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Abstract 11 

 12 

1. Passive acoustic telemetry systems are widely deployed to track animals in aquatic 13 

environments. However, investments in integrative methods of data analysis have 14 

remained comparatively limited, with current workflows typically considering 15 

individual movements separately from space use, home ranges and residency.  16 

2. This review presents a unifying perspective that bridges this divide. We argue that the 17 

core of animal-tracking analyses lies in the estimation of individual locations based on 18 

probabilistic principles. We formalise a generic state-space model for individual 19 

movements and a set of targets for statistical inference, unifying existing literature in a 20 

common framework. We critically assess inference algorithms and connect model-21 

based inference to downstream ecological analyses of individual centres of activity, 22 

occurrence, residency, home ranges, habitat selection and behaviour.  23 

3. We provide guidance to practitioners on model formulation, algorithm choice and 24 

software suitability in different contexts and identify key avenues for future research.  25 

4. This review provides a roadmap for integrative data analysis in passive acoustic 26 

telemetry systems that should support research into the ecology and conservation of 27 

many aquatic species.  28 

 29 
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1. Introduction  34 

 35 

Passive acoustic telemetry is one of the most widely used technologies for animal tracking in 36 

aquatic environments (Hussey et al., 2015; Matley et al., 2022). This technology uses receiver 37 

arrays to detect individual-specific acoustic transmissions from tagged animals. Receiver 38 

arrays have been deployed in freshwater, coastal and marine environments and expanded from 39 

local to continental scales (Abecasis et al., 2018; Iverson et al., 2018). The data accumulating 40 

in these systems contain information on the movements of a wide range of species (Lennox et 41 

al., 2024), but require the application of appropriate statistical methods for analysis (Whoriskey 42 

et al., 2019). 43 

 44 

Two broad approaches have emerged for the analysis of passive acoustic telemetry data. One 45 

approach is to analyse discrete detection events directly (Whoriskey et al., 2019). This approach 46 

encompasses models of detection (‘residency’) metrics (such as detection counts) in relation to 47 

environmental variables (Lavender et al., 2021b), survival analyses (Martins et al., 2013), 48 

network analyses (Lédée et al., 2015) and mark-recapture studies (Moore et al., 2015). These 49 

analyses shed light on habitat use around receivers, event timing, connectivity and 50 

demographic processes.  51 

 52 

The second approach considers ‘spatially continuous data’ (estimated positions) rather than 53 

discrete detection events (Whoriskey et al., 2019). This approach is broadly concerned with 54 

mapping space use. Heuristic methods that interpolate positions using tuning parameters, 55 

without uncertainty quantification, are typically used for this purpose (Kraft et al., 2023; 56 

Lavender et al., 2023). Examples include the mean-position algorithm, which estimates 57 

individual ‘centres of activity’ (COAs) as detection-location averages over sequential time 58 
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intervals (Simpfendorfer et al., 2002), and the Refined Shortest Path (RSP) algorithm, which 59 

interpolates positions (and user-defined errors) along the shortest paths between receivers 60 

(Niella et al., 2020). Post-hoc smoothing (e.g. kernel density estimation) is used to map space 61 

use (Udyawer et al., 2018). These approaches are useful but have limitations. The central issue 62 

is that heuristic methods do not represent the movement or (imperfect) detection processes that 63 

generate observations. It is also difficult to integrate additional observations (such as depth 64 

measurements) alongside detections to refine analyses. This can lead to variable performance 65 

and maps of space use that lack a clear biological interpretation or uncertainty quantification 66 

(Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025a; Winton et al., 2018). It is therefore 67 

unsurprising that most reviews highlight the importance of further methodological 68 

development (Jacoby & Piper, 2023; Matley et al., 2022).  69 

 70 

Recent studies have synthesised available methods in tables or decision trees to guide analyses 71 

(Jacoby & Piper, 2023; Kraft et al., 2023; Whoriskey et al., 2019). These structures link 72 

research questions to existing methodologies but draw distinctions between analyses of 73 

movements (e.g., network analysis), space use (e.g., kernel smoothing) and residency (e.g., 74 

residency metrics). Fundamentally, these analyses all examine aspects of an underlying animal 75 

movement process that is imperfectly observed.     76 

 77 

This review presents a unifying perspective that bridges the divide between movement, space-78 

use and residency analyses in passive acoustic telemetry systems. We consider an animal’s 79 

underlying movement process and the observation processes that connect movements to 80 

observations (Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025a). In a passive acoustic 81 

telemetry system, observations principally comprise detections, when tagged animals move 82 

within receiver detection ranges, and non-detections (Kessel et al., 2014). Ancillary 83 
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observations, such as depth measurements, may be also recorded by animal-borne sensors at 84 

regular or irregular intervals (Matley et al., 2023). These observations provide an imperfect 85 

‘glimpse’ into the underlying behavioural/movement process that generates emergent 86 

ecological patterns.  87 

 88 

State-space models (SSMs) provide a natural representation of such a system (Patterson et al., 89 

2008). These models represent how the underlying (‘latent’) state (location) of a tagged 90 

individual evolves through time, conditional on the observations. The ‘state’ contains the 91 

individual’s location, but may also include other variables of interest, such as behaviour. The 92 

primary objective of model-based inference (or ‘model fitting’) is to use the observations to 93 

infer the latent states. We argue that probabilistic estimates of these states that correctly 94 

represent uncertainty should lie at the heart of animal-tracking analyses. These estimates will 95 

strengthen studies of movement patterns (Lavender et al., 2021b), space use (Udyawer et al., 96 

2018), residency (Futia et al., 2024), habitat selection (Griffin et al., 2021) and behaviour 97 

(Niella et al., 2020). 98 

 99 

SSMs are widely used for animal tracking (Auger-Méthé et al., 2021) but in passive acoustic 100 

telemetry systems their unifying role has been underappreciated and only a handful of studies 101 

have explored the approach (Alós et al., 2016; Hostetter & Royle, 2020; Lavender, 102 

Scheidegger, Albert, Biber, Aleynik, et al., 2025; Lavender, Scheidegger, Albert, Biber, Illian, 103 

et al., 2025a; Pedersen & Weng, 2013). One reason for this is that inference of the latent states 104 

(and characteristics of the movement or observation processes) can be challenging (Auger-105 

Méthé et al., 2016).  106 

 107 
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Model-based inference for passive acoustic telemetry and biologging sensors is the focus of 108 

this review. Our aspiration is to complement recent reviews of passive acoustic telemetry 109 

(Jacoby & Piper, 2023; Matley et al., 2022, 2023) and data analysis (Kraft et al., 2023; 110 

Whoriskey et al., 2019) with a reflective treatment of model-based inference that links to the 111 

wider animal-tracking literature where appropriate. We formalise a generic SSM for individual 112 

states (§2) and the inference problem (§3); assess inference algorithms, including those we 113 

have seen used and those in development that seem most promising (§4); connect model-based 114 

inference to downstream ecological analyses (§5); provide practical guidance (§6); and identify 115 

future research avenues (§7). For more generic SSM treatments, see Jonsen et al. (2013), 116 

Auger-Méthé et al. (2021) and Newman et al. (2023). For a broader list of available software 117 

(focusing on the R programming language), see Joo et al. (2020). In acoustic telemetry 118 

systems, we still see a role for analyses of detection metrics, network analysis and heuristic 119 

space-use analyses. These methods can be straightforward to apply and provide useful 120 

descriptive summaries of detection data when uncertainty quantification is not required (Kraft 121 

et al., 2023). Approaches such as survival analysis will also continue to play a role (Martins et 122 

al., 2013). But by presenting a unified statistical framework, we hope to encourage the adoption 123 

of SSMs and support the community to develop integrative data analyses. This review should 124 

support research in animal tracking across the globe. 125 

 126 

2. State-space model  127 

 128 

We begin by formalising a generic SSM that represents how the state (𝒔) of a tagged individual 129 

