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Abstract: West Nile Virus (WNV) is the leading cause of mosquito-borne disease in the United 

States, yet transmission activity remains difficult to predict. This study used 20 years of digitized 

WNV seroconversion data from 526 sentinel chicken coops across Florida to develop 

spatiotemporal models with landscape and climate variables to predict WNV seroconversion at 

monthly and seasonal timescales. We found several environmental predictors hypothesized to 

impact WNV transmission were important at both timescales. Lower WNV seroconversion was 

predicted with higher maximum temperature during the sampling month and greater proportions 

of developed land cover, while intermediate values of minimum temperature at two-months prior 

predicted higher WNV seroconversion. In the seasonal model, intermediate values of cumulative 

precipitation one season prior predicted higher WNV seroconversion. High accuracy in 

out-of-sample predictions at both timescales demonstrates the utility of our models toward 

ecological forecasting of enzootic transmission. Monthly models had higher precision than the 

seasonal model, but both timescales have potential to inform management decisions. Monthly 

predictions could guide targeted control efforts during active transmission seasons, while 

seasonal predictions provide a lead-time to improve preparedness and inform resource allocation. 

Retrospective statewide predictions across the 20 year time period provided qualitative 

correlations between areas of high predicted WNV transmission hazard among humans and 

equines, while also providing insights into WNV transmission ecology following its introduction 

in 2001. Overall, our framework provides a step forward in the use of spatiotemporal ecological 

modeling for public health and vector-borne disease ecology and management. 

Keywords: Vector-borne disease, Arbovirus, sentinel chickens, spatiotemporal modeling, 

Gaussian Markov random fields, Stochastic Partial Differential Equations 

Acronym definitions: AIC = Akaike Information Criteria, API = Application Programming 

Interface, ARIMA = autoregressive integrated moving average, CPDE = conditional percent 

deviance explained, FDOH = Florida Department of Health, FCCMC = Florida Coordinating 

Council on Mosquito Control, GLMM = generalized linear mixed-model, GRF = Gaussian 

random fields, GMRF = Gaussian Markov random fields, INLA = Integrated Nested Laplace 

Approximation, LULC = land use land cover, NB = negative binomial, NLCD = National Land 

Cover Database, RMSE = root mean square error, SPDE = stochastic partial differential 

equations, TMB = Template Model Builder, WNV = West Nile virus.  



1. Introduction: 

Vector-borne diseases cause widespread mortality and morbidity worldwide, with more 

than 700,000 deaths each year (WHO, 2025). These disease systems include dynamic 

interactions among pathogens, vectors, and hosts that are determined by intrinsic multitrophic 

population dynamics and external environmental conditions (Pavlovskiĭ, 1966; Mordecai et al., 

2019). Despite ongoing efforts, predicting transmission activity as a means to assess risk remains 

a persistent challenge given the inherent complexity of these systems (Kiryluk et al., 2024; 

Molina-Guzmán et al., 2022; Wang et al., 2024; Lauer et al., 2020). As a result, performant 

short-term (e.g., seasonal or monthly) forecasting has largely remained elusive, in part due to a 

lack of flexible and operational models that can integrate the right environmental conditions with 

multispecies dynamics at relevant spatiotemporal scales to predict virus activity. Consequently, 

prevention and control efforts are frequently reactive rather than proactive, identifying problems 

only after transmission has already occurred (Chung et al., 2013; Dye-Braumuller et al., 2022). A 

key next step for vector-borne disease prevention is the development of a predictive framework 

that can capture complex system dynamics and operate on timescales relevant to management 

decisions (Barker, 2019; Keyel et al., 2021). 

Zoonotic vector-borne disease systems, in particular, are difficult to predict because 

often, multiple arthropod vectors and hosts are responsible for maintenance and spillover 

transmission in the natural environment (Rees et al., 2021; Roberts et al., 2021). West Nile virus 

(hereafter, “WNV”; Family: Flaviviridae, Genus: Flavivirus) is a multi-host, multi-vector 

zoonotic arbovirus maintained primarily in an enzootic cycle between ornithophilic Culex 

mosquitoes and passerine and columbiform birds with occasional spillover transmission to 

humans and other animals (Campbell et al., 2002; Reisen, 2013). WNV has global 

epidemiological relevance and is the leading cause of mosquito-borne disease in the USA, with a 

10% mortality rate among neuroinvasive cases (Ciota, 2017). Given the human and veterinary 

health importance of WNV (CDC, 2024), multiple states including Florida, routinely monitor for 

WNV. For example, Florida Department of Health (FDOH) has maintained a decades-long 

surveillance effort, monitoring weekly WNV seroconversion in sentinel chickens across a wide 

geographic region and large portions of the year (FDOH, 2025; Fig. 1). This long-term 

monitoring program is unique because it is a targeted measure of virus activity in the natural 
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environment, over a relatively large geographic area (state of Florida; Fig. 1), and has consistent 

collections over a 20 year time period (Lauer et al., 2020).  

Since its arrival to North America in 1999, multiple studies have used shorter or longer 

time series data of mosquito abundance, WNV positive mosquito pools, human case data, and/or 

sentinel chicken seroconversion to understand, predict, or forecast WNV disease system 

dynamics with the environment at different spatiotemporal resolutions (Wimberly et al., 2014; 

Barker, 2019; Poh et al., 2019; Keyel et al., 2021; Wimberly et al., 2022; Ward et al., 2023), but 

few generalities have emerged (DeGroote et al., 2014). One challenge is that regional variation in 

mosquito vectors and hosts and the broad range of habitats and environments they occupy make 

predictions of the WNV system particularly complex (Kain & Bolker, 2019; Kilpatrick et al., 

2006; Rochlin et al., 2019). A second challenge is that disease systems are not driven by 

environmental conditions alone (Mordecai et al., 2019), and individual field studies or short term 

monitoring efforts often fail to capture underlying spatiotemporal dynamics of hosts and vectors. 

The end result is that models often cannot accurately predict elevated WNV transmission hazard 

to inform management decisions (Holcomb et al., 2023).  

