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Abstract7

Community ecology describes how species interact with each other and with their environment. In8

nature, processes can be very complex because they involve hundreds to thousands of species interacting9

with each other in complex environmental landscapes. Classical approaches that have provided key10

insights have largely focused on the study of tractable subsets of species and patches, but these do not11

always adequately address the wider scope of natural complexity. Alternate approaches that use specific12

parameters and/or that use simulations to study such highly diverse systems are problematic because they13

can become very detailed, system-specific, and easily divorced from general principles. Finally, ’minimal’14

models to explain data exist (e.g. null models, ’neutral theory’ and ’entropy based’ models), but they15

often do not provide adequate connections to experimental or mechanistic studies and results. Here we16

describe and discuss an alternate approach that seeks to link basic processes of community assembly17

(environmental heterogeneity, species interactions, dispersal, and stochasticity) with each other using18

‘disordered systems models’ to make robust predictions about community structure, albeit without the19

detail of more system-specific approaches. We describe the logic of the approach, outline the methods20

involved, and identify important limitations. We also describe how this approach can be expanded21

to better incorporate additional nonrandom structure (such as correlated parameters) in these basic22

processes and leading to ’partially structured models’, and we introduce the idea that this could also23

be applied to metacommunities. Although implementing this approach in empirical studies will still be24
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quite challenging, these approaches reduce the complexity of the overall problem by orders of magnitude,25

making it a promising approach to improve the study of biodiversity in realistic landscapes.26
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Introduction1

Community ecology (and its relation to ecosystems ecology) is inherently a science about complexity. This2

important idea is captured by Darwin’s ‘entangled bank’ that describes the complex nature of interspecific3

interactions and environmental factors (and, in Darwin’s mind, their impacts on evolution). The nature of4

this complexity is exemplified by starting with simple approaches (e.g. exponential population growth) and5

gradually adding complexity (e.g. logistic growth, pairwise direct interactions, dispersal, etc.) that eventually6

reaches arbitrary levels of complexity. To a substantial degree, this approach describes the historical legacy7

of community ecology today.8

An important step in illustrating the consequences of complexity involves the idea of indirect interaction9

effects among species, as described by Darwin’s metaphor. In models that involve a small number of species10

(that is, ’modules’ sensu Holt and Hochberg (2001), see also McPeek (2021)), the consequences of such indirect11

effects can be resolved, so that the overall ’net effects’ can be derived from direct effects, resulting in concepts12

such as trophic cascades (Hairston et al., 1960) and apparent competition (Holt, 1977). However, building up13

from this to many more species becomes increasingly problematic, both theoretically and empirically, since14

the number of interactions increases as the square of the number of species. This approach effectively reaches15

its limit when the number of species starts to exceed five or so (McPeek, 2021).16

Under some conditions, it is possible to get some insight about these net effects in highly diverse sys-17

tems (Levine, 1976; Lawlor, 1979) but these insights can be strongly constrained because of the delicate18

context dependence that determines these net effects even when the direct effects are fixed (Schaffer, 1981).19

How can we realistically investigate the community ecology of ecosystems that involve many species (i.e.,20

dozens, hundreds, or more)? Here we describe an approach based first on ’disordered systems models’ (DSM)21

that can help us understand generic effects, and then on ‘partially structured models’ (PSMs) that further22

resolve possible deviations from DSMs in ecologically interesting ways. These approaches seek to provide ro-23

bust insights about highly diverse communities and metacommunities without requiring completely detailed24

knowledge of the species and ecosystems involved, and thus bypassing the need to understand the detailed25

complexity of the ’entangled bank’.26

To provide context for our claims, we imagine at least three plausible scenarios that can justify different27

possible approaches to the study of community ecology in the case of highly diverse communities and meta-28

communities:29

1. One possibility is that much of this complexity is not important at all, and that there are only a few30

important components (e.g. species, traits or functional groups) to the dynamics. If so, we can justify focus-31

ing on those few particular details. We can call this approach ’classical simplicity’, since the study of such32
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key mechanisms is a traditional approach in community ecology, characterized by the ’modules’ approach33

