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Abstract 
 
Increasing temperatures as a result of global climate change can alter the physiology of organisms via 
selection for tolerant genotypes and individual-level plasticity. Organisms experiencing thermal stress 
can not only modify their own physiological expression, but also those of future generations; i.e. 
transgenerational plasticity (TGP). While warming triggered TGP is well documented, its effects on 
key physiological rates and subsequent ecosystem functioning is poorly understood. In this study, we 
used reciprocal transplant experiments to examine if warming triggers TGP impacts on grazing, uptake 
and release of nitrogen (N) and phosphorus (P), in the keystone aquatic herbivore Daphnia magna. 
Individuals were reared for two generations at either 18°C or 24°C. Offspring from the second 
generation were exposed to either 18°C or 24°C for a period of 12 hours and an assay was conducted to 
measure rates of algal clearance, N-P uptake and release. Our results show that while differences in 
maternal temperature exposure did not lead to differences in grazing rates, warmer maternal exposure 
increased N release rates, increased proportion of body P content, and reduced P release. These results 
suggest that transgenerational plasticity can alter physiological responses to warming in Daphnia with 
potentially major consequences for N and P cycling in lake ecosystems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Introduction 
 
Global climate change is a major biological stressor, shifting local and regional temperatures from their 
long-term averages and increasing the frequency of extreme events (Collins et al. 2013). Changes in 
thermal regimes alter species and trait composition in ecological communities by filtering species and 
traits that can withstand these conditions (Walther 2010, Maclean & Beisinger 2017, Bardgett & 
Caruso 2020). These changes can alter key physiological processes such as metabolism (Seebacher et 
al. 2015) including nutrient uptake and excretion (Ganser et al. 2015), which subsequently affect 
ecosystem functions including primary production, nutrient cycling and greenhouse gas emissions 
(Davidson et al. 2015, Hood et al. 2017, Cavicchioli et al. 2019). Yet, we are only beginning to 
understand how climate-induced trait variation regulates key ecosystem functions. 
 
Organisms can respond to changing thermal conditions through adaptation, plasticity, or range shifts 
(Seebacher et al. 2015; Donelson et al. 2019; Rodrigues and Beldade 2020). Adaptation is favoured 
when environmental changes are directional and relatively slow, while plasticity is favoured in rapidly 
fluctuating environments without clear directional selection (Kawecki 2000). Through plasticity 
organisms can alter their own phenotype; within-generation plasticity (WGP), or the phenotype of their 
offspring and future generations, often referred to as non-genetic inheritance, anticipatory parental 
effects, maternal effects, carry-over effects, or transgenerational plasticity (TGP; Donelson et al. 2018; 
Wadgymar et al. 2018). 
 
Transgenerational plasticity occurs when the phenotype of the parent affects the phenotype of the 
offspring through processes such as RNA-mediated modifications, epigenetic marks and DNA 
methylation in addition to the direct effects of the genes contributed by the parent (Rasanen & Kruuk 
2007; Wolf & Wade 2009; Kujiper & Hoyle 2015). TGP is a potential source of ecologically and 
evolutionarily meaningful trait variation (Herman & Sultan 2011) and is predicted to play an important 
role in the response of organisms to global climate change, as it may buffer immediate effects and 
allow time for genetic adaptation (Chevin, Lande, & Mace 2010, Kopp & Matuszewski 2014, Donelson 
et al. 2018). There is increasing evidence that TGP facilitates offspring response to thermal stress by 
impacting growth rates, body size, mating success, and thermal performance (Walsh et al. 2014; 
Cavieres et al. 2019; Diaz et al. 2020, Betini et al. 2020), although these responses are not observed 
consistently (Waite and Sorte 2022) or are mediated by other factors such as offspring sex (Schwanz et 
al. 2020). As compared with WGP, TGP may play a dominant role in mediating thermal stress as 
plasticity is often highest during early development (Fawcett & Frankenhuis 2015), and certain 
plasticity mechanisms such as methylation and histone modification only operate at this life stage 
(Donelan et al. 2020).  
 
Although most studies primarily evaluate TGP using life history traits associated with offspring fitness, 
TGP can alter demographic patterns (Donelson & Munday 2015), community composition (Quigley et 
al. 2019), and species interactions (Li et al. 2021). Moreover, via effects on metabolic rates, TGP can 
affect ecosystem functions such as grazing and nutrient cycling, for example, differences in DNA 
methylation have been shown to decrease offspring leaf decomposition rates, with potential 

 



consequences for nutrient cycling (Puy et al. 2020). Yet, relatively little is known about the overall 
impact of TGP on traits that are linked to ecosystem processes (i.e. “effect” traits, Suding et al. 2008, 
Hebert et al. 2016). 
 
