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Filling Monitoring Gaps for Data-deficient Species Using Annual Occupancy Predictions 43 
from Co-occurrence Models 44 
 45 
Abstract  46 
 47 
Fragmented surveys and limited monitoring exclude most invertebrate species from conservation 48 
policy. We present a framework that generates annual occupancy predictions using species 49 
distribution models (SDMs) to reconstruct missing trends—not to extrapolate trends, but to fill 50 
them in (the fill-in approach). Instead of filtering poor-data regions and years or relying on static 51 
environmental variables, we use co-occurrence patterns (COP) to capture year-to-year shifts in 52 
species assemblages, to enable temporal prediction across all recorded habitats using sparse, 53 
presence-only datasets from multiple sources. Applied to four rare native ladybugs across North 54 
America (2007–2021), COP models exceeded reliability benchmarks (Accuracy > 0.70, AUC > 55 
0.70, Kappa > 0.40, Brier < 0.25) across standard test splits, structurally distinct sources, and 56 
temporally divided periods. This indicates that annual predictions were robust to temporal bias 57 
arising from varying data volume and source composition, as supported by negligible effects in 58 
multiple regression. Predicted 10-year declines (9–31%) closely aligned with independent long-59 
term regional monitoring data, operationalizing IUCN Red List classifications (from “Least 60 
Concern” to “Vulnerable”) in the absence of standardized monitoring. By translating fragmented 61 
observations—primarily from citizen science—into standardized annual trend estimates, the fill-in 62 
approach extends extinction risk assessment to data-deficient taxa long excluded from 63 
conservation frameworks. 64 
 65 
1 Introduction 66 
 67 

Most invertebrate species—despite sharp declines (Montgomery et al., 2020)—remain 68 
invisible to conservation action, not because they are safe, but because they are silent in the data. 69 
Traditional approaches require revisits, effort-standardization, or abundance metrics—criteria that 70 
vast portions of invertebrate data simply fail to meet (Harvey et al., 2020). Without new tools to 71 
extract temporal signals from sparse, unstructured observations, these species will continue to 72 
decline unmeasured and unprotected. 73 
 74 
 Quantifying distribution trends for invertebrates remains a persistent methodological 75 
challenge, contributing to their significant underrepresentation in global conservation frameworks 76 
(Montgomery et al., 2020; Jönsson et al., 2021). Standardized monitoring programs are scarce 77 
or limited in scope (Estes et al., 2018; Bayraktarov et al., 2019), while available records frequently 78 
violate core statistical assumptions required by current trend detection models—ranging from 79 
ordinal abundance (e.g., Newson et al., 2015; Inamine et al., 2016; Schultz et al., 2017; Martín et 80 
al., 2021) and checklist-based data (Walker & Taylor, 2017; LeCroy et al., 2020) to survey effort 81 
metrics (e.g., Szabo et al., 2010; Isaac et al., 2014; Kamp et al., 2016; Horns et al., 2018; Fink et 82 
al., 2020) and repeat visits (e.g., MacKenzie et al., 2002; 2006; Kéry et al., 2010; van Strien et al., 83 
2013; Altwegg & Nichols, 2019). 84 
 85 
 Opportunistic observations dominate in under-monitored taxa (Kissling et al., 2018), but 86 
introduce pronounced temporal and spatial biases (Isaac et al., 2014; Guzman et al., 2021, 87 
Larsen and Shirey 2021). While some strategies attempt to mitigate this through data thinning or 88 
quality-based filtering (Wisz et al., 2008; Isaac et al., 2014; Kamp et al., 2016; Zizka et al., 2021; 89 
Van Eupen et al., 2021), such methods further reduce already sparse datasets, often eliminating 90 



precisely the regions and species of greatest conservation concern. As a result, the majority of 91 
invertebrate taxa remain excluded not for lack of ecological relevance, but for lack of usable data 92 
structures. 93 
 94 

One untested strategy for bridging monitoring gaps is to reconstruct annual occupancy 95 
trajectories at historical locations using species distribution models (SDMs). Such models predict 96 
occupancy in unsampled areas from known presences (Olden et al., 2008; Zimmermann et al., 97 
2010; Franklin, 2013), and have shown robust performance even under low data volumes 98 
(Hernandez et al., 2006; Wisz et al., 2008) or presence-only conditions (Robinson et al., 2018; 99 
Radomski et al., 2022). 100 
 101 

However, most ML-based SDM applications focus on long-term range shifts, relying on 102 
static environmental predictors (Tingley & Beissinger 2009; Svancara et al., 2019), with rare 103 
attempts at annual trend detection, most of which depend on structured data and intensive 104 
thinning (Fink et al., 2020; Svancara et al., 2019), making them impractical for under-recorded 105 
invertebrates. Similarly, occupancy modeling approaches designed for trend detection demand 106 
strict revisit protocols and high spatiotemporal density (MacKenzie et al., 2002; Altwegg & Nichols, 107 
2019)—e.g., in North America, ≥10,000 km² grids over ≥10-year intervals to achieve sufficient 108 
data density for bees and dragonflies (Soroye et al., 2020; Jackson et al., 2022). These data 109 
thresholds far exceed what is available for most under-recorded species, especially those under 110 
consideration in IUCN Red List assessments, which require trend estimates over a recent decadal 111 
timeframe (IUCN, 2024). 112 
 113 

In short, traditional approaches—whether predictive or inferential—remain structurally 114 
inaccessible to the taxa most in need of conservation insight. 115 
 116 

