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Filling Monitoring Gaps for Data-deficient Species Using Annual 32 

Occupancy Predictions from Co-occurrence Models 33 

Abstract 34 

Fragmented surveys and limited monitoring have excluded most invertebrates from 35 

conservation policy. We present a fill-in framework that uses species distribution models 36 

(SDMs) to reconstruct missing annual trends—not to extrapolate trends, but to fill them in. 37 

Instead of filtering data-sparse regions or years or relying on static environmental variables, 38 

we used co-occurrence patterns (COP) as variables, to capture year-to-year assemblage shifts. 39 

COP variables enabled annual prediction at all recorded sites from multisource, presence-only, 40 

sparse data. When applied to four rare native ladybugs across North America (2007–2021), 41 

COP models exceeded reliability benchmarks (Accuracy ≥ 0.70, AUC ≥ 0.70, Kappa ≥ 0.40, 42 

Brier ≤ 0.25) across standard 7:3 splits, cross-source and cross-period validations. Annual 43 

predictions were robust to temporal biases from variation in data volume and source 44 

composition. Multiple regression indicated negligible effects of those biases on reconstructed 45 

trends. Predicted decadal declines (9–31%) closely aligned with independent regional long-46 

term monitoring, operationalizing IUCN Red List classification (from least concern to 47 

vulnerable) in the absence of standardized monitoring. By converting fragmented 48 

observations—primarily from citizen science—into reliable annual trend estimates, the fill-in 49 

approach extends extinction-risk assessment to data-deficient taxa long excluded from 50 

conservation frameworks. 51 

Introduction 52 

Most invertebrate species—despite ongoing declines—remain invisible to conservation 53 

action, not because they are safe but because they are silent in the data. The International Union 54 

for Conservation of Nature (IUCN) Red List requires trend estimates over the past decade or 55 

three generations for declining species (IUCN, 2024). However, standardized monitoring 56 

programs are scarce or limited in scope for these species (Estes et al., 2018; Bayraktarov et al., 57 

2019) and available records are typically sparse, presence-only, and opportunistic. Such data 58 

even fail to meet the requirements of current trend models (Harvey et al., 2020), which assume 59 

ordinal abundance (e.g., Newson et al., 2015; Inamine et al., 2016; Schultz et al., 2017; Martín 60 

et al., 2021), checklist-based surveys (Walker & Taylor, 2017; LeCroy et al., 2020), metrics of 61 

survey effort (e.g., Szabo et al., 2010; Isaac et al., 2014; Kamp et al., 2016; Horns et al., 2018; 62 



Fink et al., 2020), and repeat visit protocols (e.g., MacKenzie et al., 2002; 2006; Kéry et al., 63 

2010; van Strien et al., 2013; Altwegg & Nichols, 2019). For example, Bayesian occupancy 64 

models (OM) are effective tools for trend estimation, yet in North America they often entail ≥65 

10,000 km² grid cells and 10–20-year intervals to achieve adequate data density for bees and 66 

dragonflies (Soroye et al., 2020; Jackson et al., 2022). Without methods capable of estimating 67 

temporal trends from the data available, underrepresentation of invertebrates in global 68 

conservation frameworks will persist (Montgomery et al., 2020; Jönsson et al., 2021). 69 

This study reconstructs annual occupancy trajectories by filling monitoring gaps with 70 

annual predictions from species distribution models (SDMs) using variables derived from co-71 

occurrence patterns (COP). Previous studies have used SDMs to predict occupancy at 72 

unsurveyed locations by modeling correlative relationships between known occurrence records 73 

and environmental or biotic variables (Olden et al., 2008; Zimmermann et al., 2010; Franklin, 74 

2013). These relationships have been modeled via recursive binary partitioning (decision-tree 75 

algorithms), entropy maximization under environmental constraints (maximum entropy 76 

modeling), or multivariate probit regression (joint species distribution models; JSDMs), among 77 

other approaches. Such predictions can help fill monitoring gaps, and SDMs perform well with 78 

small sample sizes (Hernandez et al., 2006; Wisz et al., 2008; Luan et al. 2020) and presence-79 

only data (Hernandez et al., 2006; Wisz et al., 2008; Mi et al., 2017; Robinson et al., 2018). 80 

However, most applications target single-time distributions or long-term range shifts (Tingley 81 

& Beissinger, 2009; Svancara et al., 2019). They primarily rely on static variables, such as 82 

environmental and geographical proxies, making them ill-suited to trend estimation. Rare 83 

attempts at fine-temporal prediction require structured data and extensive data thinning 84 

(Svancara et al., 2019; Fink et al., 2020), which is impractical for under-monitored 85 

invertebrates. 86 

To predict annual occupancy at historical sites, we novelly operationalized co-occurrence 87 

patterns (COP) as numerical variables for machine learning classifiers that use decision trees 88 

(COP-ML). In community ecology, COP denotes the observed frequency with which species 89 

co-occur across locations. Prior SDM studies suggest that such patterns can encode biotic 90 

interactions (Pollock et al., 2014) and community-level environmental responses (Kissling et 91 

al., 2012). Extending these ideas, we propose that annually updated COP vectors could also 92 

track habitat and community shifts at a site more rapidly than static or slowly varying variables. 93 

Community composition may change before environmental changes are detectable and can 94 



immediately respond to non-environmental drivers. Here, we represented COP as a site–year 95 

vector of the annual frequencies of non-target species within a fixed radius. Decision-tree 96 

classifiers then learned rule-based partitions linking target species occupancy to both individual 97 

variables and their joint patterns (e.g., “if variable A ≥ a and variable B ≤ b, then …”). 98 

This study evaluates whether COP-ML can produce accurate predictions of annual 99 

occupancy. It further tests whether the model remains robust to temporal and structural biases 100 

in multisource, sparse and opportunistic data typical of under-monitored species. With the 101 

expansion of citizen science, opportunistic observations increasingly dominate in those taxa 102 

(Kissling et al., 2018; Knape et al., 2022) but also introduce temporal and structural biases 103 

