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Filling Monitoring Gaps for Data-deficient Species Using Annual Occupancy Predictions 39 
from Co-occurrence Models 40 
 41 
Abstract  42 
 43 
Fragmented surveys and limited monitoring exclude most invertebrate species from conservation 44 
policy. We present a framework that generates annual occupancy predictions using species 45 
distribution models (SDMs) to reconstruct missing trends—not to extrapolate trends, but to fill 46 
them in (the fill-in approach). Instead of filtering poor-data regions and years or relying on static 47 
environmental variables, we use co-occurrence patterns (COP) to capture year-to-year shifts in 48 
species assemblages, to enable temporal prediction across all recorded habitats using sparse, 49 
presence-only datasets from multiple sources. Applied to four rare native ladybugs across North 50 
America (2007–2021), COP models exceeded reliability benchmarks (Accuracy > 0.70, AUC > 51 
0.70, Kappa > 0.40, Brier < 0.25) across standard test splits, structurally distinct sources, and 52 
temporally divided periods. This indicates that annual predictions were robust to temporal bias 53 
arising from varying data volume and source composition, as supported by negligible effects in 54 
multiple regression. Predicted 10-year declines (9–31%) closely aligned with independent long-55 
term regional monitoring data, operationalizing IUCN Red List classifications (from “Least 56 
Concern” to “Vulnerable”) in the absence of standardized monitoring. By translating fragmented 57 
observations—primarily from citizen science—into standardized annual trend estimates, the fill-in 58 
approach extends extinction risk assessment to data-deficient taxa long excluded from 59 
conservation frameworks. 60 
 61 
1 Introduction 62 
 63 

Most invertebrate species—despite sharp declines (Montgomery et al., 2020)—remain 64 
invisible to conservation action, not because they are safe, but because they are silent in the data. 65 
Traditional approaches require revisits, effort-standardization, or abundance metrics—criteria that 66 
vast portions of invertebrate data simply fail to meet (Harvey et al., 2020). Without new tools to 67 
extract temporal signals from sparse, unstructured observations, these species will continue to 68 
decline unmeasured and unprotected. 69 
 70 
 Quantifying distribution trends for invertebrates remains a persistent methodological 71 
challenge, contributing to their significant underrepresentation in global conservation frameworks 72 
(Montgomery et al., 2020; Jönsson et al., 2021). Standardized monitoring programs are scarce 73 
or limited in scope (Estes et al., 2018; Bayraktarov et al., 2019), while available records frequently 74 
violate core statistical assumptions required by current trend detection models—ranging from 75 
ordinal abundance (e.g., Newson et al., 2015; Inamine et al., 2016; Schultz et al., 2017; Martín et 76 
al., 2021) and checklist-based data (Walker & Taylor, 2017; LeCroy et al., 2020) to survey effort 77 
metrics (e.g., Szabo et al., 2010; Isaac et al., 2014; Kamp et al., 2016; Horns et al., 2018; Fink et 78 
al., 2020) and repeat visits (e.g., MacKenzie et al., 2002; 2006; Kéry et al., 2010; van Strien et al., 79 
2013; Altwegg & Nichols, 2019). 80 
 81 
 Opportunistic observations dominate in under-monitored taxa (Kissling et al., 2018), but 82 
introduce pronounced temporal and spatial biases (Isaac et al., 2014; Guzman et al., 2021, 83 
Larsen and Shirey 2021). While some strategies attempt to mitigate this through data thinning or 84 
quality-based filtering (Wisz et al., 2008; Isaac et al., 2014; Kamp et al., 2016; Zizka et al., 2021; 85 
Van Eupen et al., 2021), such methods further reduce already sparse datasets, often eliminating 86 



precisely the regions and species of greatest conservation concern. As a result, the majority of 87 
invertebrate taxa remain excluded not for lack of ecological relevance, but for lack of usable data 88 
structures. 89 
 90 

One untested strategy for bridging monitoring gaps is to reconstruct annual occupancy 91 
trajectories at historical locations using species distribution models (SDMs). Such models predict 92 
occupancy in unsampled areas from known presences (Olden et al., 2008; Zimmermann et al., 93 
2010; Franklin, 2013), and have shown robust performance even under low data volumes 94 
(Hernandez et al., 2006; Wisz et al., 2008) or presence-only conditions (Robinson et al., 2018; 95 
Radomski et al., 2022). 96 
 97 

However, most ML-based SDM applications focus on long-term range shifts, relying on 98 
static environmental predictors (Tingley & Beissinger 2009; Svancara et al., 2019), with rare 99 
attempts at annual trend detection, most of which depend on structured data and intensive 100 
thinning (Fink et al., 2020; Svancara et al., 2019), making them impractical for under-recorded 101 
invertebrates. Similarly, occupancy modeling approaches designed for trend detection demand 102 
strict revisit protocols and high spatiotemporal density (MacKenzie et al., 2002; Altwegg & Nichols, 103 
2019)—e.g., in North America, ≥10,000 km² grids over ≥10-year intervals to achieve sufficient 104 
data density for bees and dragonflies (Soroye et al., 2020; Jackson et al., 2022). These data 105 
thresholds far exceed what is available for most under-recorded species, especially those under 106 
consideration in IUCN Red List assessments, which require trend estimates over a recent decadal 107 
timeframe (IUCN, 2024). 108 
 109 

In short, traditional approaches—whether predictive or inferential—remain structurally 110 
inaccessible to the taxa most in need of conservation insight. 111 
 112 