Despite challenges, WNV dynamics are not fully stochastic (Campbell et al., 2022; 

Holcomb et al., 2023), and it may be possible to leverage spatiotemporal structure in unmeasured 

variables to improve model predictions (Reich et al., 2021; Hebert et al., 2024). Recent advances 

in provisioning of long term time series data and spatiotemporal (a.k.a., geostatistical) models 

provide the basis needed to model environmental conditions and spatiotemporal structure 

together to predict WNV system dynamics. While spatiotemporal modeling approaches are not 

new (Kyriakidis & Journel, 1999; Gelfand & Banerjee, 2017), a next generation of tools have 

been very recently developed that simultaneously simplify model specification and make 

accurate predictions (Wikle et al., 2019; Thorson & Kristensen, 2024). In particular, R packages 

such as sdmTMB (Anderson et al., 2024) and tinyVAST (Thorson et al., 2025) are capable of 

accounting for spatiotemporal interactions among variables and can fit non-linear dynamics, 

while still using model specifications that are well known to environmental scientists. Thus far, 

spatiotemporal modeling approaches have demonstrated utility in some WNV modeling efforts 

(Myer et al., 2017; Myer & Johnston, 2019; Campbell et al., 2022; McCarter et al., 2023; also 

see the “Global Burden of Disease Study” for the use of TMB models, e.g., Schumacher et al., 

2024). Still these modeling tools, which are ideal for the WNV system given their complexity, 
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remain underutilized in predicting transmission hazard across unsampled areas and at temporal 

resolutions useful for management decisions. 

Previous investigations in Florida have used a combination of inference based and 

predictive approaches to examine environmental conditions and WNV, but similar to other 

regions of the U.S., often have varying results. Ecological niche models (ENMs) have been 

created to predict environmental suitability for WNV mosquito vectors, Culex nigripalpus and 

Culex quinquefasciatus, in St. Johns County in northeastern Florida (Sallam et al., 2016). Later, 

Beeman et al. (2021) used ENMs to predict environmental suitability of sentinel chicken 

seroconversion across Florida using aggregated coop data from 2014 – 2018. This model output 

was then used to further delineate habitats that may have greater WNV transmission hazard 

(Beeman et al., 2022). Tavares et al. (2024) found regional variation in the importance of 

landscape composition and configuration on WNV sentinel chicken seroconversion in 2018, 

including non-linear relationships between semi-urban landscapes and seropositive chickens in 

the central portion of Florida, but no consistent statewide predictors were identified. Higher 

proportions of WNV vector competent mosquitoes were predicted with greater percentages of 

developed landscapes across Manatee County, FL (Bauer et al., 2024), but Campbell et al. (2022) 

found landscapes were not strong predictors of 2018 sentinel chicken seroconversion in 

northeastern Florida. A time series study of human cases and sentinel chicken seroconversion 

suggested that drought periods followed by heavy precipitation precede WNV infections in both 

sentinel chickens and humans (Shaman et al., 2005). However, residual spatiotemporal 

autocorrelation was not assessed, and such correlations were found to be an important factor 

when modeling weekly 2018 sentinel chicken seroconversion in northeastern Florida (Campbell 

et al., 2022). There, best performing models included spatiotemporal terms, and initial strong 

support of lagged cumulative precipitation was no longer evident. In sum, relying on static 

models has been shown to be unlikely to yield either understanding of system dynamics or 

predictive accuracy. However, dynamic models are data hungry and require dense sampling in 

space and time to uncover environmental determinants or to make accurate predictions 

(Magurran et al., 2010; Solà et al., 2025).  

The objective of this study is to develop a predictive modeling framework for WNV 

sentinel chicken seroconversion over a 20 year time period in Florida using spatiotemporal 

models, and also to infer environmental covariates associated with West Nile detection. Our 
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approach is designed to explicitly leverage the strong spatial and temporal structure of the 

surveillance data with external environmental conditions to develop spatially targeted predictions 

of statewide transmission hazard. We develop predictive models over two relevant 

decision-making timescales (e.g., monthly and seasonally) and create statewide retrospective 

predictions from 2001 to 2019. Our goal is to assess the predictive performance of these models 

to inform proactive management decisions as a first step toward ecological forecasting of this 

important zoonotic arbovirus system.  

2. Methods 

2.1. Study area: 

From north to south, Florida’s climate ranges from subtropical to tropical, with warm 

temperatures all year and distinct wet (May – October) and dry (November – April) seasons. 

Since the start of the new millenium, a relevant timeframe for this study, the state has 

experienced overall warming, with rising minimum temperatures and shifting precipitation 

patterns (McNulty et al., 2023). Between 2006 and 2016, Florida saw a 19% increase in urban 

development and the conversion of natural and agricultural lands to developed uses (NOAA, 

2016). 

2.2. WNV surveillance data digitization: 

 The FDOH, in conjunction with mosquito control programs, has consistently monitored 

weekly WNV seroconversion and other mosquito-borne diseases in sentinel chicken flocks 

throughout large portions of the year (Fig. 1). Weekly blood samples were taken from chickens 

and viral RNA was detected via qPCR (FDOH, 2025). Reports of these assays along with other 

data and metadata were maintained in a combination of digital and physical, analog documents. 

The heterogeneity in format is due to different data management practices that have emerged due 

to technological advances.  

Here, we focused on generating a consistently formatted set of time series data over many 

sites, covering a nearly twenty year time period, from 2001 to 2019. We developed a 

bioinformatics pipeline that helped automate collation, digitization, and quality control. Paper 

copies of reports were scanned and analyzed with Amazon Web Service Textract Optical 

Character Recognition (OCR) software to extract text and numerical data, which were organized 

in data tables by date, county, and sentinel chicken flock information (e.g. number of susceptible 
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birds for the program each week). The resulting data were cleaned, formatted, and joined with 

WNV seroconversion results using tidyverse functions in R (Wickham et al., 2019) and 

OpenRefine software (Ham, 2013) to remove any errors or other artifacts from scanning and 

OCR. These data were then joined with georeferenced sentinel chicken coop sites provided by 

the FDOH. The final database contained information from 515,796 weekly reports of WNV 

seroconversion, across 526 monitoring sites (Fig. 1). These sites are located in 42 of Florida’s 67 

counties, providing a comprehensive assessment of the geographic distribution of WNV enzootic 

transmission within the state.  