This study uses Co-occurrence-pattern predictors (COP) to generate fine-scale temporal 117 
predictions. COP describe the composition of nearby species within a radius (see Section 2.4). 118 
Prior studies suggest that these variables can embed species interactions and environmental 119 
associations (Pollock et al., 2014; Kissling et al., 2012). We propose that COP may also detect 120 
habitat and biotic changes more quickly than static environmental predictors, making them 121 
suitable for fine temporal scale, year-to-year occupancy prediction. 122 

 123 
This study evaluates whether ML-based SDMs with COP variables (COP-ML) can 124 

generate accurate annual occupancy predictions from sparse, presence-only, multi-source 125 
datasets typical of under-recorded species, while remaining robust to temporal and structural 126 
biases. 127 

 128 
To test for temporal bias, we assess whether models trained on one period generalize to 129 

others (Martínez-Minaya et al., 2018). Such generalization is essential (Willig et al., 2019; 130 
Guzman et al., 2021), as opportunistic citizen science (CS) data—now a major source of records 131 
(Knape et al., 2022)—is temporally uneven, often concentrated in recent years (Geldmann et al., 132 
2016). 133 
 134 

To test for structural bias, we evaluate whether models trained on one type of survey data 135 
can predict others. Multi-source integration is often necessary for rare species (Fletcher et al., 136 
2019; Miller et al., 2019; Isaac et al., 2020), but inconsistent methods, even within CS platforms 137 
(Gardiner et al., 2012), can introduce systematic errors (Cheney et al., 2013). If models cannot 138 
accommodate such variation, observed changes may reflect protocol shifts rather than biological 139 
trends (Pagel et al., 2014; Knape et al., 2022). 140 

 141 



This study evaluates three hypotheses: (1) Can ML-based classifiers distinguish target 142 
species’ presence or absence using annual COP variables? (2) Can annual COP training enable 143 
generalization across survey methods? (3) Can this approach enable generalization across time 144 
periods? Then using COP ML’s predictions, we reconstructed annual occupancy trajectories 145 
(2007–2021) for four native North American ladybugs and quantified 10-year declines to assign 146 
IUCN categories without structured monitoring. 147 
 148 
2 Material and Methods 149 
 150 
 We assessed if COP variables could accurately predict annual species occupancy while 151 
mitigating temporal and structural biases without extensive filtering. Using six performance 152 
metrics, we evaluated COP-ML predictions of presence-absence across three scenarios: (1) 153 
predicting one survey group’s data (e.g., institutions vs. citizen science) from another, (2) 154 
forecasting another time period using data from earlier or later years, (3) estimating 30% of the 155 
entire dataset from the remaining 70%. COP-ML, trained on the full dataset, then predicted annual 156 
occupancy from 2007-2021, enabling consistent comparisons of annual distributions for reduction 157 
rates and extinction risks. 158 
 159 
2.1 Target species 160 
 161 
 Four native ladybug species—Coccinella novemnotata, Coccinella transversoguttata, 162 
Adalia bipunctata, and Hippodamia parenthesis—once dominated North American ladybug 163 
communities, thriving across diverse habitats and prey types (Losey 2007; 2012). Since the mid-164 
1980s, their relative abundance in collections has dropped to 1/110–1/20 of former levels 165 
(Harmon et al., 2007) due to competition with adventive species Coccinella septempunctata and 166 
Harmonia axyridis (Wheeler & Hoebeke 1995; Harmon et al., 2007). These introduced species 167 
now dominate and reshape traditional communities, reducing diversity and abundance continent-168 
wide (Petersen & Losey, 2024). Estimating reduction rates and extinction risks is challenging due 169 
to the natives' currently low density and wide distribution (Wheeler & Hoebeke, 1995; Hesler et 170 
al., 2004; Harmon et al., 2007), requiring integration of multi-source data across periods, regions, 171 
and methods while addressing inherent biases. 172 
 173 
2.2 Occurrence data 174 
 175 
 Ladybug records were compiled from multiple sources: three CS platforms, a museum 176 
collection website, and three metadata platforms (Appendix Table S1). Two CS platforms, 177 
iNaturalist and bugGuide.Net, enabled user-identifications, while The Lost Ladybug Project relied 178 
on experts. We further verified target species identifications from iNaturalist and bugGuide.Net. 179 
 180 
 To assess how COP addresses biases, we applied minimal preprocessing. Data were 181 
restricted to the U.S. (excluding Alaska and Hawaii) and parts of Canada (Manitoba, Ontario, 182 
Saskatchewan, British Columbia, Alberta, Quebec) from 2007 to 2021, using only adult forms 183 
identified to species level. GPS accuracy, if available (89% of data), was limited to 1 km. 184 
Duplicates matching species-year-GPS were removed. Then, descriptive statistics are applied to 185 
reveal temporal and structural inconsistencies. 186 
 187 
 The dataset included 188,644 records of 353 ladybug species from 85 sources, with 324 188 
records for C. novemnotata, 510 for C. transversoguttata, 732 for H. parenthesis, and 1,426 for 189 
A. bipunctata labeled as 'presence.' 190 
 191 
2.3 Pseudo-absence 192 



 193 
 When explicit absence records are unavailable, presence records of other species serve 194 
as pseudo-absence points, typically with GPS locations randomly sampled from all other species 195 
in a pool (Robinson et al., 2018). In this study, we used GPS points of adventive species C. 196 
septempunctata and H. axyridis for two reasons. First, these species exclusively compete with 197 
the target species, and their presence within an 18 km radius—without target species— was 198 
assumed to represent logical absence and a reshaped COP after local extinction. Second, their 199 
dominance, 61% of our dataset, means conventional random sampling would still largely select 200 
these species, ensuring minimal methodological deviation. 201 
 202 
 We pooled 10,000 pseudo-absence points, selecting them from states or provinces 203 
proportional to the four target species’ regional presence. Omitting the state ratio rule improved 204 
accuracy, but variable analysis showed an over-reliance on geographically specific variables, like 205 
Coleomegilla maculata, concentrated eastward. For our goal of predicting temporal changes, we 206 
prioritized biological interactions, such as competition, over static geographic distributions and 207 
introduced the matched state ratio treatment. We then randomly subsampled this pool multiple 208 
times for training and testing, labeling them as 'absence.' 209 
 210 
2.4 Variables 211 
 212 