(typically its location) evolves through time (𝑡) conditional on our observations (𝒚). If we think 130 

about the evolution of the state in discrete time (where 𝑡 = 1, 2, … , 𝑇), we can represent the 131 

system with the joint probability distribution 𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) of all states (𝒔1:𝑇) and parameters 132 
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(𝜽), given all observations (𝒚1:𝑇). (We focus on discrete-time models here, but for an entry into 133 

the continuous-time literature, see Auger-Méthé et al. (2021).) Applying Bayes Theorem allows 134 

us to represent the joint (posterior) distribution in terms of an underlying movement process 135 

𝑓(𝒔1:𝑇 | 𝜽), an observation process (the likelihood) that links movements to observations 136 

𝑓(𝒚1:𝑇 | 𝒔1:𝑇 , 𝜽), and our prior knowledge of the movement and observation model parameters 137 

𝑓(𝜽):   138 

𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) ∝ 𝑓(𝒔1:𝑇 | 𝜽) 𝑓(𝒚1:𝑇 | 𝒔1:𝑇 , 𝜽) 𝑓(𝜽). eqn 1  

 139 

The SSM can be applied to different species by tailoring the movement and observation 140 

processes (Fig. 1). Model formulation should be informed by available information, domain 141 

knowledge and literature.  142 

 143 

As an illustration of this model formulation, consider the following example with simple 144 

assumptions. We illustrate a first-order Markovian random walk for the movement process, 145 

 𝑓(𝒔1:𝑇 | 𝜽) = 𝑓(𝒔𝑡=1 | 𝜽) ∏ 𝑓(𝒔𝑡 | 𝒔𝑡−1, 𝜽)𝑇
𝑡=2 , eqn 2  

in which an individual’s location is normally distributed around its previous location:   146 

𝑓(𝒔𝑡 | 𝒔𝑡−1, 𝜎) = 𝑁(𝒔𝑡;   𝒔𝑡−1, 𝜎2𝑰). eqn 3  

Assuming independence between observations, we formulate the observation process as 147 

 𝑓(𝒚1:𝑇 | 𝒔1:𝑇 , 𝜽) = ∏ 𝑓(𝒚𝑡 | 𝒔𝑡 , 𝜽)𝑇
𝑡=1 . eqn 4  

In a passive acoustic telemetry system, we model the likelihood 𝑓(𝒚𝑡 | 𝒔𝑡 , 𝜽) for acoustic 148 

observations (𝒚𝑡
(𝐴)

), which comprise detections (𝑦𝑡,𝑘
(𝐴)

= 1) or non-detections (𝑦𝑡,𝑘
(𝐴)

= 0) at 149 

receivers (𝑘), using a Bernoulli distribution. We then model the probability of a detection as 150 

some function (𝑔) of the distance between the location of the individual (𝒔𝑡) and the receiver 151 

(𝒓𝑘); that is,  152 
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𝑓(𝒚𝑡
(𝐴)

 | 𝒔𝑡 , 𝜽) =  ∏ 𝑓(𝑦𝑡,𝑘
(𝐴)

 | 𝒔𝑡 , 𝜽)𝑘 , eqn 5  

where 153 

𝑓(𝑦𝑡,𝑘
(𝐴)

 | 𝒔𝑡 , 𝜽) = Bernoulli (𝑝𝑡,𝑘( 𝒔𝑡 , 𝜽)) eqn 6  

and  154 

𝑝𝑡,𝑘( 𝒔𝑡 , 𝜽) = 𝑔(distance(𝒔𝑡 , 𝒓𝑘), 𝜽). eqn 7  

Other observations can be incorporated in a similar way via additional observation models. By 155 

performing inference for this model, we can estimate the latent states alongside properties of 156 

the movement and observation processes.  157 

 158 

3. Inference targets  159 

 160 

To perform model-based inference for eqn 1, we can consider a selection of possible target 161 

distributions, depending on our requirements, expertise and computational resources (Table 1). 162 

The main choice is whether to perform inference for the marginal or joint distributions of the 163 

individual’s states (i.e., 𝒔𝑡 or 𝒔1:𝑇). Inference of the marginal distributions is the simpler option. 164 

These distributions provide a ‘snapshot’ (map) of the individual’s possible states 𝒔𝑡 at each 165 

time step, but do not encode how sequential snapshots are connected into trajectories (i.e., the 166 

most likely movements may not be those between sequential high probability regions, if those 167 

regions are far apart). Joint distributions of all states 𝒔1:𝑇 represent plausible trajectories. In 168 

both cases, static parameters (in the movement or observation models) may be given or 169 

estimated (with increased computational cost). Different target distributions map loosely onto 170 

different inference algorithms (§4) and are suitable for different downstream ecological 171 

analyses (§5).  172 

 173 

4. Inference algorithms 174 
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 175 

4.1.Filtering algorithms  176 

 177 

4.1.1. Overview  178 

 179 

Filtering algorithms are recursive methods that infer an individual’s state (𝒔𝑡) at each time step 180 

(𝑡) given the observations (𝒚1:𝑡) up to that time (Doucet & Johansen, 2009). That is, filtering 181 

algorithms generally consider the partial marginal distribution 𝑓(𝒔𝑡 | 𝒚1:𝑡 , 𝜽) rather than the 182 

joint distribution 𝑓(𝒔1:𝑇 | 𝒚1:𝑇 , 𝜽). The general procedure involves a recursive representation of 183 

the partial marginal  184 

𝑓(𝒔𝑡| 𝒚1:𝑡 , 𝜽) ∝ ∫ 𝑓(𝒔𝑡−1| 𝒚1:𝑡−1, 𝜽 ) 𝑓(𝒔𝑡 | 𝒔𝑡−1, 𝜽) 𝑑𝒔𝑡−1 𝑓(𝒚𝑡  | 𝒔𝑡 , 𝜽)  eqn 8  

in which the distribution for one time step 𝑓(𝒔1:𝑡−1 | 𝒚1:𝑡−1, 𝜽) is projected forwards in time in 185 

line with a movement process 𝑓(𝒔𝑡 | 𝒔𝑡−1, 𝜽) and then updated by the data 𝑓(𝒚𝑡 | 𝒔𝑡 , 𝜽). These 186 

two steps are sometimes termed the ‘prediction’ and ‘update’ steps (Thygesen et al., 2009). 187 

Inference focuses on the states, but by calculating the likelihood of the observations it is also 188 

possible to estimate 𝜽 via maximum likelihood or Bayesian inference over multiple filter runs 189 

(Brockwell & Davis, 1987; Kantas et al., 2009). Subsequent smoothing algorithms can be used 190 

to infer the full marginal distribution 𝑓(𝒔𝑡 | 𝒚1:𝑇, 𝜽) of the individual’s state (𝒔𝑡) given all 191 

observations (𝒚1:𝑇). Filtering and smoothing algorithms generate probabilistic maps 192 

(snapshots) of an individual’s possible locations at sequential time points, but not trajectories. 193 

Sampling trajectories is also possible, but expensive (Doucet & Johansen, 2009). 194 

 195 

4.1.2. Kalman filtering  196 

 197 
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The Kalman filter is an efficient filtering algorithm that is applicable to linear systems with 198 

Gaussian errors (Kalman, 1960). The vanilla Kalman filter requires a Gaussian movement 199 

model, in which the transition from one state to another is described by a linear function. The 200 

observations are assumed to follow a Gaussian distribution with a mean that depends linearly 201 

on the state. However, developments have been proposed that relax these assumptions (Fasano 202 

et al., 2021; Katzfuss et al., 2020). 203 

 204 

In animal-tracking studies, the Kalman filter is typically applied in contexts in which the 205 

observations comprise noisy location measurements. Example applications include processing 206 

Argos satellite telemetry data (McClintock et al., 2015) and light-level geolocation (Sibert et 207 

al., 2003). The Kalman filter has also been tailored for applications in fine-scale positioning 208 

systems, via software such as animalEKF (Ackerman, 2018) and kaltoa (Campbell, 2024).  209 

