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Filling Monitoring Gaps for Data-deficient Species Using Annual

Occupancy Predictions from Co-occurrence Models

Abstract

Fragmented surveys and limited monitoring have excluded most invertebrates from
conservation policy. We present a fill-in framework that uses species distribution models
(SDMs) to reconstruct missing annual trends—not to extrapolate trends, but to fill them in.
Instead of filtering data-sparse regions or years or relying on static environmental variables,
we used co-occurrence patterns (COP) as variables, to capture year-to-year assemblage shifts.
COP variables enabled annual prediction at all recorded sites from multisource, presence-only,
sparse data. When applied to four rare native ladybugs across North America (2007-2021),
COP models exceeded reliability benchmarks (Accuracy > 0.70, AUC > 0.70, Kappa > 0.40,
Brier < 0.25) across standard 7:3 splits, cross-source and cross-period validations. Annual
predictions were robust to temporal biases from variation in data volume and source
composition. Multiple regression indicated negligible effects of those biases on reconstructed
trends. Predicted decadal declines (9—31%) closely aligned with independent regional long-
term monitoring, operationalizing IUCN Red List classification (from least concern to
vulnerable) in the absence of standardized monitoring. By converting fragmented
observations—primarily from citizen science—into reliable annual trend estimates, the fill-in
approach extends extinction-risk assessment to data-deficient taxa long excluded from

conservation frameworks.

Introduction

Most invertebrate species—despite ongoing declines—remain invisible to conservation
action, not because they are safe but because they are silent in the data. The International Union
for Conservation of Nature (IUCN) Red List requires trend estimates over the past decade or
three generations for declining species (IUCN, 2024). However, standardized monitoring
programs are scarce or limited in scope for these species (Estes et al., 2018; Bayraktarov et al.,
2019) and available records are typically sparse, presence-only, and opportunistic. Such data
even fail to meet the requirements of current trend models (Harvey et al., 2020), which assume
ordinal abundance (e.g., Newson et al., 2015; Inamine et al., 2016; Schultz et al., 2017; Martin
et al., 2021), checklist-based surveys (Walker & Taylor, 2017; LeCroy et al., 2020), metrics of
survey effort (e.g., Szabo et al., 2010; Isaac et al., 2014; Kamp et al., 2016; Horns et al., 2018;
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Fink et al., 2020), and repeat visit protocols (e.g., MacKenzie et al., 2002; 2006; Kéry et al.,
2010; van Strien et al., 2013; Altwegg & Nichols, 2019). For example, Bayesian occupancy

models (OM) are effective tools for trend estimation, yet in North America they often entail =
10,000 km? grid cells and 10-20-year intervals to achieve adequate data density for bees and

dragonflies (Soroye et al., 2020; Jackson et al., 2022). Without methods capable of estimating
temporal trends from the data available, underrepresentation of invertebrates in global

conservation frameworks will persist (Montgomery et al., 2020; Jonsson et al., 2021).

This study reconstructs annual occupancy trajectories by filling monitoring gaps with
annual predictions from species distribution models (SDMs) using variables derived from co-
occurrence patterns (COP). Previous studies have used SDMs to predict occupancy at
unsurveyed locations by modeling correlative relationships between known occurrence records
and environmental or biotic variables (Olden et al., 2008; Zimmermann et al., 2010; Franklin,
2013). These relationships have been modeled via recursive binary partitioning (decision-tree
algorithms), entropy maximization under environmental constraints (maximum entropy
modeling), or multivariate probit regression (joint species distribution models; JSDMs), among
other approaches. Such predictions can help fill monitoring gaps, and SDMs perform well with
small sample sizes (Hernandez et al., 2006; Wisz et al., 2008; Luan et al. 2020) and presence-
only data (Hernandez et al., 2006; Wisz et al., 2008; Mi et al., 2017; Robinson et al., 2018).
However, most applications target single-time distributions or long-term range shifts (Tingley
& Beissinger, 2009; Svancara et al., 2019). They primarily rely on static variables, such as
environmental and geographical proxies, making them ill-suited to trend estimation. Rare
attempts at fine-temporal prediction require structured data and extensive data thinning
(Svancara et al., 2019; Fink et al., 2020), which is impractical for under-monitored

invertebrates.

To predict annual occupancy at historical sites, we novelly operationalized co-occurrence
patterns (COP) as numerical variables for machine learning classifiers that use decision trees
(COP-ML). In community ecology, COP denotes the observed frequency with which species
co-occur across locations. Prior SDM studies suggest that such patterns can encode biotic
interactions (Pollock et al., 2014) and community-level environmental responses (Kissling et
al., 2012). Extending these ideas, we propose that annually updated COP vectors could also
track habitat and community shifts at a site more rapidly than static or slowly varying variables.

Community composition may change before environmental changes are detectable and can
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immediately respond to non-environmental drivers. Here, we represented COP as a site—year
vector of the annual frequencies of non-target species within a fixed radius. Decision-tree
classifiers then learned rule-based partitions linking target species occupancy to both individual

variables and their joint patterns (e.g., “if variable A > a and variable B <b, then ...”).