(Isaac et al., 2014; Guzman et al., 2021; Larsen & Shirey, 2021). Mitigation strategies, such as 104 

data thinning or quality-based filtering (Wisz et al., 2008; Isaac et al., 2014; Kamp et al., 2016; 105 

Zizka et al., 2021; Van Eupen et al., 2021), can exacerbate sparsity and also preclude estimation 106 

of the absolute trend across the entire range as required under the IUCN Red List framework. 107 

Reliable annual trend estimation therefore requires methods that tolerate biased data while 108 

preserving temporal signals. 109 

To test robustness to temporal bias, we examine whether models trained on one period 110 

generalize to others (Martínez-Minaya et al., 2018), a necessity given that citizen-science data 111 

are disproportionately concentrated in recent years (Geldmann et al., 2016). To test robustness 112 

to structural bias, we assess whether models trained on one survey type can predict others. 113 

Multisource integration is often indispensable for data-poor species (Fletcher et al., 2019; 114 

Miller et al., 2019; Isaac et al., 2020), yet inconsistent methods, even among citizen-science 115 

platforms (Gardiner et al., 2012), can introduce systematic errors (Cheney et al., 2013). For 116 

example, citizen science tends to target urban areas, whereas ecologists' surveys more often 117 

cover natural or semi-natural areas (Geldmann et al., 2016). Without such robustness, temporal 118 

trends risk reflecting shifts in prevailing survey types rather than biological change (Pagel et 119 

al., 2014; Knape et al., 2022). 120 

We test three hypotheses: first, can COP-ML distinguish target species’ presence from 121 

absence using annual COP variables? Second, can annual COP variables generalize across time 122 

periods? Third, can these variables generalize across survey methods? Accordingly, we ran 123 

three tests: standard 7:3 split evaluation, temporal generalization, and structural generalization. 124 

We then applied COP-ML to four native North American ladybugs and generated annual 125 



occupancy estimates for 2007–2021 at all recorded sites. From these, we reconstructed 126 

trajectories and quantified 10-year reductions to operationalize IUCN Red List categories. 127 

Methods 128 

We asked whether COP (co-occurrence pattern) variables can yield accurate annual 129 

occupancy despite temporal and structural biases. In the step for data assembly and labeling, 130 

we compiled presence-only records from multiple sources (2007–2021) for all North American 131 

ladybugs with minimal filtering, labeling four native species as presences and two invasive 132 

competitors as pseudo-absences. In the step for variable construction, we built COP variables 133 

for each site–year labeled as presence or pseudo-absence by counting non-target species within 134 

a fixed radius and scaling counts. In the step for model training, we trained XGBoost decision-135 

tree classifiers on these variables, which served as predictors in the model. In the step for 136 

generalization and evaluation, we assessed model performance with six metrics under three 137 

settings: cross-source (structural) generalization, cross-period (temporal) generalization, and 138 

standard 7:3 split evaluation. For each test, we summarized the distribution of performance 139 

from 2,500 resampled datasets. Finally, in the annual prediction and trend analysis step, COP-140 

ML trained on the full dataset predicted annual occupancy of the four target species; an 141 

ensemble of resampled models (majority vote) produced the final yearly presence-absence at 142 

all historical sites  for 2007–2021. From these predictions, we estimated decadal reduction rates 143 

under IUCN Criterion A and tested their significance. 144 

Target species 145 

Four native ladybug species—Coccinella novemnotata Herbst, 1793; Coccinella 146 

transversoguttata Faldermann, 1835; Adalia bipunctata (Linnaeus, 1758); and Hippodamia 147 

parenthesis (Say, 1824)—once dominated North American ladybug communities, thriving 148 

across diverse habitats and prey types (Losey 2007; 2012; taxonomy hereafter follows Gordon 149 

(1985) and Gordon & Vandenberg (1991)). Since the mid-1980s, their relative abundance in 150 

collections has dropped to 1–5% of former levels (Harmon et al., 2007) due to the newly-151 

established competitors Coccinella septempunctata Linnaeus, 1758 and Harmonia axyridis 152 

(Pallas, 1773) (Wheeler & Hoebeke 1995; Harmon et al., 2007). These introduced species now 153 

dominate and alter community structure, reducing diversity and abundance continent-wide 154 

(Petersen & Losey, 2024). Estimating reduction rates and extinction risks for the natives is 155 

challenging given their current low densities and broad distributions (Wheeler & Hoebeke, 156 



1995; Hesler et al., 2004; Harmon et al., 2007). Addressing this requires integrating multisource 157 

data across periods, regions, and survey methods while addressing inherent biases. 158 

Occurrence data 159 

We compiled Ladybug records from multiple sources: three citizen-science sources (The 160 

lost ladybug project, 2021; iNaturalist, 2021; BugGuide.Net, 2021), one museum website 161 

(NCSU, 2021), and three metadata platforms (GBIF, 2021; BISON, 2021; IdigBio, 2021; 162 

Appendix S1). Of the citizen-science, iNaturalist and BugGuide.Net relied on user 163 

identifications, whereas The Lost Ladybug Project relied on experts. We further verified 164 

identifications of the target species from iNaturalist and BugGuide.Net. 165 

To assess how COP variables address biases, we applied minimal preprocessing: Records 166 

were restricted to the U.S. (excluding Alaska and Hawaii) and parts of Canada (Manitoba, 167 

Ontario, Saskatchewan, British Columbia, Alberta, Quebec) for 2007–2021. Only adult forms 168 

identified to species level were retained. Where available (89% of records), we restricted GPS 169 

accuracy to 1 km. We removed duplicate records identical in species, year, and GPS. We then 170 

computed descriptive statistics to reveal temporal and structural inconsistencies in the compiled 171 

dataset. 172 

The dataset included 188,644 records of 353 ladybug species from 85 sources, with 324 173 

records for C. novemnotata, 510 for C. transversoguttata, 732 for H. parenthesis, and 1,426 174 

for A. bipunctata, which were labeled as presence. 175 

Pseudo-absence 176 

When explicit absence records are unavailable, pseudo-absences are often drawn by 177 

randomly sampling coordinates from all other species’ records in a dataset (Robinson et al., 178 