 210 

Kalman filtering has attracted limited attention in passive acoustic telemetry systems. The 211 

requirement for a Gaussian likelihood function is not directly compatible with binary 212 

(detection, non-detection) observations. A simple fix is to consider the receiver positions at 213 

which an individual was detected as our observations and ignore non-detections. Providing we 214 

assume a Gaussian movement model and Gaussian uncertainty in an individual’s position 215 

around the receiver, the vanilla Kalman filter is a suitable choice for state inference. However, 216 

extensions that use binary observations directly are preferable (Fasano et al., 2021). 217 

 218 

The Kalman filter trades computational efficiency for flexibility. The filter is efficient because 219 

the update equations can be solved analytically. However, the restrictions on the movement and 220 

observation models limit applications in some settings. Problematic cases include coastal 221 

environments, where animal distributions are truncated by land (Pedersen et al., 2011), as well 222 
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as integrative modelling studies that combine acoustic and depth datasets in complex 223 

bathymetric landscapes to refine inferences (Lavender, Scheidegger, Albert, Biber, Illian, et al., 224 

2025a). These contexts require more flexible filtering algorithms.  225 

 226 

4.1.3. Particle filtering 227 

 228 

Particle filters are Bayesian sequential Monte Carlo algorithms  that approximate 𝑓(𝒔𝑡 | 𝒚1:𝑡 , 𝜽) 229 

with a set of ‘particles’ (Doucet & Johansen, 2009). These algorithms are a sensible initial 230 

choice for state inference in most real-world passive acoustic telemetry systems, given their 231 

flexibility and accessibility. The inference process involves a Monte Carlo simulation of 𝑁 232 

weighted particles, which represent candidate states for an individual. In a classic particle filter, 233 

a movement model simulates particle movement from one time step to the next and an 234 

observation model weights particles in line with their compatibility with the data. (Both models 235 

are customisable.) By periodically resampling particles in line with the weights, some particles 236 

are eliminated or duplicated such that the collection of particles at each time step approximate 237 

the partial marginal 𝑓(𝒔𝑡 | 𝒚1:𝑡 , 𝜽). Smoothing and sampling routines then effectively re-weight 238 

particles to approximate the full marginal distribution 𝑓(𝒔𝑡 | 𝒚1:𝑇 , 𝜽)  or sample trajectories.  239 

 240 

Generic packages that implement particle algorithms in R include pomp (King et al., 2016) and 241 

nimble (de Valpine et al., 2017). The packages patter (for R) and Patter.jl (for Julia) 242 

provide filtering and smoothing routines for animal-tracking datasets (Lavender, Scheidegger, 243 

Albert, Biber, Illian, et al., 2025b). These packages support customisable movement and 244 

observation models and automatic truncation of individual movements to account for barriers. 245 

Particles can be summarised to compute maps of space use and residency over desired time 246 

intervals. In a simulation study, Lavender et al. (2025a) showed that particle algorithms 247 
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produced improved maps of space use compared to heuristic methods and coupling filtering 248 

with smoothing was beneficial, especially in sparse arrays. For a real-world analysis, see 249 

Lavender et al. (2025c), who analysed acoustic and archival (depth) data collected from flapper 250 

skate (D. intermedius) over a period of 14 months. That study inferred individual states using 251 

a behavioural switching correlated random walk model and observational models derived from 252 

prior research (Lavender et al., 2021b, 2021a). Python routines for particle filtering have also 253 

been developed for animal tracking (Liu et al., 2019). 254 

 255 

Particle algorithms have strengths and weaknesses. The key strength is the flexibility with 256 

which we can tailor the movement and observation models, leveraging prior information, 257 

domain expertise and literature (Lavender, Scheidegger, Albert, Biber, Aleynik, et al., 2025; 258 

Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025a). Particle filtering algorithms can 259 

also be relatively fast, although smoothing is generally more expensive (Doucet & Johansen, 260 

2009). In illustrative examples using patter, Lavender et al. (2025b) report filtering and 261 

smoothing times of 5–32 minutes for one month of acoustic and depth time series (21,960 two-262 

minute time steps). In a real-world analysis involving hundreds of thousands of particles, we 263 

recorded computation times under two hours for comparable time series (Lavender, 264 

Scheidegger, Albert, Biber, Aleynik, et al., 2025). 265 

 266 

There are two main disadvantages. The first is that joint estimation of the latent states alongside 267 

static parameters can be expensive. The patter package therefore encourages users to 268 

parameterise movement and observation models a priori, drawing on available datasets, 269 

domain expertise and literature, before performing inference for the latent states (Lavender, 270 

Scheidegger, Albert, Biber, Illian, et al., 2025b). In principle it is possible with patter to 271 

estimate static parameters (by tracking the log-likelihood of the observations given the 272 
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parameters from each filter run), but multiple filters runs with different parameterisations are 273 

required to do so.  274 

 275 

The second disadvantage is particle degeneracy (Doucet & Johansen, 2009). This occurs when 276 

a minority of particles acquire the majority of the weight, due to inadequacies in the sub-models 277 

and resampling a finite number of particles. This can lead to poor approximations or 278 

convergence failures (when all particles are incompatible with the data). Mitigating strategies 279 

include containerisation, where particle samples are restricted within ‘containers’ around 280 

relevant receivers (Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025a), as well as larger 281 

numbers of particles and low-variance adaptive resampling. These strategies are implemented 282 

by patter. Nevertheless, challenges have been reported when integrating sparse detections 283 

with depth measurements for understudied, highly mobile benthic species in labyrinthine 284 

bathymetric environments (where particles are easily killed by the depth observation model) 285 

(Lavender, Scheidegger, Albert, Biber, Aleynik, et al., 2025). Inference in these situations is a 286 

hard task for sampling methods, though extensions such as gradient-based filtering may help 287 

(Maken et al., 2022).   288 

 289 

4.1.4. Grid-based filtering 290 

 291 

Grid-based filters discretise the study area, and compute probabilities for each grid cell directly, 292 

avoiding the degeneracy issues that affect particle filters (Pedersen et al., 2008; Thygesen et 293 

al., 2009). SSMs with discrete states are often called hidden Markov models (HMMs). 294 

Ecologists are familiar with HMMs that represent movement time series (such as individual 295 

trajectories from satellite tracking) as outcomes of a ‘hidden’ sequence of discrete behavioural 296 

states (Glennie et al., 2023; McClintock & Michelot, 2018). The idea is similar here, but the 297 



Model-based inference for biotelemetry 

 14 

discrete states are locations on a grid. At each time step, we approximate 𝑓(𝒔𝑡 | 𝒚1:𝑡 , 𝜽) with 298 

the probability 𝑃𝑖𝑗,𝑡(𝒚1:𝑡) of the individual  being in each grid cell 𝒔𝑖,𝑗, with coordinates (𝑖, 𝑗), 299 

at time 𝑡, conditional on the data 𝒚1:𝑡. This is a three-step process: given an initial probability 300 

distribution for the location of the animal (initialisation), we iteratively diffuse the distribution, 301 

in line with the animal’s movement behaviour (the prediction step), before weighting the 302 

resulting probabilities in each cell in line with their compatibility with the data (the update 303 

step). For certain kinds of movement models, the diffusion step can be efficiently implemented 304 

as a two-dimensional convolution process (see below). Flexibility over the observation model 305 

is maintained. As for other filtering routines, smoothing and sampling algorithms are required 306 

to approximate full marginal and joint distributions, respectively (Thygesen et al., 2009). Static 307 

parameters can be estimated via maximum likelihood or Bayesian inference.  308 

 309 

Grid-based filtering was developed for demersal fish tracking using archival depth tags by 310 

Pedersen et al. (2008) and Thygesen et al. (2009). Those studies related tidal patterns in depth 311 

time series (observed when fish rest on the seafloor) to geographic tidal variation to estimate 312 

individual positions though time. The MatLab HMM Geolocation Toolbox was developed for 313 

this purpose (Pedersen et al., 2008). This toolbox estimates states and movement parameters. 314 