This study uses Co-occurrence-pattern predictors (COP) to generate fine-scale temporal 113 
predictions. COP describe the composition of nearby species within a radius (see Section 2.4). 114 
Prior studies suggest that these variables can embed species interactions and environmental 115 
associations (Pollock et al., 2014; Kissling et al., 2012). We propose that COP may also detect 116 
habitat and biotic changes more quickly than static environmental predictors, making them 117 
suitable for fine temporal scale, year-to-year occupancy prediction. 118 

 119 
This study evaluates whether ML-based SDMs with COP variables (COP-ML) can 120 

generate accurate annual occupancy predictions from sparse, presence-only, multi-source 121 
datasets typical of under-recorded species, while remaining robust to temporal and structural 122 
biases. 123 

 124 
To test for temporal bias, we assess whether models trained on one period generalize to 125 

others (Martínez-Minaya et al., 2018). Such generalization is essential (Willig et al., 2019; 126 
Guzman et al., 2021), as opportunistic citizen science (CS) data—now a major source of records 127 
(Knape et al., 2022)—is temporally uneven, often concentrated in recent years (Geldmann et al., 128 
2016). 129 
 130 

To test for structural bias, we evaluate whether models trained on one type of survey data 131 
can predict others. Multi-source integration is often necessary for rare species (Fletcher et al., 132 
2019; Miller et al., 2019; Isaac et al., 2020), but inconsistent methods, even within CS platforms 133 
(Gardiner et al., 2012), can introduce systematic errors (Cheney et al., 2013). If models cannot 134 
accommodate such variation, observed changes may reflect protocol shifts rather than biological 135 
trends (Pagel et al., 2014; Knape et al., 2022). 136 

 137 



This study evaluates three hypotheses: (1) Can ML-based classifiers distinguish target 138 
species’ presence or absence using annual COP variables? (2) Can annual COP training enable 139 
generalization across survey methods? (3) Can this approach enable generalization across time 140 
periods? To answer these questions, we perform three tests—7:3 train-test split test, structural 141 
generalization, and temporal generalization. Then using COP ML’s predictions, we reconstructed 142 
annual occupancy trajectories (2007–2021) for four native North American ladybugs and 143 
quantified 10-year declines to assign IUCN categories without structured monitoring. 144 
 145 
2 Material and Methods 146 
 147 
 We assessed if COP variables could accurately predict annual species occupancy while 148 
mitigating temporal and structural biases without extensive filtering. Using six performance 149 
metrics, we evaluated COP-ML predictions of presence-absence across three scenarios: (1) 150 
predicting one survey group’s data (e.g., institutions vs. citizen science) from another, (2) 151 
forecasting another time period using data from earlier or later years, (3) estimating 30% of the 152 
entire dataset from the remaining 70%. COP-ML, trained on the full dataset, then predicted annual 153 
occupancy from 2007-2021, enabling consistent comparisons of annual distributions for reduction 154 
rates and extinction risks. 155 
 156 
2.1 Target species 157 
 158 
 Four native ladybug species—Coccinella novemnotata, Coccinella transversoguttata, 159 
Adalia bipunctata, and Hippodamia parenthesis—once dominated North American ladybug 160 
communities, thriving across diverse habitats and prey types (Losey 2007; 2012). Since the mid-161 
1980s, their relative abundance in collections has dropped to 1/110–1/20 of former levels 162 
(Harmon et al., 2007) due to competition with adventive species Coccinella septempunctata and 163 
Harmonia axyridis (Wheeler & Hoebeke 1995; Harmon et al., 2007). These introduced species 164 
now dominate and reshape traditional communities, reducing diversity and abundance continent-165 
wide (Petersen & Losey, 2024). Estimating reduction rates and extinction risks is challenging due 166 
to the natives' currently low density and wide distribution (Wheeler & Hoebeke, 1995; Hesler et 167 
al., 2004; Harmon et al., 2007), requiring integration of multi-source data across periods, regions, 168 
and methods while addressing inherent biases. 169 
 170 
2.2 Occurrence data 171 
 172 
 Ladybug records were compiled from multiple sources: three CS platforms, a museum 173 
collection website, and three metadata platforms (Appendix Table S1). Two CS platforms, 174 
iNaturalist and bugGuide.Net, enabled user-identifications, while The Lost Ladybug Project relied 175 
on experts. We further verified target species identifications from iNaturalist and bugGuide.Net. 176 
 177 
 To assess how COP addresses biases, we applied minimal preprocessing. Data were 178 
restricted to the U.S. (excluding Alaska and Hawaii) and parts of Canada (Manitoba, Ontario, 179 
Saskatchewan, British Columbia, Alberta, Quebec) from 2007 to 2021, using only adult forms 180 
identified to species level. GPS accuracy, if available (89% of data), was limited to 1 km. 181 
Duplicates matching species-year-GPS were removed. Then, descriptive statistics are applied to 182 
reveal temporal and structural inconsistencies. 183 
 184 
 The dataset included 188,644 records of 353 ladybug species from 85 sources, with 324 185 
records for C. novemnotata, 510 for C. transversoguttata, 732 for H. parenthesis, and 1,426 for 186 
A. bipunctata labeled as 'presence.' 187 
 188 



2.3 Pseudo-absence 189 
 190 
 When explicit absence records are unavailable, presence records of other species serve 191 
as pseudo-absence points, typically with GPS locations randomly sampled from all other species 192 
in a pool (Robinson et al., 2018). In this study, we used GPS points of adventive species C. 193 
septempunctata and H. axyridis for two reasons. First, these species exclusively compete with 194 
the target species, and their presence within an 18 km radius—without target species— was 195 
assumed to represent logical absence and a reshaped COP after local extinction. Second, their 196 
dominance, 61% of our dataset, means conventional random sampling would still largely select 197 
these species, ensuring minimal methodological deviation. 198 
 199 
 We pooled 10,000 pseudo-absence points, selecting them from states or provinces 200 
proportional to the four target species’ regional presence. Omitting the state ratio rule improved 201 
accuracy, but variable analysis showed an over-reliance on geographically specific variables, like 202 
Coleomegilla maculata, concentrated eastward. For our goal of predicting temporal changes, we 203 
prioritized biological interactions, such as competition, over static geographic distributions and 204 
introduced the matched state ratio treatment. We then randomly subsampled this pool multiple 205 
times for training and testing, labeling them as 'absence.' 206 
 207 
2.4 Variables 208 
 209 