This study evaluates whether COP-ML can produce accurate predictions of annual
occupancy. It further tests whether the model remains robust to temporal and structural biases
in multisource, sparse and opportunistic data typical of under-monitored species. With the
expansion of citizen science, opportunistic observations increasingly dominate in those taxa
(Kissling et al., 2018; Knape et al., 2022) but also introduce temporal and structural biases
(Isaac et al., 2014; Guzman et al., 2021; Larsen & Shirey, 2021). Mitigation strategies, such as
data thinning or quality-based filtering (Wisz et al., 2008; Isaac et al., 2014; Kamp et al., 2016;
Zizkaetal.,2021; Van Eupen et al., 2021), can exacerbate sparsity and also preclude estimation
of the absolute trend across the entire range as required under the [IUCN Red List framework.
Reliable annual trend estimation therefore requires methods that tolerate biased data while

preserving temporal signals.

To test robustness to temporal bias, we examine whether models trained on one period
generalize to others (Martinez-Minaya et al., 2018), a necessity given that citizen-science data
are disproportionately concentrated in recent years (Geldmann et al., 2016). To test robustness
to structural bias, we assess whether models trained on one survey type can predict others.
Multisource integration is often indispensable for data-poor species (Fletcher et al., 2019;
Miller et al., 2019; Isaac et al., 2020), yet inconsistent methods, even among citizen-science
platforms (Gardiner et al., 2012), can introduce systematic errors (Cheney et al., 2013). For
example, citizen science tends to target urban areas, whereas ecologists' surveys more often
cover natural or semi-natural areas (Geldmann et al., 2016). Without such robustness, temporal
trends risk reflecting shifts in prevailing survey types rather than biological change (Pagel et

al., 2014; Knape et al., 2022).

We test three hypotheses: first, can COP-ML distinguish target species’ presence from
absence using annual COP variables? Second, can annual COP variables generalize across time
periods? Third, can these variables generalize across survey methods? Accordingly, we ran
three tests: standard 7:3 split evaluation, temporal generalization, and structural generalization.

We then applied COP-ML to four native North American ladybugs and generated annual
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occupancy estimates for 2007-2021 at all recorded sites. From these, we reconstructed

trajectories and quantified 10-year reductions to operationalize [IUCN Red List categories.

Methods

We asked whether COP (co-occurrence pattern) variables can yield accurate annual
occupancy despite temporal and structural biases. In the step for data assembly and labeling,
we compiled presence-only records from multiple sources (2007-2021) for all North American
ladybugs with minimal filtering, labeling four native species as presences and two invasive
competitors as pseudo-absences. In the step for variable construction, we built COP variables
for each site—year labeled as presence or pseudo-absence by counting non-target species within
a fixed radius and scaling counts. In the step for model training, we trained XGBoost decision-
tree classifiers on these variables, which served as predictors in the model. In the step for
generalization and evaluation, we assessed model performance with six metrics under three
settings: cross-source (structural) generalization, cross-period (temporal) generalization, and
standard 7:3 split evaluation. For each test, we summarized the distribution of performance
from 2,500 resampled datasets. Finally, in the annual prediction and trend analysis step, COP-
ML trained on the full dataset predicted annual occupancy of the four target species; an
ensemble of resampled models (majority vote) produced the final yearly presence-absence at
all historical sites for 2007-2021. From these predictions, we estimated decadal reduction rates

under IUCN Ceriterion A and tested their significance.

Target species

Four native ladybug species—Coccinella novemnotata Herbst, 1793; Coccinella
transversoguttata Faldermann, 1835; Adalia bipunctata (Linnaeus, 1758); and Hippodamia
parenthesis (Say, 1824)—once dominated North American ladybug communities, thriving
across diverse habitats and prey types (Losey 2007; 2012; taxonomy hereafter follows Gordon
(1985) and Gordon & Vandenberg (1991)). Since the mid-1980s, their relative abundance in
collections has dropped to 1-5% of former levels (Harmon et al., 2007) due to the newly-
established competitors Coccinella septempunctata Linnaeus, 1758 and Harmonia axyridis
(Pallas, 1773) (Wheeler & Hoebeke 1995; Harmon et al., 2007). These introduced species now
dominate and alter community structure, reducing diversity and abundance continent-wide
(Petersen & Losey, 2024). Estimating reduction rates and extinction risks for the natives is

challenging given their current low densities and broad distributions (Wheeler & Hoebeke,
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1995; Hesler et al., 2004; Harmon et al., 2007). Addressing this requires integrating multisource

data across periods, regions, and survey methods while addressing inherent biases.

Occurrence data

We compiled Ladybug records from multiple sources: three citizen-science sources (The
lost ladybug project, 2021; iNaturalist, 2021; BugGuide.Net, 2021), one museum website
(NCSU, 2021), and three metadata platforms (GBIF, 2021; BISON, 2021; IdigBio, 2021;
Appendix S1). Of the citizen-science, iNaturalist and BugGuide.Net relied on user
identifications, whereas The Lost Ladybug Project relied on experts. We further verified

identifications of the target species from iNaturalist and BugGuide.Net.

To assess how COP variables address biases, we applied minimal preprocessing: Records
were restricted to the U.S. (excluding Alaska and Hawaii) and parts of Canada (Manitoba,
Ontario, Saskatchewan, British Columbia, Alberta, Quebec) for 2007-2021. Only adult forms
identified to species level were retained. Where available (89% of records), we restricted GPS
accuracy to 1 km. We removed duplicate records identical in species, year, and GPS. We then
computed descriptive statistics to reveal temporal and structural inconsistencies in the compiled

dataset.