The approach has been extended for pop-up satellite archival transmitters that record day 315 

lengths (and other measurements) for light-level geolocation. The HMMoce R package was 316 

developed for this purpose (Braun et al., 2018). Few studies have leveraged the approach for 317 

passive acoustic telemetry data though (Gonse et al., 2024; Pedersen & Weng, 2013; Strøm et 318 

al., 2017). For an example, see Pedersen & Weng (2013). They used an Ornstein-Uhlenbeck 319 

process to model home range behaviour in humphead wrasse (C. undulatus) and estimated 320 

smoothed probability distributions and movement parameters using acoustic detections. We 321 

hope that routines in development in Python (Woillez, 2024) and Julia (Scheidegger, 2025) 322 
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will encourage adoption of the approach. The Julia package Wahoo.jl implements filtering, 323 

smoothing and sampling of trajectories. As in the patter package, movement and observation 324 

model parameters are specified by the user, but the log-likelihood of the observations given the 325 

parameters is tracked, which enables users to estimate static parameters over multiple filter 326 

runs.   327 

 328 

Grid-based filtering has advantages and disadvantages. An exciting advantage is the potential 329 

to leverage modern graphical processing unit (GPU) technology. Since the approach was 330 

conceptualised, there have been massive improvements in GPU technology and efficient 331 

convolution algorithms have been developed that exploit these improvements (e.g. Innes, 332 

2018). The Wahoo.jl package leverages these routines to reduce computation time 333 

(Scheidegger, 2025). (There are also particle filtering routines that exploit GPU parallelisation 334 

(Liu et al., 2019), but these involve repeated data-transfers to/from the GPU, reducing 335 

efficiency.) Furthermore, as probabilities are computed directly, approximation with particles 336 

and related convergence issues are avoided, even in complex landscapes. Computational 337 

efficiency also appears to be predictable since the same computations are repeated over all 338 

pixels (unlike particle algorithms where computation time depends more on the complexity of 339 

the inference problem, which can be difficult to predict). We therefore believe this is a powerful 340 

and reliable approach for modelling studies that integrate multiple data types, especially in 341 

complicated landscapes where probability distributions are multimodal.  342 

 343 

There are also disadvantages. As for other filters, it is possible to estimate static parameters 344 

alongside locations, but this can be expensive (Thygesen et al., 2009). There are also some 345 

requirements for the design of the movement model to allow efficient implementations via 346 

convolution, as the probability density of a movement between two states must only depend on 347 
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the spatial distance between sequential states (as in a Gaussian random walk, for example). In 348 

any case, there remains a speed cost to computing probabilities in every grid cell. In ‘simple’ 349 

environments, we expect particle algorithms to outpace convolution algorithms; but as the 350 

number of particles required to achieve convergence increases, convolution algorithms should 351 

gain the edge. With GPU-acceleration, the tipping point may be reached sooner rather than 352 

later. However, memory and disk-space requirements remain constraints that limit grid 353 

resolution and the time resolution at which probability distributions can be recorded.  354 

 355 

The above filtering approaches can be extended to estimate parameters and obtain samples 356 

from the joint distribution 𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) with increased computational cost. Other 357 

approaches, such as Laplace approximation and Markov Chain Monte Carlo (MCMC) 358 

algorithms, can directly target the joint distribution. These approaches make different trade-359 

offs that we now consider.  360 

 361 

4.2.Laplace approximation 362 

 363 

The Laplace approximation is an efficient option for joint inference of trajectories and static 364 

parameters (Kristensen et al., 2016). This approach considers the marginal likelihood  365 

𝑓(𝒚1:𝑇 | 𝜽) = ∫ 𝑓(𝒔1:𝑇 , 𝒚1:𝑇 | 𝜽) 𝑑𝒔1:𝑇. eqn 9  

We assume that the integrand 𝑓(𝒔1:𝑇 , 𝒚1:𝑇 | 𝜽) can be approximated by an (un-normalised) 366 

multivariate Gaussian distribution around the most likely (maximum a posteriori) trajectory 367 

(�̂�1:𝑇) conditional on 𝜽: 368 

 𝑓(𝒔1:𝑇 , 𝒚1:𝑇 | 𝜽) ≈ 𝑓(�̂�1:𝑇 , 𝒚1:𝑇 | 𝜽) × 

exp [−
1

2
(𝒔1:𝑇 − �̂�1:𝑇(𝒚1:𝑇 , 𝜽))

𝑇
𝐻(𝒚1:𝑇 , 𝜽)(𝒔1:𝑇 − �̂�1:𝑇(𝒚1:𝑇 , 𝜽))]. 

eqn 10  
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This approximation renders the integration numerically cheap: given a set of 𝜽 values, we 369 

maximise 𝑓(𝒔1:𝑇 , 𝒚1:𝑇 | 𝜽)  to find �̂�1:𝑇 and obtain the Hessian matrix (𝐻) around  �̂�1:𝑇, which 370 

defines the uncertainty envelope. We can then run a second optimisation over possible 𝜽 values 371 

to find the optimum of 𝑓(𝒚1:𝑇 | 𝜽), which gives the most likely 𝜽 (and associated �̂�1:𝑇). 372 

 373 

The popular software Template Model Builder (TMB) implements the Laplace approximation 374 

(Kristensen et al., 2016). TMB is used by yaps, which fits SSMs to time-of-arrival signals in 375 

fine-scale acoustic positioning systems (Baktoft et al., 2017), and aniMotum, which fits 376 

continuous-time SSMs to positional data from satellite transmitters and related technologies 377 

(Jonsen et al., 2023). INLA may be another option (Rue et al., 2009). However, we haven’t seen 378 

applications of these routines in passive acoustic telemetry systems.  379 

 380 

The Laplace approximation is subject to the same underlying assumptions as in the Kalman 381 

filter (see §4.1.1). The key advantage of the Laplace approximation is that we automatically 382 

get the maximum a posteriori trajectory (and parameter estimates). The disadvantage is 383 

increased computational expense (Campbell, 2024). Both approaches are limited by non-384 

Gaussianity (e.g., in coastal environments). In some situations, post-hoc corrections may be 385 

acceptable: aniMotum, for example, supports re-routing estimated paths for aquatic animals 386 

around land (Jonsen et al., 2023). In other situations, MCMC algorithms that sample from the 387 

joint distribution 𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) are required.  388 

 389 

4.3.Markov chain Monte Carlo (MCMC) 390 

 391 

4.3.1. Gradient-free methods 392 

 393 
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MCMC algorithms sample latent states and/or parameters from the joint distribution 394 

𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) in such a way that the frequency distribution of values approximates their 395 

probability (Dorazio, 2016). That is, states and parameter values that are more likely are 396 

sampled more frequently than those that are unlikely. Gradient-free algorithms only require 397 

evaluations of a function that is proportional to the joint density 𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇), and not its 398 

gradients, for sampling, which provides great flexibility in model formulation.  399 

 400 

Traditional gradient-free algorithms include the Metropolis (Metropolis et al., 1953), 401 

Metropolis-Hastings (Hastings, 1970) and Gibbs sampling (Geman & Geman, 1984) 402 

algorithms. The former two algorithms randomly ‘walk’ around the posterior distribution; 403 

trajectories and parameters are iteratively sampled from a proposal distribution, given the 404 

current selection, and accepted or rejected depending on the joint posterior probability density 405 

𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇). Gibbs sampling is another approach that samples individual model 406 

components from their respective conditional distributions. That is, instead of sampling entire 407 

trajectories alongside parameters, we iterate between sampling individual states, given 408 

neighbouring states 409 

𝒔𝑡 ∼ 𝑓(𝒔𝑡 ∣ 𝒔𝑡−1, 𝒔𝑡+1, 𝜽, 𝒚𝑡) eqn 11  

and parameters, given a trajectory 410 

𝜃𝑖 ∼ 𝑓(𝜃𝑖 | 𝜽−𝑖 , 𝒔1:𝑇 , 𝒚1:𝑇). eqn 12  

In theory, this eliminates the need for a rejection step (since each sample is consistent with the 411 

full joint distribution). In practice, however, sampling from conditional distributions without 412 

closed form solutions (i.e., sampling parameters given trajectories) requires rejection steps 413 