2018). Here we instead used records of the introduced competitors, C. septempunctata and H. 179 

axyridis. First, they competitively exclude the target species. Their occurrence within an 18-180 

km radius without the targets was assumed to be a logical proxy for absence, reflecting a 181 

reshaped COP after local displacement. Second, their dominance (61% of our dataset) meant 182 

that traditional random sampling would largely select them anyway, minimizing 183 

methodological deviation. Therefore, we used competitors as pseudo-absences to encode a 184 

local-displacement hypothesis in COP variables. 185 

We pooled 10,000 pseudo-absence points by subsampling from states or provinces in 186 

proportion to the regional frequency of the four targets’ presence. Without this proportionality 187 



filter, apparent accuracy increased but models relied more on geographical variables (e.g., 188 

Coleomegilla maculata (De Geer, 1775) concentrated in eastern regions), which are insensitive 189 

to temporal changes. In the variable construction step, we combined the entire pool with 190 

presence records. In the training and testing step, absences were resampled from this pool to 191 

balance classes. 192 

Variables 193 

Direct and indirect competitions shape ladybug assemblages, where the dominance of 194 

newly-established species drives niche differentiation (Petersen & Losey, 2024) and avoidance 195 

behaviors in native species (Elliott et al., 1996; Hesler & Kieckhefer 2008; Mukwevho et al., 196 

2017). These changes can be immediate since ladybugs, as highly mobile predators, engage in 197 

long-distance interactions (e.g., H. axyridis, 442 km/year; McCorquodale, 1998) and actively 198 

forage across habitats (Woltz & Landis, 2013). 18 km is the commonly reported dispersal 199 

distance of this group (Jeffries et al., 2013; COSEWIC, 2016a; 2016b). Here, we represented 200 

COP as counts cs,t,j of cooccurring non-target ladybug species j	within an 18 km radius r of site 201 

s in year t, where each site-year (s,t)	was labeled as presence (= 1) or absence (= 0) of the 202 

target species. This is expressed as Equation (1): 203 

 

 
𝑐!,#,$ =,1

%

,			if	 0
species(𝑢) = 𝑗
year(𝑢) = 𝑡

distance(𝑠, 𝑢) ≤ 𝑟
 ( 1 ) 

Where u denotes a single georeferenced record (coordinate, year, species). Next, for 204 

each species-year (j,t), we trimmed outliers in the distribution of cs,t,j outside [Q1	-	1.5IQR,	Q3	205 

+	1.5	IQR]	to reduce distributional bias during scaling. To maintain consistency of variable 206 

vectors, outlier detection in a single variable resulted in exclusion of the entire site–year record. 207 

This mainly affected the pseudo-absence pool, removing only 0–12 presence records per target 208 

species (≤ 0.008%). We then min-max scaled cs,t,j per (j,t) to adjust for species-specific 209 

overreporting and temporal variations in observation efforts, as expressed as Equation (2): 210 

 

 
𝑥!,#,$ = 0

𝑐!,#,$ −min!∈'!,# 𝑐!,#,$
max!∈'!,# 𝑐!,#,$ −min!∈'!,# 𝑐!,#,$

, if max!∈'!,# 𝑐!,#,$ > min!∈'!,# 𝑐!,#,$ ,

0, 																																																									otherwise.																																				
 ( 2 ) 

We excluded environmental variables to avoid multicollinearity with COP variables, as 211 

their effects are expected to be partially embedded in co-occurrence patterns (Kissling et al., 212 

2012). This also aligns with our focus on short-term temporal interpolation. We retained 85 213 



species with at least 30 co-occurrences with a target species, excluding unidentified 'sp.' We 214 

applied additional screening using forward regressions (p < 0.05) and variance inflation factors 215 

(< 10). Although prior feature selection rarely improves performance of decision trees, we 216 

applied prescreening to limit ecologically implausible variables and to improve interpretability. 217 

To prevent leakage, we excluded target species from their own variables. Finally, we ranked 218 

the top 15 key variables using SHapley Additive exPlanations (SHAP) values, which assess 219 

feature importance in predictions from preliminary loops. The selected predictors xs,t	were 220 

stacked into the matrix X and fed into models as: 221 

 

 
𝑋(!,#) =	 Q	𝑥!,#,$$ , … , 𝑥!,#,$$%S, 𝑦{(!,#)} ∈ {0,1} ( 3 ) 

To analyze associations between each variable and target species occupancy, we 222 

calculated averages of point-biserial correlations by resampling pseudo-absence points 50 223 

times to match presence record counts. 224 

Development and characterization of models 225 

We modeled associations between COP variables and targets’ occupancy with XGBoost 226 

as an ensemble of decision trees: 227 

 

 
𝐹(𝑥,) = , 𝑓-(𝑥,)

.

-/0

, 𝑝̂𝑖 =
1

1 + exp(−𝐹(𝑥,)
 ( 4 ) 

Here, F(xi) is the raw logit score and 𝑝̂𝑖 is predicted probability of presence at site-year 228 

i. Each tree fm is a set of if–then split rules to the predictor vector xi (the COP variables); for 229 

example, xa	<	Threshold	splita	and	xb	>	Threshold	splitb. Thus, tree depth ≥ 2 naturally 230 

encodes interactions among predictors. Training minimizes logistic loss with a tree-complexity 231 

penalty (Chen & Guestrin 2016). 232 

We implemented the XGBoost package in Python. From the default hyperparameter 233 

settings, we only adjusted objective='binary:logistic' and n_estimators=1000, as our aim was 234 

to evaluate COP variables rather than optimize the model. 235 

 Across all analyses, we balanced presence and pseudo-absence records 1:1 by 236 

undersampling pseudo-absences. We then generated 50 independent datasets by resampling 237 

pseudo-absences and, within each, drew 50 random train–test splits, yielding 2,500 runs (50 × 238 