Direct and indirect competition shapes ladybug assemblages, with adventive species 210 
dominance driving niche differentiation (Petersen & Losey, 2024) and avoidance behaviors in 211 
native species (Elliott et al., 1996; Hesler & Kieckhefer 2008; Mukwevho et al., 2017). We 212 
represented COP using the annual number of species records within an 18 km radius of presence 213 
and absence points, a distance based on typical ladybug dispersal ability (the exact number came 214 
from Jeffries et al., 2013; COSEWIC, 2016a; 2016b). For instance, most ladybugs are predators 215 
with high mobility (ex. H. axyridis, 442 km/year; McCorquodale, 1998) and active foraging across 216 
habitats (Woltz & Landis, 2013). Furthermore, we tested multiple radii (10–27 km) and selected 217 
18 km as the smallest distance with sufficient data density, beyond which performance gains were 218 
marginal and ecological interpretability declined. To avoid self-guidance, we excluded target 219 
species' counts from their own variables. Variable’s counts were min-max scaled by each species 220 
and year combination to correct for temporal and over-report variations in observation efforts. To 221 
reduce distributional bias during Min-Max scaling, outliers beyond the 1.5×IQR range from the 222 
25th and 75th percentiles were removed. 223 
 224 
 We excluded environmental variables to prevent multicollinearity with COP variables 225 
(Kissling et al., 2012). From co-occurrence species, we retained 85 with at least 30 co-226 
occurrences, excluding unidentified 'sp.' Multiple forward regressions (p < 0.05) selected 227 
predictive variables, with variance inflation factors (< 10) ensuring minimal multicollinearity. We 228 
ranked the top 15 key variables using SHapley Additive exPlanations (SHAP) values, which 229 
assess variable importance in model predictions. To examine relationships between variables 230 
and target species, we calculated average Point-Biserial Correlations by resampling pseudo-231 
absence points 50 times to match presence record counts. 232 
 233 
2.5 Development and characterization of models 234 
 235 
 We implemented the XGBoost Classifier (xgboost package) in Python, an ensemble 236 
method using gradient boosting trees to predict binary presence-absence (Chen & Guestrin, 237 
2016). Default parameters were adjusted only for objective='binary:logistic' and 238 
n_estimators=1000 to optimize performance and regularization. 239 



 240 
 We applied a 7:3 train-test split ratio where applicable (see Section 2.5.1). For each test 241 
scenario, we balanced presence and absence at a 5:5 ratio by undersampling pseudo-absence 242 
points across 50 independent runs. Training and testing were then randomly split within these 243 
balanced datasets, yielding 2,500 unique iterations (50 splits × 50 subsamples). 244 
 245 
 We assessed model performance in annual occupancy prediction using six metrics: 246 
Accuracy (correct response rate), Kappa (considering default chance of true response; Cohen, 247 
1960), Recall (true positive rate), and Precision (positive predictive rate) to measure ability in 248 
binary presence-absence predictions, plus Brier score (mean squared discrepancy; Brier, 1950) 249 
and AUC (class ranking; Fielding & Bell, 1997) for probability quality. 250 
 251 
2.5.1 Generalization 252 
 253 
 Generalization tests evaluate a model’s ability to predict data distinctive from training data 254 
in temporal, geographical, or source aspects (Vaughan & Ormerod, 2005), minimizing train-test 255 
autocorrelation, and demonstrate robustness when ground truth comparisons are limited (Justice 256 
et al., 1999). Our tests assessed whether our approach could generalize across structurally or 257 
temporally distinct data pools. 258 
 259 
 (1) Structural Generalization: We trained models on opportunistic CS datasets (LLP, 260 
iNaturalist, bugGuide.Net) to predict institutional datasets from 28 institutes, testing 261 
generalizability across survey types. COP differences between them were assessed using 262 
ANOSIM with Manhattan distance (Appendix Table S2). Presence records comprised 280 263 
opportunistic versus 44 institutional for C. novemnotata, 485 versus 25 for C. transversoguttata, 264 
626 versus 116 for H. parenthesis, and 1,338 versus 88 for A. bipunctata, with institutional 265 
pseudo-absence points ranging from 416 to 510. In a separate test, models trained on other 266 
sources (mean efficiency = 1.3) predicted LLP data (mean efficiency = 6.6), which emphasizes 267 
rare species monitoring; efficiency reflects the ratio of target species to total observations. 268 
 269 
 (2) Temporal Generalization: For forward testing, we trained models on presence data 270 
from 2007 until approximately 70% was accumulated, testing on the remaining about 30%. For 271 
backward testing, we reversed this, training from 2021 backward (Appendix Table S2). Pseudo-272 
absence points were selected using the same cutoff year. 273 
 274 
2.5.2 Evaluation 275 
 276 
 To assess COP-ML’s annual prediction performance, we trained models using 70% of 277 
presence data and an equal number of pseudo-absence points, testing on the remaining 30%. 278 
 279 
2.6 Prediction on annual distributions and reduction rates 280 
 281 
 To enable consistent temporal comparisons, COP-ML predicted annual presence of target 282 
species at all historical coordinates in our dataset since 2007, addressing yearly data gaps. 283 
 284 
 (1) Prediction: We developed models as in 2.5, training them on all available presence 285 
data to improve prediction accuracy (Fielding & Bell, 1997; Rencher, 1995). A GPS point was 286 
deemed occupied in a given year if more than half of 2,500 models (50 train-test splits × 50 287 
pseudo-absence subsamples) concurred. 288 
 289 