2.2.1. Preparing data for modeling: 

 WNV transmission occurs primarily between June and December in Florida, which we 

refer to as the “active season”. Due to the consistency of transmission during the active season, 

the majority of sentinel chicken surveillance efforts take place during this period. Therefore, we 

limit our prediction of sentinel chicken seroconversion counts to this seasonal time period. We 

opted to produce WNV predictions at monthly and seasonal scales, which could provide 

near-term predictions at two timescales to inform management activities. We therefore 

aggregated weekly seroconversion data to each timescale by summing seropositive counts at 

each coop site and retaining the overall sampling effort across each timescale, and then each 

dataset was subsetted into a training data set for model fitting and a hold-out data set for testing 

out-of-sample predictions. For the monthly dataset, the hold-out data set included the final two 

years of the time series (2018 – 2019), which provided 14 sampling months. For the active 

season data set, the final four years of the time series (2015 – 2019) served as the hold-out data 

for out-of-sample prediction. 

2.3. Environmental data: 

2.3.1. Climate: 

 Gridded (raster) 1-km2 estimates of daily cumulative precipitation and minimum and 

maximum temperature were gathered for Florida from Daymet climate data (Thornton et al., 

2022) between the years 2000 and 2020 (accessed via a Daymet API in R package climateR; 

Czernecki et al., 2025). Variables were then aggregated from daily to the monthly or seasonal 

temporal resolution by calculating average maximum and minimum temperature and the sum of 

cumulative precipitation (R package terra; Hijmans, 2025). Point estimates were extracted by 
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location and date for each monitoring site during the study duration (R package sf; Pebesma & 

Bivand, 2023). Because seroconversion rates may be influenced by prior conditions (e.g, 

precipitation events or temperature from weeks or months before a positive sample), temporal 

lags were calculated for each climatic variable. For both the seasonal and monthly datasets, one- 

and two-timestep lags were calculated, resulting in seasonal weather lags of six months and one 

year, and monthly lags of one and two months.   

2.3.2. Land use land cover:  

 Land use land cover (LULC) data were extracted at 30 m2 resolution for all available time 

periods from the National Land Cover Database (NLCD; 2001, 2004, 2006, 2008, 2011, 2016, 

and 2019; Dewitz, 2024) using the R package fedData (Bocinsky et al., 2025). LULC data were 

reclassified to “developed”, “natural”, and “wetland” land cover classes (see SI 2.1 for 

reclassification) and then assigned to seasonal and monthly WNV seroconversion datasets using 

NLCD data from years nearest to the date of sampling. Next, 2.5 km diameter circular buffers 

were created to calculate the proportion of “developed”, “natural”, and “wetland” land cover 

classes surrounding each chicken coop site over the study period. To generate the same landscape 

variables for model prediction across Florida, we calculated the pixel-wise proportion of each 

LULC class within a 2.5 km2 circular moving window, using a nearest neighbor function, 

resulting in a statewide gridded percent land cover dataset at 1 km2 resolution (R package terra). 

2.4. Statistical analysis 

2.4.1. Model development: 

The spatiotemporal modeling framework used in this study belongs to a class of 

spatiotemporal generalized linear mixed effects models (GLMM; Diggle & Gabriel, 2010) that 

explicitly account for spatiotemporally autocorrelated data using latent Gaussian random fields 

(GRF; Rue & Held, 2005). However, the use of GRFs presents substantial computational 

challenges due to costly covariance functions. Stochastic partial differential equations (SPDE) 

can be used to minimize the scale of this problem by approximating GRFs as Gaussian Markov 

Random fields (GMRF) with a Matérn covariance function (Lindgren et al., 2011; Krainski et al., 

2018). This solution has been adopted by the Integrated Nested Laplace Approximation software 

(INLA; Rue et al., 2009), and later implemented in Template Model Builder software (TMB; 

Thorson et al., 2015). Here we use sdmTMB (Anderson et al., 2024), an R software package 
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which integrates both INLA and TMB functionality, to model and predict spatiotemporal patterns 

of WNV sentinel chicken seroconversion counts as a function of climate conditions and different 

LULC types.  

A structured protocol was used to determine the optimum parameterization of monthly 

and seasonal models. Because of the large number of environmental and lagged environmental 

variables, we first fitted a set of univariate GLMMs to identify variables that were not 

informative to WNV seroconversion. These models were fitted with a negative binomial residual 

distribution (NB1), log link function, fixed effect covariate for sampling effort, and random 

effect structure featuring nested random intercepts for the county and site of each chicken coop 

(R package glmmTMB; Brooks et al., 2025). Predictors included in these univariate models were 

parameterized as both linear and 2nd order polynomial terms. Monthly or seasonal WNV 

seroconversion counts at each coop site served as the response variable and our landscape or 

climate variables served as univariate environmental predictors. Predictor variables with 95% 

confidence intervals that did not cross zero were retained for further analysis. Next, we created a 

full model including all retained environmental variables and implemented backward stepwise 

model selection in the R package buildmer (Voeten, 2023) to identify a best performing model 

based on likelihood ratio tests. Multicollinearity between environmental predictors in the best 

performing model was then assessed using variance inflation factor (VIF) values (R package car; 

Fox & Weisberg, 2018), and variables with VIF values > 5 were then iteratively removed to meet 

model assumptions of independence. Finally, model performance was examined using checks for 

model convergence, posterior predictive checks, residual normality, and overdispersion (R 

packages DHARMa and performance; Hartig, 2025 and Lüdecke et al., 2021, respectively). We 

also report conditional percent deviance explained (CPDE), number of fixed effects, and 

effective degrees of freedom of random effects (Zheng et al., 2024) in SI Table 1.   

 Next, we fitted a spatiotemporal model to address spatiotemporal autocorrelation and 

make predictions in space and time at unsampled locations. To fit a spatiotemporal model using 

the SPDE approach, piecewise linear basis functions are computed using a Delaney triangulation 

over the spatial area of interest, commonly referred to as a “mesh” (Krainski et al., 2018). To 

establish a “mesh” for this study area, first a spatial domain was created by generating a 1-km 

diameter buffer around Florida and estimating a nonconvex hull (R package INLA; Rue et al., 

2025). Next, the following parameters were used to adjust the structure and vertex density of the 
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mesh with R package fmesher (Lindgren, 2025): “cutoff” (minimum triangle size), “max edge” 

(maximum triangle edge length), and “offset” (size of inner and outer spatial extensions around 

individual coordinates). These parameters were tuned following conventional practices detailed 

in Bakka et al., 2018, which suggests adjusting parameters by a factor of the spatial extent of the 

study area.  