Direct and indirect competition shapes ladybug assemblages, with adventive species 213 
dominance driving niche differentiation (Petersen & Losey, 2024) and avoidance behaviors in 214 
native species (Elliott et al., 1996; Hesler & Kieckhefer 2008; Mukwevho et al., 2017). We 215 
represented COP using the annual number of species records within an 18 km radius of presence 216 
and absence points, a distance based on typical ladybug dispersal ability (the exact number came 217 
from Jeffries et al., 2013; COSEWIC, 2016a; 2016b). For instance, most ladybugs are predators 218 
with high mobility (ex. H. axyridis, 442 km/year; McCorquodale, 1998) and active foraging across 219 
habitats (Woltz & Landis, 2013). Furthermore, we tested multiple radii (10–27 km) and selected 220 
18 km as the smallest distance with sufficient data density, beyond which performance gains were 221 
marginal and ecological interpretability declined. To avoid self-guidance, we excluded target 222 
species' counts from their own variables. Variable’s counts were min-max scaled by each species 223 
and year combination to correct for temporal and over-report variations in observation efforts. To 224 
reduce distributional bias during Min-Max scaling, outliers beyond the 1.5×IQR range from the 225 
25th and 75th percentiles were removed. 226 
 227 
 We excluded environmental variables to prevent multicollinearity with COP variables 228 
(Kissling et al., 2012). From co-occurrence species, we retained 85 with at least 30 co-229 
occurrences, excluding unidentified 'sp.' Multiple forward regressions (p < 0.05) selected 230 
predictive variables, with variance inflation factors (< 10) ensuring minimal multicollinearity. We 231 
ranked the top 15 key variables using SHapley Additive exPlanations (SHAP) values, which 232 
assess variable importance in model predictions. To examine relationships between variables 233 
and target species, we calculated average Point-Biserial Correlations by resampling pseudo-234 
absence points 50 times to match presence record counts. 235 
 236 
2.5 Development and characterization of models 237 
 238 
 We implemented the XGBoost Classifier (xgboost package) in Python, an ensemble 239 
method using gradient boosting trees to predict binary presence-absence (Chen & Guestrin, 240 
2016). Default parameters were adjusted only for objective='binary:logistic' and 241 
n_estimators=1000 to optimize performance and regularization. 242 
 243 



 We applied a 7:3 train-test split ratio where applicable (see Section 2.5.1). For each test 244 
scenario, we balanced presence and absence at a 5:5 ratio by undersampling pseudo-absence 245 
points across 50 independent runs. Training and testing were then randomly split within these 246 
balanced datasets, yielding 2,500 unique iterations (50 splits × 50 subsamples). 247 
 248 
 We assessed model performance in annual occupancy prediction using six metrics: 249 
Accuracy (correct response rate), Kappa (considering default chance of true response; Cohen, 250 
1960), Recall (true positive rate), and Precision (positive predictive rate) to measure ability in 251 
binary presence-absence predictions, plus Brier score (mean squared discrepancy; Brier, 1950) 252 
and AUC (class ranking; Fielding & Bell, 1997) for probability quality. 253 
 254 
2.5.1 Generalization 255 
 256 
 Generalization tests evaluate a model’s ability to predict data distinctive from training data 257 
in temporal, geographical, or source aspects (Vaughan & Ormerod, 2005), minimizing train-test 258 
autocorrelation, and demonstrate robustness when ground truth comparisons are limited (Justice 259 
et al., 1999). Our tests assessed whether our approach could generalize across structurally or 260 
temporally distinct data pools. 261 
 262 
 (1) Structural Generalization: We trained models on opportunistic CS datasets (LLP, 263 
iNaturalist, bugGuide.Net) to predict institutional datasets from 28 institutes, testing 264 
generalizability across survey types. COP differences between them were assessed using 265 
ANOSIM with Manhattan distance (Appendix Table S2). Presence records comprised 280 266 
opportunistic versus 44 institutional for C. novemnotata, 485 versus 25 for C. transversoguttata, 267 
626 versus 116 for H. parenthesis, and 1,338 versus 88 for A. bipunctata, with institutional 268 
pseudo-absence points ranging from 416 to 510. In a separate test, models trained on other 269 
sources (mean efficiency = 1.3) predicted LLP data (mean efficiency = 6.6), which emphasizes 270 
rare species monitoring; efficiency reflects the ratio of target species to total observations. 271 
 272 
 (2) Temporal Generalization: For forward testing, we trained models on presence data 273 
from 2007 until approximately 70% was accumulated, testing on the remaining about 30%. For 274 
backward testing, we reversed this, training from 2021 backward (Appendix Table S2). Pseudo-275 
absence points were selected using the same cutoff year. 276 
 277 
2.5.2 Evaluation 278 
 279 
 To assess COP-ML’s annual prediction performance, we trained models using 70% of 280 
presence data and an equal number of pseudo-absence points, testing on the remaining 30%. 281 
 282 
2.6 Prediction on annual distributions and reduction rates 283 
 284 
 To enable consistent temporal comparisons, COP-ML predicted annual presence of target 285 
species at all historical coordinates in our dataset since 2007, addressing yearly data gaps. 286 
 287 
 (1) Prediction: We developed models as in 2.5, training them on all available presence 288 
data to improve prediction accuracy (Fielding & Bell, 1997; Rencher, 1995). A GPS point was 289 
deemed occupied in a given year if more than half of 2,500 models (50 train-test splits × 50 290 
pseudo-absence subsamples) concurred. 291 
 292 
 (2) Analysis: We evaluated distribution trends using IUCN Red List Criterion A, based on 293 
changes in Area of Occupancy (AOO) and Extent of Occurrence (EOO). AOO, calculated as 4 294 