 (2) Analysis: We evaluated distribution trends using IUCN Red List Criterion A, based on 290 
changes in Area of Occupancy (AOO) and Extent of Occurrence (EOO). AOO, calculated as 4 291 
km2 grid cells occupied by a species, reflects occupancy extent and population size (IUCN, 2024). 292 
EOO, the polygon enclosing all known occurrences, indicates risk dispersion across a species’ 293 
range (IUCN, 2024). For Criterion A, we fitted a linear regression to predicted AOO from 2007 to 294 
2021 and estimated the most 10-year decline (2012–2021) from it, assuming these reflect 295 
population trends (IUCN, 2024). Heteroskedasticity was assessed with Breusch–Pagan and 296 
White tests, and influential outliers were identified using Cook’s distance. Robust standard errors 297 
(HC3) were applied to account for heteroskedasticity and assess trend significance, followed by 298 
robust regression to derive the final AOO decline trend. Given that robust regression can exclude 299 
extreme values with abrupt changes which may reflect true trends, we also conducted ordinary 300 
least squares (OLS) regression to compare statistical estimates and improve the reliability of trend 301 
interpretation. 302 
 303 
 (3) Validation: To confirm that ML-predicted AOO changes reflect consistent temporal 304 
trends despite varying data availability, we used multiple linear regression with time (year) and 305 
annual CS source volumes as predictors. 306 
 307 
3 Results 308 
 309 
3.1 Biases in multi-source data 310 
 311 
 Our multi-source dataset exhibited structural and temporal biases. Structural bias, 312 
stemming from varying efforts and methods across sources (Figure 1), was evident in differing 313 
efficiencies for detecting target species. Institutional data (3.5% of the total dataset) recorded 314 
target species at 2.79 times the density of opportunistic data (96.5%). Even among citizen science 315 
platforms, LLP (5%, mean efficiency = 6.6) outperformed iNaturalist (89%, mean efficiency = 1.1) 316 
by sixfold in density. Temporal bias arose from an exponential rise in annual observations (Figure 317 
1), with data volume post-2014 exceeding pre-2014 levels by 9.61 times. 318 
 319 
3.2 Structural and temporal generalization 320 
 321 
 We tested COP-ML’s annual prediction effectiveness and its generalizability against 322 
dataset biases through structural and temporal generalization tests. All models achieved reliable 323 
performance, exceeding benchmarks: Accuracy > 0.70, AUC > 0.70 (Hosmer et al., 2013), Kappa 324 
> 0.40 (Landis & Koch, 1977), and Brier < 0.25 (Brier, 1950; Figure 2). Models trained on 325 
unstructured CS datasets accurately predicted presence-absence in institutional datasets. 326 
Similarly, training on lower-efficiency datasets to predict higher-efficiency datasets, plus forward 327 
and backward temporal generalizations, met or surpassed these standards. 328 
 329 
 In structural generalization, C. transversoguttata model performed the best (0.87, 0.94, 330 
0.75, 0.11), outperforming others: C. novemnotata (0.81, 0.85, 0.61, 0.16), H. parenthesis (0.78, 331 
0.84, 0.55, 0.17), and A. bipunctata (0.73, 0.84, 0.46, 0.19) in Accuracy, AUC, Kappa, and Brier 332 
scores. ANOSIM revealed small COP dissimilarities (< 0.25, p = 0.001; Appendix Table S2) 333 
between CS and institutional records, with R-values of 0.22 (C. transversoguttata), 0.12 (H. 334 
parenthesis), 0.06 (C. novemnotata), 0.05 (A. bipunctata), and 0.06 (absence points). 335 
 336 
 For temporal generalization, C. transversoguttata, C. novemnotata, and H. parenthesis 337 
maintained consistent performance regardless of direction. Conversely, A. bipunctata’s backward 338 
performance dropped 7%, with Recall (true positives among actual positives) rising 2% and 339 
Precision (true positives among predicted positives) falling 13%. This indicates that models 340 