(Metropolis-Hastings within Gibbs).  414 

 415 
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MCMC became popular in ecology following the development of WinBUGS/OpenBUGS (Lunn 416 

et al., 2000) and JAGS (Plummer, 2003), alongside accessible wrapper packages, such as 417 

rjags (Plummer, 2024) and R2jags (Su & Yajima, 2024). Generic inference packages such 418 

as nimble (de Valpine et al., 2017), pyMC (Abril-Pla et al., 2023), and Turing.jl (Ge et al., 419 

2018) also support MCMC.  420 

 421 

In passive acoustic telemetry systems, a small number of studies have used JAGS for model-422 

based inference (Alós et al., 2016; Hostetter & Royle, 2020). Alós et al. (2016) used R2jags 423 

to fit a SSM to short (20-day) acoustic datasets collected from pearly razorfish (X. novacula) 424 

in Mallorca. They used an Ornstein-Uhlenbeck movement model and a logistic, distance-425 

decaying detection probability model. They estimated individual trajectories and movement 426 

parameters, but fixed observation model parameters using independent analyses. Hostetter & 427 

Royle (2020) developed a similar methodology, coupling a random walk movement model with 428 

a half-normal detection probability function for simulated data. Using JAGS, they estimated 429 

individual trajectories plus movement and observation-model parameters. (They also 430 

developed a custom R code algorithm to account for random acoustic-transmission intervals.) 431 

Drawing the analogy between acoustic localisation and spatial capture-recapture (SCR), they 432 

termed the method ‘SCR movement-assisted localisation’.  433 

 434 

There are several advantages of MCMC sampling. One is that it is relatively familiar to 435 

ecologists (Kéry, 2010; Schaub & Kéry, 2021). Another is that we can sample trajectories and 436 

parameters simultaneously in a fully Bayesian framework. Probabilistic programming 437 

languages like JAGS also provide a natural framework for thinking hierarchically about how 438 

group-level patterns emerge from the movements of multiple individuals analysed 439 

simultaneously (Jonsen, 2016). This is an exciting area of development.  440 
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 441 

However, there are disadvantages. An initial optimisation step may be required for effective 442 

initialisation of the algorithm with valid state and parameter samples (which are not extremely 443 

unlikely). Rejection sampling and iterative updates of individual model components (each 𝒔𝑡 444 

and 𝜃𝑖), conditional on the other components, can be inefficient when the parameter space is 445 

high-dimensional (e.g., for long time series). Local state updates (i.e., 𝒔𝑡 conditional on 446 

𝒔𝑡−1 and 𝒔𝑡+1) can also limit exploration of the parameter space, leading to poor 447 

characterisation of multimodal distributions. Collectively, these conditions can lead to 448 

prolonged computation times that scale poorly with the size of the dataset, hampering real-449 

world applications. Alós et al. (2016) report model fitting times of approximately three hours 450 

per individual (approximately 2,000 15-minute time steps over 20 days of tracking data). 451 

Similarly, we found Hostetter & Royle’s (2020) code took 15 hours on a standard computer to 452 

run (150 time steps). Where trajectories and static parameter samples are required, gradient-453 

based methods may be preferable.   454 

 455 

4.3.2. Gradient-based methods 456 

 457 

Gradient-based samplers leverage gradients for efficient sampling of high-dimensional 458 

distributions (Betancourt, 2017). Hamiltonian Monte Carlo is the most popular example. It 459 

conceptualises the (negative log) posterior as an energy landscape, with troughs that correspond 460 

to regions of high probability density and peaks that correspond to regions of low probability 461 

density. The algorithm iteratively simulates trajectories of a hypothetical particle over this 462 

landscape (following the rules of Hamiltonian dynamics). Each trajectory depends on the 463 

particle’s position and the local gradient (which encourages the particle to ‘roll’ into high-464 

density regions), plus its momentum (which facilitates exploration). At the start of each 465 
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iteration, trajectories are initialised with a random momentum and then propagated, over 𝐿 466 

steps, using a numerical method (Leapfrog integration) that approximates Hamiltonian 467 

dynamics. At the end of each iteration, there is an accept/reject step for the proposed state. The 468 

No U-Turn Sampler is an extension that automates the choice of the trajectory length using the 469 

No U-Turn stopping criterion, improving performance (Stan Development Team, 2017). These 470 

dynamics enable more informed exploration of the posterior than in gradient-free methods. 471 

HMC has therefore become one of the most powerful inference algorithms available.  472 

 473 

HMC is gaining popularity in ecology (Monnahan et al., 2017). Stan is a probabilistic 474 

programming language that implements HMC and automatic differentiation (Stan 475 

Development Team, 2017) and Stan interfaces, such as cmdstanr, have been developed for 476 

different scientific programming languages (Gabry et al., 2024). In R, the package tmbstan 477 

links TMB model objects to Stan (Monnahan & Kristensen, 2018). Generic packages, including 478 

nimble (de Valpine et al., 2017), pyMC (Abril-Pla et al., 2023), and Turing.jl (Ge et al., 479 

2018), also support HMC.  480 

 481 

In the acoustic telemetry literature, HMC has been used to analyse detection events (Lara-482 

Lizardi et al., 2022) and infer COAs (Winton et al., 2018). For example, Winton et al. (2018) 483 

fitted a point-process model that estimates individual COAs from acoustic detections using 484 

Stan (via their TelemetrySpace package). Their model can be considered as a SSM with an 485 

unrestricted (‘teleportation’) movement process between sequential COAs and a binomial 486 

observation process that connects the latent COAs to detection counts at receivers (via a 487 

detection probability function). This is an efficient modelling choice for acoustic detections in 488 

high-coverage, regularly arranged receiver arrays, but subject to the limitations of COAs 489 

(Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025a; Winton et al., 2018). In the wider 490 
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tracking literature, other applications of HMC include analyses of multinomial count data from 491 

radio telemetry (Wang, 2021) and behavioural state classification (Ruiz-Suarez et al., 2022). 492 

However, few studies have leveraged HMC for trajectory inference (Hance et al., 2021). 493 

 494 

For animal tracking, we foresee two use cases for HMC. The first is when joint inference of 495 

latent locations and static parameters is required (Albert et al., 2015). The second is when 496 

comprehensive sampling of trajectories is desired. Both tasks can be expensive within a 497 

filtering paradigm. Gradient-free methods are an option, but leveraging gradients can improve 498 

efficiency (Albert et al., 2015).  499 

 500 

HMC also has limitations. Unlike gradient-free methods, HMC is not suitable for posterior 501 

distributions with discontinuities (Stan Development Team, 2017). In animal tracking, this 502 

poses potential hurdles for (i) movement barriers, (ii) raster datasets and (iii) landscape 503 

ruggedness. Hard movement barriers (such as land) where the likelihood becomes zero are a 504 

fundamental challenge. Such barriers require smoothing to be compatible with HMC. If raster 505 

datasets (such as bathymetric data) are used, users also need to decide how to interpolate them 506 

and how to derive gradients. Rugged rasters (e.g., complex bathymetries) may pose an 507 

additional challenge for HMC efficiency by reducing the information in local gradients and 508 

necessitating smaller step sizes for posterior exploration. However, in situations in which 509 

additional (e.g., depth) information substantially constrains trajectories, these challenges may 510 

be mitigated by optimisation prior to sampling.  511 

 512 

Parallel tempering is one technique that can help to alleviate the challenges of sampling 513 

multimodal distributions (Gupta et al., 2018). This involves running multiple MCMC chains in 514 

parallel with different temperature schemes. Higher temperature schemes flatten the energy 515 
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landscape, facilitating exploration, while periodic particle swaps between chains facilitate 516 

overall convergence. Extensions to packages such as nimble (Pleydell, 2025) and Turing.jl 517 