Daphnia is a common keystone herbivore in freshwater ecosystems globally, occurring in lakes and 
ponds on every continent and playing a significant role in the transfer of matter and energy (Miner et 
al. 2012). It is a primary consumer of phytoplankton, and a key food source for secondary consumers 
such as fish and macroinvertebrates. Daphnia populations have a significantly higher per capita grazing 
rate on phytoplankton as compared to other zooplankton species (Hansen et al. 1997), which drives 
seasonal patterns in water transparency known as the clear water phase in many lakes (Lampert et al. 
1986). Daphnia also has high phosphorus (P) demand, and the lowest nitrogen-to-phosphorus (N:P) 
body ratio as compared to all other zooplankton groups (Elser et al. 2000). The high grazing rates 
combined with high N-P excretion can alter nutrient availability and N-P cycling in lake ecosystems, 
especially at high population densities (Mackay and Elser 1998; Paterson et al. 2002).  
 
Daphnia magna, in particular, is a well-established genomic model organism used across ecological 
and evolutionary studies, especially those examining eco-evolutionary dynamics (Miner et al. 2012, 
Walsh et al. 2018, De Meester et al. 2023). Plastic responses to thermal stress have been documented 
extensively in this species, including TGP responses such as changes in fecundity, size at maturity, 
growth rates, life span, oxidative stress, and resistance to infectious disease (e.g. Mckee and Ebert 
1996; Pajk et al. 2012; Garbutt et al. 2014; Toyota et al. 2019; Betini et al. 2020; Im et al. 2020), which 
can be characterized as “response” traits (Suding et al. 2008, Suding & Goldstein 2008). Considering 
the importance of D. magna in regulating primary production and nutrient cycling in freshwater 
systems and the prevalence of these responses, it is likely that TGP also mediates the expression of 
“effect” traits (Suding et al. 2008, Suding and Goldstein 2008) in response to thermal stress.  
 
The objective of this study was to examine how thermal stress (i.e., warming) and subsequent TGP 
impacts the expression of effect traits of the keystone herbivore D. magna. We examined the impacts of 
warming-induced TGP on herbivory, and uptake and release of Nitrogen (N) and Phosphorus (P). 
Herbivory rates are a direct measure of the top-down control on algal biomass (i.e., primary 
production), and N-P uptake and release is linked to the cycling of N and P in lakes and ponds. We 
reared D. magna at two different temperatures for 2 generations and subsequently conducted a 12-hour 
reciprocal transplant grazing assay with their offspring. Our hypotheses were: 1) Warming would result 
in TGP, improving thermal tolerance for individuals with warmer maternal environments; and 2) TGP 
would result in differences in grazing, and N-P uptake and release in offspring with different maternal 
temperatures. For D. magna reared for two generations at warmer temperatures, we expected less 
metabolic stress when exposed to warmer temperatures than those reared for two generations at colder 
temperatures, resulting in little change in grazing, nutrient uptake or release rates due to a match 
between parental and offspring temperature exposure. D. magna reared for two generations at colder 
temperatures were expected to exhibit more metabolic stress in warmer environments due to a 
mismatch between parental and offspring environments. Therefore, these Daphnia were expected to 

 



show increased grazing, greater retention of P due to RNA production for TGP response and increased 
release of N due to increased excretion as a result of increased grazing.  
 
Materials and Methods  
 
Daphnia magna brood stock and experimental design 
 
We conducted a reciprocal transplant experiment using a brood stock Daphnia magna population 
reared in the laboratory for at least ten years in a temperature- and light-controlled room, with exposure 
to 18°C at 14:10 h Light:Dark cycle. The population has been periodically stocked over these ten years 
with individuals from wild populations from Lake Eymir in order to maintain genetic diversity. D. 
magna were reared in a modified low-nutrient WC medium (without NaNO3, K2PO4, ATE, and 
Vitamin solution, Guillard & Lorenzen 1972) in 100ml glass containers and fed with 0.5 mgC/L of 
Chlamydomonas reinhardtii from an exponentially growing batch culture every three days. A carbon 
equivalent concentration of C. reinhardtii was determined from cell density (via hemocytometer) and 
biovolume (Duncan and Rocha 1984)). Individual daphnids were transferred to clean containers filled 
with fresh media and algal suspension every 3 days to prevent algal accumulation and differences in 
food quality. All individuals were kept in temperature-controlled rooms and exposed to a light intensity 
of 45 μmol photons m−2 s−1 under a 14:10 h L:D cycle.  
 