The dataset included 188,644 records of 353 ladybug species from 85 sources, with 324
records for C. novemnotata, 510 for C. transversoguttata, 732 for H. parenthesis, and 1,426

for A. bipunctata, which were labeled as presence.

Pseudo-absence

When explicit absence records are unavailable, pseudo-absences are often drawn by
randomly sampling coordinates from all other species’ records in a dataset (Robinson et al.,
2018). Here we instead used records of the introduced competitors, C. septempunctata and H.
axyridis. First, they competitively exclude the target species. Their occurrence within an 18-
km radius without the targets was assumed to be a logical proxy for absence, reflecting a
reshaped COP after local displacement. Second, their dominance (61% of our dataset) meant
that traditional random sampling would largely select them anyway, minimizing
methodological deviation. Therefore, we used competitors as pseudo-absences to encode a

local-displacement hypothesis in COP variables.

We pooled 10,000 pseudo-absence points by subsampling from states or provinces in

proportion to the regional frequency of the four targets’ presence. Without this proportionality
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filter, apparent accuracy increased but models relied more on geographical variables (e.g.,
Coleomegilla maculata (De Geer, 1775) concentrated in eastern regions), which are insensitive
to temporal changes. In the variable construction step, we combined the entire pool with
presence records. In the training and testing step, absences were resampled from this pool to

balance classes.
Variables

Direct and indirect competitions shape ladybug assemblages, where the dominance of
newly-established species drives niche differentiation (Petersen & Losey, 2024) and avoidance
behaviors in native species (Elliott et al., 1996; Hesler & Kieckhefer 2008; Mukwevho et al.,
2017). These changes can be immediate since ladybugs, as highly mobile predators, engage in
long-distance interactions (e.g., H. axyridis, 442 km/year; McCorquodale, 1998) and actively
forage across habitats (Woltz & Landis, 2013). 18 km is the commonly reported dispersal
distance of this group (Jeffries et al., 2013; COSEWIC, 2016a; 2016b). Here, we represented
COP as counts ¢y, of cooccurring non-target ladybug species jwithin an 18 km radius rof site
sin year t, where each site-year (s,£) was labeled as presence (= 1) or absence (= 0) of the

target species. This is expressed as Equation (1):

species(u) = j
Cstj = z 1, if year(u) =t (1)
u distance(s,u) <r

Where u denotes a single georeferenced record (coordinate, year, species). Next, for

each species-year (j,£), we trimmed outliers in the distribution of & outside [Q1 - 1.5IQR, Q3
+ 1.5 IQR] to reduce distributional bias during scaling. To maintain consistency of variable
vectors, outlier detection in a single variable resulted in exclusion of the entire site—year record.
This mainly affected the pseudo-absence pool, removing only 0—12 presence records per target
species (< 0.008%). We then min-max scaled ctj per (j;£) to adjust for species-specific

overreporting and temporal variations in observation efforts, as expressed as Equation (2):

Cot,j — mlnsESt’j Cst,j

, 1fmaxsestyj Cs,t,j = MINges, ; Coyt,j»

2)

Xst,j = maXseSt'}- Cstj— mlnsest'}- Cs,t,j
0, otherwise.

We excluded environmental variables to avoid multicollinearity with COP variables, as
their effects are expected to be partially embedded in co-occurrence patterns (Kissling et al.,

2012). This also aligns with our focus on short-term temporal interpolation. We retained 85
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species with at least 30 co-occurrences with a target species, excluding unidentified 'sp." We
applied additional screening using forward regressions (p < 0.05) and variance inflation factors
(< 10). Although prior feature selection rarely improves performance of decision trees, we
applied prescreening to limit ecologically implausible variables and to improve interpretability.
To prevent leakage, we excluded target species from their own variables. Finally, we ranked
the top 15 key variables using SHapley Additive exPlanations (SHAP) values, which assess
feature importance in predictions from preliminary loops. The selected predictors xs were

stacked into the matrix X and fed into models as:

Xy = (Xsejpr - Xsejis) Vs € {013 (3)

To analyze associations between each variable and target species occupancy, we
calculated averages of point-biserial correlations by resampling pseudo-absence points 50

times to match presence record counts.

Development and characterization of models

We modeled associations between COP variables and targets’ occupancy with XGBoost

as an ensemble of decision trees:

1

o= mzlfm(xi)' P T exp(—F G “)

Here, F(xi) is the raw logit score and pi is predicted probability of presence at site-year

I Each tree fn is a set of if—then split rules to the predictor vector x; (the COP variables); for
example, xz < Threshold split, and x, > Threshold splity. Thus, tree depth = 2 naturally

encodes interactions among predictors. Training minimizes logistic loss with a tree-complexity

penalty (Chen & Guestrin 2016).

We implemented the XGBoost package in Python. From the default hyperparameter
settings, we only adjusted objective="binary:logistic' and n_estimators=1000, as our aim was

to evaluate COP variables rather than optimize the model.

Across all analyses, we balanced presence and pseudo-absence records 1:1 by
undersampling pseudo-absences. We then generated 50 independent datasets by resampling

pseudo-absences and, within each, drew 50 random train—test splits, yielding 2,500 runs (50 x
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50). For each test scenario, we summarized and evaluated performance based on the mean and

distribution across runs.