described above.34

2. Another possibility is that many, or all, details affect community dynamics in a deeply inter-correlated35

and interconnected way, which cannot be easily dissected (or even dissected at all!). We posit that such a36

situation is fragile by definition: altering any single component of the community can impact all the others37

in major ways, somewhat like a computer program where removing one character in the code will cause the38

whole program to stop working. We can call this ’true complexity’. We acknowledge that it is possible that39

communities in nature are, in fact, characterized by such complexity. If so, the study of community ecology40

would be enormously challenging (Lawton, 1999). We question, however, if such ecosystems are likely to41

be sufficiently closed and co-evolved to allow the emergence and persistence of such fragile structures and,42

consequently, whether these structures are likely to be leading forces shaping the aggregate behavior of many43

entire ecosystems.44

3. Finally, it is possible that many (or all) of the factors involved matter roughly equally and influence com-45

munities in heterogeneous but weakly correlated directions. If so, their combined impacts will often cancel46

each other out, so as to produce variation that resembles random variation, at least with respect to the ways47

in which they alter many of the resulting patterns, especially those that represent aggregate features of the48

ecosystem. Consequently, such aggregate properties can persist as important causes and consequences of49

the statistical moments of these details (e.g. mean and variance of interactions) rather than being detail-50

dependent as in 2 above. This perspective is the one we base our arguments about disordered (and partially51

ordered) models, and we call this “emergent simplicity”.52

If (meta-)communities actually show ’true complexity’ , we may expect most of the variation within53

metacommunities to appear to be highly context-dependent and have little resolvable structure. Recent54

developments in parsing metacommunity variation indicate that this is not the case (Leibold and Peres-Neto55

in prep), but rather that the observable variation can be related to some mixture of environmental, spatial,56

and among-species covariation. While resolving the effects of these factors is difficult, this provides evidence57

that ’true complexity’ is not likely, so that some aspects of the complexity could well be understood as58

’emergent simplicty.’59

The study of emergent simplicity is made possible by the careful invocation of randomness and proba-60

bilistic modeling. More specifically, we can identify two kinds of “randomness” that affect how we think61

about these models: “Stochasticity”, i.e. random fluctuations over time (like environmental perturbations or62

stochastic demographic effects), and “disorder” that describes the apparent and effective randomness that63

results from the statistical behavior of diffuse causal networks of otherwise complex but intermingled de-64

terministic fixed processes. Of course, there is information that is lost when we lump these ”disordered”65
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deterministic processes by using statistical descriptions of the parameters instead of the details. The problem66

is that identifying and quantifying the detailed information can be very difficult when there are more than a67

handful of species. Additionally, doing so can also lead to errors when we don’t have precise knowledge of the68

parameters and functions involved to make the detailed behavior of the ecosystem. Instead, here, we look to69

identify and focus on patterns that are likely to be robust to these precise details, while acknowledging that70

our models will not make predictions about other patterns that are not as robust.71

We describe the general approach with models that characterize ‘classical simplicity’ in the form of pairwise72

Lotka-Volterra models (we briefly discuss other options in the prospectus of this manuscript). Following May73

(1972) (see also Novak et al. (2016)), we then imagine that a large number of such pairwise Lotka-Volterra74

equations can be combined into a larger model that can be expressed in matrix form called the community75

matrix (we note that the community matrix is typically used to describe local communities, but that this76

matrix can be expanded to describe metacommunities as well (Gravel et al., 2016)). The key step in taking77

a disordered modeling approach is then to replace the actual community matrix with a representation that78

is only based on means and variances for the various components (figure 4). In practice this characterization79

is only valid if there are a sufficient number of species so that the means and variances of the matrix entries80

are sufficiently well characterized so as to be meaningful; e.g. one or several dozen species. We note that the81

modeling of intermediate-size systems (say, 5-12 species) remains a daunting challenge.82

Although we describe some of the mathematics involved, we aim for a more general understanding that83

does not require substantial mathematical expertise, and emphasize how this approach can be of interest to84

empirical ecologists. A rigorous mathematical overview, though more restricted in scope, is found in Akjouj85

et al. (2024). Technical presentations at a physicist level of rigor are found in Bunin (2017) for the random86