trained on recent data classified broader habitat conditions as occupied than were historically, 341 
suggesting its current occupancy may generalize beyond past habitat needs, unlike the other 342 
species. A supplementary analysis, expanding training data to 87% and limiting recent occupancy 343 
from test data (pre-2012), intensified this trend: Recall rose 11% and Precision fell 18%, while 344 
Accuracy remained unchanged. 345 
 346 
3.3 Evaluation of the developed models 347 
 348 
 We assessed COP-ML classifiers, trained on 70% of the full multi-source dataset and 349 
tested on 30%, against established standards and found them practical. C. transversoguttata (510 350 
presence points) showed the highest performance, followed by C. novemnotata (324), A. 351 
bipunctata (1,438), and H. parenthesis (742). Even the lowest-performing species exceeded 352 
satisfactory benchmarks: Accuracy, Precision, and Recall > 0.75 (excellent), AUC > 0.87 353 
(outstanding), Kappa > 0.57 (substantial), and Brier < 0.15. 354 
 355 
3.4 Predicted reduction rates and conservation status 356 
 357 
 Given COP-ML’s practical performance in prior tests, we predicted annual occupancy to 358 
fill monitoring gaps across all historical observation points from 2007 to 2021, ensuring consistent 359 
temporal comparisons (Figure 3; Appendix Figure S1). 360 
 361 
 All species showed statistically significant AOO decline trends (p < 0.05 for OLS and 362 
robust SE). Heteroskedasticity in A. bipunctata and influential outliers in A. bipunctata and H. 363 
parenthesis were detected, but differences in OLS, robust SE, and robust regression estimates 364 
(B, R², CI) were small, confirming reliable decline trends (Appendix Table S3). 365 
 366 
 Predictions suggested three target species are threatened by continuous declines in North 367 
America (Appendix Table S4). Area of occupancy (AOO), an indicator of occupied area and 368 
indirectly population size (IUCN, 2024), declined across all four species from 2007 to 2021: H. 369 
parenthesis by 1,962 km2, A. bipunctata by 584 km2, and C. novemnotata and C. 370 
transversoguttata by 480 km2 each. Per IUCN Red List Criterion A, 10-year reduction rates 371 
estimated H. parenthesis at 31% (“Vulnerable”), A. bipunctata at 15% (“Near Threatened”), C. 372 
novemnotata at 15% (“Near Threatened”), and C. transversoguttata at 9% (“Least Concern”; 373 
Figure 4). 374 
 375 
 Extent of occurrence (EOO), reflecting spatial risk dispersion (IUCN, 2024), declined most 376 
in C. transversoguttata. Despite its “Least Concern” status in this study, this species indicates 377 
reduced extinction resistance with ongoing population decline. 378 
 379 
 Multiple linear regression confirmed that time (year) significantly drove AOO declines 380 
across all species, while annual citizen science data volumes showed no evidence of statistically 381 
or practically meaningful effects (Appendix Table S5). 382 
 383 
3.5 Variable importance and correlation  384 
 385 
 SHAP values and Point-Biserial correlations revealed positive interdependence among C. 386 
novemnotata, C. transversoguttata, and H. parenthesis, with their predicted presences linked in 387 
ML models (Figure 5). Conversely, H. axyridis and C. septempunctata, ranking as the most 388 
influential variables, showed negative correlations with these three species. A. bipunctata, 389 
however, exhibited a positive correlation with them, marking an exception. H. convergence, a 390 
native species with the third highest abundance in the dataset, also correlated positively with three 391 



natives, contributing significantly to all models except H. parenthesis. 392 
 393 
4 Discussion 394 
 395 
4.1 Rationale for estimated reduction rates 396 
 397 

This study provides the first continent-wide estimates of decadal occupancy declines for 398 
C. novemnotata, C. transversoguttata, A. bipunctata, and H. parenthesis based on annual 399 
presence predictions. Earlier studies from the 1980s–1990s reported steep relative abundance 400 
declines—up to 95–99% (rescaled from Harmon et al., 2007)—whereas our more moderate 401 
reduction rates from 2007–2021 likely reflect the post-establishment phase of dominant adventive 402 
species. 403 

 404 
 Several lines of evidence support the plausibility of these more moderate rates. Historical 405 
records indicate that the most acute declines occurred shortly after the establishment of C. 406 
septempunctata and H. axyridis in North America (Colunga-Garcia & Gage, 1998; Bahlai et al., 407 
2015). 408 
 409 
 Subsequent regional studies suggest that native species declines have plateaued or 410 
transitioned into a chronic, low-intensity phase (Turnock et al., 2003; Elton, 2000; Strayer et al., 411 
2006; Harmon et al., 2007; Hesler & Kieckhefer, 2008), with no further sharp reductions observed 412 
(Alyokhin & Sewell, 2004; Bahlai et al., 2015). Such stabilization may reflect community-level re-413 
equilibration, resistance in remnant populations, or the persistence of spatial refuges (Evans, 414 
2000; 2004; Evans et al., 2011). 415 
 416 
 Standardized long-term monitoring in Michigan (2007–2019) corroborates this 417 
interpretation, documenting 10-year declines of 37% for H. parenthesis and 20% for A. bipunctata 418 
(KBS LTER; https://lter.kbs.msu.edu/datatables/67). These trends are based on linear 419 
regressions of sticky-trap captures normalized by survey effort. Although limited to a single 420 
available site, these local declines align closely with our continent-wide estimates (31% and 15%, 421 
respectively), suggesting that the COP-based annual predictions provide ecologically realistic 422 
baselines for broader conservation assessments. 423 
 424 
4.2 Interpretation of COP variables 425 
 426 

Annual prediction accuracy likely reflects the extent to which COP variables encode 427 
dynamic ecological processes—such as species interactions and habitat turnover—beyond what 428 
static predictors like climate or land cover can capture. Despite attenuation bias from 429 
observational noise across large, heterogeneous sources—which likely suppressed effect sizes—430 
the direction and relative influence of key COP predictors remained largely consistent with known 431 
ecological associations (Figure 5). 432 
 433 
 For instance, C. novemnotata and C. transversoguttata showed strong positive 434 
associations, consistent with overlapping habitat use and resource preferences (Hesler et al., 435 
2009). In contrast, H. axyridis and C. septempunctata—the two most influential variables—were 436 
negatively associated with three target natives, as known patterns of competitive displacement 437 
(Wheeler & Hoebke, 1995; Harmon et al., 2007; Petersen & Losey, 2024). 438 
 439 
 By contrast, A. bipunctata showed positive associations with both adventive species, likely 440 
due to macro-scale aboreal habitat preference overlap with H. axyridis (Coderre et al., 1995; Koch, 441 
2003; Omkar & Pervez, 2005; Hentley et al., 2016) and overlap with C. septempunctata in Europe 442 