We assessed model performance with six metrics: Accuracy (correct response rate),
Kappa (agreement adjusted for random chance; Cohen, 1960), Recall (true positive rate), and
Precision (positive predictive rate) to measure ability to predict binary presence-absence, plus
Brier score (mean squared discrepancy; Brier, 1950) and AUC (ability to rank presence over

absence; Fielding & Bell, 1997) for probability quality.

Generalization

Generalization tests evaluate a model’s ability to predict data distinct from training data
in temporal, geographical, or source aspects (Vaughan & Ormerod, 2005), minimizing train-
test autocorrelation, and demonstrate robustness when ground truth comparisons are limited
(Justice et al., 1999). Our tests assessed whether COP-ML could generalize across structurally

or temporally distinct data pools.

Structural Generalization: To evaluate generalizability across survey types, we trained
models on presence and pseudo-absence data from citizen science (LLP, iNaturalist,
BugGuide.Net) to predict institutional data from 28 institutes. We assessed differences between
their COP structures using ANOSIM with Manhattan distance (Appendix S2). Presence records
comprised 280 citizen-driven versus 44 institutional for C. novemnotata, 485 versus 25 for C.
transversoguttata, 626 versus 116 for H. parenthesis, and 1,338 versus 88 for 4. bipunctata,
with institutional pseudo-absence points ranging from 416 to 510. In a separate test, we also
trained models on a group dominated by open-ended citizen science and evaluated them on the

program emphasizing rare species (LLP).

Temporal Generalization: For forward testing, we trained models on presence data from
2007 until the year when approximately 70% of presence was accumulated, testing on the
remaining about 30%. For backward testing, we reversed this, training from 2021 backward

(Appendix S2). Pseudo-absence points were selected using the same cutoff year.

Evaluation

To evaluate COP-ML’s annual prediction performance, we followed standard 7:3 split
test by training models on 70% of presence data and testing on the remaining 30%. Unlike the

generalization tests, which restricted the scope of records, this split used the full range of
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presences, providing a baseline measure of COP-ML’s predictive reliability for subsequent

reduction rate estimation.

Prediction on annual distributions and reduction rates

To enable consistent temporal comparisons, COP-ML predicted annual presence of target

species at all historical sites in our dataset since 2007, addressing yearly observation gaps.

Prediction: We developed models as described in Development and characterization of
models, but we trained them on all available presence data to improve prediction accuracy
given the sparsity of records (Fielding & Bell, 1997; Rencher, 1995). A site-year was classified
as occupied if a majority of the 2,500 model runs (50 pseudo-absence resamples x 50 random

seeds for repeated fitting) predicted presence.

Analysis: We evaluated distributional trends under [IUCN Red List Criterion A, based on
changes in Area of Occupancy (AOO) and Extent of Occurrence (EOO). The AOO, calculated
as the number of 4 km2 grid cells occupied by a species, reflects occupancy extent and,
indirectly, population size (IUCN, 2024). The EOO, defined as the polygon enclosing all
known occurrences, indicates risk dispersion across a species’ range (IUCN, 2024). For
Criterion A, we fitted linear regressions to predicted AOO (2007-2021) and estimated the 10-
year decline (2012-2021), interpreting it as a proxy for population trends (IUCN, 2024). We
tested for heteroskedasticity with Breusch—Pagan and White tests, and identified influential
outliers with Cook’s distance. We applied robust standard errors (HC3) to assess trend
significance, followed by robust regression to estimate final AOO decline. Because robust
regression may downweight abrupt changes that could represent real ecological signals, we
also ran ordinary least squares (OLS) regression for comparison and to improve the reliability

of trend interpretation.

Validation: To verify that AOO changes predicted by COP-ML reflect consistent
temporal trends despite varying data availability, we regressed predicted AOO against time

(year) while including annual volumes of each citizen-science source as covariates.

Results

Biases in multisource data

The compiled dataset from multiple sources showed both structural and temporal bias.

Structural bias, arising from heterogeneous effort and methods across sources (Figure 1),
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appeared as unequal Efficiency (defined as the percentage of all records represented by target
species): institutional data (3.5% of the compiled dataset) recorded target species 2.79 times
more often than citizen-science data (96.5%). Even among citizen-science sources, LLP (5%)
had Efficiency of 6.6%, 6 times that of iNaturalist where it was 1.1% (89%). Excluding LLP,
the remaining dataset averaged 1.3% Efficiency (corresponding to the “lower efficiency group”
in the second structural generalization). Temporal bias reflected an exponential increase in

annual observations (Figure 1), with post-2014 volume being 9.61 times higher than pre-2014.
Structural and temporal generalization

We tested COP-ML for annual predictive performance and generalizability against
biases through structural (cross sources) and temporal (forward/backward) generalizations. All
test results met or exceeded established reliability benchmarks from prior studies: Accuracy >
0.70 (rule of thumb), AUC > 0.70 (Hosmer et al., 2013), Kappa > 0.40 (Landis & Koch, 1977),
and Brier <0.25 (Brier, 1950; Figure 2). Models trained on the citizen-science group accurately
predicted presence-absence in the institution group. Likewise, models trained on the low-
efficiency group generalized to the highest efficiency source, and both forward and backward

temporal generalizations satisfied these benchmarks.