We took 100 adult female D. magna from the brood stock and arbitrarily assigned 50 each to a maternal 
temperature treatment of 18ºC or 24°C for two generations (schematic overview in Figure 1) and 
maintained at a density of 10 individuals per 100ml glass beaker to standardize any density-dependent 
maternal effects. Each container was checked daily for neonate emergence, with neonates removed and 
placed into a new container, at the maximum density of 10 individuals per container. Neonates with 
different emergence days were maintained in separate containers allowing us to keep track of age. 
Twenty neonates from the F2 generation from both maternal temperature treatments were measured 
using a stereomicroscope.  
 
Critical thermal maxima assessment 
To confirm that maternal exposure to different temperatures over two generations affected thermal 
tolerance, we assessed the critical thermal maximum (CTmax) for adult D. magna from the F2 
generation reared at either 18°C or 24°C. A single adult was placed in a 10ml glass test tube in the 
modified WC medium for each observation, with 15 replicates per maternal exposure temperature. Test 
tubes were positioned upright in a rack and placed in a 25L Memmert water bath and temperature was 
gradually increased from 29.5-30ºC (room temperature) to 50ºC at the rate of 1.6ºC per minute. 
Individual D. magna were observed every 5-10 seconds until the animal stopped swimming and sank to 
the bottom of the test tube. CTmax was defined as the temperature at which individuals lost their motor 
function and sank to the bottom of the tube. Daphnia were transferred to ambient conditions to recover 
after they stopped moving. Individuals used to assess CTmax were not used for subsequent grazing 
assays.  
 

 



Grazing and N-P release experiment 
We conducted a 12-hour grazing trial to assess if maternal temperature exposure influences offspring 
grazing, and N-P release rates at two different temperatures. F2 adults and juveniles born five days prior 
to the grazing trial from both maternal temperature exposure treatments (18ºC or 24°C) were assigned 
to two exposure treatments: 18ºC or 24°C for the grazing experiment, resulting in four treatment 
combinations (Figure 1). There was no acclimation period prior to application of exposure temperature. 
Each maternal and exposure treatment combination was replicated four times. 
 
To remove any effect of differences in sizes on grazing rates, we standardized the number of adult and 
juvenile individuals added to each grazing replicate to ensure that all grazer present treatments 
contained similar biomass. Biomass differences between 18ºC and 24°C were estimated by performing 
a census of adults and juveniles in each treatment on the same day as the grazing experiment. We used 
published average lengths for adult and juvenile D. magna in our biomass calculations (Ger et al. 2019) 
to remove any effect of handling on the condition of individuals used in our grazing experiment. Based 
on these calculations, a combination of adult and juvenile D. magna individuals equivalent to a 
biomass of 0.5 mg was added to each grazer replicate treatment. This resulted in 4 adults and 30 
juveniles reared at 18ºC, and 9 adults and 12 juveniles reared at 24ºC per replicate, densities similar to 
those used in other studies (Bengtsson et al. 2004; Ger et al. 2011; Park & Post 2018). Due to 
COVID19 related logistical complications, we were unable to weigh the final biomass of D. magna in 
our replicates.  
 
 For each treatment replicate, we also set up an identical replicate without any D. magna to control for 
any changes in algal density, N, and P concentrations in the absence of D. magna grazing and 
excretion. All D. magna individuals were starved for 24 hours prior to the grazing experiment to 
minimize differences in gut fullness and empty gut contents. Glass jars containing 400ml of N- or 
P-free WC medium were set up for each treatment and control replicate. We inoculated each jar with 
0.375mg C/L equivalent of C. reinhardtii as the sole food source. C. reinhardtti provided for feeding 
was rinsed three times with nutrient free WC before being added to each replicate. D. magna 
individuals were added to the treatment replicates after the algae addition. All replicates were gently 
bubbled with air to prevent sedimentation and kept in darkness for the entire 12-hour assay duration to 
prevent algal growth.  
 
Daphnids are generally phosphorus-limited (Urabe et al. 1997; DeMott & Gulatti 1999; Anderson & 
Hessen 2005, Xu et al. 2021), therefore any changes in uptake and excretion of phosphorus due to 
maternal thermal exposure would likely be detected in body content as well. At the end of the grazing 
experiment, all D. magna individuals were removed and placed in a nutrient-free WC medium for gut 
content evacuation to assess differences in phosphorus body content. For all replicates, we filtered the 
entire medium volume through a Whatman GF/C filter, which was subsequently frozen at -20°C for 
Chl-a analysis. We examined changes in dissolved N and P using the filtrate rather than conducting 
separate excretion assays as it allowed us to assess the impacts of warming on N and P release in the 
same organisms that are grazing. The entire volume of the filtrate was also frozen at -20°C for 
laboratory analysis of dissolved nitrogen and phosphorus (see below).  