(TuringLang, 2023) support this, and there are select examples of the approach in the 518 

movement literature (Karin & Alon, 2021; Sacchi & Swallow, 2021), but it remains to be seen 519 

whether tempered HMC can handle multimodality in real-world tracking datasets as effectively 520 

as grid-based filtering. A more general challenge with HMC and other MCMC algorithms is 521 

that they can require tuning and expertise to run efficiently.  522 

 523 

5. Downstream ecological analyses 524 

 525 

Probabilistic estimates of a model’s states (𝒔) provide a robust foundation for downstream 526 

ecological analyses (Table 2), which have hitherto largely been based on heuristic methods 527 

(Kraft et al., 2023). The term ‘downstream ecological analyses’ refers to analyses of properties 528 

of the distribution of states and how these are shaped by ecological processes. Examples 529 

include analyses of individual centres of activity, occurrence, residency, home ranges, habitat 530 

selection and individual behaviour (Jacoby & Piper, 2023).  531 

 532 

Centres of activity (COAs) are an important summary statistic in many studies. In an SSM 533 

context, the COA (𝒄[𝑡1,𝑡2]) is defined as the mean of the states 𝒔𝑡 over some time interval 534 

[𝑡1, 𝑡2]; i.e.,  535 

𝒄[𝑡1,𝑡2] = ∑ 𝒔𝜏 𝑓(𝒔𝜏 | 𝑦1:𝑇 )
𝑡2
𝜏=𝑡1

. eqn 13  

If we have 𝑁 samples 𝒔𝑡,𝑖  from 𝑓(𝒔𝑡 | 𝒚1:𝑇), the COA is simply the mean location of the 536 

samples.  537 

 538 
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The occurrence distribution is the probability distribution for an individual’s location over a 539 

study period (Fleming et al., 2015). If we discretise a study area on a grid, we can compute the 540 

occurrence distribution as a two-dimensional histogram. Mathematically, we compute the 541 

occurrence probability 𝑃 in each grid cell 𝐴 from the marginal distribution 𝑓(𝒔𝑡 | 𝒚1:𝑇) as the 542 

time-averaged probability mass in that cell:  543 

𝑃(𝐴) =
1

𝑇
∑ ∫ 𝑓(𝒔𝑡 | 𝒚1:𝑇) 𝑑𝒔𝑡𝐴

𝑇
𝑡=1 . eqn 14  

This two-dimensional histogram approach is computationally straightforward but can be 544 

sensitive to grid resolution. An alternative option is to obtain a smooth spatial density via kernel 545 

density estimation. For particle algorithms, both approaches are implemented by patter and 546 

produce more accurate maps than heuristic methods (Lavender, Scheidegger, Albert, Biber, 547 

Illian, et al., 2025a, 2025b).  548 

 549 

Using the occurrence distribution, we can also compute the expected fraction of time an animal 550 

spends in any region of interest, by cumulating the occurrence probabilities in that region. This 551 

may be termed the ‘residence time’. To quantify the uncertainty in this fraction, samples of 552 

trajectories are required.  553 

 554 

The home range distribution is defined as the ‘long-run’ probability distribution for the location 555 

of an individual (Fleming et al., 2015). Under certain assumptions, home range distributions 556 

can also be estimated from state samples (𝒔𝑡 or 𝒔1:𝑇) via home range estimators (Fleming et al., 557 

2015; Silva et al., 2022).   558 

 559 

For analyses of habitat selection, samples from marginal (𝒔𝑡) and joint (𝒔1:𝑇) distributions can 560 

be used. The probabilistic representation of an individual’s state 𝒔𝑡 at every time step should 561 

refine resource-selection analyses (Griffin et al., 2021). Step-selection analyses leverage 562 
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additional information in movement trajectories (Klappstein et al., 2024). While in theory it is 563 

possible (indeed preferable) to model individual movements and habitat selection jointly in a 564 

Bayesian framework, this would be computationally expensive. We suggest that coupling 565 

Bayesian inference for trajectories with step selection functions should enable habitat selection 566 

analyses that correctly represent uncertainty and leverage the strengths of existing software 567 

(Klappstein et al., 2024).  568 

 569 

For analyses of behaviour, trajectories are required. Trajectories uniquely encode information 570 

on the mode of movement (e.g., smooth versus erratic movements). We foresee opportunities 571 

to analyse the properties of trajectories (such as step lengths and turning angles) to learn about 572 

the spatial distribution of movement behaviours via hidden Markov modelling (Hance et al., 573 

2021).  574 

 575 

Many other downstream ecological analyses of individual movements should benefit from 576 

model-based inference approaches that correctly represent uncertainty in individual states or 577 

trajectories. Examples include analyses of individual responses to disturbance (Lavender, 578 

Aleynik, Dodd, Illian, James, Wright, et al., 2022), co-occurrence patterns (Jacoby & Piper, 579 

2023) and oceanographic studies (Lavender, Aleynik, Dodd, Illian, James, Smout, et al., 2022).  580 

 581 

Leveraging model-based inference in downstream analyses is important but requires care. 582 

There is an important distinction between the true state of an individual and our knowledge of 583 

the individual’s state. The latter is shaped by both the movement process and the quality of our 584 

observations, which has important consequences for downstream analyses. For example, in an 585 

acoustic telemetry system, an absence of detections produces pitted maps with depressions 586 

around receivers (where we know the individual was unlikely to be located), rather than 587 
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uniform maps. Similarly, both high mobility and information sparsity can produce diffuse maps 588 

of space use. In downstream analyses, it is therefore important to consider the limits of the 589 

observations while deriving conclusions about an individual’s movements. Simple statistics, 590 

such as the average area spanned by 95 % of the probability mass of the latent states at each 591 

time step (over all time steps), shed light on how well an individual has been localised and 592 

should support interpretation of downstream analyses. Further research in this area will be 593 

beneficial.  594 

 595 

6. Guidance for practitioners  596 

 597 

We encourage the adoption of SSMs and model-based inference (Fig. 2). The initial challenge 598 

is to formulate a SSM, leveraging available datasets, domain knowledge and literature (Fig. 1). 599 

Biological objectives, computational cost, expertise and implementation options then shape 600 

how we should proceed with inference (Fig. 2). Inference of models that only incorporate 601 

acoustic observations may be relatively straightforward. Models that incorporate both acoustic 602 

and ancillary (e.g., depth) observations pose a harder inference problem (especially in complex 603 

coastal or rugged landscapes), but can provide refined insights if implemented successfully.  604 

 605 

Filtering/smoothing algorithms are well-suited to sampling states 𝒔𝑡 for analyses of space use, 606 

home range and residency (Fig. 2). Kalman filtering is an efficient option that may be 607 

appropriate for some applications. Particle filtering is a more general (non-linear, non-608 

Gaussian) approach. At the time of writing, we believe the patter package is the most 609 

accessible and generally applicable option for direct use by practitioners. The package 610 

navigates the trade-offs between accessibility, speed and flexibility with comprehensive 611 

documentation and a performant Julia backend that supports a library of built-in models as 612 
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well as user-defined structures. The price is that static parameters (𝜽) are expensive to estimate, 613 

convergence can be challenging and current routines only sample from the marginal 614 

distributions of states 𝒔𝑡. In many situations, these are favourable trade-offs: models can be 615 

parameterised from external (e.g., accelerometery) datasets that contain more detailed 616 

information on movement and observation parameters, domain knowledge and literature; and 617 

sensitivity analyses can be used to evaluate epistemic uncertainty. However, with bespoke 618 

routines it is possible to relax these limitations (Doucet & Johansen, 2009; Kattwinkel & 619 

Reichert, 2017; Liu et al., 2019). 620 

 621 

In complex environments where coastline or rugged landscapes are represented in models, the 622 

posterior distribution from which we need to sample is much more complex and can be highly 623 

multimodal. In these situations, grid-based filtering is the most reliable option at the time of 624 

writing (Fig. 2).  We have observed that convolution algorithms are particularly well-suited to 625 

modelling acoustic and archival data for benthic species in complex bathymetric landscapes 626 