In the generalization from citizen-science to institutional groups, C. transversoguttata
model achieved the highest performance (Accuracy, AUC, Kappa, Brier = 0.87, 0.94, 0.75,
0.11), followed by C. novemnotata (0.81, 0.85, 0.61, 0.16), H. parenthesis (0.78, 0.84, 0.55,
0.17), and 4. bipunctata (0.73, 0.84, 0.46, 0.19). Analysis of similarities (ANOSIM) indicated
small dissimilarities in COP predictor structures between these groups (R < 0.25, p < 0.005;
Appendix S2), with species-specific R-values of 0.22 (C. tramsversoguttata), 0.12 (H.
parenthesis), 0.06 (C. novemnotata), 0.05 (4. bipunctata), and 0.06 (pseudo-absences).
Comparable results also held between the low-efficiency group, dominated by 96.3% of open-
ended citizen science (plus 3.7% institutional), and the highest-efficiency source, a single

citizen-science program emphasizing rare species.

In temporal generalization, C. transversoguttata, C. novemnotata, and H. parenthesis
maintained consistent performance scores in forward and backward tests. In contrast, A.
bipunctata showed a 7% decrease in backward Accuracy, with Recall (true positives among
actual positives) increasing 2% and Precision (true positives among predicted positives)
decreasing 13%. This indicates that the model trained on recent data classified a wider set of

habitat conditions as occupied than were historically. In a supplementary analysis, we shifted
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the split to an earlier point (pre-2012) to further exclude recent records from the test set,
expanding the training set to 87% of records. This intensified the tendency: Recall rose 11%
and Precision fell 18%, while accuracy remained unchanged. This suggests that its recent co-
occurrence patterns encompassed conditions not occupied in the past, unlike the other three

species.
Evaluation of the developed models

We assessed COP-ML classifiers, trained on 70% of the dataset and tested on 30%,
against the benchmarks. All models exceeded them; even the lowest-performing species
achieved Accuracy, Precision, and Recall > 0.75, AUC > 0.87, Kappa > 0.57, and Brier <0.15
(Figure 2). C. transversoguttata (with 510 presence datapoints) performed best, followed by C.
novemnotata (324), A. bipunctata (1,438), and H. parenthesis (742).

Predicted reduction rates and conservation status

Given COP-ML’s demonstrated performance in tests, we generated annual occupancy
predictions for 2007-2021 at all historical sites of the target species in our dataset to fill

monitoring gaps and enable consistent temporal comparisons (Figure 3; Appendix S6).

Area of occupancy (AOQ) declined significantly over time for all species (p < 0.05 for
OLS and robust SE; B: -56.2 to -13.0; R?: 0.50 to 0.83; all 95% ClIs excluded zero). Although
we detected heteroskedasticity in A. bipunctata and influential points in A. bipunctata and H.
parenthesis, slope (B), R? and Cls were similar across OLS, OLS with robust SE, and robust

regression, indicating that regression-estimated reduction rates are reliable (Appendix S3).

Predictions indicated three species were threatened by declines in North America
(Appendix S4). Occupancy measured as AOO, an indicator of occupied area and an acceptable
proxy of population size (IUCN, 2024), decreased from 2007 to 2021: 1,962 km? for H.
parenthesis, 584 km? for A. bipunctata, and 480 km? each for C. novemnotata and C.
transversoguttata. Under [IUCN Red List Criterion A (10-year reduction), estimated rates were
31% for H. parenthesis (vulnerable), 15% for A. bipunctata (near threatened), 15% for C.

novemnotata (near threatened), and 9% for C. transversoguttata (least concern; Figure 4).

Extent of occurrence (EOO), a proxy for spatial buffering against extinction risk (IUCN,
2024), declined most in C. transversoguttata. Despite its least concern classification here, this

contraction suggests reduced spatial resilience with ongoing decline.
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Multiple linear regression confirmed that time (year) was a significant predictor of
AOO declines across all species, whereas annual volumes of each citizen-science source

showed no evidence of statistically or practically meaningful effect (Appendix S5).
Variable importance and correlation

The importance metrics of variables (SHAP values) and point-biserial correlations
showed positive co-occurrence patterns among C. novemnotata, C. transversoguttata, and H.
parenthesis. Their occurrences were positively correlated and mutually informative in each
model (Figure 5). In contrast, the two competitors H. axyridis and C. septempunctata were
negatively correlated with these natives, and they were ranked among the top variables by
SHAP. A. bipunctata was the exception: it showed positive correlations with both newly-
established species. The common native Hippodamia convergens Guérin-Méneville, 1842
(third most abundant in the dataset) also correlated positively with three natives and ranked

highly in all models, except H. parenthesis.

Discussion

Rationale for estimated reduction rates

This study provides the first continent-wide estimates of decadal declines for C.
novemnotata, C. transversoguttata, A. bipunctata, and H. parenthesis based on annual
occupancy predictions. Earlier studies from the 1980s—1990s reported steep relative abundance
declines of 95-99% (rescaled from Harmon et al., 2007). By contrast, our more moderate
reduction rates from 2007-2021 likely reflect the post-establishment phase in which the new

competitors had already become dominant.