 



 
Laboratory analyses 
 
The filtrate from each replicate was assessed for ammonium (NH4), nitrate and nitrite (NO3+NO2) using 
an automated wet chemistry analyser (San++, Skalar Analytical, The Netherlands) using standard 
protocols outlined in Baird and Bridgewater (2017). Dissolved inorganic nitrogen (DIN) was calculated 
by summing NH4, NO3 and NO2 concentrations. We used the molybdenum blue method (Mackerth, 
1978) to spectrophotometrically determine soluble reactive phosphate (SRP) concentrations for all 
replicates. Chlorophyll-a samples (Chl-a) were extracted with ethanol before reading the absorbances 
in a Perkin Elmer Lambda35 UV–Vis spectrophotometer (limit of detection [LoD]: 0.04 lg Chl-a L-1) 
(Jespersen & Christoffersen 1987). 
 
All daphnids from each replicate were placed on phosphorus-free tin capsules and dried at 60°C for 24 
hours. Phosphorus body content was determined spectrophotometrically by the ascorbate-reduced 
molybdenum-blue method after combustion at 550°C for 2h and digestion with potassium peroxide 
sulphate (K2S2O8) under pressure (Eisenreich, Bannerman & Armstrong, 1975). 
 
Clearance rate, N and P release rate calculations 
 
We calculated clearance rates using the method provided by Frost (1972). We converted Chl-a to 
carbon using the 44:1 carbon:Chl-a ratio based on in-lake measurements for Chlorophytes from Yacobi 
and Zohary (2010). For each grazer-absent control replicate, the rate of change in carbon concentration 
(k) was determined as: 
 

 
 
 where C1 and C2 represent carbon mass (mg) at the beginning and end of the experiment, and t is the 
experiment duration (hours).  
 
For each grazer-present replicate, the rate of change in total carbon mass (mg) was determined as:  
 

 
where T1 and T2 represent carbon mass at the beginning and end of the experiment.  
 
Clearance rate per jar (F) was calculated as:  
 

 
 

 



where V is the volume (mL) of each grazer-present replicate. Biomass-specific clearance rate for each 
jar was determined by dividing F by the D. magna biomass in each replicate, which was standardized 
to 0.5 mg across all replicates. Negative clearance rates were corrected to 0 (Nejstgaard et al. 2001).  
 
For estimating the effect of maternal thermal acclimation on nutrient recycling, we used relative release 
rates for main dissolved nutrients. In contrast to traditional excretion rate estimates, which require that 
the grazer is isolated (i.e., no prey or grazing), relative release rates enable simultaneous quantification 
of rates of nutrient release and clearance within the same environment. Thus, the relative release rate is 
useful for measuring nutrient release during grazing. Relative release rates in NH4, NO3, DIN, and SRP 
due to grazing (J) were determined as follows:  
 

 
 
where Tf is the mass of NH4, NO3, DIN, or SRP in the grazer-present treatment (mg), and Cf is the mass 
of these nutrients in the grazer-absent control (mg) and B is the D. magna biomass. Due to potential 
increases in NH4, NO3, DIN, or SRP as a result of bacterial and algal activity, negative rates of changes 
in dissolved concentrations were set to 0.  
 
To assess the effects of TGP on the direct release of P, we estimated specific P release rates in 
grazer-present replicates using the zooplankton P recycling model from Olsen and Ostgaard (1985):  

 
 
 
 

where Pd0 is 0, Pdt is the SRP concentration at the end of the experiment, N0 is the algal concentration at 
the start of the grazing assay, Nt is the algal concentration at the end of the assay, P0 is the particulate 
phosphorus at the start of the experiment, Pt is the particulate phosphorus at the end of the experiment, 
Z is D. magna biomass, and T is the duration of the grazing assay (12 hours). P0 and Pt concentrations 
were estimated using the median P:C ratio for Chlamydomonas reinhardtii from P-enrichment 
experiments conducted by Olsen (1983).  
 

Statistical analysis 
 
We used model-based methods to assess the impacts of maternal and offspring exposure temperature 
(i.e. independent variables), on clearance rates, relative release rates in dissolved NH4, NO3, DIN, and 
SRP, body P composition, and P release rates (i.e dependent variables) (Table 1). All dependent 
variables were visually assessed for normality and homoskedasticity using histograms and boxplots. 
All data were normally distributed, but heteroskedasticity was observed between different maternal and 
exposure temperature treatments for NH4, NO3, DIN, and SRP. We used generalized least squares 
regressions (GLS) for these variables. This method fits an ordinary least squares (OLS) regression and 
uses the residual errors to model the heteroskedasticity observed. The variance estimate of a GLS 

 



model is determined from the residual error model rather than directly from the OLS regression, 
making it robust to heteroskedastic and autocorrelated variance (Kariya and Kurata, 2004).  
 