(Lavender et al., in prep). Efficient GPU routines should make convolution algorithms an 627 

attractive option, even where other approaches perform well (especially if knowledge of the 628 

movement process is limited). User-friendly implementations of fast convolution algorithms 629 

have been lacking, but this is now changing (Scheidegger, 2025; Woillez, 2024).  630 

 631 

When joint estimation of trajectories 𝒔1:𝑇 and static parameters is required, Laplace 632 

approximation and MCMC are options (Fig. 2). Where appropriate, the Laplace approximation 633 

may be the more efficient choice and is associated with an animal-tracking code base that could 634 

be leveraged to support applications in passive acoustic telemetry systems (Baktoft et al., 2017; 635 

Jonsen et al., 2023). Otherwise, we recommend exploration of HMC if possible, especially in 636 

studies focused solely on acoustic observations. In general, we expect well-tuned HMC 637 
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algorithms to outperform Gibbs samplers implemented by software such as JAGS, but it 638 

remains unclear how additional complexities (such as land barriers or depth observations) 639 

affect performance. In studies of multiple individuals, the other attractive feature of Bayesian 640 

MCMC algorithms is that they provide a natural hierarchical framework in which multiple 641 

individuals can be modelled simultaneously (Jonsen, 2016). These algorithms can be difficult 642 

for practitioners to use but statisticians can support this process.  643 

 644 

For the estimation of static parameters, it remains uncertain in general how informative sparse 645 

detection data are and we encourage practitioners to leverage biological expertise to formulate 646 

and parameterise models, regardless of the choice of inference method. For parameter 647 

estimation, informative priors should help and existing studies suggest this approach is worth 648 

exploration (Alós et al., 2016; Hostetter & Royle, 2020). Comparison of prior and posterior 649 

distributions should inform our understanding of how much we can learn about movement and 650 

observation processes, alongside individual states, in acoustic telemetry systems.  651 

 652 

7. Future research avenues  653 

 654 

We encourage research into methods that have yet to be widely applied in passive acoustic 655 

telemetry systems. It is important to understand how well available approaches perform under 656 

different conditions and communicate their strengths and weaknesses (Ponisio et al., 2020).  657 

 658 

Statistical research should be coupled with the development of software that supports real-659 

world applications by practitioners. In software packages, we recognise potential trade-offs 660 

between accessibility, speed and flexibility and encourage plurality in the package ecosystem. 661 

In terms of accessibility, there are advantages in specialised packages (such as patter) that 662 
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can provide bespoke routines, examples and guidance to selected user groups, but this can 663 

constrain flexibility (Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025b). In terms of 664 

speed, high-level language (e.g., pure Python or R) packages (such as HMMoce) can be easier 665 

to install, use and maintain, but pay a performance price (Braun et al., 2018). For animal 666 

tracking, we believe specialised backends written in compiled languages (with native GPU 667 

support) are generally advantageous. Computation time is also linked the complexity of the 668 

interface problem, algorithm choice, tuning parameters and other conditions. Benchmarking 669 

studies are required to inform our understanding of both algorithmic complexity and 670 

implementation trade-offs in different contexts. The availability of standard, open-access 671 

datasets should support this process.   672 

 673 

For flexibility, we see advantages in generic inference packages (such as Turing.jl) that are 674 

fully embedded in scientific programming languages because they can leverage a wider 675 

language ecosystem. This can facilitate the incorporation of complex data types, such as raster 676 

data, in models. For animal tracking, this is important: truncated movement models (that 677 

account for barriers) and likelihood functions for many data types (such as depth 678 

measurements) require lookup routines that extract values (such as land/water or the 679 

bathymetric depth) from spatial datasets in the locations defined by the latent states. We believe 680 

this can be difficult in stand-alone languages, such as Stan. In nimble, R routines can be 681 

included, but C++ code is required to maintain performance. In patter, this is one of the 682 

reasons we use Julia as a backend (this provides a high-level user experience while 683 

maintaining the performance of a compiled programming language). We expect that pure 684 

Julia packages, such as Turing.jl, may become increasingly important in ecology for these 685 

reasons (Ge et al., 2018). More broadly, we see advantages in flexible packages that link 686 

standard model syntax to different inference algorithms, either via probabilistic programming 687 
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or an encoding of the joint distribution that can be passed to different sampling routines. These 688 

developments provide a basis to strengthen our understanding of the trade-offs of different 689 

inference algorithms in different contexts (Ponisio et al., 2020). 690 

 691 

8. Conclusions 692 

 693 

This review presents a unifying perspective of animal tracking in aquatic ecosystems (Fig. 3). 694 

We put state-space modelling and model-based inference at the core of animal-tracking 695 

analyses. This approach leverages our biological knowledge, and disparate datasets, as part of 696 

analyses and enables us to resolve individual movements, space use and residency within a 697 

formal framework, with uncertainty quantification and improved accuracy compared to 698 

heuristic methods (Alós et al., 2016; Lavender, Scheidegger, Albert, Biber, Aleynik, et al., 699 

2025; Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025a). Improved estimates of 700 

individual locations through time, alongside correct estimates of uncertainty, also provide a 701 

robust foundation for analyses of habitat selection, behaviour and management measures (Alós 702 

et al., 2022; Jacoby & Piper, 2023).  703 

 704 

Model-based inference is challenging, but there are multiple options available. Inference may 705 

focus on individual states (including location) or both states and static parameters. In sparse 706 

receiver arrays, the information available is limited and it may be sensible to parameterise the 707 

movement and observation sub-models a priori, drawing on available datasets, domain 708 

knowledge and literature, before inferring individual states (Lavender, Scheidegger, Albert, 709 

Biber, Aleynik, et al., 2025; Lavender, Scheidegger, Albert, Biber, Illian, et al., 2025a). In other 710 

settings, data-driven parameter estimation via maximum likelihood or Bayesian inference may 711 

be desirable (Albert et al., 2015). Further research is needed to investigate the trade-offs 712 
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between methods in different settings and how we can embed probabilistic estimates of 713 

individual locations in downstream ecological analyses. We see considerable potential for 714 

formal inference methods to strengthen these analyses, but caution that even these methods 715 

depend on well-designed studies that collect sufficient data. By highlighting the current state-716 

of-the-art, we hope this review inspires further research into the development and application 717 

of statistical inference for underwater biotelemetry.  718 
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Fig. 1. State-space models for passive acoustic telemetry. A shows an individual’s 1068 

(unobserved) movement trajectory. The trajectory is represented in discrete time with four 1069 

steps. The start (●) and end (●) of the trajectory are shown, alongside receivers 𝑘, 𝑙, 𝑚 and 𝑛 1070 

(●) and receiver detection containers (◌), beyond which detection probability is nominally zero. 1071 

Individual movements over longer time periods generate emergent patterns of space use (i.e., 1072 

the background map). We model these dynamics using state-space models. B shows an example 1073 

random-walk model for the movement process in which the individual’s state at time 𝑡 (𝒔𝑡) is 1074 

modelled with a Gaussian distribution centred on the previous location (defined by 𝒔𝑡−1). C 1075 

shows a model for the observation (detection) process. We assume acoustic observations 1076 

(detections, non-detections) are outcomes of a Bernoulli (‘coin toss’) process in which the 1077 

probability 𝑝 of a detection (‘head’) declines with distance from a receiver (at shown in A for 1078 

𝑡 = 1).  D shows our acoustic observations. Our primary goal in model-based inference is to 1079 

use the observations to infer the underlying (latent) movement trajectory and emergent 1080 

ecological patterns.    1081 
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Fig. 2. A simplified decision tree supporting model-based inference for passive acoustic 1083 

telemetry. Start at the root and follow the branches. Arrows indicate possible decision 1084 

pathways and relevant example software packages for inference are listed in blue. Note that 1085 

differences between branches and inference algorithms are not black and white and composite 1086 

inference of states and parameters, using multiple approaches, is possible. Illustrated pathways 1087 

are subject to the following numbered qualifications. 1That is, we are primarily interested in 1088 