where both are native (Honěk 1985; Nedvěd 1999). This pattern does not preclude competitive 443 
exclusion at finer spatial scales (e.g., <18 km), which may not be captured within the COP 444 
resolution used (Kajita et al., 2000; Kajita et al., 2006; Soares & Serpa, 2007). 445 
 446 
 Lower-ranked COP variables showed weaker links to known ecological interactions and 447 
may function primarily as spatial or environmental proxies. Their limited influence suggests that 448 
predictions were mainly driven by biologically meaningful co-occurrence patterns, rather than 449 
incidental spatial overlap. 450 
 451 
4.3 Strength and limitation of COP 452 
 453 
 The robustness of COP models across periods and sources suggests that co-occurrence 454 
structures may encode latent ecological constraints—such as competitive exclusion or shared 455 
habitat filtering—that static environmental variables often fail to capture. 456 
 457 
 COP-based predictors would be effective when biotic interactions strongly shaped 458 
distributions. In our case, native ladybug communities were shaped by prolonged competition with 459 
adventive species (Harmon et al., 2007; Petersen & Losey, 2024), and COP variables, even from 460 
opportunistic data, reflected these patterns. 461 
 462 
 However, this strength is contingent on the temporal stability of species interactions 463 
(Tikhonov et al., 2017). COP-ML declined in performance when backcasting the distribution of A. 464 
bipunctata, a species whose habitat preferences were reported to have shifted due to post-465 
invasion habitat compression (Bahlai et al., 2015). The model tended to overpredict past 466 
suitability—evidenced by higher recall than precision. This pattern suggests a limitation of COP-467 
based models when underlying biotic interactions shift over time, as static co-occurrence 468 
relationships may no longer align with changing ecological realities. 469 
 470 
 Nevertheless, COP variables exhibited strong generalizability across heterogeneous 471 
datasets—ranging from open-ended citizen science to a targeted rare-species initiative—while 472 
maintaining minimal structural divergence (Appendix Table S2). This highlights their resilience to 473 
source variation—a critical property in the context of conservation modeling. Historically, 474 
skepticism toward unstructured data has limited its utility (Isaac & Pocock, 2015; Steen et al., 475 
2019), even while multi-source integration becomes increasingly recognized as essential for data-476 
deficient taxa (Miller et al., 2019; Isaac et al., 2020). Our results show that COP—driven by 477 
commonly recorded species—can indirectly reveal the distributions of rarer taxa, enhancing the 478 
conservation value of citizen science and leveraging its rapid growth in data volume. 479 
 480 

This likely stems from the robustness of relational signals: co-occurrence patterns tend to 481 
be more resilient to sampling noise than marginal occurrence rates of individual species, which 482 
are often more sensitive to variation in effort or detection error (Tikhonov et al., 2017; Johnston 483 
et al., 2017). COP variables would leverage these dependencies to enable ecological inference 484 
even from opportunistic or sparse data. Our results were derived from a dataset incorporating 485 
over 78 institutions and projects—97% originating from citizen science and with minimal filtering 486 
applied. Given their consistency under such heterogeneous and unstructured conditions 487 
(Appendix Table S2), observed shifts in COP structure are more likely to reflect ecological change 488 
than artifacts of sampling noise. In this context, the robustness of COP variables implies more 489 
than resistance to bias; it provides empirical grounds to interpret persistent co-occurrence signals 490 
as evidence of underlying biotic structure. 491 
 492 
4.4 fill-in approach with annual predictions 493 



 494 
 This study proposes a ‘fill-in’ approach, uniquely generating annual occupancy predictions 495 
to bridge monitoring gaps. By tracking occupancy changes across North American habitats since 496 
2007, we evaluated extinction risk for four ladybug species under the IUCN Red List’s recent 10-497 
year population reduction criterion (Figure 3).  498 
 499 

Traditional time-series methods often rely on a “filtering” strategy—retaining only well-500 
monitored regions and thus narrowing the spatiotemporal scope of inference. Model-based 501 
approaches, by contrast, often require data-intensive population modeling (Fink et al., 2020) or 502 
repeated surveys—resources typically unavailable for under-recorded taxa. Our approach 503 
generates fine-scale temporal predictions from sparse, presence-only, multi-sourced datasets, 504 
benefitting these taxa. 505 
 506 
 Integrating annual predictive modeling with existing frameworks may enhance their 507 
applicability to data-deficient species. Occupancy models (OM), for instance, track temporal 508 
distribution shifts but require at least two revisits per period (Royle, 2006; Kamp et al., 2016; 509 
Outhwaite et al., 2018; Perkins-Taylor & Frey, 2020; Jha et al., 2022). Across North America, 510 
sufficient data density for bees and dragonflies required spatial and temporal resolutions as 511 
coarse as 10,000 km² and 10–20 years (Soroye et al., 2020; Jackson et al., 2022; Shirey et al., 512 
2023). Rather than compromising resolution or re-sampling unsurveyed areas with additional 513 
costs (Xue et al., 2016, Tulloch et al., 2013), annual ML predictions can offer an efficient 514 
alternative. 515 
 516 

However, incorporating ML-based predictions into occupancy modeling frameworks—as 517 
pseudo-observations—requires further validation to ensure statistical compatibility. While our 518 
models reliably tracked distributional changes, OM frameworks involve explicit modeling of 519 
detection and survey processes that must be reconciled with predicted data. Though OM 520 
advancements explored application of non-ideal data—e.g., assuming observation processes as 521 
random walks, using pseudo-absence instead of checklist absence, assuming opportunistic 522 
observations as revisit surveys (Outhwaite et al., 2018)—OM’s fit with fill-in predictions is untested. 523 
Combining annual predictive modeling with existing methods holds significant potential in 524 
conservation, but it requires identifying appropriate integration strategies and evaluating their 525 
logical consistency, performance enhancements, and the validity and reliability of results. 526 
 527 
 The fill-in and filtering approaches can be complementary. In this study, we did not account 528 
for spatial bias or spatial autocorrelation, often addressed through spatial thinning—a widely used 529 
filtering method. Filtering, however, introduces trade-offs: it narrows the spatiotemporal scope of 530 
inference, excludes rare species, and undermines the reliability of absolute-scale assessments 531 
such as IUCN Red List categorizations. We deliberately avoided filtering for three reasons: first, 532 
our focus on rare species with limited data rendered filtering impractical. Second, we aimed to 533 
test whether our approach, designed for such species, could perform well without relying on 534 
filtering (see Section 3.2, 3.3). Third, our goal was to generate predictions across the full known 535 
range of each species. However, balancing the selection of high-quality data through filtering with 536 
the benefits of more training data may be critical. Future research should determine the optimal 537 
data filtering level to improve the accuracy and reliability of predictions, retain data volume, and 538 
reduce bias. 539 
 540 