km2 grid cells occupied by a species, reflects occupancy extent and population size (IUCN, 2024). 295 
EOO, the polygon enclosing all known occurrences, indicates risk dispersion across a species’ 296 
range (IUCN, 2024). For Criterion A, we fitted a linear regression to predicted AOO from 2007 to 297 
2021 and estimated the most 10-year decline (2012–2021) from it, assuming these reflect 298 
population trends (IUCN, 2024). Heteroskedasticity was assessed with Breusch–Pagan and 299 
White tests, and influential outliers were identified using Cook’s distance. Robust standard errors 300 
(HC3) were applied to account for heteroskedasticity and assess trend significance, followed by 301 
robust regression to derive the final AOO decline trend. Given that robust regression can exclude 302 
extreme values with abrupt changes which may reflect true trends, we also conducted ordinary 303 
least squares (OLS) regression to compare statistical estimates and improve the reliability of trend 304 
interpretation. 305 
 306 
 (3) Validation: To confirm that ML-predicted AOO changes reflect consistent temporal 307 
trends despite varying data availability, we used multiple linear regression with time (year) and 308 
annual CS source volumes as predictors. 309 
 310 
3 Results 311 
 312 
3.1 Biases in multi-source data 313 
 314 
 Our multi-source dataset exhibited structural and temporal biases. Structural bias, 315 
stemming from varying efforts and methods across sources (Figure 1), was evident in differing 316 
efficiencies for detecting target species. Institutional data (3.5% of the total dataset) recorded 317 
target species at 2.79 times the density of opportunistic data (96.5%). Even among citizen science 318 
platforms, LLP (5%, mean efficiency = 6.6) outperformed iNaturalist (89%, mean efficiency = 1.1) 319 
by sixfold in density. Temporal bias arose from an exponential rise in annual observations (Figure 320 
1), with data volume post-2014 exceeding pre-2014 levels by 9.61 times. 321 
 322 
3.2 Structural and temporal generalization 323 
 324 
 We tested COP-ML’s annual prediction effectiveness and its generalizability against 325 
dataset biases through structural and temporal generalization tests. All models achieved reliable 326 
performance, exceeding benchmarks: Accuracy > 0.70, AUC > 0.70 (Hosmer et al., 2013), Kappa 327 
> 0.40 (Landis & Koch, 1977), and Brier < 0.25 (Brier, 1950; Figure 2). Models trained on 328 
unstructured CS datasets accurately predicted presence-absence in institutional datasets. 329 
Similarly, training on lower-efficiency datasets to predict higher-efficiency datasets, plus forward 330 
and backward temporal generalizations, met or surpassed these standards. 331 
 332 
 In structural generalization, C. transversoguttata model performed the best (0.87, 0.94, 333 
0.75, 0.11), outperforming others: C. novemnotata (0.81, 0.85, 0.61, 0.16), H. parenthesis (0.78, 334 
0.84, 0.55, 0.17), and A. bipunctata (0.73, 0.84, 0.46, 0.19) in Accuracy, AUC, Kappa, and Brier 335 
scores. ANOSIM revealed small COP dissimilarities (< 0.25, p = 0.001; Appendix Table S2) 336 
between CS and institutional records, with R-values of 0.22 (C. transversoguttata), 0.12 (H. 337 
parenthesis), 0.06 (C. novemnotata), 0.05 (A. bipunctata), and 0.06 (absence points). 338 
 339 
 For temporal generalization, C. transversoguttata, C. novemnotata, and H. parenthesis 340 
maintained consistent performance regardless of direction. Conversely, A. bipunctata’s backward 341 
performance dropped 7%, with Recall (true positives among actual positives) rising 2% and 342 
Precision (true positives among predicted positives) falling 13%. This indicates that models 343 
trained on recent data classified broader habitat conditions as occupied than were historically, 344 
suggesting its current occupancy may generalize beyond past habitat needs, unlike the other 345 