We fit separate GLS models for each response variable of interest with maternal temperature, exposure 
temperature, and the interaction between maternal temperature and offspring exposure temperature as 
predictor variables (Table 1). GLS models were fit using maximum likelihood with different variances 
fit for each maternal temperature and offspring exposure treatment (following Zuur et al. 2009) with 
fixed variance weights determined by the model variance-covariance structure. Body P composition did 
not violate any assumptions for normality or heteroskedasticity. Therefore, we assessed the interactive 
effect of maternal temperature and offspring exposure temperature using multiple regression. Due to 
the presence of outliers, we used a gamma-distributed robust regression model with a log link function 
to assess differences in CTmax between F2 adults reared at 18ºC or 24ºC.  
 
Model selection was performed using log-likelihood ratio tests with a Chi-squared distribution for GLS 
models and Wald test for robust regression models following Crawley’s (2008) procedure. We used 
plots of standardized residual and predicted values to assess the fit of the final GLS and robust 
regression models chosen. For multiple regression, the final model was visually assessed with plots of 
residuals, standardized Pearson residuals, and predicted values. If a statistically significant interaction 
was detected, we assessed differences between treatment combinations using Tukey HSD tests for 
multiple regression models or generalized linear hypothesis tests with Bonferroni correction for GLS 
and robust regression. All analyses were performed using R (version 4.2.2; R Core Team, 2023) with 
nmle (version 3.1-153) used for GLS regression, robustbase (version 0.93-8) used for robust regression, 
and multcomp (version 1.4-1) for generalized linear hypothesis testing.  
 
 
Results 
 
Critical thermal maxima 
The generation time for D. magna reared at 18ºC was longer (9-14 days) as compared to those reared at 
24ºC (7-8 days). Maternal exposure to warmer temperatures increased offspring CTmax. While the mean 
CTmax of D. magna with maternal temperature of 18°C was 0.9 °C less compared to those reared at 
24°C (Mean CTmax 18°C = 44.2°C, Mean CTmax 24°C = 45.1°C). This difference, although graphically 
evident, was not statistically significant (Figure 2, p = 0.07, df = 28).  
 
Specific Clearance rates 
Maternal temperature did not affect D. magna clearance rates (Figure 3a, Table 1, p = 0.622). Clearance 
rates were also not impacted by differences in exposure temperature (p = 0.728). We observed a large 
variation in clearance rates for D. magna with maternal temperature of and exposed to 18°C 
(Interquartile Range (IQR) = 18.269 mL mg-1 h-1 ) during the grazing experiment as compared to other 
treatments (Maternal 18°C – Exposure 24°C: IQR = 4.225 mL mg-1 h-1, Maternal 24°C – Exposure 
18°C: IQR = 4.861 mL mg-1 h-1, Maternal 24°C – Exposure 24°C: IQR = 4.895 mL mg-1 h-1).  
 

 



Change in dissolved N and P 
Individuals from warmer maternal temperatures increased their relative rates of dissolved NO3 (Figure 
3a, Table 1) and DIN release (Figure 3b, Table 1). Relative NO3 release was 0.024 mg mL h-1 greater in 
jars with D. magna with maternal temperature of 24°C as compared to 18°C. Similarly, relative DIN 
release was 0.41 mg mL h-1 greater at maternal temperature of 24°C as compared to 18°C. There was 
no effect of exposure temperature on relative NO3 and DIN release. We did not observe any effect of 
maternal temperature on changes in dissolved NH4 concentrations (Figure 3a, Table 1). There was an 
increase in relative NH4 release in D. magna exposed to 24°C as compared to those exposed to 18°C (p 
= 0.020, 0.491 mg mL h-1 greater release), regardless of maternal temperature. 
  
Both maternal and offspring exposure temperatures interacted with each other to reduce the relative 
rate of SRP release. On average, warmer maternal and offspring exposure temperatures reduced relative 
SRP release (Figure 4a, Table 1, p = 0.028). An average increase of 0.142 mg mL h-1 in SRP was 
observed in D. magna with maternal and exposure temperature of 18°C as compared to those with a 
maternal temperature of 24°C and exposed to 18°C. For D. magna with maternal temperature of 24°C, 
the average SRP release was 0.117 mg mL h-1 greater for individuals exposed to 18°C as compared to 
those exposed to 24°C. Average SRP release was 0.262 mg mL h-1 greater for D. magna with maternal 
and exposure temperature of 18°C as compared to those with maternal temperature of 18°C and 
exposed to 24°C. We did not observe any differences in relative SRP release for D. magna with 
maternal temperature of 24°C and 18°C with exposure to 24°C during the grazing assay.  
 
