 2021). Surplus production

can be assimilated to stock productivity if it is independent to biomass, which has been suggested to be the

case for most of the stocks (Vert-pre et al., 2013). We therefore refer to surplus production as productivity.

The productivity  S(t) in the year t was estimated from catch and total biomass time series according to the

following formula:

S(t) = B(t+1) – B(t) + C(t)

with B(t) stock total biomass and C(t) catch in the year t. While catch values are raw data, often assumed to

be measured without  error,  biomass estimates are model outputs and concerns have been raised when

considering model  outputs  as input  data  (Brooks and Deroba, 2015).  Here,  the greatest  concern is that

interannual smoothing of biomass time series by the assessment model could cause us to miss true abrupt
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shifts.  This concern is minimized by the fact that most biomass time series in the database are from highly

flexible statistical catch at age models that allow for substantial process error (e.g., internnual variation in

reproductive output or recruitment,  (Ricard et al.,  2012; Thorson et al.,  2014)).   Our data filtering criteria

(described below) removed a small number of stocks where smooth biomass trajectories were clearly a model

artifact..

The  RAMLDB  includes  stock  assessments  from  several  phyla  including  mollusks,  crustaceans,  and

vertebrates (fishes). For consistency, we only focused on marine fish stocks including both ray-finned and

cartilaginous fishes, and ignored data before 1950 that sometimes corresponded to model extrapolations.

Fish productivity time series with no missing data points were estimated for 397 stocks but a total of 82 were

discarded  either  because  they  had  time  series  length  below 25  years  (68  stocks)  or  because  biomass

estimates were apparently generated from deterministic models which could only produce smooth changes

(14 stocks). The classification was thus performed on 315 stocks corresponding to 161 taxa, among which

158 were at the species and 3 at the genus level. Median time series length was 41 years and the longest

time series was 71 years. To allow for inter-stock comparisons, productivity was normalized by average stock

biomass following (Essington et al., 2015).

Time series classification

Productivity time series were fitted with four different types of model – intercept-only (no change), linear trend,

quadratic trend, and abrupt change – and Akaike Information Criterion corrected for small sample size (AICc)

were computed for each model fit. The best trajectory was considered to be the model with lowest AICc and

validated following (Pélissié et al., 2024). To validate abrupt trajectories, an independent breakpoint detection

method (asdetect,  (Boulton and Lenton, 2019)) was run and we checked whether both methods agreed on

the shift date with a tolerance of five years. For quadratic and linear cases, we tested the significance of the

higher order coefficient. We used the classification with default parameters for asdetect method (anomalous

rate of change equal to three medians absolute deviations and detection threshold set to 0.15) that have been

tested to be most reliable for time series of at least 25 time points (Pélissié et al., 2024). To avoid uncertain

shifts, shifts less than five year from the start or the end of the time series were not considered. If the abrupt
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shift model and the asdetect method agreed that an abrupt shift occurred but disagreed on the year of the

shift, the year identified by the abrupt shift model was used. We also computed three classification quality

score to assess different aspects of model reliability, namely the relative support for each fitted model (AICc

weight), model choice robustness to individual data point removal (Leave-One-Out cross validation), and the

ratio  between  variation  not  explained  by  the  model  and  the  overall  variation  (normalized  RMSE).  This

framework permits the identification of at most one shift in each time series, which is assumed to be the

largest one if several might be present. The standardization by stock average biomass changes the absolute

AICc values but does not affect model ranking or best model choice.

Spatial data

A stock represents a consistent population unit that is spatially bounded. Most stock polygons were extracted

from the dataset used by  (Free et al., 2019). An addition of 64 stock polygons to the dataset was made

following Free’s methodology either by combining fishing subareas or divisions, approximating polygons to

already existing ones, or digitizing fishing areas based on individual assessment data. All added polygons

were processed using QGIS v3.16. Stocks were grouped by FAO Major Fishing Areas as directly available

from  RAMLDB  dataset.  We  also  grouped  stocks  by  Large  Marine  Ecosystems  (LMEs)  that  represent

biogeographically  more  relevant  units.  We  assigned  each  stock  to  the  LME with  which  stock  polygons

overlapped most, except for high seas fisheries for which they were assigned to main ocean areas.