species. A supplementary analysis, expanding training data to 87% and limiting recent occupancy 346 
from test data (pre-2012), intensified this trend: Recall rose 11% and Precision fell 18%, while 347 
Accuracy remained unchanged. 348 
 349 
3.3 Evaluation of the developed models 350 
 351 
 We assessed COP-ML classifiers, trained on 70% of the full multi-source dataset and 352 
tested on 30%, against established standards and found them practical. C. transversoguttata (510 353 
presence points) showed the highest performance, followed by C. novemnotata (324), A. 354 
bipunctata (1,438), and H. parenthesis (742). Even the lowest-performing species exceeded 355 
satisfactory benchmarks: Accuracy, Precision, and Recall > 0.75 (excellent), AUC > 0.87 356 
(outstanding), Kappa > 0.57 (substantial), and Brier < 0.15. 357 
 358 
3.4 Predicted reduction rates and conservation status 359 
 360 
 Given COP-ML’s practical performance in prior tests, we predicted annual occupancy to 361 
fill monitoring gaps across all historical observation points from 2007 to 2021, ensuring consistent 362 
temporal comparisons (Figure 3; Appendix Figure S1). 363 
 364 
 All species showed statistically significant AOO decline trends (p < 0.05 for OLS and 365 
robust SE). Heteroskedasticity in A. bipunctata and influential outliers in A. bipunctata and H. 366 
parenthesis were detected, but differences in OLS, robust SE, and robust regression estimates 367 
(B, R², CI) were small, confirming reliable decline trends (Appendix Table S3). 368 
 369 
 Predictions suggested three target species are threatened by continuous declines in North 370 
America (Appendix Table S4). Area of occupancy (AOO), an indicator of occupied area and 371 
indirectly population size (IUCN, 2024), declined across all four species from 2007 to 2021: H. 372 
parenthesis by 1,962 km2, A. bipunctata by 584 km2, and C. novemnotata and C. 373 
transversoguttata by 480 km2 each. Per IUCN Red List Criterion A, 10-year reduction rates 374 
estimated H. parenthesis at 31% (“Vulnerable”), A. bipunctata at 15% (“Near Threatened”), C. 375 
novemnotata at 15% (“Near Threatened”), and C. transversoguttata at 9% (“Least Concern”; 376 
Figure 4). 377 
 378 
 Extent of occurrence (EOO), reflecting spatial risk dispersion (IUCN, 2024), declined most 379 
in C. transversoguttata. Despite its “Least Concern” status in this study, this species indicates 380 
reduced extinction resistance with ongoing population decline. 381 
 382 
 Multiple linear regression confirmed that time (year) significantly drove AOO declines 383 
across all species, while annual citizen science data volumes showed no evidence of statistically 384 
or practically meaningful effects (Appendix Table S5). 385 
 386 
3.5 Variable importance and correlation  387 
 388 
 SHAP values and Point-Biserial correlations revealed positive interdependence among C. 389 
novemnotata, C. transversoguttata, and H. parenthesis, with their predicted presences linked in 390 
ML models (Figure 5). Conversely, H. axyridis and C. septempunctata, ranking as the most 391 
influential variables, showed negative correlations with these three species. A. bipunctata, 392 
however, exhibited a positive correlation with them, marking an exception. H. convergence, a 393 
native species with the third highest abundance in the dataset, also correlated positively with three 394 
natives, contributing significantly to all models except H. parenthesis. 395 
 396 



4 Discussion 397 
 398 
4.1 Rationale for estimated reduction rates 399 
 400 

This study provides the first continent-wide estimates of decadal occupancy declines for 401 
C. novemnotata, C. transversoguttata, A. bipunctata, and H. parenthesis based on annual 402 
presence predictions. Earlier studies from the 1980s–1990s reported steep relative abundance 403 
declines—up to 95–99% (rescaled from Harmon et al., 2007)—whereas our more moderate 404 
reduction rates from 2007–2021 likely reflect the post-establishment phase of dominant adventive 405 
species. 406 

 407 
 Several lines of evidence support the plausibility of these more moderate rates. Historical 408 
records indicate that the most acute declines occurred shortly after the establishment of C. 409 
septempunctata and H. axyridis in North America (Colunga-Garcia & Gage, 1998; Bahlai et al., 410 
2015). 411 
 412 
 Subsequent regional studies suggest that native species declines have plateaued or 413 
transitioned into a chronic, low-intensity phase (Turnock et al., 2003; Elton, 2000; Strayer et al., 414 
2006; Harmon et al., 2007; Hesler & Kieckhefer, 2008), with no further sharp reductions observed 415 
(Alyokhin & Sewell, 2004; Bahlai et al., 2015). Such stabilization may reflect community-level re-416 
equilibration, resistance in remnant populations, or the persistence of spatial refuges (Evans, 417 
2000; 2004; Evans et al., 2011). 418 
 419 
 Standardized long-term monitoring in Michigan (2007–2019) corroborates this 420 
interpretation, documenting 10-year declines of 37% for H. parenthesis and 20% for A. bipunctata 421 
(KBS LTER; https://lter.kbs.msu.edu/datatables/67). These trends are based on linear 422 
regressions of sticky-trap captures normalized by survey effort. Although limited to a single 423 
available site, these local declines align closely with our continent-wide estimates (31% and 15%, 424 
respectively), suggesting that the COP-based annual predictions provide ecologically realistic 425 
baselines for broader conservation assessments. 426 
 427 
4.2 Interpretation of COP variables 428 
 429 

Annual prediction accuracy likely reflects the extent to which COP variables encode 430 
dynamic ecological processes—such as species interactions and habitat turnover—beyond what 431 
static predictors like climate or land cover can capture. Despite attenuation bias from 432 
observational noise across large, heterogeneous sources—which likely suppressed effect sizes—433 
the direction and relative influence of key COP predictors remained largely consistent with known 434 
ecological associations (Figure 5). 435 
 436 
 For instance, C. novemnotata and C. transversoguttata showed strong positive 437 
associations, consistent with overlapping habitat use and resource preferences (Hesler et al., 438 
2009). In contrast, H. axyridis and C. septempunctata—the two most influential variables—were 439 
negatively associated with three target natives, as known patterns of competitive displacement 440 
(Wheeler & Hoebke, 1995; Harmon et al., 2007; Petersen & Losey, 2024). 441 
 442 
 By contrast, A. bipunctata showed positive associations with both adventive species, likely 443 
due to macro-scale aboreal habitat preference overlap with H. axyridis (Coderre et al., 1995; Koch, 444 
2003; Omkar & Pervez, 2005; Hentley et al., 2016) and overlap with C. septempunctata in Europe 445 
where both are native (Honěk 1985; Nedvěd 1999). This pattern does not preclude competitive 446 
exclusion at finer spatial scales (e.g., <18 km), which may not be captured within the COP 447 