Several lines of evidence support the plausibility of these more moderate rates.
Historical records indicate that the most acute declines occurred shortly after the establishment
of C. septempunctata and H. axyridis in North America (Colunga-Garcia & Gage, 1998; Bahlai
et al., 2015). Meanwhile, subsequent regional studies suggest that declines have plateaued or
transitioned into a chronic, low-intensity phase (Turnock et al., 2003; Elton, 2000; Strayer et
al., 2006; Harmon et al., 2007; Hesler & Kieckhefer, 2008), with no further sharp reductions
observed (Alyokhin & Sewell, 2004; Bahlai et al., 2015). Such stabilization may reflect
community-level reequilibration, resistance in remnant populations, or the persistence of

spatial refuges (Evans, 2000; 2004; Evans et al., 2011).
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Standardized long-term monitoring in Michigan (2007-2019) corroborates this
interpretation, indicating 10-year declines of 37% for H. parenthesis and 20% for A. bipunctata
(KBS LTER; https:/Iter.kbs.msu.edu/datatables/67). These trends are obtained from linear
regressions of sticky-trap captures normalized by the number of survey spots to control for
effort. Although limited to a single site, these local declines align closely with our continent-
wide estimates (31% and 15%, respectively), suggesting that our predictions with COP-ML

provide an ecologically realistic baseline for conservation assessments.
Interpretation of COP variables

Annual prediction accuracy may imply that yearly COP variables capture time-
responsive ecological signals (interaction structure, habitat turnover) that static climate or land-
cover variables may miss at an annual resolution. Despite attenuation bias in our noisy,
heterogeneous dataset that likely damp effect sizes, correlations between key variable species
and targets generally aligned with known ecological associations and were also prioritized by

the models (Figure 5).

For instance, C. novemnotata and C. transversoguttata showed among the strongest
positive correlations, consistent with overlapping habitat use and resource preferences (Hesler
et al., 2009). In contrast, the competitors H. axyridis and C. septempunctata were negatively
correlated with the three target natives and ranked among the top SHAP variables, consistent
with well-documented competitive displacement (Wheeler & Hoebke, 1995; Harmon et al.,

2007; Petersen & Losey, 2024).

By contrast, A. bipunctata showed positive correlations with both newly-established
species, likely reflecting macro-scale overlap in arboreal habitat use with H. axyridis (Coderre
et al., 1995; Koch, 2003; Omkar & Pervez, 2005; Hentley et al., 2016) and competitive
coexistence with C. septempunctata in Europe, where both are native (Hon€k 1985; Nedvéd
1999). However, this does not rule out competitive exclusion at finer spatial scales that may
fall below our 18 km COP radius (Kajita et al., 2000; Kajita et al., 2006; Soares & Serpa, 2007).
Notably, coexistence signals persisted despite competitor-based pseudo-absences. This
alleviates concerns that pseudo-absence sampling introduced shortcut artifacts—for example,
if neighborhoods of pseudo-absence points enriched with competitor records might

automatically imply target absence.

Lower-ranked COP variables involved species pairs with little documented interaction

and may act as proxies for geography or environment.
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Strength and limitation of COP

The robustness of COP-ML across periods and sources suggests that COP variables
could encode latent distributional constraints within noisy, opportunistic datasets—particularly
when interactions strongly shape them (trophic dynamics, habitat filtering, or competition;
Pollock et al., 2014). In our system, the prolonged competition between native and newly-
established ladybugs has reshaped communities (Harmon et al., 2007; Petersen & Losey, 2024),

and COP variables appear to capture these patterns.

For three species, performance metrics were similar in forward and backward
predictions, indicating limited sensitivity to temporal fluctuations in data quantity and quality.
Analysis of similarities (ANOSIM) reached consistent conclusions (Appendix S2). Consistent
co-occurrence signals within noisy datasets provide a stable basis for annual occupancy
prediction. One possible explanation is that COP variables capture relational signals, which are
less sensitive to sampling noise than single-species occurrence rates (Tikhonov et al., 2017,

Johnston et al., 2017).

However, this strength depends on the temporal stability of co-occurrence patterns
(Tikhonov et al., 2017). COP-ML declined in performance when backcasting 4. bipunctata,
whose habitat selection was reported to have shifted under post-invasion habitat compression
(Bahlai et al., 2015). The model trained on recent COP tended to overpredict past suitability by
classifying historically unoccupied conditions as suitable—evidenced by higher recall than
precision. This underscores a limitation: when biotic interactions change, the assumption of

time-invariant COP may fail.

Our COP-ML generalized across heterogeneous datasets—from open-ended to targeted
rare-species citizen science—while showing small dissimilarities in COP values (Appendix S2).
Although opportunistic data are often viewed skeptically and has limited its utility (Isaac &
Pocock, 2015; Steen et al., 2019), multisource integration is increasingly essential for data-
poor species (Miller et al., 2019; Isaac et al., 2020). Our results indicate that COP variables,
largely driven by commonly recorded species, can indirectly inform distributions of rarer taxa.
These findings highlight the conservation value of citizen science and suggest that its rapidly

growing data volumes can be productively leveraged.

Fill-in approach with annual predictions
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We propose a fill-in approach that generates predictions of annual occupancy to bridge
monitoring gaps. By tracking year-to-year occupancy across North America since 2007, we
evaluated 10-year reductions under the [IUCN Red List Criterion A (Figure 3). Traditional time-
series workflows often filter datasets to well-monitored regions, narrowing the spatiotemporal
scope of inference and precluding absolute-extent assessments (e.g., [UCN Red List). Current
trend models require extensive filtering or structured surveys—tresources structurally
inaccessible to the taxa most in need of conservation insight. Our approach produces fine-
temporal estimations from sparse, presence-only, multisourced datasets, directly benefitting

them.