 The spatiotemporal model developed in this study shares a basic anatomy with 

non-spatial GLMMs, but as the name indicates, the model requires additional terms to account 

for spatiotemporal non-independence. Here, we apply a Gaussian Markov spatiotemporal 

random field structures  and  to account for spatio-temporal and spatial autocorrelation, 𝛇 𝛜

respectively. The full model specification is therefore: 

 𝑓𝑜𝑟 𝑠 𝑖𝑛 1 :  𝑁
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 𝑎𝑛𝑑 𝑡 𝑖𝑛 1 :  𝑁
𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠

 ...

,  𝑦
𝑠,𝑡

 ~ 𝐸𝑥𝑝𝐷𝑖𝑠𝑡(µ
𝑦

𝑠,𝑡
 
,  𝜑)

, 𝔼 𝑦
𝑠,𝑡[ ] = 𝑓−1(𝐗

𝑠,𝑡
𝖳  𝛃 + 𝒁

𝑠,𝑡
𝖳  𝑸 + α

𝑔
+ 𝛇

 𝑠,𝑡
+ 𝛜

𝑠
 )

, α
𝑔
 ~ 𝑁(0,  σ

α
2 )

, 𝛇
𝑡=1

 ∼ 𝑀𝑉𝑁(𝟎 ,  𝚺
ϵ
 )

, 𝛇
𝑡>1

= ρ 𝛇
𝑡−1

+  1 − ρ2  𝛜
𝐭 

,         (Eq. 2) 𝛜
𝐭
 ∼ 𝑀𝑉𝑁(𝟎 ,  𝚺

ϵ
 )

where  is the expected mean of the response data y at point  and time ;  represents the mean 𝔼 𝑠 𝑡 µ

of the inverse link function ;  and  are two-dimensional design matrices at point  and time 𝑓−1 𝐗 𝒁 𝑠

, which are transposed ( ) to take the inner-product with these elements and a vector of fixed- 𝑡 𝖳

and random-effect coefficients  and , respectively;  represents a random-intercept structure 𝛃 𝑸 α

by groups ;  represents spatiotemporal random field at time  and location ;  represents 𝑔 𝛜
𝑠,𝑡

𝐭 𝑠 ζ

deviations (or knots) of with a first-order autoregressive  structure;  represents the 𝛜
𝐭 

𝐴𝑅(1) 𝚺
ϵ

covariance matrix of the spatiotemporal random field ; and  represents the correlation between 𝛜 ρ

consecutive stationary random fields  at time . 𝛜 𝑡
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2.4.2. Model training, evaluation, and prediction:  

Two spatiotemporal models were fitted to the monthly and seasonal training data sets  

with the model structure and climatic and land cover covariates described above using sdmTMB 

(Anderson et al., 2024). Once fitted, the models were evaluated using the same diagnostics as the 

non-spatiotemporal models and by examining parameter values, including extreme eigenvalues, 

standard errors, or random field variances, using the sanity check functionality in sdmTMB. To 

determine if the fixed effect environmental predictors and spatiotemporal structures (GMRF) 

improved model performance, marginal Akaike Information Criterion (AIC) was used to 

compare our spatiotemporal models (containing both GMRF and fixed and random effects) 

against two alternative null models: (i) a spatial random effect model (with GMRF but no 

environmental predictors)  and (ii) a non-spatial random effect model (with no GMRF or 

environmental predictors). To evaluate these predictive accuracy, we calculated root mean square 

error (RMSE) and log likelihoods of out-of-sample predictions of sentinel chicken 

seroconversion counts for the monthly and the seasonal models (see SI Table 2 for out-of-sample 

log-likelihoods).  

Finally, to determine how well these models can predict overall WNV activity (i.e., total 

active season or monthly counts), we derived seasonally- and monthly- aggregated predictions of 

WNV seropositive counts to a single statewide value. However, obtaining spatially-aggregated 

model predictions requires calculating non-linear functions which can produce biases that 

accumulate during aggregation, resulting in reduced predictive accuracy (Thorson & Kristensen, 

2016). To obtain accurate predictions of total WNV seroconversion counts, we applied the 

“epsilon bias-correction estimator” (Thorson & Kristensen, 2024) for obtaining time-specific 

predictions of total WNV seroconversion and associated uncertainty (see SI 2.2 for 

bias-correction details). Next, fitted models were used to predict monthly and active season 

WNV seroconversion counts across unsampled areas across the state between 2001 and 2019. 

Due to computational intensity, the epsilon correction method was not applied to statewide 

prediction counts (i.e., Fig. 3 – 5).  

All analyses after data assembly were conducted in the R programming environment 

(v4.4; R Core Team, 2025). All sentinel chicken data processing was performed on a personal 

computer with 8 CPUs and 32 GB RAM (processor: AMD Ryzen 3 3200U, 2.6 GHz). When 

compiling gridded environmental variables, fitting models using SPDE, or applying the epsilon 

https://www.zotero.org/google-docs/?eHrif3
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bias-correction estimator, analyses were performed on a computing cluster with 10 – 20 CPUs 

and 80 – 160 GB RAM (processor: 9600 AMD EPYC 75F3 Milan, 3.0 GHz) on the University 

of Florida’s Research Computing system’s “HiPerGator 3.0”.  

3. Results 

We digitized and formatted FDOH WNV sentinel chicken seroconversion surveillance 

data over a 20 year time period and used these data, knowledge of WNV system ecology, and 

spatiotemporal models to predict WNV transmission hazard across the state. Results from 

univariate GLMMs retained 18 candidate predictors for the monthly model and 22 candidate 

predictors for the seasonal model, including both landscape and climate variables with linear and 

polynomial terms (see SI 2.1 for variable reduction details). Following backward stepwise 

selection and removal of multicollinear environmental predictors, the final monthly and seasonal 

models each included 4 predictor variables (see Table 1 for a description of predictor variables). 