resolution used (Kajita et al., 2000; Kajita et al., 2006; Soares & Serpa, 2007). 448 
 449 
 Lower-ranked COP variables showed weaker links to known ecological interactions and 450 
may function primarily as spatial or environmental proxies. Their limited influence suggests that 451 
predictions were mainly driven by biologically meaningful co-occurrence patterns, rather than 452 
incidental spatial overlap. 453 
 454 
4.3 Strength and limitation of COP 455 
 456 
 The robustness of COP models across periods and sources suggests that co-occurrence 457 
structures may encode latent ecological constraints—such as competitive exclusion or shared 458 
habitat filtering—that static environmental variables often fail to capture. 459 
 460 
 COP-based predictors would be effective when biotic interactions strongly shaped 461 
distributions. In our case, native ladybug communities were shaped by prolonged competition with 462 
adventive species (Harmon et al., 2007; Petersen & Losey, 2024), and COP variables, even from 463 
opportunistic data, reflected these patterns. 464 
 465 
 However, this strength is contingent on the temporal stability of species interactions 466 
(Tikhonov et al., 2017). COP-ML declined in performance when backcasting the distribution of A. 467 
bipunctata, a species whose habitat preferences were reported to have shifted due to post-468 
invasion habitat compression (Bahlai et al., 2015). The model tended to overpredict past 469 
suitability—evidenced by higher recall than precision. This pattern suggests a limitation of COP-470 
based models when underlying biotic interactions shift over time, as static co-occurrence 471 
relationships may no longer align with changing ecological realities. 472 
 473 
 Nevertheless, COP variables exhibited strong generalizability across heterogeneous 474 
datasets—ranging from open-ended citizen science to a targeted rare-species initiative—while 475 
maintaining minimal structural divergence (Appendix Table S2). This highlights their resilience to 476 
source variation—a critical property in the context of conservation modeling. Historically, 477 
skepticism toward unstructured data has limited its utility (Isaac & Pocock, 2015; Steen et al., 478 
2019), even while multi-source integration becomes increasingly recognized as essential for data-479 
deficient taxa (Miller et al., 2019; Isaac et al., 2020). Our results show that COP—driven by 480 
commonly recorded species—can indirectly reveal the distributions of rarer taxa, enhancing the 481 
conservation value of citizen science and leveraging its rapid growth in data volume. 482 
 483 

This likely stems from the robustness of relational signals: co-occurrence patterns tend to 484 
be more resilient to sampling noise than marginal occurrence rates of individual species, which 485 
are often more sensitive to variation in effort or detection error (Tikhonov et al., 2017; Johnston 486 
et al., 2017). COP variables would leverage these dependencies to enable ecological inference 487 
even from opportunistic or sparse data. Our results were derived from a dataset incorporating 488 
over 78 institutions and projects—97% originating from citizen science and with minimal filtering 489 
applied. Given their consistency under such heterogeneous and unstructured conditions 490 
(Appendix Table S2), observed shifts in COP structure are more likely to reflect ecological change 491 
than artifacts of sampling noise. In this context, the robustness of COP variables implies more 492 
than resistance to bias; it provides empirical grounds to interpret persistent co-occurrence signals 493 
as evidence of underlying biotic structure. 494 
 495 
4.4 fill-in approach with annual predictions 496 
 497 
 This study proposes a ‘fill-in’ approach, uniquely generating annual occupancy predictions 498 



to bridge monitoring gaps. By tracking occupancy changes across North American habitats since 499 
2007, we evaluated extinction risk for four ladybug species under the IUCN Red List’s recent 10-500 
year population reduction criterion (Figure 3).  501 
 502 

Traditional time-series methods often rely on a “filtering” strategy—retaining only well-503 
monitored regions and thus narrowing the spatiotemporal scope of inference. Model-based 504 
approaches, by contrast, often require data-intensive population modeling (Fink et al., 2020) or 505 
repeated surveys—resources typically unavailable for under-recorded taxa. Our approach 506 
generates fine-scale temporal predictions from sparse, presence-only, multi-sourced datasets, 507 
benefitting these taxa. 508 
 509 
 Integrating annual predictive modeling with existing frameworks may enhance their 510 
applicability to data-deficient species. Occupancy models (OM), for instance, track temporal 511 
distribution shifts but require at least two revisits per period (Royle, 2006; Kamp et al., 2016; 512 
Outhwaite et al., 2018; Perkins-Taylor & Frey, 2020; Jha et al., 2022). Across North America, 513 
sufficient data density for bees and dragonflies required spatial and temporal resolutions as 514 
coarse as 10,000 km² and 10–20 years (Soroye et al., 2020; Jackson et al., 2022; Shirey et al., 515 
2023). Rather than compromising resolution or re-sampling unsurveyed areas with additional 516 
costs (Xue et al., 2016, Tulloch et al., 2013), annual ML predictions can offer an efficient 517 
alternative. 518 
 519 

However, incorporating ML-based predictions into occupancy modeling frameworks—as 520 
pseudo-observations—requires further validation to ensure statistical compatibility. While our 521 
models reliably tracked distributional changes, OM frameworks involve explicit modeling of 522 
detection and survey processes that must be reconciled with predicted data. Though OM 523 
advancements explored application of non-ideal data—e.g., assuming observation processes as 524 
random walks, using pseudo-absence instead of checklist absence, assuming opportunistic 525 
observations as revisit surveys (Outhwaite et al., 2018)—OM’s fit with fill-in predictions is untested. 526 
Combining annual predictive modeling with existing methods holds significant potential in 527 
conservation, but it requires identifying appropriate integration strategies and evaluating their 528 
logical consistency, performance enhancements, and the validity and reliability of results. 529 
 530 
 The fill-in and filtering approaches can be complementary. In this study, we did not account 531 
for spatial bias or spatial autocorrelation, often addressed through spatial thinning—a widely used 532 
filtering method. Filtering, however, introduces trade-offs: it narrows the spatiotemporal scope of 533 
inference, excludes rare species, and undermines the reliability of absolute-scale assessments 534 
such as IUCN Red List categorizations. We deliberately avoided filtering for three reasons: first, 535 
our focus on rare species with limited data rendered filtering impractical. Second, we aimed to 536 
test whether our approach, designed for such species, could perform well without relying on 537 
filtering (see Section 3.2, 3.3). Third, our goal was to generate predictions across the full known 538 
range of each species. However, balancing the selection of high-quality data through filtering with 539 
the benefits of more training data may be critical. Future research should determine the optimal 540 
data filtering level to improve the accuracy and reliability of predictions, retain data volume, and 541 
reduce bias. 542 
 543 