For under-monitored species, annual COP-ML predictions could complement
application of Bayesian occupancy models (OM) that track temporal change but typically
require at least two revisits per period or high spatiotemporal density in data (Royle, 2006;
Kamp et al., 2016; Outhwaite et al., 2018; Perkins-Taylor & Frey, 2020; Jha et al., 2022). In
North America, limited data density has often forced coarse spatial (~10,000 km?) and temporal
(10-20 years) resolutions for insects such as bees and dragonflies (Soroye et al., 2020; Jackson
et al., 2022; Shirey et al., 2023). One way to recover resolution is to commission additional,
targeted surveys (Xue et al., 2016; Tulloch et al., 2013), but this is costly; our approach offers
an alternative by producing annual predictions without new field effort. However,
incorporating ML-based predictions into occupancy modeling frameworks—as pseudo-
observations—remains largely untested. Occupancy models explicitly model detection and
survey processes, so predicted probabilities must be reconciled with those components.
Although recent OM advances have explored non-ideal data (e.g., assuming random-walk
observation processes, using pseudo-absence instead of checklist absence, or treating
opportunistic records as revisits; Outhwaite et al., 2018), the statistical compatibility of ML

predictions within OM frameworks has yet to be demonstrated.

The fill-in and filtering strategies are complementary. However, we deliberately did not
apply spatial thinning or filtering to address spatial autocorrelation. First, our targets are data-
deficient, and our goal is to cover the entire known range, so filtering is impractical. Second,
our aim was to test whether COP-ML, devised for such taxa, remains reliable without deep
filtering. Third, our case is temporal interpolation at the same sites, rather than prediction to
new locations, spatial leakage is less relevant in our setting. Finally, state-matched pseudo-

absences further mitigate overfitting by emphasizing within-region discrimination. Future
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study will be needed to determine filtering levels that optimally balance performance, bias

reduction, and data retention in the fill-in framework.

This study presents a scalable method to bridge monitoring gaps for data-deficient
species, using sparse, largely opportunistic, presence-only records to generate annual
occupancy estimates. Predicted trends aligned with long-term trends from independent regional
monitoring and operationalized [IUCN Red List criteria for species previously excluded due to
lack of data. COP-ML demonstrated robust performance across heterogeneous sources and
time periods, showing that reliable signals of extinction risk can emerge even from unstructured
datasets. By converting fragmented observations into interpretable trends, the fill-in approach
with annual predictions provides a practical pathway to extend assessment of extinction risk

and strengthen conservation decisions where standardized monitoring is absent.
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Figure 1. Structural and temporal inconsistencies in our multisourced dataset; (a) difference in
detection efficiency (target records per 100 ladybug records) in institutional collections and
three citizen science sources (The Lost Ladybug Project, iNaturalist, BugGuide.Net); (b)
exponential increase in annual ladybug observations across the USA and Canada (2007-2021;

¥y =758.89¢%*, R? = (.83).
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Figure 2. Performance of species distribution models using co-occurrence pattern variables for
C. novemnotata (N), C. transversoguttata (T), A. bipunctata (B), and H. parenthesis (P) across
standard evaluation, structural generalizations, and temporal generalizations; black plots,
standard 70% training and 30% testing; white plots, citizen science training and institutional
data testing; gray plots, low target-density group (1.3%) training and high density source (6.6%)
testing; left hatch, post-2007 training until ~70% coverage and later-year testing; right hatch,
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Pre-2021 traing until ~70% coverage and earlier-year testing; red lines, mean performance
across 2,500 runs; dash, reliability benchmarks—Accuracy > 0.70, AUC > 0.70 (Hosmer et al.,
2013), Kappa > 0.40 (Landis & Koch, 1977), and Brier < 0.25 (Brier, 1950).
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Figure 3. Annual occupancy of Hippodamia parenthesis (2007-2021) in the USA and Canada;
Left, co-occurrence pattern model predictions at sites with prior records of the species; Right,
raw observations from the compiled dataset; Dots, occupancy at previously recorded
coordinates in the compiled dataset; color gradients, density of occupancy within each state or

province.
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Figure 4. Area of Occupancy (AOO) of four target ladybugs across the USA and Canada
(2007-2021); red lines, annual model predictions; dashed lines, robust regression fits showing
declines with 95% confidence intervals; IUCN Red List categories, derived from 10-year

reduction rates; bars, raw observations showing increases.
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indices quantifying variable contributions in each model; x-axis, point-biserial correlation

between target occupancy and each variable species’ occurrence within 18 km radius.
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Appendix

Table S1. Ladybug records used were compiled from seven digital platforms (three citizen
science, one museum collection, and three metadata sources); Regional abbreviations: AK =
Alaska, HI = Hawaii, MB = Manitoba, ON = Ontario, SK = Saskatchewan, BC = British
Columbia, AB = Alberta, QC = Quebec.

Source Size Type Data Download & Refinement Criteria
| T T T
Lost Ladybug Citizen * Years 2007-2021
. 32,905 .
Project science
N * U.S. (excluding AK & HI) and Canadian
iNaturalist 197990 ~ Cluzen ,
science provinces (MB, ON, SK, BC, AB, QC)
bugGuide.Net 27,018 Ci.tizen * Positional accuracy < 1 km (if applicable)
science
» Species level
GBIF 143,000  Metadata
source * Adult records or images
BISON 100,834 ~ Metadata o duplicates at year-GPS-species
source
IdigBio 99,723 ~ Metadata
source
| |
N(liqu Insect 5,425 Institute Final Dataset: 188,644
useum

Table S2. ANOSIM statistics assess differences in co-occurrence pattern variables across data

groups in the generalization test sets.