50). For each test scenario, we summarized and evaluated performance based on the mean and 239 

distribution across runs. 240 

 We assessed model performance with six metrics: Accuracy (correct response rate), 241 

Kappa (agreement adjusted for random chance; Cohen, 1960), Recall (true positive rate), and 242 

Precision (positive predictive rate) to measure ability to predict binary presence-absence, plus 243 

Brier score (mean squared discrepancy; Brier, 1950) and AUC (ability to rank presence over 244 

absence; Fielding & Bell, 1997) for probability quality. 245 

Generalization 246 

Generalization tests evaluate a model’s ability to predict data distinct from training data 247 

in temporal, geographical, or source aspects (Vaughan & Ormerod, 2005), minimizing train-248 

test autocorrelation, and demonstrate robustness when ground truth comparisons are limited 249 

(Justice et al., 1999). Our tests assessed whether COP-ML could generalize across structurally 250 

or temporally distinct data pools. 251 

 Structural Generalization: To evaluate generalizability across survey types, we trained 252 

models on presence and pseudo-absence data from citizen science (LLP, iNaturalist, 253 

BugGuide.Net) to predict institutional data from 28 institutes. We assessed differences between 254 

their COP structures using ANOSIM with Manhattan distance (Appendix S2). Presence records 255 

comprised 280 citizen-driven versus 44 institutional for C. novemnotata, 485 versus 25 for C. 256 

transversoguttata, 626 versus 116 for H. parenthesis, and 1,338 versus 88 for A. bipunctata, 257 

with institutional pseudo-absence points ranging from 416 to 510. In a separate test, we also 258 

trained models on a group dominated by open-ended citizen science and evaluated them on the 259 

program emphasizing rare species (LLP). 260 

 Temporal Generalization: For forward testing, we trained models on presence data from 261 

2007 until the year when approximately 70% of presence was accumulated, testing on the 262 

remaining about 30%. For backward testing, we reversed this, training from 2021 backward 263 

(Appendix S2). Pseudo-absence points were selected using the same cutoff year. 264 

Evaluation 265 

To evaluate COP-ML’s annual prediction performance, we followed standard 7:3 split 266 

test by training models on 70% of presence data and testing on the remaining 30%. Unlike the 267 

generalization tests, which restricted the scope of records, this split used the full range of 268 



presences, providing a baseline measure of COP-ML’s predictive reliability for subsequent 269 

reduction rate estimation. 270 

Prediction on annual distributions and reduction rates 271 

To enable consistent temporal comparisons, COP-ML predicted annual presence of target 272 

species at all historical sites in our dataset since 2007, addressing yearly observation gaps. 273 

Prediction: We developed models as described in Development and characterization of 274 

models, but we trained them on all available presence data to improve prediction accuracy 275 

given the sparsity of records (Fielding & Bell, 1997; Rencher, 1995). A site-year was classified 276 

as occupied if a majority of the 2,500 model runs (50 pseudo-absence resamples × 50 random 277 

seeds for repeated fitting) predicted presence. 278 

Analysis: We evaluated distributional trends under IUCN Red List Criterion A, based on 279 

changes in Area of Occupancy (AOO) and Extent of Occurrence (EOO). The AOO, calculated 280 

as the number of 4 km2 grid cells occupied by a species, reflects occupancy extent and, 281 

indirectly, population size (IUCN, 2024). The EOO, defined as the polygon enclosing all 282 

known occurrences, indicates risk dispersion across a species’ range (IUCN, 2024). For 283 

Criterion A, we fitted linear regressions to predicted AOO (2007–2021) and estimated the 10-284 

year decline (2012–2021), interpreting it as a proxy for population trends (IUCN, 2024). We 285 

tested for heteroskedasticity with Breusch–Pagan and White tests, and identified influential 286 

outliers with Cook’s distance. We applied robust standard errors (HC3) to assess trend 287 

significance, followed by robust regression to estimate final AOO decline. Because robust 288 

regression may downweight abrupt changes that could represent real ecological signals, we 289 

also ran ordinary least squares (OLS) regression for comparison and to improve the reliability 290 

of trend interpretation. 291 

Validation: To verify that AOO changes predicted by COP-ML reflect consistent 292 

temporal trends despite varying data availability, we regressed predicted AOO against time 293 

(year) while including annual volumes of each citizen-science source as covariates. 294 

Results 295 

Biases in multisource data 296 

The compiled dataset from multiple sources showed both structural and temporal bias. 297 

Structural bias, arising from heterogeneous effort and methods across sources (Figure 1), 298 



appeared as unequal Efficiency (defined as the percentage of all records represented by target 299 

species): institutional data (3.5% of the compiled dataset) recorded target species 2.79 times 300 

more often than citizen-science data (96.5%). Even among citizen-science sources, LLP (5%) 301 

had Efficiency of 6.6%, 6 times that of iNaturalist where it was 1.1% (89%). Excluding LLP, 302 

the remaining dataset averaged 1.3% Efficiency (corresponding to the “lower efficiency group” 303 

in the second structural generalization). Temporal bias reflected an exponential increase in 304 

annual observations (Figure 1), with post-2014 volume being 9.61 times higher than pre-2014. 305 

Structural and temporal generalization 306 

We tested COP-ML for annual predictive performance and generalizability against 307 

biases through structural (cross sources) and temporal (forward/backward) generalizations. All 308 

test results met or exceeded established reliability benchmarks from prior studies: Accuracy ≥ 309 

0.70 (rule of thumb), AUC ≥ 0.70 (Hosmer et al., 2013), Kappa ≥ 0.40 (Landis & Koch, 1977), 310 

and Brier ≤ 0.25 (Brier, 1950; Figure 2). Models trained on the citizen-science group accurately 311 

predicted presence-absence in the institution group. Likewise, models trained on the low-312 

efficiency group generalized to the highest efficiency source, and both forward and backward 313 

temporal generalizations satisfied these benchmarks. 314 

In the generalization from citizen-science to institutional groups, C. transversoguttata 315 

model achieved the highest performance (Accuracy, AUC, Kappa, Brier = 0.87, 0.94, 0.75, 316 