Results from the spatiotemporal models including GMRF and environmental predictors 

performed overwhelmingly better than null models with GMRF alone (  Δ𝐴𝐼𝐶
𝑚𝑜𝑛𝑡ℎ𝑙𝑦

= 1014. 94

and ; increasing CPDE by  for monthly models and  for seasonal Δ𝐴𝐼𝐶
𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

= 414. 82 14% 3%

models), as well as non-spatiotemporal models with the same predictors (

 and ; with a - and -fold increase in Δ𝐴𝐼𝐶
𝑚𝑜𝑛𝑡ℎ𝑙𝑦

= 4314. 66 Δ𝐴𝐼𝐶
𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

= 16681. 28 6 20

monthly and seasonal CPDE, respectively). These results demonstrate the value of including 

both climate and landscape conditions and underlying spatiotemporal structure when modeling 

WNV sentinel chicken seroconversion (for AIC and CPDE values, see SI Table 1).  

The main goal of this study was to develop spatiotemporal models that could accurately 

predict sentinel chicken seroconversion at future time periods. Both monthly and seasonal 

models showed high accuracy in out-of-sample prediction tests, supporting their utility toward 

ecological forecasting and decision-making at two temporal scales. Fig. 2 shows plots of model 

fits and predicted values during out-of-sample testing years (monthly: 2018 – 2019; seasonal: 

2016 – 2019). While uncertainty was greater in out-of-sample predictions, values matched the 

direction and general magnitude of the empirical data, suggesting both models are capable of 

generalizing beyond the calibration data. In particular, hold-out empirical data sets for both 

models fell within the 95% CI of out-of-sample prediction. While both models performed well, 

the monthly model had greater accuracy and lower uncertainty than the seasonal model (Table 1), 



with over two-fold lower  when predicting to out-of-sample WNV seroconversion counts  𝑅𝑀𝑆𝐸

( ). Overall, both seasonal and monthly models 𝑅𝑀𝑆𝐸
𝑚𝑜𝑛𝑡ℎ𝑙𝑦

= 0. 69;  𝑅𝑀𝑆𝐸
𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

= 2. 19

predicted marginally higher counts than the empirical data across the entire study period, 

including across the out-of-sample test data.  

Multiple environmental predictors in the monthly and seasonal models were important to 

WNV sentinel chicken seroconversion, including lagged climate predictors that can help to 

provide lead times for management decisions (Fig. 1). In the monthly model, WNV 

seroconversion decreased as the proportion of human developed land cover surrounding chicken 

coops increased and as maximum temperatures increased during the month of sampling. In 

addition, model results showed a non-linear and two-month lagged response of WNV 

seroconversion to minimum temperatures, with higher seroconversion counts predicted at 

intermediate minimum temperature values. The seasonal model showed a similar result, but with 

intermediate cumulative precipitation values at a one-season lag, or over the six month period 

prior to the sampling season, predicting higher seroconversion. These results provide near-term 

environmental predictors of seroconversion that can be leveraged at two time periods to inform 

elevated transmission hazard. 

Statewide retrospective predictions from 2001 to 2019 provided insights into the timing 

and distribution of WNV activity during the critical time period following its introduction to 

naive host populations (2001 – 2004) and subsequent establishment as an endemic virus system 

in the state (2005 – 2019; Fig. 4). In subsequent years, additional periods of elevated 

seroconversion were predicted at mid-latitudes in 2005 and again from 2010 to 2015. Statewide 

predictions at the monthly scale provide finer temporal resolution of these predictions (Fig. 4), 

including intra-seasonal diffusion of WNV on the northeastern Atlantic Coast near the cities of 

St. Augustine, Palm Coast, and Daytona Beach in 2014 and the Gulf Coast at Tampa and St. 

Petersburg in 2015. Spatial patterns of monthly predictions differed from seasonal patterns, often 

highlighting predicted enzootic WNV activity in urban and coastal regions (Fig. 5), particularly 

in southeastern Florida (e.g., the Miami-Fort Lauderdale-West Palm Beach metropolitan areas). 

For monthly predictions throughout the study period (2001 – 2019), see SI Fig. 1. Retrospective 

predictions of mean sentinel chicken seroconversion and associated uncertainty across the study 

period show greater uncertainty in areas with fewer sampling sites (Figs. 1 and 4). 



4. Discussion 

Building performant predictive models for multi-host, multi-vector zoonotic arbovirus 

systems is a key challenge to the development of effective prevention and control programs 

(Barker, 2019; Holcomb et al., 2023; Harp et al., 2025). Here, we leveraged long-term and 

spatially extensive sentinel chicken surveillance data to develop predictive spatiotemporal 

models of WNV transmission hazard in Florida over a 20 year time period. We found that both 

monthly and seasonal timescales were relevant and accurate for prediction, demonstrating strong 

utility toward ecological forecasts of WNV transmission hazard. Overall, this framework can 

serve as a basis for developing new operational tools to enhance targeted mosquito control and 

public health efforts (Barker, 2019; Keyel et al., 2021), while also advancing knowledge about 

the transmission ecology of this system.  

4.1. A framework for predicting enzootic transmission 

A key strength of our study lies in the extensive, long-term WNV sentinel chicken 

surveillance data, which captures statewide virus activity in the natural environment over a 20 

year time period. Furthermore, the fine spatial (point-based) and temporal (weekly reports) 

resolution of these data allowed us to incorporate local climate and landscape data across a 

relatively broad geographic area, as well as to aggregate temporal records for near-term 

predictions of transmission hazard. These results further highlight that disease system dynamics 

can operate at multiple spatiotemporal scales, and harnessing these structures at different scales 

can provide tools with alternative but complementary predictive ability to inform transmission 

hazard (Garabed et al., 2020). Here, monthly predictions provide short-term and fine-scale 

information that could guide targeted control efforts during the active season, while seasonal 

predictions allow a lead-time ahead of the active season to improve preparedness and inform 

resource allocation across the state.  