This study presents a scalable method to bridge monitoring gaps for data-deficient species, 541 
using sparse, presence-only records—largely from citizen science—to generate annual 542 
occupancy estimates. The predicted trends aligned with long-term trends from independent 543 
regional monitoring and operationalized IUCN Red List criteria for species previously excluded 544 



due to lack of data. COP-ML demonstrated robust performance across heterogeneous sources 545 
and time periods, showing that reliable extinction risk signals can emerge even from unstructured 546 
datasets. By transforming fragmented observations into interpretable trends, the fill-in approach 547 
provides a practical pathway to extend extinction risk assessment and strengthen conservation 548 
decisions in the absence of standardized monitoring. 549 
 550 
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Figures and Tables 936 
 937 

 938 

 939 
 940 
Figure 1. Left: Detection efficiency of four target coccinellid species in this study across data 941 
sources, highlighting structural inconsistencies among opportunistic citizen science platforms 942 
(The Lost Ladybug Project, iNaturalist, BugGuide.net) and institutional records (see Section 3.1). 943 
Right: Exponential increase (y = 758.89e0.29x (R2 = 0.88)) in the annual number of coccinellid 944 
observations across the USA and Canada (2007–2021), showing a 9.61-fold rise post-2014 945 
relative to pre-2014, highlighting temporal bias (see Section 3.1). 946 
  947 



 948 
 949 
Figure 2. Performance of species distribution models using co-occurrence patterns for C. 950 
novemnotata (N), C. transversoguttata (T), A. bipunctata (B), and H. parenthesis (P) across five 951 
data settings (see Section 3.2, 3.3). Black plots represent a 70:30 train-test split. Structural 952 
generalization tests include training on citizen science and testing on institutional data (white 953 
plots), or training on low-efficiency sources (1.3% target species detection) and testing on a high-954 
efficiency rare species monitoring source (6.6%; gray plots). Temporal generalization tests use 955 
post-2007 training with pre-2021 testing (left diagonal hatch) or the reverse (right diagonal hatch), 956 
with a cutoff year at approximately 70% training data coverage. The red line indicates the mean 957 
performance across 2,500 training iterations, with a 95% confidence interval. All models exceeded 958 
acceptable performance benchmarks: Accuracy > 0.70, AUC > 0.70, Kappa > 0.40, and Brier < 959 
0.25 (Hosmer et al., 2013; Landis and Koch, 1977; Brier, 1950). 960 
  961 



 962 
 963 
Figure 3. Annual occupancy of Hippodamia parenthesis (2007–2021) in the USA and Canada, 964 
comparing co-occurrence-based model predictions (upper maps) with raw observations (lower 965 
maps). Dots show occupied locations within each state, with color gradients to represent state-966 
level occupancy changes over time (see Section 3.4). 967 
  968 



 969 
 970 
Figure 4. Area of occupancy for four target coccinellid species in the USA and Canada (2007–971 
2021), with annual predictions (red lines) showing declines, while raw observations (bars) suggest 972 
increases due to temporal bias. Dashed lines show robust regression trends with 95% confidence 973 
intervals, with IUCN Red List categories based on 10-year reduction rates (see Section 3.4). 974 



 975 
 976 
Figure 5. Variable importance is ranked by the SHapley Additive exPlanations index (y-axis), 977 
while the Point-Biserial Correlation (x-axis) quantifies the association between variables and the 978 
presence of target species (see Section 3.5). 979 
  980 



Appendix 1 981 
 982 
Table S1. Occurrence records of coccinellid species from seven digital platforms (three citizen 983 
science, one museum collection, and three metadata sources) used in this study (see Section 984 
2.2). Regional abbreviations: AK = Alaska, HI = Hawaii, MB = Manitoba, ON = Ontario, SK = 985 
Saskatchewan, BC = British Columbia, AB = Alberta, QC = Quebec. 986 
 987 

Source Size Type Data Download & Refinment Criteria 

Lost Ladybug 
Project 32,905 Citizen 

science 
• Years 2007-2021 

• U.S. (excluding AK & HI) and Canadian 

provinces (MB, ON, SK, BC, AB, QC) 

• Positional accuracy < 1 km (if applicable) 

• Species level 

• Only adult records or images 

• Drop duplicates at year-GPS-species 

iNaturalist 197,990 Citizen 
science 

bugGuide.Net 27,018 Citizen 
science 

GBIF 143,000 Metadata 
source 

BISON 109,834 Metadata 
source 

IdigBio 99,723 Metadata 
source 

NCSU Insect 
Museum 5,425 Institute Final Dataset: 188,644 

 988 
 989 
Table S2. ANOSIM results assessing differences in co-occurrence patterns (COP) across data 990 
groups in the generalization test sets (see Section 2.5.1). 991 
 992 

+To assess COP model generalization, the training period for A. bipunctata—the species with most presence records—was reduced to extend the testing 993 
period. 994 
 995 