0.11), followed by C. novemnotata (0.81, 0.85, 0.61, 0.16), H. parenthesis (0.78, 0.84, 0.55, 317 

0.17), and A. bipunctata (0.73, 0.84, 0.46, 0.19). Analysis of similarities (ANOSIM) indicated 318 

small dissimilarities in COP predictor structures between these groups (R < 0.25, p < 0.005; 319 

Appendix S2), with species-specific R-values of 0.22 (C. transversoguttata), 0.12 (H. 320 

parenthesis), 0.06 (C. novemnotata), 0.05 (A. bipunctata), and 0.06 (pseudo-absences). 321 

Comparable results also held between the low-efficiency group, dominated by 96.3% of open-322 

ended citizen science (plus 3.7% institutional), and the highest-efficiency source, a single 323 

citizen-science program emphasizing rare species. 324 

In temporal generalization, C. transversoguttata, C. novemnotata, and H. parenthesis 325 

maintained consistent performance scores in forward and backward tests. In contrast, A. 326 

bipunctata showed a 7% decrease in backward Accuracy, with Recall (true positives among 327 

actual positives) increasing 2% and Precision (true positives among predicted positives) 328 

decreasing 13%. This indicates that the model trained on recent data classified a wider set of 329 

habitat conditions as occupied than were historically. In a supplementary analysis, we shifted 330 



the split to an earlier point (pre-2012) to further exclude recent records from the test set, 331 

expanding the training set to 87% of records. This intensified the tendency: Recall rose 11% 332 

and Precision fell 18%, while accuracy remained unchanged. This suggests that its recent co-333 

occurrence patterns encompassed conditions not occupied in the past, unlike the other three 334 

species. 335 

Evaluation of the developed models 336 

We assessed COP-ML classifiers, trained on 70% of the dataset and tested on 30%, 337 

against the benchmarks. All models exceeded them; even the lowest-performing species 338 

achieved Accuracy, Precision, and Recall ≥ 0.75, AUC ≥ 0.87, Kappa ≥ 0.57, and Brier ≤ 0.15 339 

(Figure 2). C. transversoguttata (with 510 presence datapoints) performed best, followed by C. 340 

novemnotata (324), A. bipunctata (1,438), and H. parenthesis (742). 341 

Predicted reduction rates and conservation status 342 

Given COP-ML’s demonstrated performance in tests, we generated annual occupancy 343 

predictions for 2007–2021 at all historical sites of the target species in our dataset to fill 344 

monitoring gaps and enable consistent temporal comparisons (Figure 3; Appendix S6). 345 

Area of occupancy (AOO) declined significantly over time for all species (p < 0.05 for 346 

OLS and robust SE; B: -56.2 to -13.0; R2: 0.50 to 0.83; all 95% CIs excluded zero). Although 347 

we detected heteroskedasticity in A. bipunctata and influential points in A. bipunctata and H. 348 

parenthesis, slope (B), R² and CIs were similar across OLS, OLS with robust SE, and robust 349 

regression, indicating that regression-estimated reduction rates are reliable (Appendix S3). 350 

 Predictions indicated three species were threatened by declines in North America 351 

(Appendix S4). Occupancy measured as AOO, an indicator of occupied area and an acceptable 352 

proxy of population size (IUCN, 2024), decreased from 2007 to 2021: 1,962 km2 for H. 353 

parenthesis, 584 km2 for A. bipunctata, and 480 km2 each for C. novemnotata and C. 354 

transversoguttata. Under IUCN Red List Criterion A (10-year reduction), estimated rates were 355 

31% for H. parenthesis (vulnerable), 15% for A. bipunctata (near threatened), 15% for C. 356 

novemnotata (near threatened), and 9% for C. transversoguttata (least concern; Figure 4). 357 

 Extent of occurrence (EOO), a proxy for spatial buffering against extinction risk (IUCN, 358 

2024), declined most in C. transversoguttata. Despite its least concern classification here, this 359 

contraction suggests reduced spatial resilience with ongoing decline. 360 



 Multiple linear regression confirmed that time (year) was a significant predictor of 361 

AOO declines across all species, whereas annual volumes of each citizen-science source 362 

showed no evidence of statistically or practically meaningful effect (Appendix S5). 363 

Variable importance and correlation  364 

The importance metrics of variables (SHAP values) and point-biserial correlations 365 

showed positive co-occurrence patterns among C. novemnotata, C. transversoguttata, and H. 366 

parenthesis. Their occurrences were positively correlated and mutually informative in each 367 

model (Figure 5). In contrast, the two competitors H. axyridis and C. septempunctata were 368 

negatively correlated with these natives, and they were ranked among the top variables by 369 

SHAP. A. bipunctata was the exception: it showed positive correlations with both newly-370 

established species. The common native Hippodamia convergens Guérin-Méneville, 1842 371 

(third most abundant in the dataset) also correlated positively with three natives and ranked 372 

highly in all models, except H. parenthesis. 373 

Discussion 374 

Rationale for estimated reduction rates 375 

This study provides the first continent-wide estimates of decadal declines for C. 376 

novemnotata, C. transversoguttata, A. bipunctata, and H. parenthesis based on annual 377 

occupancy predictions. Earlier studies from the 1980s–1990s reported steep relative abundance 378 

declines of 95–99% (rescaled from Harmon et al., 2007). By contrast, our more moderate 379 

reduction rates from 2007–2021 likely reflect the post-establishment phase in which the new 380 

competitors had already become dominant. 381 

Several lines of evidence support the plausibility of these more moderate rates. 382 