Body P composition and P release rate 
 
Warmer maternal and exposure temperature increased D. magna body P content, by a factor of up to 
60%, depending on offspring exposure temperature (Figure 4b, Table 1). Mean %P dry mass was 10% 
greater in D. magna with maternal temperature of 24°C as compared to those with maternal 
temperature of 18°C. D. magna exposed to 24°C during the grazing assay had an average of 14.7% 
greater %P dry mass as compared to those exposed to 18°C. Warmer maternal and exposure 
temperatures also decreased P release rates (Figure 4c, Table 1). An average of  6.75 µg mL h-1 less P 
was released by all D. magna with maternal temperature of 24°C as compared to 18°C. 
 
 
Discussion  
 
Our results provide novel evidence that transgenerational plastic responses to warming impact body P 
content and the release of P and N in D. magna. Comparisons in dissolved NO3 and DIN between D. 
magna with different maternal thermal environments show 279.25% greater NO3 and 531.31% greater 
DIN release by individuals with higher maternal thermal environments (24°C) regardless of differences 
in exposure temperatures. Both maternal thermal environments and exposure temperatures influenced P 
retention and release. We observed a 65.8% greater release in SRP and 10% less percentage of P body 
mass by individuals with lower maternal temperature as compared to higher maternal temperature. At 
higher exposure temperatures, greater P was retained and less SRP was released regardless of maternal 

 



exposure. These results provide the first evidence that TGP responses to thermal stress in D. magna, a 
keystone grazer across lakes and pond ecosystems globally (Miner et al., 2012), can impact 
zooplankton-mediated recycling and consequently have the potential to affect the cycling of N-P in 
these systems (Elser et al., 2000; Paterson et al., 2002; Sarnelle, 2007), especially in the context of 
global climate change (Balseiro et al., 2021; Starke et al., 2021).  
 
We also observed an increase in thermal tolerance of D. magna reared at 24°C as compared to those 
reared at 18°C, although this difference was not statistically significant. Previous exposure to different 
thermal regimes can expand D. magna thermal limits, through both plastic and evolutionary processes 
(Geerts et al., 2015; Vanvelk et al., 2021). Our results suggest that differences in maternal exposure 
temperatures resulted in TGP for CTMax, but this result would be more evident with a greater number 
of replicates.  
 
We observed both within-generation (WGP) and transgenerational plasticity (TGP) effects on nitrogen 
and phosphorus release in our experiment. While NO3 and DIN release was moderated by differences in 
maternal temperature suggesting TGP effects, NH4 release was only influenced by exposure 
temperature, regardless of maternal thermal environment, suggesting WGP effects. WGP can often 
mask any TGP effects (Vu et al., 2015; Groot et al. 2016; Moriuchi et al. 2016). Similarly, TGP can 
override WGP or operate in an opposing direction (Auge et al. 2017). We observed antagonistic WGP 
and TGP effects in the release of different N forms, with warmer maternal temperatures increasing NO3 

and DIN release while warmer exposure temperatures reduced NH4 release. NH4 release in individuals 
with warmer maternal temperatures showed a similar, although non-significant pattern, as NO3 and 
DIN release. This suggests that WGP effects may be overriding any TGP effects on NH4 release.  
 
We did not observe any effect of maternal temperature on clearance rates. However, there was a large 
variation in these rates for D. magna with maternal temperature of 18°C when exposed to 18°C as 
compared to those with maternal temperature of 24°C. At higher exposure temperatures (24°C), this 
variation was reduced. We expected metabolic rates to increase at higher temperatures, resulting in 
higher total clearance rates (Burns, 1969; Müller et al., 2018). The lack of change in clearance rates 
may be an outcome of several mechanisms operating separately or in tandem. First, D. magna filtration 
rates are impacted by the rate of temperature change (Müller et al., 2018) and a sudden increase in six 
degrees could represent a significant thermal stress to which individuals were unable to acclimate over 
a short time scale (12 hours). Second, our warmer exposure temperatures exceeded the thermal optima 
for our D. magna population, potentially inhibiting grazing responses in some individuals resulting in 
the large variation observed. Finally, opposing WGP and TGP responses in total clearance rates to 
higher temperature exposure could result in the absence of a grazing response (Luquet & Tariel, 2016).  
 