This study presents a scalable method to bridge monitoring gaps for data-deficient species, 544 
using sparse, presence-only records—largely from citizen science—to generate annual 545 
occupancy estimates. The predicted trends aligned with long-term trends from independent 546 
regional monitoring and operationalized IUCN Red List criteria for species previously excluded 547 
due to lack of data. COP-ML demonstrated robust performance across heterogeneous sources 548 
and time periods, showing that reliable extinction risk signals can emerge even from unstructured 549 



datasets. By transforming fragmented observations into interpretable trends, the fill-in approach 550 
provides a practical pathway to extend extinction risk assessment and strengthen conservation 551 
decisions in the absence of standardized monitoring. 552 
 553 
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Figures and Tables 939 
 940 

 941 

 942 
 943 
Figure 1. Left: Detection efficiency of four target coccinellid species in this study across data 944 
sources, highlighting structural inconsistencies among opportunistic citizen science platforms 945 
(The Lost Ladybug Project, iNaturalist, BugGuide.net) and institutional records (see Section 3.1). 946 
Right: Exponential increase (y = 758.89e0.29x (R2 = 0.88)) in the annual number of coccinellid 947 
observations across the USA and Canada (2007–2021), showing a 9.61-fold rise post-2014 948 
relative to pre-2014, highlighting temporal bias (see Section 3.1). 949 
  950 



 951 
 952 
Figure 2. Performance of species distribution models using co-occurrence patterns for C. 953 
novemnotata (N), C. transversoguttata (T), A. bipunctata (B), and H. parenthesis (P) across five 954 
data settings (see Section 3.2, 3.3). Black plots represent a 70:30 train-test split. Structural 955 
generalization tests include training on citizen science and testing on institutional data (white 956 
plots), or training on low-efficiency sources (1.3% target species detection) and testing on a high-957 
efficiency rare species monitoring source (6.6%; gray plots). Temporal generalization tests use 958 
post-2007 training with pre-2021 testing (left diagonal hatch) or the reverse (right diagonal hatch), 959 
with a cutoff year at approximately 70% training data coverage. The red line indicates the mean 960 
performance across 2,500 training iterations, with a 95% confidence interval. All models exceeded 961 
acceptable performance benchmarks: Accuracy > 0.70, AUC > 0.70, Kappa > 0.40, and Brier < 962 
0.25 (Hosmer et al., 2013; Landis and Koch, 1977; Brier, 1950). 963 
  964 



 965 
 966 
Figure 3. Annual occupancy of Hippodamia parenthesis (2007–2021) in the USA and Canada, 967 
comparing co-occurrence-based model predictions (upper maps) with raw observations (lower 968 
maps). Dots show occupied locations within each state, with color gradients to represent state-969 
level occupancy changes over time (see Section 3.4). 970 
  971 



 972 
 973 
Figure 4. Area of occupancy for four target coccinellid species in the USA and Canada (2007–974 
2021), with annual predictions (red lines) showing declines, while raw observations (bars) suggest 975 
increases due to temporal bias. Dashed lines show robust regression trends with 95% confidence 976 
intervals, with IUCN Red List categories based on 10-year reduction rates (see Section 3.4). 977 



 978 
 979 
Figure 5. Variable importance is ranked by the SHapley Additive exPlanations index (y-axis), 980 
while the Point-Biserial Correlation (x-axis) quantifies the association between variables and the 981 
presence of target species (see Section 3.5). 982 
  983 



Appendix 1 984 
 985 
Table S1. Occurrence records of coccinellid species from seven digital platforms (three citizen 986 
science, one museum collection, and three metadata sources) used in this study (see Section 987 
2.2). Regional abbreviations: AK = Alaska, HI = Hawaii, MB = Manitoba, ON = Ontario, SK = 988 
Saskatchewan, BC = British Columbia, AB = Alberta, QC = Quebec. 989 
 990 

Source Size Type Data Download & Refinment Criteria 

Lost Ladybug 
Project 32,905 Citizen 

science 
• Years 2007-2021 

• U.S. (excluding AK & HI) and Canadian 

provinces (MB, ON, SK, BC, AB, QC) 

• Positional accuracy < 1 km (if applicable) 

• Species level 

• Only adult records or images 

• Drop duplicates at year-GPS-species 

iNaturalist 197,990 Citizen 
science 

bugGuide.Net 27,018 Citizen 
science 

GBIF 143,000 Metadata 
source 

BISON 109,834 Metadata 
source 

IdigBio 99,723 Metadata 
source 

NCSU Insect 
Museum 5,425 Institute Final Dataset: 188,644 

 991 
 992 
Table S2. ANOSIM results assessing differences in co-occurrence patterns (COP) across data 993 
groups in the generalization test sets (see Section 2.5.1). 994 
 995 

+To assess COP model generalization, the training period for A. bipunctata—the species with most presence records—was reduced to extend the testing 996 
period. 997 
 998 