Historical records indicate that the most acute declines occurred shortly after the establishment 383 

of C. septempunctata and H. axyridis in North America (Colunga-Garcia & Gage, 1998; Bahlai 384 

et al., 2015). Meanwhile, subsequent regional studies suggest that declines have plateaued or 385 

transitioned into a chronic, low-intensity phase (Turnock et al., 2003; Elton, 2000; Strayer et 386 

al., 2006; Harmon et al., 2007; Hesler & Kieckhefer, 2008), with no further sharp reductions 387 

observed (Alyokhin & Sewell, 2004; Bahlai et al., 2015). Such stabilization may reflect 388 

community-level reequilibration, resistance in remnant populations, or the persistence of 389 

spatial refuges (Evans, 2000; 2004; Evans et al., 2011). 390 



Standardized long-term monitoring in Michigan (2007–2019) corroborates this 391 

interpretation, indicating 10-year declines of 37% for H. parenthesis and 20% for A. bipunctata 392 

(KBS LTER; https://lter.kbs.msu.edu/datatables/67). These trends are obtained from linear 393 

regressions of sticky-trap captures normalized by the number of survey spots to control for 394 

effort. Although limited to a single site, these local declines align closely with our continent-395 

wide estimates (31% and 15%, respectively), suggesting that our predictions with COP-ML 396 

provide an ecologically realistic baseline for conservation assessments. 397 

Interpretation of COP variables 398 

Annual prediction accuracy may imply that yearly COP variables capture time-399 

responsive ecological signals (interaction structure, habitat turnover) that static climate or land-400 

cover variables may miss at an annual resolution. Despite attenuation bias in our noisy, 401 

heterogeneous dataset that likely damp effect sizes, correlations between key variable species 402 

and targets generally aligned with known ecological associations and were also prioritized by 403 

the models (Figure 5). 404 

For instance, C. novemnotata and C. transversoguttata showed among the strongest 405 

positive correlations, consistent with overlapping habitat use and resource preferences (Hesler 406 

et al., 2009). In contrast, the competitors H. axyridis and C. septempunctata were negatively 407 

correlated with the three target natives and ranked among the top SHAP variables, consistent 408 

with well-documented competitive displacement (Wheeler & Hoebke, 1995; Harmon et al., 409 

2007; Petersen & Losey, 2024).  410 

By contrast, A. bipunctata showed positive correlations with both newly-established 411 

species, likely reflecting macro-scale overlap in arboreal habitat use with H. axyridis (Coderre 412 

et al., 1995; Koch, 2003; Omkar & Pervez, 2005; Hentley et al., 2016) and competitive 413 

coexistence with C. septempunctata in Europe, where both are native (Honěk 1985; Nedvěd 414 

1999). However, this does not rule out competitive exclusion at finer spatial scales that may 415 

fall below our 18 km COP radius (Kajita et al., 2000; Kajita et al., 2006; Soares & Serpa, 2007). 416 

Notably, coexistence signals persisted despite competitor-based pseudo-absences. This 417 

alleviates concerns that pseudo-absence sampling introduced shortcut artifacts—for example, 418 

if neighborhoods of pseudo-absence points enriched with competitor records might 419 

automatically imply target absence. 420 

Lower-ranked COP variables involved species pairs with little documented interaction 421 

and may act as proxies for geography or environment.  422 



Strength and limitation of COP 423 

The robustness of COP-ML across periods and sources suggests that COP variables 424 

could encode latent distributional constraints within noisy, opportunistic datasets—particularly 425 

when interactions strongly shape them (trophic dynamics, habitat filtering, or competition; 426 

Pollock et al., 2014). In our system, the prolonged competition between native and newly-427 

established ladybugs has reshaped communities (Harmon et al., 2007; Petersen & Losey, 2024), 428 

and COP variables appear to capture these patterns. 429 

For three species, performance metrics were similar in forward and backward 430 

predictions, indicating limited sensitivity to temporal fluctuations in data quantity and quality. 431 

Analysis of similarities (ANOSIM) reached consistent conclusions (Appendix S2). Consistent 432 

co-occurrence signals within noisy datasets provide a stable basis for annual occupancy 433 

prediction. One possible explanation is that COP variables capture relational signals, which are 434 

less sensitive to sampling noise than single-species occurrence rates (Tikhonov et al., 2017; 435 

Johnston et al., 2017). 436 

However, this strength depends on the temporal stability of co-occurrence patterns 437 

(Tikhonov et al., 2017). COP-ML declined in performance when backcasting A. bipunctata, 438 

whose habitat selection was reported to have shifted under post-invasion habitat compression 439 

(Bahlai et al., 2015). The model trained on recent COP tended to overpredict past suitability by 440 

classifying historically unoccupied conditions as suitable—evidenced by higher recall than 441 

precision. This underscores a limitation: when biotic interactions change, the assumption of 442 

time-invariant COP may fail. 443 

Our COP-ML generalized across heterogeneous datasets—from open-ended to targeted 444 

rare-species citizen science—while showing small dissimilarities in COP values (Appendix S2). 445 

Although opportunistic data are often viewed skeptically and has limited its utility (Isaac & 446 

Pocock, 2015; Steen et al., 2019), multisource integration is increasingly essential for data-447 

poor species (Miller et al., 2019; Isaac et al., 2020). Our results indicate that COP variables, 448 

largely driven by commonly recorded species, can indirectly inform distributions of rarer taxa. 449 

These findings highlight the conservation value of citizen science and suggest that its rapidly 450 

growing data volumes can be productively leveraged. 451 

Fill-in approach with annual predictions 452 



 We propose a fill-in approach that generates predictions of annual occupancy to bridge 453 

monitoring gaps. By tracking year-to-year occupancy across North America since 2007, we 454 

evaluated 10-year reductions under the IUCN Red List Criterion A (Figure 3). Traditional time-455 

series workflows often filter datasets to well-monitored regions, narrowing the spatiotemporal 456 

scope of inference and precluding absolute-extent assessments (e.g., IUCN Red List). Current 457 

trend models require extensive filtering or structured surveys—resources structurally 458 

inaccessible to the taxa most in need of conservation insight. Our approach produces fine-459 

temporal estimations from sparse, presence-only, multisourced datasets, directly benefitting 460 

them. 461 

For under-monitored species, annual COP-ML predictions could complement 462 

application of Bayesian occupancy models (OM) that track temporal change but typically 463 

require at least two revisits per period or high spatiotemporal density in data (Royle, 2006; 464 