Lotka-Volterra model, and Cui et al. (2024) for random niche or consumer-resource models. Finally, a tutorial87

on how to implement these ideas in a concrete way, detailing the practicalities and challenges of using them88

in theoretical and data-based research, is provided in Barbier (2025).89

1 Methods:90

1.1 The strategy of modeling using DSMs and PSMs:91

Taking an approach that is based on DSMs (and subsequently on PSMs see below) involves a certain strategy92

to modeling that differs from the more conventional approaches in ‘classical simplicity’ or ‘true complexity’.93

Rather than settling on a particular model structure and just ‘filling in’ parameters, we have to think carefully94

about which model components we want to aggregate and simplify using means and variances, and the types95
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of patterns we hope to study. The strategy also differs from modeling approaches based on ’minimal’ models,96

such as null models, neutral theory, or entropy-based approaches that start with data and ask what model97

structures can account for them, typically looking for minimally parameterized models. This is because we98

are interested in maintaining a strong connection to the fundamental dynamic processes and mechanisms of99

community dynamics.100

Instead, the intermediate perspective we describe asks how we can identify and focus on patterns that can101

be linked to processes and mechanisms in a robust way that minimally depends on detailed parameterization102

of complex models. We try to structure our models and identify patterns that are insensitive to factors103

other than those we chose to include in our approach based on ’emergent simplicity’. This means that104

many differences in model selection, even striking ones such as being discrete or continuous, deterministic105

or probabilistic, spatial or non-spatial, can be treated as irrelevant if/when they do not impact our selected106

target outcomes. One way of articulating this idea is: all details matter, but they do not necessarily matter107

for what we might care about.108

Consequently, we focus on what might be called ’macroscopic’ rather than detailed ’microscopic’ model109

components (and applying this perspective to patterns as well as processes). Macroscopic predictions are110

thus likely to result from the aggregate behavior of model components, in the same way that the ideal gas law111

is a robust outcome of the complex behavior of many colliding molecules. It turns out, in fact, that trying to112

increase microscopic fidelity by adding more model ingredients does not always improve aggregate accuracy,113

and can even detract from it if poorly estimated or biased parameters are added. Hence, we want to think114

of models not in terms of how they fit the details of our microscopic intuition, but in terms of addressing the115

following issues:116

• What kind of macroscopic (i.e. aggregate) behaviors and patterns can they robustly generate?117

• Are these interesting to us?118

• Can we adjust model parameters so that they can quantitatively match observed patterns?119

• Can parameters that are fit using some patterns also correctly predict other patterns? – in which case120

the model is a workable description of macroscopic reality, even if its details turn out to be untrue to121

microscopic reality.122

1.2 Why the Random Lotka-Volterra model?123

To illustrate this approach, we focus on one basic model, the Random Lotka-Volterra (RLV) model (Bunin,124

2017). This consists of using the well-known Lotka-Volterra equations for a diverse set of interacting species,125
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and then assigning the parameters (i.e. intrinsic growth, carrying capacity, interaction coefficients, and126

dispersal) randomly among the species based on simple statistical features (e.g. means and variances). We127

do this because the RLV can be viewed as a highly simplified model that gives a first-order approximation128

to the most important and/or robust generic properties of more complex models. As such, it can serve as129

a ’baseline’ model for understanding how arbitrarily complex systems might be regulated. We argue that130

they should be further elaborated, if need be, using Partially Structured Lotka-Volterra (PSLV) models as131

we describe later in section 2.2.132

We also chose to build from the Lotka-Volterra model because it is a well-known generic model that133

has already been used in this way. However, there are alternate options that could be used for studying134

community and metacommunity dynamics (e.g. ecosystem-based models that describe stocks and fluxes135

of materials and energy, community assembly models based on colonization-extinction dynamics that ignore136

species abundances, etc.). At this point, we are unaware of published works that explicitly study such models137

with an explicit DSM formulation akin to the one we use here.138

Although it seems relatively simple, the RLV model can span a very broad scope of behaviors, including139

single-point stable equilibrium, oscillations, alternate stable states, and more complex fluctuating dynamics140

such as high-dimensional and chaotic dynamics. This is because the entanglement of causal processes in the141