Explanatory variables

Potential explanatory variables were gathered for each taxa or stock, spanning life history, environmental, and

fishing-related pressure. To avoid missing data, we used imputed life history traits from the FishLife database

(Thorson, 2020) and selected two relevant variables among the least correlated ones, namely age and length

at maturity (Fig. S6A). Primary habitat was retrieved from FishBase (Froese and Pauly, 2023) with classes

grouped  as  pelagic  (pelagic-neritic,  pelagic-oceanic,  bathypelagic)  and  demersal  (bathydemersal,

benthopelagic, demersal, reef-associated). Sea surface temperature (SST) was used as the most relevant

environmental variable using data from the Met Office HadISST1 dataset (Rayner et al., 2003) from 1870 to

2020 on a monthly basis (then averaged annually) and with one degree spatial resolution. Annual SST maps
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were clipped based on stock or LME boundaries and averaged to obtain a single SST time series per stock

(Free et al., 2019). Exploitation rate (ER) was used as a proxy for fishing intensity and corresponds to the

ratio of catch to total biomass in the same year. Exploitation rate relative to that at maximum sustainable yield

U/Umsy may have been a better proxy since it accounts for intrinsic differences in productivity among stocks

but was not available for 15% of the stocks. SST and ER means and trends were estimated from the start of

productivity time series up to the shift  if  any was detected or to the latest  year available otherwise.  The

absence of strong multicollinearity of explanatory variables was determined by performing pairwise Pearson

correlation tests (Fig. S6B).

To test the association between stock collapse and PAS, we defined a stock as collapsed if biomass in a

given  year  was  below  25%  of  the  average  stock  biomass  recorded  to  date  following  the  definition  by

(Essington et al., 2015) and if such threshold was crossed for at least two consecutive years to limit artifacts.

We focused on whether a stock ever collapsed and the first year of collapse. We repeated the analyses that

involved  collapsed  status  with  alternative  definitions  used  by  (Yletyinen  et  al.,  2018),  namely  10%  of

maximum biomass and 15%, and 50% of average biomass.

Statistical analyses

We assessed the homogeneity of trajectories found across regions and taxonomic orders separately using

Chi-square test and computed p-values by Monte Carlo simulation using 105 replicates to deal with cases of

low expected values.

We used logistic generalized additive mixed models (GAMM) to assess the effect of independent variables on

the occurrence of productivity abrupt shifts using the  mgcv package  (Wood, 2011). Positive and negative

shifts were considered separately as dependent variable against all other trajectories to contrast conditions of

abrupt shifts against all conditions available. The effect of life history, environmental conditions, and fishing

intensity were estimated as fixed effects by considering age at maturity, length at maturity, main habitat,

average and trend in SST, and average and trend in ER altogether. Numerical variables were standardized to

allow comparison.  To  account  for  space,  stock  centroid  coordinates  were  considered  as  smooth  terms.

Taxonomic orders and families were treated as random effect to account for broad phylogenetic relationships.
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Two stocks from the Japanese Seto inland sea lacked SST data due to limited spatial resolution and were

thus discarded for these analyses.

An  alternative  approach  was  also  performed  to  assess  the  contribution  of  each  predictor  variable

independently and in conjunction with the other predictors on the occurrence of abrupt shifts. This approach

controls for the possible influence of  unchecked multicollinearity among variables.  We used the  hier.part

package (Nally and Walsh, 2004) to run hierarchical partitioning and randomization tests with 999 repetitions

on positive and negative shift occurrence as binomial variables with a logit link function. Phylogeny was not

used for these analyses because of excessive number of groups in each taxonomic level.

Sensitivity analyses

We also ran the classification without the step for abrupt shift confirmation to determine how frequently this

step was eliminating potential  abrupt  shift  classifications. Without the confirmation step, the proportion of

stocks classified as PAS reached 51.4% with similar proportions of negative (26%) and positive (25.4%) shifts

(Fig. S5). We also repeated the GAMM analysis of predictors of PAS with this less strict classification for

PAS. In that  case,  we still  found the effect  of  SST change (p = 0.049, Fig.  S8A) for negative PAS, with

average SST and ER also found as significant predictor (p = 0.006 and p = 0.008 respectively, Fig. S8A). For

positive PAS, the effect of both average (p < 0.001) and trend in ER (p = 0.013) were found as well as a

positive effect of average SST (p = 0.034, Fig. S8B).