Differences in the importance of environmental predictors between monthly and seasonal 

models further highlight the utility of this approach. Land use and temperature were important 

predictors of seroconversion in monthly models, while only precipitation was predictive at the 

seasonal scale. Specifically, higher maximum temperatures in the sampling month is associated 

with lower seroconversion, while intermediate minimum temperatures two months prior to 

sampling predicted higher seroconversion. This result at this temporal scale is not surprising, 

given the critical role of temperature and thermal optima across mosquito life stages, where 

https://www.zotero.org/google-docs/?8GGBep
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conditions that are too cold or too hot can reduce performance and lead to mortality (Gilbert & 

Raworth, 1996). In addition, greater percentages of developed landscapes surrounding chicken 

coops predicted lower seroconversion counts, but only in monthly models. The role of human 

developed landscapes in the WNV system has been studied extensively (Crowder et al., 2013; 

DeGroote et al., 2014; Eisen et al., 2010; Ezenwa et al., 2007; Ruiz et al., 2007), often with 

inconsistent results (Bowden et al., 2011; DeGroote et al., 2014). Here, our findings partially 

align with Tavares et al. (2024), who found that intermediate levels of developed land cover were 

important to 2018 WNV sentinel chicken seroconversion, but only in central Florida. Our results 

align less well with Bauer et al. (2024), who found higher proportions of WNV competent 

vectors predicted across more developed landscapes. However, Bauer et al. (2024) did not 

include host feeding behavior, an important factor when considering transmission hazard in the 

natural environment (Dahlin et al., 2024; Wen et al., 2015). In Florida, the primary mosquito 

vectors (Culex quinquefasciatus and Culex nigripalpus) and avian hosts are commonly found 

across gradients of developed areas, in addition to other habitats (Rochlin et al., 2019; Bauer et 

al., 2024; Day et al., 2015; Johnson et al., 2012). Here, our spatiotemporal framework may be 

capturing fine-scale, unmeasured ecological dynamics of vectors and hosts across these habitats, 

such as host and mosquito resource tracking across developed environments at the monthly scale.  

Our finding that intermediate values of cumulative precipitation at a one season lag 

predicted higher WNV seroconversion may reflect overall increased availability of aquatic 

habitats required for mosquito development prior to the active transmission season (Nosrat et al., 

2021). Excessive precipitation is known to result in larval flushing (Koenraadt & Harrington, 

2008; Gardner et al., 2012), while drought conditions can reduce available habitats (Brown et al., 

2014), which may reduce overall mosquito abundances. This result contrasts with previous 

studies in Florida suggesting that high precipitation following drought conditions precede WNV 

sentinel chicken and human infections (Shaman et al. 2005). This result may reflect the ability of 

our spatiotemporal models to account for autocorrelation in error terms that can sometimes 

mirror seasonal patterns (Ives, 2022). Overall, our model results show that overall mosquito 

habitat availability earlier in the season is likely important to the WNV disease system in Florida, 

and temperature and landscape at more proximal timescales are more informative predictors of 

sentinel chicken seroconversion. This outcome demonstrates that leveraging environmental 
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conditions across multiple spatiotemporal scales can help to provide a more complete and 

potentially more process-driven understanding of enzootic transmission dynamics.  

4.2. Retrospective predictions 

Retrospective predictions of WNV seroconversion can provide valuable baselines for 

understanding past transmission hazards, especially when models capture dynamics effectively.  

Although many factors contribute to human WNV risk and disease (Barker, 2019), model 

outputs suggest clear qualitative correlations between predictions of elevated transmission hazard 

and human and equine WNV cases (accessed via FDOH’s “Florida Arbovirus Surveillance” at 

floridahealth.gov). For example, in 2014 a total of 18 human infections and five equine 

infections occurred along the northeastern Atlantic coast of Florida, which corresponds directly 

with our predictions of elevated transmission hazard in this region (Fig. 4). The following year, 

human and equine cases were detected on the Gulf Coast near St. Petersburg, which also 

corresponded to elevated transmission hazard predicted in our seasonal model (Fig. 4). In 2011, 

multiple WNV equine cases were concentrated along the southwestern Gulf Coast, aligning with 

predictions of elevated transmission hazard (Fig. 4). Previous studies linking sentinel chicken 

infections to epidemiological outcomes have shown variable utility, with some studies indicating 

that enzootic transmission can serve as a warning for human infections (Kwan et al., 2010, 2012; 

Amdouni et al., 2020; Streng et al., 2024), while other studies found report delays or discordance 

with human outbreaks (Cherry et al., 2001; Gleiser et al., 2007).  More work is needed to 

understand how enzootic and epizootic transmission align spatially and temporally, but we argue 

that stronger modeling frameworks for both may help with understanding the strength of 

association between the two cycles. Because our active season models provide a six month lead 

time for predictions of enzootic activity, our model outputs may provide a useful tool that can be 

used to better understand links between predicted transmission hazard in the natural environment 

and epidemiological outcomes. 

Retrospective predictions from 2001 to 2003 also provide unique insights into the 

transmission ecology of WNV following its introduction and spread across naive host 

populations in Florida (Fig. 4). Our predictions in Florida align with other observations of a three 

year cycle of introduction, emergence, and subsidence (Reisen, 2013), with elevated transmission 

hazard predicted across much of Florida in 2002. Multiple zoonotic arboviruses maintained 

between avian hosts and mosquito vectors have recently emerged or expanded in geographic 
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range, including Usutu virus in Europe (Vilibic-Cavlek et al., 2020) and Japanese encephalitis 

virus in Australia (McGuinness et al., 2023), and WNV continues to move into new geographic 

areas in Europe (Koch et al., 2024; Brüssow & Figuerola, 2025). Here, our model outputs may 

be informative toward understanding the invasion ecology of WNV in other geographic locations 

with similar environments, or to provide insights into future pathogen introductions that may be 

on the horizon. Early detection combined with robust spatiotemporal modeling provides a 

valuable resource that can be used to improve public health preparedness under future pathogen 

invasions.  

4.3. Limitations, conclusions, and future directions 

Despite the strengths of this study, limitations and opportunities for future development 

remain. Model performance is inherently influenced by the spatial heterogeneity of the 

underlying data, with greater predictive confidence in regions where sentinel chicken 

surveillance was more comprehensive (Fig. 1 and 5). Thus, uncertainty in our predictions are 

greatest in regions that are either sparsely sampled or entirely unsampled. Given this observation, 

future work should evaluate the generalizability of these models to other regions and time 

periods, particularly those with differing ecological or climatic contexts, where current model 

assumptions may not hold. Model outputs can be used to optimize design changes in monitoring 

to better capture the broadest environmental and geographic contexts (Oyafuso et al., 2021). 