Temperature and Nutrient Cycling 
 
Daphnia are primary consumers that play a central role in cycling nutrients through ecosystems 
(Mackay & Elser 1998, Stibor 2010). Mismatches between the elemental composition of an organism’s 
body and its food resources can determine the rate and ratio of nutrients processed and released. 

 



Zooplankton, such as Daphnia, can actively retain the most limiting element in their diet, while 
returning other nutrients in excess into the water column (Frost et al., 2006; Doi et al., 2011). The 
relative rates at which elements are excreted (i.e. discharge metabolic wastes) or egested (i.e. discharge 
undigested food) are largely species-specific and dictated by nutrient imbalances (Urabe, 1993; Sterner 
& Elser, 2002), with abiotic conditions, such as increasing temperatures (Halvorson et al. 2019) 
impacting these rates. Our study shows that climate warming could cause organisms with P-rich tissues 
such as Daphnia to increase the rate of nitrogen release relative to P. This may impact 
zooplankton-mediated nitrogen recycling at the ecosystem scale, with increased release of N relative to 
P potentially leading to increased TN:TP ratios, which favour certain cyanobacteria taxa (Dolman et 
al., 2012; Vanderploeg, et al., 2017). These consumer-driven effects are likely to be particularly 
significant in low-nutrient systems (McIntyre et al., 2008; Atkinson and Vaughn, 2015), but may also 
be directly exacerbated by warming, as positive relationships between increasing mean water 
temperature and cyanobacteria biomass have also been reported (Paerl and Paul, 2012; Bartosiewicz et 
al., 2019; Urrutia-Cordero et al., 2020).  

A number of studies investigating interactions between temperature and nutrients have found that 
organismal N and P content declines with temperature (Woods et al., 2003; Martiny et al., 2013; 
Balseiro et al., 2021). Organismal RNA content, considered to be a primary determinant of body P 
content according to the growth rate hypothesis (Elser et al., 2000), has been observed to be 
consistently higher at cold temperatures than warmer temperatures for all poikilothermic (i.e., with 
variable internal temperature) taxa (Woods et al., 2003). These patterns are hypothesized to be a result 
of increased ribosomal translational efficiencies at higher temperatures reducing cellular RNA and P 
demands (Toseland et al., 2013; Cross et al., 2015). A decoupling between organismal P content and 
RNA content has been observed across a wide range of taxa, including Daphnia (Cross et al., 2015; 
Prater et al., 2018), suggesting that this link is restricted to P-limited systems. Prater et al., (2018) show 
that warmer temperatures were associated with relaxed %P-RNA coupling as daphnid body RNA 
content declined but P content remained relatively high. In our study, warmer maternal and exposure 
temperatures increased D. magna body P content. However, we did not measure cellular RNA content 
or additional pools of organismal P such as phosphosugars or phospholipids and therefore the source of 
this higher body %P content is unknown. Other studies have also shown increased N and P 
concentrations in damselfly under warming conditions (Janssens et al., 2015) and in planktonic 
organisms (Mathews et al., 2018) or no significant changes in N:P ratios under increased temperatures 
(Ventura et al., 2008; Zhang et al., 2016; Prater et al., 2018). Despite the increasing number of studies 
investigating temperature and nutrient linkages (e.g. Woods et al., 2003; Makino et al., 2011; Cross et 
al., 2015), an underlying theoretical framework to mechanistically account for observations is yet to be 
developed and additional research is, therefore, required to fully investigate these factors. Our results 
suggest that TGP responses to temperature can impact nutrient cycling, and should be incorporated in 
future frameworks. 

It is possible that the TGP effects for P uptake and N-P release observed in our study are adaptive for 
D. magna. Both warming and phosphorus limitation alter life history variables including clutch size, 
mean clutch length, and fecundity, all of which are indirectly related to fitness (Cavalheri et al. 2019, 
Harnett et al. 2019). Furthermore, selection for adaptive phenotypic plasticity has been observed for 

 



Daphnia pulicaria populations from alpine lakes (Cavalheri et al. 2019) and Daphnia galeata 
populations from lakes heated by thermal effluent (Dzuiba et al. 2021). TGP responses can be locally 
adapted as well. Walsh et al. (2016) observed that for Daphnia ambigua populations exposed to fish 
predator cues, the magnitude of changes in size at maturation and clutch size were dependent on shared 
evolutionary history with these predators. Adaptive associations between our observed TGP responses 
and warming may be achieved through selection on P uptake and N-P release rates under thermal 
stress, a combination of selection and TGP, or selection of TGP responses (Via et al. 1995; Ghalambor 
et al. 2007). In our study, we only assessed TGP in a single D. magna laboratory population and cannot 
distinguish between these mechanisms. We recommend future studies examining TGP responses in 
effect traits explicitly assess the relative contributions of these mechanisms to better distinguish the role 
of selection and plasticity, and to determine their adaptive potential. 