We repeated the GAMM with fishing intensity relative to that at maximum sustainable yield (U/Umsy) instead

of exploitation rate (ER). U/Umsy accounts for intrinsic species differences in withstanding fishing pressure

but was available only for 269 stocks. Similar effects to the initial models in Fig. 3 were found in estimates

although not significant for SST change (p = 0.084), probably due to the loss of many stocks with negative

PAS (14 out of 42, among which 6 also collapsed), with in addition a significant positive effect of trend in

U/Umsy (p = 0.002, Fig. S8C). Similar effects to the initial models in Fig. 3 were also found for positive PAS

with age at maturity as the only significant variable (p = 0.049, Fig. S8D).
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We also tested the robustness of the results related to stock collapse by using different thresholds of collapse

(10% of maximum stock biomass, 15% and 50% of the average stock biomass), which gave similar results in

terms of relationship with negative PAS (Fig. S7) and warming rate (Fig. S4).
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Figures and Tables

Figure 1.  Examples of productivity time series classified into trajectory types based on shape and trend.
Some time series were best described by either linear (A-C), quadratic (D-F), or abrupt trajectories (G, H),
and  overall  trend  either  positive  (A,  D,  G),  or  negative  (C,  F,  H).  No  change is  a  types  of  shape that
corresponds  to  a  trajectory  without  trend  (B,  E).  Each  panel  shows  fish  stock  productivity  time  series
normalized by the average stock biomass (black line) with the best model fit (solid blue line) and standard
deviation (dashed lines) following the classification procedure detailed in the methods. Three classification
quality  scores are specified for  each time series:  AICc weight  (wAICc),  leave-one-out  score (LOO),  and
normalized root mean square error (NRMSE). Timepoints that if removed in the LOO process would result in
the same shape are highlighted by orange dots. For abrupt trajectories (G, H), the location of breakpoints is
indicated by vertical lines, the pink background corresponds to the breakpoint uncertainty for the  asdetect
method, and the distribution of breakpoint locations from LOO time series are represented by color bars. Note
that scales are not the same for the different panels. Species name and (stock ID) are also displayed. Fish
silhouettes come from https://www.phylopic.org/.
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Figure  2.  Overview  and  spatial  distribution  of  all  productivity  trajectory  types  alongside  the  temporal
distribution of productivity abrupt shifts (PAS). (A) Overall proportion of all productivity trajectory types, with
the inner pie chart indicating trajectory shape and the outer layer specifying the trend. (B) Spatial distribution
of all trajectory types by FAO major fishing areas. The size of the charts is indicative of the number of stocks,
which are also displayed. (C-D) Temporal distribution of positive (C) and negative PAS (D) (color bars and
density) with in gray the coverage (i.e., number of stocks with data available in each year) of the time series
classified.
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Figure 3. Generalized additive mixed model (GAMM) coefficient estimates for models accounting for negative
(A) and positive (B) PAS against all other trajectories. Positive estimates mean that PAS are more often found
for larger values of the variable and conversely. Dependent variables are arranged from top to bottom with
age at maturity, length at maturity, main habitat (pelagic as reference category), mean (SSTbar) and linear
trend (deltaSST) in sea surface temperature, mean (ERbar) and linear trend (deltaER) in exploitation rate.
Mean and trend in SST and ER were computed from the first year of productivity available up to the shift if
any was detected. Model estimates (circles) with confidence intervals at 95% (horizontal bars) are presented
and significant estimates are indicated with filled circles. All numeric variables were standardized.
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Figure 4. Relationship between PAS and stock collapse at stock level (A-C) and at the scale of Large Marine
Ecosystems (LMEs) related to ocean warming rate (D-F). (A) Proportion of trajectories depending on whether
stocks ever reached collapsed state (defined as 25% of the mean biomass) with actual number of stocks
indicated.  (B)  Standardized  PAS  magnitude  for  negative  (dark  red)  and  positive  (dark  blue)  shifts  and
collapsed state. (C) Distribution of PAS location relative to the first year as collapsed (vertical dotted line), with
positive PAS (top panel in blue) and negative PAS (bottom panel in blue). (D-F) Relationship between the
proportion of PAS (D, E) or stock collapse (F) within LMEs and Sea surface temperature (SST) rate of change
between 1950 and 2020. LMEs with less than two stocks were not included. Significant linear regression are
drawn with a solid line, and dashed line otherwise.
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