‘snapshots’ of the individual’s state (e.g., for mapping space use or estimating residency), using 1089 

existing knowledge of the movement and observation processes. We can extend routines on 1090 

this side of the tree to sample parameters (from 𝑓(𝒔𝑡 , 𝜽 | 𝒚1:𝑇)) or a few trajectories (from 1091 

𝑓(𝒔1:𝑇 | 𝒚1:𝑇 , 𝜽) or 𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇)) with increased computational cost, though bespoke 1092 

routines may be required. For more comprehensive sampling of parameters and trajectories, 1093 

MCMC algorithms may be the better choice. 2We should be prepared to rely on approximations 1094 

and/or pay a higher computational price to sample from 𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) compared to 1095 

𝑓(𝒔𝑡 | 𝒚1:𝑇 , 𝜽). An initial optimisation step may be required for efficient sampling. 3A Gaussian 1096 

approximation may be appropriate if, for example, we assume a Gaussian random walk, a 1097 

Gaussian acoustic observation model and our study system is far from movement/observation 1098 

barriers (such as coastline). 4Currently, particle algorithms may be most appropriate option for 1099 

practitioners, given the patter package and a compilation of relevant examples. 5We expect 1100 

gradient-based algorithms to be more efficient, but this is not guaranteed. 6Use a probabilistic 1101 

programming language, such as TuringLang, or pass the joint density to a sampling package 1102 

(such as DynamicHMC.jl).  1103 
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Fig. 3. A state-space modelling framework for passive acoustic telemetry. This comprises 1105 

three stages. Step one is to formulate a state-space model for the joint distribution 1106 

𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) of the individual’s states and parameters, given all data. The state-space model 1107 

comprises a movement model and observation model(s), informed by available datasets, 1108 

domain knowledge and literature. Model-based inference is the next step. We may perform 1109 

inference for marginal or joint distributions. Static parameters 𝜽 may be fixed or estimated. 1110 

Example inference software is listed. Robust estimates of individual states, and associated 1111 

measures of uncertainty, support downstream ecological analyses of individual movements, 1112 

space use, residency, habitat selection and so on. Techniques such as kernel smoothing can be 1113 

leveraged in these analyses. Heuristic methods can also support downstream ecological 1114 

analyses.  1115 
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Tables 1116 

 1117 

Table 1. Inference targets. We can perform inference for marginal or joint distributions of 1118 

individual states (𝒔𝑡 or 𝒔1:𝑇), given the data (𝒚). Static parameters in the movement or 1119 

observation models (𝜽) may be given or estimated. For a mapping of inference targets to 1120 

downstream ecological analyses, see Table 2.  1121 

Statistical target 

Definition  Example applications 

State inference  

State & 

parameter 

inference 

𝑓(𝒔𝑡| 𝒚1:𝑡 , 𝜽) 𝑓(𝒔𝑡 , 𝜽 | 𝒚1:𝑡) 

A ‘partial’ marginal 

distribution of the 

individual’s state at a 

given time, given all the 

data up to and including 

that time. This is often 

approximated by 

filtering algorithms (see 

§4.1). Static parameters 

can be estimated via 

maximum likelihood 

estimation or Bayesian 

inference.  

 

• Lavender et al. (2025a) 

illustrate a particle 

filtering algorithm that 

samples states, given 

movement and 

observation models are 

specified (see §4.1.3).  
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Statistical target 

Definition  Example applications 

State inference  

State & 

parameter 

inference 

𝑓(𝒔𝑡 | 𝒚1:𝑇 , 𝜽) 𝑓(𝒔𝑡 , 𝜽 | 𝒚1:𝑇) 

The marginal 

distribution of the 

individual’s state at a 

given time, given all 

data (before and after 

that time). This is often 

approximated by 

coupling filtering and 

smoothing algorithms 

(see §4.1).  

• Lavender et al. (2025a) 

explored the behaviour 

of a particle filtering–

smoothing algorithm 

using simulations. They 

found smoothing 

improves maps of space 

use, especially in sparse 

receiver arrays (see 

§4.1.3). 

• Lavender et al. (2025c) 

used the same filtering–

smoothing algorithm to 

map space use and 

estimate residency of 

flapper skate (Dipturus 

intermedius) in a 

Marine Protected Area 

(see §4.1.3). 

• Pedersen & Weng 

(2013) used grid-based 
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Statistical target 

Definition  Example applications 

State inference  

State & 

parameter 

inference 

filtering to map patterns 

of space use in 

humphead wrasse 

(Cheilinus undulatus). 

Their algorithm 

estimates states and 

movement parameters, 

assuming detection 

probability parameters 

can be derived a priori 

(see §4.1.4).    

𝑓(𝒔1:𝑇 | 𝒚1:𝑇 , 𝜽) 𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) 

The joint distribution of 

the individual’s 

trajectories and all data. 

Suitable approaches for 

inference include the 

Laplace approximation 

(see §4.2) and Markov 

Chain Monte Carlo (see 

§4.3).  

• Thygesen et al. (2009) 

show how grid-based 

filtering algorithms can 

be extended to sample 

trajectories in 

geolocation studies. 

• Alós et al. (2016) 

sample trajectories and 

movement parameters 

for pearly razorfish 
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Statistical target 

Definition  Example applications 

State inference  

State & 

parameter 

inference 

(Xyrichtys novacula) 

using JAGS (see 

§4.3.1).  

• Hostetter & Royal 

sample trajectories and 

estimating states and 

both movement and 

detection-probability 

parameters, using JAGS 

and a bespoke 

algorithm (see §4.3.1). 

  1122 
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Table 2. Mapping statistical inference to downstream ecological analyses. Statistical targets 1123 

(i.e., a marginal or joint distribution) for model-based inference are linked to example use cases. 1124 

Ticks or references indicate example applications. Samples from marginal distributions provide 1125 

‘snapshots’ of an individual’s distribution through time and are sufficient for many analyses. 1126 

Samples from joint distributions are generally more expensive, but necessary for analyses of 1127 

movement trajectories.  1128 

Use case 

Statistical target  

Marginal distributions Joint distributions  

𝑓(𝒔𝑡 | 𝒚1:𝑇 , 𝜽),  

𝑓(𝒔𝑡 , 𝜽 | 𝒚1:𝑇) 

𝑓(𝒔1:𝑇 , | 𝒚1:𝑇 , 𝜽), 

𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) 

Estimate COAs ✓ ✓ 

Map occurrence or home range 

(Lavender, Scheidegger, 

Albert, Biber, Aleynik, et al., 

2025; Pedersen & Weng, 

2013) 

(Alós et al., 2016; 

Hostetter & Royle, 2020) 

Estimate 

residence 

time 

Estimate the 

expected 

residence time 

(Lavender, Scheidegger, 

Albert, Biber, Aleynik, et al., 

2025) 

 

✓ 

Quantify the 

distribution of 

residence times 

- ✓ 

Analyse resource 

selection 

✓ ✓ 
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Use case 

Statistical target  

Marginal distributions Joint distributions  

𝑓(𝒔𝑡 | 𝒚1:𝑇 , 𝜽),  

𝑓(𝒔𝑡 , 𝜽 | 𝒚1:𝑇) 

𝑓(𝒔1:𝑇 , | 𝒚1:𝑇 , 𝜽), 

𝑓(𝒔1:𝑇 , 𝜽 | 𝒚1:𝑇) 

Examine 

habitat 

selection 

Analyse step 

selection 

- ✓ 

Examine behaviour - ✓ 

Other 

movement 

analyses  

Examine 

responses to 

disturbance  

✓ ✓ 

Co-occurrence 

analyses 

✓ ✓ 

Position animal 

oceanographers 

✓ ✓ 

 1129 

  1130 
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