Expanding data collection and analyses to a broader national or global scale holds promise, but 

would require a substantial  increase in efforts towards surveillance to ensure robust calibration 

and validation. However, it may be possible to integrate model outputs with regional models 

from other areas as a means to provide the tools needed to develop broader applications. 

Building infrastructure to support real-time assimilation of new seroconversion data, as well as to 

integrate near-term climate forecasts, would also greatly enhance the utility of this framework. 

Finally, we see value in adapting recent developments in diffusion-enhanced spatiotemporal 

modelling (Lindgren et al., 2023), and integrating non-local covariates (i.e., climatological 

teleconnections), as well as mosquito trap collections and host species abundances to further 

enhance model results. Ultimately, our modeling framework can serve as the foundation for an 

operational ecological forecasting system to support proactive vector-borne disease management. 

While challenges remain, our framework is a step forward in the use of spatiotemporal 

ecological modeling for public health and vector-borne disease ecology and management.  
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TABLES: 

Table 1: Description of the predictor variables used to model spatiotemporal WNV 

seroconversion counts in the state of Florida (USA). Models are defined at two temporal scales, 

monthly and seasonally. Terms included in this table result from a model selection and variable 

reduction procedure. Descriptions and parameterization details are provided for each variable.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Summary of model predictive accuracy when predicting out-of-sample West Nile Virus 

seroconversion counts during the active season (June – December). Predictive accuracy is 

measured using root mean square error (RMSE) and reported at both the annual (overall active 

season) and interannual periods (active season months) between 2016 and 2019, as well as the 

overall study period (Total). RMSE values are distinguished between predictions made from 

models fitted to monthly- and seasonally-aggregated active season data. Monthly RMSE ranges 

are derived from the minimum and maximum monthly RMSE values.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Summary of parameter estimates of predictors from a generalized mixed-effect 

spatiotemporal model WNV seroconversion counts in the state of Florida (USA). Models are 

defined at two temporal scales, monthly and seasonally. Predictors with parameter confidence 

intervals (“Lower” and “Upper” bounds) that do not overlap with zero (i.e., homogenous effects) 

are labeled with an asterisk and are considered important predictors of WNV seroconversion 

dynamics.  

 



FIGURES: 

 

Fig. 1. Depiction of the data provided by the WNV seroconversion surveillance program 
operated by the state of Florida’s Department of Health and many many mosquito control 
districts. (A) The spatial distribution and quantity of WNV seroconversion counts overlayed on a 
land cover land use map of Florida, detailing the proportion cover of urban development (red), 
open water (pelagic, dark blue), wetlands (light blue), cropland (yellow), and natural cover 
(green); (B) an example of the sentinel chickens coops from which the weekly seroconversion 
reports are generated; (C) a temporal summary of the seroconversion data, including (top) a line 
plot of monthly aggregated sums and (bottom) a Hovmöller diagram of the seroconversion data 
by locations of sentinel chickens coops ( ). Inset image (B) source: Indian River 𝑁 = 526
Mosquito Control District (https://www.irmosquito.com/sentinel-program). 

https://www.irmosquito.com/sentinel-program


 

Fig. 2. Temporal trends of WNV seropositive counts in Florida (USA) from 2001 to 2019 
estimated from empirical data (orange) and model-derived predictions (cyan). Empirical data 
were temporally aggregated by summing to the monthly (bottom panel) and seasonal (top panel) 
levels. The predictive performance of spatiotemporal models fitted to these two aggregated 
datasets were determined by predicting on hold-out data, which included the final two years of 
monthly data and the final four years of seasonal data (see dotted line indicating the beginning of 
the out-of-sample prediction horizon). Model predictions are presented as point-estimates (dark 
cyan line) and 50, 80, 90, and 95% confidence intervals (opaque cyan ribbons). The monthly 
panel’s timeline is limited to 2010 – 2020 for ease of visualization, although models were fitted 
to the full time period of 2001 – 2019.  



 

Fig. 3. Marginal response plots of predicted West Nile virus (WNV) seroconversion counts to 
environmental covariates. Predictions were obtained from a spatiotemporal model fitted to data 
from a sentinel chicken system in Florida from 2001 to 2019. Predictions were made from 
models fitted either to data aggregated to either the seasonal-level, including the months of the 
WNV active season (June – December), or to the monthly-level of the same activity period. 
Environmental covariates were either calculated from time periods that were contemporaneous 
with the response variable or temporally lagged by 1 to 2 time periods, indicated by the monthly 
lag in the variable name which is 1 – 2 months for monthly data and 6 – 12 months for seasonal 
data. Response plots are displayed in the “response” space, except for three panels displayed in 
the “link” space for ease of visualizing patterns.  
 



 

Fig. 4. Statewide predictions of the spatiotemporal dynamics of West Nile Virus seropositive 
counts from the Florida sentinel chicken system during the years of 2001 – 2019. Predictions 
were obtained from spatiotemporal models fitted to data aggregated to both seasonal (top panel) 
and monthly (bottom) temporal scales of the WNV activity season (June – December). An 
example of monthly predictions are provided for active months during the years of 2014 and 
2015 (14 of the total 133 temporal periods). All predictions are provided with a quantile 
truncation for ease of visualization (seasonal: 99.9th percentile; monthly: 98th percentile).  



 

Fig. 5. Summary of state-wide prediction means and associated uncertainty of West Nile Virus 
seropositive counts during the years of 2001 – 2019 in the Florida sentinel chicken system. 
Predictions were obtained from spatiotemporal models fitted to data aggregated to both seasonal 
(top panels) and monthly (bottom panels) temporal scales of the WNV activity season (June – 
December). Predictions are mapped using a 99.9th percentile quantile truncation for visualization. 
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SUPPLEMENTAL INFORMATION FOR: 

Baecher, JA, AV Anand, AM Bauer, YSanchez, J Thorson, RP Guralnick, LP Campbell. 