Citizen science

Post-year (train)

Pre-year (train)

VS AN VS
Species Institutions Pre-year (test) Post-year (test)
R-value  p-value Test Train R-value  p-value Test Train R-value  p-value
period (% of period (% of
presence) presence)
C. transversoguttata 55 01 ;gf; 65%  0.03  0.001 b;g(l’f 70% 007  0.001
C. novemnotata 0.06  0.001 ;gfg 70% 006  0.001 b;g(l’g" 72% 002  0.001
H. parenthesis 0.12  0.001 ;g;:(r) 74% 007  0.001 b;g(l’f 74% 005 0001
A. bipunctata 0.05  0.001 Z%f{f)ﬂr 55%  0.02  0.001 b;g(l’;" 67%  0.02  0.001
Absence datapoints 0.06  0.001 003  0.001 001  0.001

+To assess COP model generalization, the training period for 4. bipunctata—the species with most presence records—was reduced to extend the testing period.
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Table S3. Results of regression estimates, diagnostic tests, and 2012-2021 reduction rates (OLS:
ordinary least squares regression, Huber: robust regression).

C. novemnotata C. transversoguetta A. bipunctata H. parenthesis
B (OLS) -13.36 -14.73 -45.59 -53.63
R?(OLS) 0.818 0.733 0.500 0.834
p (OLS) 0.00007** 0.00007** 0.0032"* 0.0000""**
-17.13 -20.06 -72.91 -67.97
0 ) ) ) )
95% CI(OLS) -9.59 9.4 -18.26 -39.29
Reduction N o o o
(109 OLS) -15% 9% -15% 29%
Breusch- 0.9001 0.7992 0.0226* 0.0804
Pagan p
White p 0.7238 0.1968 0.0402" 0.0736
p (Robust SE) 0.0000"** 0.00007** 0.0078" 0.0000""**
95% CI -16.77, -18.14, -79.18, -72.55,
(Robust SE) -9.95 -11.31 -11.99 -34.71
Max Cook’s 0.2056 0.2028 0.6505 1.0651
Distance
B (Huber) -13.00 -14.38 -45.98 -56.24
R? (Huber) 0.811 0.731 0.500 0.831
-16.42 -17.39 -72.32 -68.23
0, E) ) ) )
95% CI (Huber) -9.58 -11.38 -19.65 -44.26
Reduction o o 0 0
(10-yr, Huber) -15% -9% -15% -31%

(p* <0.05, p** < 0.05, p*** < 0.005, p**** < 0.0005)

Table S4. Predicted distribution trends (2007-2021) and corresponding IUCN Red List
categories for four target species, based on reductions in area of occupancy (AOO) and extent
of occurrence (EOO).

. Reduction  IUCN AOO (kmr’) EOQO (km?)
Species in 10-yrs categor
y 8OrY 2007 2021 2007 2021
H. parenthesis 31% Vu 1,548 1,352 8,450,469 7,749,070
A. bipunctata 15% NT 3,128 2,648 11,538,691 10,817,443
C. novemnotata 15% NT 2,012 1,428 5,480,067 5,399,901
C. transversoguttata 9% LC 892 696 9,820,525 9,146,848




865  Table S5. Multiple linear regression (OLS) results assessing the effects of year and annual

866 citizen science data volume on ML-predicted annual area of occupancy (AOO) for four target
867  species. (*p < 0.05, **p < 0.005, ***p < 0.0005).

C. novemnotata

C. transversoguttata

H. parenthesis

A. bipunctata

F-statistic

12.96** 7.80%* 34.72%%* 12.86%*
S?iﬁﬁffﬂi) (4, 10) (4, 10) (4, 10) (4, 10)
R? 0.83 0.76 0.93 0.84
B coefficient (+ SE)
32224 .9%* 36645.9* 149163.4%%* 160044.6%**
Intercept +7617.4 +10517.8 +18885.1 +32274.6
osvecp Upper 49197.4 60081.1 191242.0 231956.8
o Lower 15252.3 13210.7 107084.8 88132.4
-15.6%* -17.5* 73 2% 78 2%
Year 3.8 +52 +04 +16.1
\ Upper 7.1 5.8 523 422
PWRCL 1 ower 241 292 943 -114.0
Lost Ladybug 0.0003 0.0221 0.0870 0.2587*
Project +0.0236 +0.0326 +0.0586 +0.1001
. . 0.0008 0.0012 0.0061 0.0105
iNaturalist +0.0013 +0.0018 +0.0032 +0.0055
. 0.0680 -0.0031 -0.7286 -1.9637
bugGuide.Net +0.2646 +0.3653 +0.6560 +1.1212

868
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Figure S6. Annual occupancy maps (2007-2021) for each species; Left maps, occupancy
predicted by co-occurrence—based models. Right maps, occupancy based on reported
observations; Heatmap colors, the number of occupied coordinates per state, with temporal
changes in color intensity reflecting shifts in occupancy (Active figures are available at:
https://figshare.com/s/17cef8ef530f0a4{7b99).