Species 

Citizen science and  
institutional data 

Post-year train, Pre-year test Pre-year train, Post-year test 

ANOSIM 
value 

p-value Test year 
period 

Train 
(% of 

presence) 

ANOSIM 
value 

p-value Test year 
period 

Train 
(% of 

presence) 

ANOSIM 
value 

p-value 

C. transversoguttata 0.22 0.001 after 
2019 65% 0.03 0.001 before 

2014 70% 0.07 0.001 

C. novemnotata 0.06 0.001 after 
2018 70% 0.06 0.001 before 

2013 72% 0.02 0.001 

H. parenthesis 0.12 0.001 after 
2020 74% 0.07 0.001 before 

2014 74% 0.05 0.001 

A. bipunctata 0.05 0.001 after 
2019+ 55% 0.02 0.001 before 

2017 67% 0.02 0.001 

Absence datapoints 0.06 0.001   0.03 0.001   0.01 0.001 



Table S3. Results of regression estimates, diagnostic tests, and 2012-2021 reduction rates (OLS: 996 
ordinary least squares regression, Huber: robust regression). 997 
 998 

 C. novemnotata C. transversoguetta A. bipunctata H. parenthesis 

B (OLS) -13.36 -14.73 -45.59 -53.63 

R² (OLS) 0.818 0.733 0.500 0.834 

p (OLS) 0.0000**** 0.0000**** 0.0032*** 0.0000**** 

95% CI (OLS) -17.13, 
-9.59 

-20.06,  
-9.4 

-72.91,  
-18.26 

-67.97,  
-39.29 

Reduction 
(10-yr, OLS) -15% -9% -15% -29% 

Breusch- 
Pagan p 0.9001 0.7992 0.0226* 0.0804 

White p 0.7238 0.1968 0.0402* 0.0736 

p (Robust SE) 0.0000**** 0.0000**** 0.0078* 0.0000**** 
95% CI 

(Robust SE) 
-16.77,  
-9.95 

-18.14,  
-11.31 

-79.18,  
-11.99 

-72.55,  
-34.71 

Max Cook’s 
Distance 0.2056 0.2028 0.6505 1.0651 

B (Huber) -13.00 -14.38 -45.98 -56.24 

R² (Huber) 0.811 0.731 0.500 0.831 

95% CI (Huber) -16.42,  
-9.58 

-17.39,  
-11.38 

-72.32,  
-19.65 

-68.23,  
-44.26 

Reduction 
(10-yr, Huber) -15% -9% -15% -31% 

(p* < 0.05, p** < 0.05, p*** < 0.005, p**** < 0.0005) 999 
 1000 
 1001 
Table S4. Predicted distribution trends (2007–2021) and IUCN Red List status of four rare 1002 
coccinellid species based on reductions in area of occupancy (AOO) and extent of occurrence 1003 
(EOO; see Section 3.4). 1004 
 1005 

Species Reduction 
in 10-yrs 

IUCN 
status 

AOO (km²) EOO (km²) 

2007 2021 2007 2021 

H. parenthesis 31%                      VU 1,548 1,352 8,450,469 7,749,070 

A. bipunctata 15%                     NT 3,128 2,648 11,538,691 10,817,443 

C. novemnotata 15%                      NT 2,012 1,428 5,480,067 5,399,901 

C. transversoguttata 9%                      LC 892   696 9,820,525 9,146,848 
 1006 
 1007 
 1008 



Table S5. Multiple linear regression (OLS) results evaluating the effects of time (year) and annual 1009 
data volume from citizen science sources on ML-predicted annual area of occupancy (AOO) for 1010 
four target species (*p < 0.05, **p < 0.005, ***p < 0.0005; see Section 3.4).  1011 
 1012 

 C. novemnotata C. transversoguttata H. parenthesis A. bipunctata 

F-statistic 
(DF Model, 

DF Residual) 

12.96** 
(4, 10) 

7.80** 
(4, 10) 

34.72*** 
(4, 10) 

12.86** 
(4, 10) 

R² 0.83 0.76 0.93 0.84 

 B coefficient (± SE) 

Intercept 32224.9** 
± 7617.4  

36645.9* 
± 10517.8 

149163.4*** 
±18885.1 

160044.6*** 
± 32274.6 

95% CI Upper 
Lower 

49197.4 
15252.3 

60081.1 
13210.7 

191242.0 
107084.8 

231956.8 
88132.4 

Year -15.6** 
± 3.8 

-17.5* 
± 5.2 

-73.2*** 
± 9.4 

-78.2*** 
± 16.1 

95% CI Upper 
Lower 

-7.1 
-24.1 

-5.8 
-29.2 

-52.3 
-94.3 

-42.2 
-114.0 

Lost Ladybug 
Project 

0.0003 
± 0.0236 

0.0221 
± 0.0326 

0.0870 
± 0.0586 

0.2587* 
± 0.1001 

iNaturalist 0.0008 
± 0.0013 

0.0012 
± 0.0018 

0.0061 
± 0.0032 

0.0105 
± 0.0055 

bugGuide.Net 0.0680 
± 0.2646 

-0.0031 
± 0.3653 

-0.7286 
± 0.6560 

-1.9637 
± 1.1212 

 1013 
 1014 
  1015 



 1016 

 1017 

 1018 

 1019 
Figure S1. The maps depict the occupied coordinates of each species for each year from 2007 1020 
to 2021. The left maps show annual occupancy predicted by co-occurrence-based models, while 1021 
the right maps are based solely on reported observations. The heatmap represents the number 1022 



of occupied coordinates per state, with color shifts over time indicating changes in occupancy. 1023 
(Active figures are available at: https://figshare.com/s/17cef8ef530f0a4f7b99) 1024 