Spatiotemporal Dynamics of West Nile Virus Seroconversion: Insights from Two Decades of 

Monitoring in Florida. Science of the Total Environment (submitted). 

1. Data preparation 

2.1. Land use land cover: 

For this analysis, the following land use land cover classes were extracted: (i) 

“developed” (NLCD classes: 21 – 24), (ii) “natural” (classes: 41 – 43, 52, and 71 – 72), and (iv) 

“wetlands” (classes: 90 and 95). 

 

2. Statistical analysis 

2.1. Variable selection: 

 This study included three climate variables (max temperature, min temperature, and 

cumulative precipitation) and three land cover variables (proportions developed, natural, and 

wetlands). For each climate variable, a one- and two- timestep lag was calculated, resulting in 

nine candidate climate variables. In the candidate set of univariate models, both linear and 

quadratic parameterizations were included, yielding a total of 25 seasonal and monthly models 

(including an intercept-only model). Examination of the effect sizes of each of these predictions 

reduced the initial candidate set to 22 models for the seasonal timescale and 18 models for the 

monthly timescales. Next backwards model selection was used to create a multi-variable model. 

Finally, this model was reduced based on multicollinearity (VIF > 5), removing three variables 

from the seasonal model (tmax_lag12, tmin2, tmin_lag12), yielding a final set of four predictors 

for both the monthly and seasonal spatiotemporal models: 
 

Monthly model predictors: 

● Maximum temperature2 

● Minimum temperature at 1-month lag2 

● Cumulative precipitation2 

● Proportion developed land2 

Seasonal model predictors: 

● Maximum temperature at 1-year lag2 

● Minimum temperature at 1-year lag2 

● Cumulative precipitation2 

● Cumulative precipitation at 6-month lag 



2.2. Epsilon bias-correction estimator:  

Methods for obtaining derived quantities from mixed-models often require calculating 

non-linear functions of both fixed and random effects. In the case of a mixed-model fitted using a 

log-link function, predictions across levels of a random effect would be obtained by calculating 

an exponential inversion function; a function which transforms both mean and variance of those 

values, introducing significant bias that could unduly influence model interpretation.  

This method yields unbiased estimates by sampling from the models random effects 

while holding fixed effects at their maximum likelihood estimate (see Eq. 1). To provide a brief 

overview of this estimator, we can first examine the non-linear calculation of derived quantities. 

To begin, the Laplace approximation of the joint log-likelihood of a mixed-model with both 

fixed  and random effects , given the data , is represented as , with the marginal θ 𝑢 𝑥 ℓ(θ, 𝑢; 𝑥)

likelihood being . To apply the epsilon bias-correction estimator, 𝓛(θ; 𝑥) = ∫𝑒𝑥𝑝(𝑓(θ, 𝑢; 𝑥)𝑑𝑢

we include an additional term  (“epsilon”) to compute an augmented likelihood  * : 𝜀 𝓛 (θ, 𝜀; 𝑥)

* ,               (Eq. 1a) ℓ (θ, 𝑢, 𝜀; 𝑥) = ℓ(θ, 𝑢; 𝑥) − 𝜀 𝜙(θ,  𝑢)

*  .               (Eq. 1b) 𝓛 (θ, 𝜀; 𝑥) = ∫𝑒𝑥𝑝(ℓ(θ, 𝑢, 𝜀; 𝑥)) 𝑑𝑢

To calculate the desired unbiased estimator  we calculate the following partial differential 𝜙

equation with respect to at , evaluated at : 𝜀 𝜀 = 0

[   * ,                (Eq. 1c) 𝔼 𝜙(θ,  𝑢)] = 𝜕
𝜕𝜀 𝑙𝑜𝑔(𝓛 (θ, 𝜀; 𝑥)) | 𝜀 = 0

where, [  is the expected mean value of the desired unbiased estimate  given the data 𝔼 𝜙(θ,  𝑢)] 𝜙

. This method provides a high-quality estimator of , which corrects for both non-linearity and 𝒙 𝜙

skewness of fixed effects in the the commonly used “plug-in” estimator prior ( [ ).  𝔼 𝜙(𝑢)]

 In practice, the epsilon method was used to obtain derived quantities of total WNV 

seroconversion by first taking 500 Multivariate Normal (MVN) samples from the inner Hessian 

matrix, using the full training dataset, and then adjusted using the sdmTMB package’s function 

get_index. Therefore, the 95% confidence intervals around these predictions reflect the 

cumulative variation of the full spatiotemporal range of training set data. Due to computational 

intensity, the epsilon method was not applied to estimate state-wide predictions (i.e., Fig. 3 – 5 in 

the main text). Alternatively, to project models’ predictions to the state-wide level, the 



sdmTMB’s function simulate was used to take 100 MVN samples were taken to calculate 

predictions from the joint prediction matrix at each pixel across all timesteps—constituting 

>19.5-million pixel predictions for monthly models and >2.7-million pixel predictions for 

seasonal data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Information Tables: 

SI Table 1. Description of the model components leading to the development of Gaussian 

Markov random field GLMM models, including degrees of freedom (“DF”), effective degrees of 

freedom (“EDF”), conditional percent deviance explained (“CPDE”), and marginal AIC. Models 

were fitted at both seasonal and monthly time scales. These models are described in terms of 

their major components, including intercepts (“~1”), fixed effects, random effects, and Gaussian 

Markov random fields (GMRF).  

 

 

 

 

 

 

 

 

 

 



SI Table 2. Log likelihoods of spatiotemporal GMRF models at both seasonal and monthly 

timescales. These likelihoods are gathered from the training model as well as a two-fold cross 

validation of the training and hold-out data subsets (yielding the “Out-of-sample” and 

“Within-sample” likelihoods, as well as their “Total sum”).  

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Information Figures: 

 

Fig. 1. Statewide predictions of the spatiotemporal dynamics of West Nile Virus seropositive 

counts from the Florida sentinel chicken system during the years of 2001 – 2019. Predictions 

were obtained from a spatiotemporal model fitted to data aggregated to monthly counts of WNV 

seroconversion in a sentinel chicken system during the WNV activity season (June – December). 

All predictions are provided with a quantile truncation for ease of visualization (98th percentile).  
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