 
Conclusions 
To our knowledge, our results are among the first to show that TGP responses to warming alter traits 
linked to nutrient cycling in aquatic ecosystems. The observed increase in N release and reduction in P 
release by D. magna with warmer maternal temperatures has strong implications for the ratio of N:P in 
lakes where Daphnia play a key role in the cycling of these nutrients (Elser and Urabe 1999). Reduced 
N:P ratios alter fundamental ecosystem functions and services including biogeochemical cycling and 
food security (Penuelas et al. 2020). More broadly, our results show that maternal warming may 
moderate the outcomes of climate change on ecosystem functions through transgenerational trait 
plasticity. We suggest that future research examining climate change impacts on ecosystem functions 
consider the contribution of transgenerational plasticity on potential outcomes.  
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Figures 
 

 
Figure 1: Graphical overview of the experimental design used to assess if transgenerational plasticity in D. 
magna influences grazing, and N-P uptake and release rates. Fifty individuals from a 10-year D. magna 
laboratory population were exposed to either 18℃ or 24℃ for 2 generations. Critical thermal maximum of F2 
individuals from both parental exposure treatments was assessed in a thermal tolerance experiment. Individuals 
from each parental thermal environment were exposed to either 18℃ or 24℃ for a 12-hour grazing assay on C. 
reinhardtii.  
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 

 
 
Figure 2: a) Critical thermal maximum temperature (°C) for D. magna reared at either 18°C or 24°C for two 
generations; and b) Total clearance rate (mgC ml-1 h-1) for D. magna F2 generation with maternal temperature of 
18°C or 24°C exposed to either 18°C or 24°C during a 12-hour grazing assay. No statistically significant 
differences were observed between treatments for critical thermal maximum temperature of total clearance rate.  

 



 
Figure 3: Relative release rates (mL h -1) of a) Ammonia (NH4), b) Nitrate (NO3), and c) Dissolved Inorganic Nitrogen (DIN) for D. magna with maternal 
temperature of 18°C or 24°C exposed to either 18°C or 24°C during a 12-hour grazing assay. Different letters denote statistically significant differences 
(p<0.05). 
 
 

 



 

 
Figure 4: Change in a) relative release rate of Soluble Reactive Phosphorus (SRP mL h -1), b) proportion phosphorus dry mass for D. magna, and c) P release 
rate (mL h -1) with maternal temperature of 18°C or 24°C exposed to either 18°C or 24°C during a 12-hour grazing assay. Different letters denote statistically 
significant differences (p<0.05).  

 



 

Table 1: Degrees of freedom (df) and  p-values (p) for generalized least square models (GLS) or multiple regression assessing the interactive effect of 
maternal temperature (MT, 18°C or 24°C) and offspring exposure temperature (ET, 18°C or 24°C) on total clearance rate, change in NH4, NO3, dissolved 
inorganic nitrogen (DIN), soluble reactive phosphorus (SRP), body phosphorus (P) content, and phosphorus release rate (P release). P-values were 
determined from log-likelihood ratio tests with a Chi-squared distribution for GLS and multiple regression. If a statistically significant interaction was 
found between maternal temperature and offspring exposure temperature, no further models were evaluated. Statistically significant p-values are provided 
in bold.  
 
 

Response Variable Explanatory 
variable 

df p Analysis 

Total clearance rate MT:ET 8 0.224 GLS 
‍ MT 7 0.622 GLS 

‍ ET 6 0.728 GLS 
NH4 MT:ET 8 0.169 GLS 

‍ MT 7 0.146 GLS 

‍ ET 6 0.020 GLS 

‍NO3 MT:ET 8 0.714 GLS 
 MT 7 0.034 GLS 
 ET 6 0.603 GLS 

DIN MT:ET 8 0.816 GLS 
 MT 7 0.009 GLS 
‍ ET 6 0.172 GLS 

SRP MT:ET 8 0.018 GLS 
‍Body P Content MT:ET 8 0.123 Multiple Regression 

‍ MT 7 0.013 Multiple Regression 
 ET 6 0.001 Multiple Regression 

P release  MT:ET 8 0.594 GLS 
 MT 7 <0.0001 GLS 
 ET 6 0.645 GLS 
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