Species 

Citizen science and  
institutional data 

Post-year train, Pre-year test Pre-year train, Post-year test 

ANOSIM 
value 

p-value Test year 
period 

Train 
(% of 

presence) 

ANOSIM 
value 

p-value Test year 
period 

Train 
(% of 

presence) 

ANOSIM 
value 

p-value 

C. transversoguttata 0.22 0.001 after 
2019 65% 0.03 0.001 before 

2014 70% 0.07 0.001 

C. novemnotata 0.06 0.001 after 
2018 70% 0.06 0.001 before 

2013 72% 0.02 0.001 

H. parenthesis 0.12 0.001 after 
2020 74% 0.07 0.001 before 

2014 74% 0.05 0.001 

A. bipunctata 0.05 0.001 after 
2019+ 55% 0.02 0.001 before 

2017 67% 0.02 0.001 

Absence datapoints 0.06 0.001   0.03 0.001   0.01 0.001 



Table S3. Results of regression estimates, diagnostic tests, and 2012-2021 reduction rates (OLS: 999 
ordinary least squares regression, Huber: robust regression). 1000 
 1001 

 C. novemnotata C. transversoguetta A. bipunctata H. parenthesis 

B (OLS) -13.36 -14.73 -45.59 -53.63 

R² (OLS) 0.818 0.733 0.500 0.834 

p (OLS) 0.0000**** 0.0000**** 0.0032*** 0.0000**** 

95% CI (OLS) -17.13, 
-9.59 

-20.06,  
-9.4 

-72.91,  
-18.26 

-67.97,  
-39.29 

Reduction 
(10-yr, OLS) -15% -9% -15% -29% 

Breusch- 
Pagan p 0.9001 0.7992 0.0226* 0.0804 

White p 0.7238 0.1968 0.0402* 0.0736 

p (Robust SE) 0.0000**** 0.0000**** 0.0078* 0.0000**** 
95% CI 

(Robust SE) 
-16.77,  
-9.95 

-18.14,  
-11.31 

-79.18,  
-11.99 

-72.55,  
-34.71 

Max Cook’s 
Distance 0.2056 0.2028 0.6505 1.0651 

B (Huber) -13.00 -14.38 -45.98 -56.24 

R² (Huber) 0.811 0.731 0.500 0.831 

95% CI (Huber) -16.42,  
-9.58 

-17.39,  
-11.38 

-72.32,  
-19.65 

-68.23,  
-44.26 

Reduction 
(10-yr, Huber) -15% -9% -15% -31% 

(p* < 0.05, p** < 0.05, p*** < 0.005, p**** < 0.0005) 1002 
 1003 
 1004 
Table S4. Predicted distribution trends (2007–2021) and IUCN Red List status of four rare 1005 
coccinellid species based on reductions in area of occupancy (AOO) and extent of occurrence 1006 
(EOO; see Section 3.4). 1007 
 1008 

Species Reduction 
in 10-yrs 

IUCN 
status 

AOO (km²) EOO (km²) 

2007 2021 2007 2021 

H. parenthesis 31%                      VU 1,548 1,352 8,450,469 7,749,070 

A. bipunctata 15%                     NT 3,128 2,648 11,538,691 10,817,443 

C. novemnotata 15%                      NT 2,012 1,428 5,480,067 5,399,901 

C. transversoguttata 9%                      LC 892   696 9,820,525 9,146,848 
 1009 
 1010 
 1011 



Table S5. Multiple linear regression (OLS) results evaluating the effects of time (year) and annual 1012 
data volume from citizen science sources on ML-predicted annual area of occupancy (AOO) for 1013 
four target species (*p < 0.05, **p < 0.005, ***p < 0.0005; see Section 3.4).  1014 
 1015 

 C. novemnotata C. transversoguttata H. parenthesis A. bipunctata 

F-statistic 
(DF Model, 

DF Residual) 

12.96** 
(4, 10) 

7.80** 
(4, 10) 

34.72*** 
(4, 10) 

12.86** 
(4, 10) 

R² 0.83 0.76 0.93 0.84 

 B coefficient (± SE) 

Intercept 32224.9** 
± 7617.4  

36645.9* 
± 10517.8 

149163.4*** 
±18885.1 

160044.6*** 
± 32274.6 

95% CI Upper 
Lower 

49197.4 
15252.3 

60081.1 
13210.7 

191242.0 
107084.8 

231956.8 
88132.4 

Year -15.6** 
± 3.8 

-17.5* 
± 5.2 

-73.2*** 
± 9.4 

-78.2*** 
± 16.1 

95% CI Upper 
Lower 

-7.1 
-24.1 

-5.8 
-29.2 

-52.3 
-94.3 

-42.2 
-114.0 

Lost Ladybug 
Project 

0.0003 
± 0.0236 

0.0221 
± 0.0326 

0.0870 
± 0.0586 

0.2587* 
± 0.1001 

iNaturalist 0.0008 
± 0.0013 

0.0012 
± 0.0018 

0.0061 
± 0.0032 

0.0105 
± 0.0055 

bugGuide.Net 0.0680 
± 0.2646 

-0.0031 
± 0.3653 

-0.7286 
± 0.6560 

-1.9637 
± 1.1212 

 1016 
 1017 
  1018 



 1019 

 1020 

 1021 

 1022 
Figure S1. The maps depict the occupied coordinates of each species for each year from 2007 1023 
to 2021. The left maps show annual occupancy predicted by co-occurrence-based models, while 1024 
the right maps are based solely on reported observations. The heatmap represents the number 1025 



of occupied coordinates per state, with color shifts over time indicating changes in occupancy. 1026 
(Active figures are available at: https://figshare.com/s/17cef8ef530f0a4f7b99) 1027 