Kamp et al., 2016; Outhwaite et al., 2018; Perkins-Taylor & Frey, 2020; Jha et al., 2022). In 465 

North America, limited data density has often forced coarse spatial (~10,000 km²) and temporal 466 

(10–20 years) resolutions for insects such as bees and dragonflies (Soroye et al., 2020; Jackson 467 

et al., 2022; Shirey et al., 2023). One way to recover resolution is to commission additional, 468 

targeted surveys (Xue et al., 2016; Tulloch et al., 2013), but this is costly; our approach offers 469 

an alternative by producing annual predictions without new field effort. However, 470 

incorporating ML-based predictions into occupancy modeling frameworks—as pseudo-471 

observations—remains largely untested. Occupancy models explicitly model detection and 472 

survey processes, so predicted probabilities must be reconciled with those components. 473 

Although recent OM advances have explored non-ideal data (e.g., assuming random-walk 474 

observation processes, using pseudo-absence instead of checklist absence, or treating 475 

opportunistic records as revisits; Outhwaite et al., 2018), the statistical compatibility of ML 476 

predictions within OM frameworks has yet to be demonstrated. 477 

The fill-in and filtering strategies are complementary. However, we deliberately did not 478 

apply spatial thinning or filtering to address spatial autocorrelation. First, our targets are data-479 

deficient, and our goal is to cover the entire known range, so filtering is impractical. Second, 480 

our aim was to test whether COP-ML, devised for such taxa, remains reliable without deep 481 

filtering. Third, our case is temporal interpolation at the same sites, rather than prediction to 482 

new locations, spatial leakage is less relevant in our setting. Finally, state-matched pseudo-483 

absences further mitigate overfitting by emphasizing within-region discrimination. Future 484 



study will be needed to determine filtering levels that optimally balance performance, bias 485 

reduction, and data retention in the fill-in framework. 486 

This study presents a scalable method to bridge monitoring gaps for data-deficient 487 

species, using sparse, largely opportunistic, presence-only records to generate annual 488 

occupancy estimates. Predicted trends aligned with long-term trends from independent regional 489 

monitoring and operationalized IUCN Red List criteria for species previously excluded due to 490 

lack of data. COP-ML demonstrated robust performance across heterogeneous sources and 491 

time periods, showing that reliable signals of extinction risk can emerge even from unstructured 492 

datasets. By converting fragmented observations into interpretable trends, the fill-in approach 493 

with annual predictions provides a practical pathway to extend assessment of extinction risk 494 

and strengthen conservation decisions where standardized monitoring is absent. 495 
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Figures 808 

 809 

 810 

Figure 1. Structural and temporal inconsistencies in our multisourced dataset; (a) difference in 811 

detection efficiency (target records per 100 ladybug records) in institutional collections and 812 

three citizen science sources (The Lost Ladybug Project, iNaturalist, BugGuide.Net); (b) 813 

exponential increase in annual ladybug observations across the USA and Canada (2007–2021; 814 

y = 758.89e0.29x, R2 = 0.88). 815 

 816 



 817 

Figure 2. Performance of species distribution models using co-occurrence pattern variables for 818 

C. novemnotata (N), C. transversoguttata (T), A. bipunctata (B), and H. parenthesis (P) across 819 

standard evaluation, structural generalizations, and temporal generalizations; black plots, 820 

standard 70% training and 30% testing; white plots, citizen science training and institutional 821 

data testing; gray plots, low target-density group (1.3%) training and high density source (6.6%) 822 

testing; left hatch, post-2007 training until ~70% coverage and later-year testing; right hatch, 823 



Pre-2021 traing until ~70% coverage and earlier-year testing; red lines, mean performance 824 

across 2,500 runs; dash, reliability benchmarks—Accuracy ≥ 0.70, AUC ≥ 0.70 (Hosmer et al., 825 

2013), Kappa ≥ 0.40 (Landis & Koch, 1977), and Brier ≤ 0.25 (Brier, 1950). 826 

 827 

Figure 3. Annual occupancy of Hippodamia parenthesis (2007–2021) in the USA and Canada; 828 

Left, co-occurrence pattern model predictions at sites with prior records of the species; Right, 829 

raw observations from the compiled dataset; Dots, occupancy at previously recorded 830 

coordinates in the compiled dataset; color gradients, density of occupancy within each state or 831 

province. 832 

 833 



 834 

Figure 4. Area of Occupancy (AOO) of four target ladybugs across the USA and Canada 835 

(2007–2021); red lines, annual model predictions; dashed lines, robust regression fits showing 836 

declines with 95% confidence intervals; IUCN Red List categories, derived from 10-year 837 

reduction rates; bars, raw observations showing increases. 838 

 839 



 840 

Figure 5. Predictor importance and correlation of co-occurrence pattern variables with target 841 

species’ occupancy (presence = 0, absence = 1); y-axis, SHapley Additive exPlanations (SHAP) 842 

indices quantifying variable contributions in each model; x-axis, point-biserial correlation 843 

between target occupancy and each variable species’ occurrence within 18 km radius. 844 
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Appendix 846 

Table S1. Ladybug records used were compiled from seven digital platforms (three citizen 847 
science, one museum collection, and three metadata sources); Regional abbreviations: AK = 848 
Alaska, HI = Hawaii, MB = Manitoba, ON = Ontario, SK = Saskatchewan, BC = British 849 
Columbia, AB = Alberta, QC = Quebec. 850 

Source Size Type Data Download & Refinement Criteria 

Lost Ladybug 
Project 32,905 Citizen 

science 
• Years 2007-2021 

• U.S. (excluding AK & HI) and Canadian 

provinces (MB, ON, SK, BC, AB, QC) 

• Positional accuracy < 1 km (if applicable) 

• Species level 

• Adult records or images 

• Drop duplicates at year-GPS-species 

iNaturalist 197,990 Citizen 
science 

bugGuide.Net 27,018 Citizen 
science 

GBIF 143,000 Metadata 
source 

BISON 109,834 Metadata 
source 

IdigBio 99,723 Metadata 
source 

NCSU Insect 
Museum 5,425 Institute Final Dataset: 188,644 

 851 

Table S2. ANOSIM statistics assess differences in co-occurrence pattern variables across data 852 
groups in the generalization test sets. 853 

+To assess COP model generalization, the training period for A. bipunctata—the species with most presence records—was reduced to extend the testing period. 854 

Species 

Citizen science 
vs 

Institutions 

Post-year (train) 
vs 

Pre-year (test) 

Pre-year (train) 
vs 

Post-year (test) 

R-value p-value Test 
period 

Train 
(% of 

presence) 

R-value p-value Test 
period 

Train 
(% of 

presence) 

R-value p-value 

C. transversoguttata 0.22 0.001 after 
2019 65% 0.03 0.001 before 

2014 70% 0.07 0.001 

C. novemnotata 0.06 0.001 after 
2018 70% 0.06 0.001 before 

2013 72% 0.02 0.001 

H. parenthesis 0.12 0.001 after 
2020 74% 0.07 0.001 before 

2014 74% 0.05 0.001 

A. bipunctata 0.05 0.001 after 
2019+ 55% 0.02 0.001 before 

2017 67% 0.02 0.001 

Absence datapoints 0.06 0.001   0.03 0.001   0.01 0.001 



 855 

Table S3. Results of regression estimates, diagnostic tests, and 2012-2021 reduction rates (OLS: 856 
ordinary least squares regression, Huber: robust regression). 857 

 C. novemnotata C. transversoguetta A. bipunctata H. parenthesis 

B (OLS) -13.36 -14.73 -45.59 -53.63 

R² (OLS) 0.818 0.733 0.500 0.834 

p (OLS) 0.0000**** 0.0000**** 0.0032*** 0.0000**** 

95% CI (OLS) -17.13, 
-9.59 

-20.06,  
-9.4 

-72.91,  
-18.26 

-67.97,  
-39.29 

Reduction 
(10-yr, OLS) -15% -9% -15% -29% 

Breusch- 
Pagan p 0.9001 0.7992 0.0226* 0.0804 

White p 0.7238 0.1968 0.0402* 0.0736 

p (Robust SE) 0.0000**** 0.0000**** 0.0078* 0.0000**** 

95% CI 
(Robust SE) 

-16.77,  
-9.95 

-18.14,  
-11.31 

-79.18,  
-11.99 

-72.55,  
-34.71 

Max Cook’s 
Distance 0.2056 0.2028 0.6505 1.0651 

B (Huber) -13.00 -14.38 -45.98 -56.24 

R² (Huber) 0.811 0.731 0.500 0.831 

95% CI (Huber) -16.42,  
-9.58 

-17.39,  
-11.38 

-72.32,  
-19.65 

-68.23,  
-44.26 

Reduction 
(10-yr, Huber) -15% -9% -15% -31% 

(p* < 0.05, p** < 0.05, p*** < 0.005, p**** < 0.0005) 858 

 859 

Table S4. Predicted distribution trends (2007–2021) and corresponding IUCN Red List 860 
categories for four target species, based on reductions in area of occupancy (AOO) and extent 861 
of occurrence (EOO). 862 

Species Reduction 
in 10-yrs 

IUCN 
category 

AOO (km²) EOO (km²) 

2007 2021 2007 2021 

H. parenthesis 31%                      VU 1,548 1,352 8,450,469 7,749,070 

A. bipunctata 15%                     NT 3,128 2,648 11,538,691 10,817,443 

C. novemnotata 15%                      NT 2,012 1,428 5,480,067 5,399,901 

C. transversoguttata 9%                      LC 892   696 9,820,525 9,146,848 

 863 

 864 



Table S5. Multiple linear regression (OLS) results assessing the effects of year and annual 865 
citizen science data volume on ML-predicted annual area of occupancy (AOO) for four target 866 
species. (*p < 0.05, **p < 0.005, ***p < 0.0005). 867 

 C. novemnotata C. transversoguttata H. parenthesis A. bipunctata 

F-statistic 
(DF Model, 

DF Residual) 

12.96** 
(4, 10) 

7.80** 
(4, 10) 

34.72*** 
(4, 10) 

12.86** 
(4, 10) 

R² 0.83 0.76 0.93 0.84 

 B coefficient (± SE) 

Intercept 32224.9** 
± 7617.4  

36645.9* 
± 10517.8 

149163.4*** 
±18885.1 

160044.6*** 
± 32274.6 

95% CI Upper 
Lower 

49197.4 
15252.3 

60081.1 
13210.7 

191242.0 
107084.8 

231956.8 
88132.4 

Year -15.6** 
± 3.8 

-17.5* 
± 5.2 

-73.2*** 
± 9.4 

-78.2*** 
± 16.1 

95% CI Upper 
Lower 

-7.1 
-24.1 

-5.8 
-29.2 

-52.3 
-94.3 

-42.2 
-114.0 

Lost Ladybug 
Project 

0.0003 
± 0.0236 

0.0221 
± 0.0326 

0.0870 
± 0.0586 

0.2587* 
± 0.1001 

iNaturalist 0.0008 
± 0.0013 

0.0012 
± 0.0018 

0.0061 
± 0.0032 

0.0105 
± 0.0055 

bugGuide.Net 0.0680 
± 0.2646 

-0.0031 
± 0.3653 

-0.7286 
± 0.6560 

-1.9637 
± 1.1212 
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 871 

 872 

 873 

Figure S6. Annual occupancy maps (2007–2021) for each species; Left maps, occupancy 874 
predicted by co-occurrence–based models. Right maps, occupancy based on reported 875 
observations; Heatmap colors, the number of occupied coordinates per state, with temporal 876 
changes in color intensity reflecting shifts in occupancy (Active figures are available at: 877 
https://figshare.com/s/17cef8ef530f0a4f7b99). 878 