RLV can be extremely high and lead to behaviors that encompass the whole array of dynamics characterized142

by more complex non-linear models.143

We formulate the RLV in a way that captures the idea that community assembly and community dynamics144

are driven by five basic processes (modified from Vellend (2010, 2016)). These consist of ’density-independent145

selection’ that favors different species at a given site as a function of their local intrinsic population growth146

and carrying capacity, ’density-dependent selection’ that accounts for feedback among component species,147

’dispersal’ that accounts for the movement of individual, ’stochasticity’ that describes how chance events such148

as demographic drift and disturbances affect each species, and ’novelty’ that describes how de novo species149

originate (here we however ignore this speciation process in our model since it is generally much slower than150

the others).151

At the most general level, we use a spatialized Lotka-Volterra model that separately accounts for these152

processes by describing each species as having growth rates ri, interactions Aij (in which the carrying capacity153

is thus given by Ki = 1/Aii for intra-specific interactions), stochastic perturbations ξi, and dispersal among154

patches x and y with rates Di155
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dNi(x, t)

dt
= riNi(x, t)

(
1−

∑
j AijNj(x, t)

Ki(x)

)
+ ξi(x, t) +

∑
y

Di (Ni(y, t)−Ni(x, t)) (1)

The most basic version of the Lotka-Volterra model, without stochasticity or spatial fluxes (ξi = Di = 0),156

allows at most one stable state per set of surviving species: for a given set Ω, assuming they can coexist at157

equilibrium, their abundances must verify:158

0 = 1−
∑

j∈survivors

AijN
∗
j for all i. (2)

Such a linear system of equations can only have one solution (a different system and a different solution159

for each possible set of species Ω); however, that solution need not be a stable equilibrium (it could be an160

unstable fixed point, e.g. in case of a limit cycle or bistability between other fixed points), as we discuss in161

Section 4.162

Spatial fluxes can be approximated by simple “diffusion-like” dispersal between adjacent patches, which163

is enough to qualitatively capture many of the consequences of accounting for space. We may also assume164

that growth rates ri or interactions Aij depend on spatial location to introduce spatial heterogeneity. We165

also note that, here, interactions only happen within one locality, thus the community (or site) scale can be166

defined as the spatial scale over which species interactions can be modeled as well-mixed – we do not consider167

here systems where, for instance, different species might interact over vastly different scales e.g. (Zelnik et al.,168

2021).169

For the Random Lotka Volterra model, we proceed as follows:170

1) We hypothesize a ’species pool’ of size S (the number of species present that can potentially participate171

in community dynamics).172

2) We assign parameters of the L-V equations at random to each of the species in the species pool; we describe173

useful ways to do this so as to optimize the study of the RLV model below.174

3) We try to use analytical methods to derive long-term expected outcomes of the solution to the RLV model.175

We focus on ’aggregated’ properties that reflect community-wide attributes rather than predictions about176

individual species because these are the most likely to be ’robust’. 4) If we cannot find analytical solutions,177

we use numerical or simulation approaches.178

5) We compare the resulting outcomes to natural patterns (when possible). If we find that they match179

reasonably well, we claim that the RLV is sufficient to explain such patterns.180

6) If this comparison does not match adequately well, we work to develop modifications of the RLV model181
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by using PSLV approaches that we describe later in section 2.2.182

We use the RLV to study how it can predict a number of (meta) community properties that may be robust183

to the details that are omitted in this approach. For example, Barbier et al. (2018) show that under some184

conditions (mostly that interspecific interactions aren’t too strong), purely local RLVs can predict properties185

such as the following:186

a) local species richness: the size of the subset of species that co-occur (or co-exist) in local patches. It is187

often more convenient to express this as the ratio of local to global species numbers.188

b) local evenness in the relative abundances of these species.189

c) total abundance (or total biomass, depending on how the RLV is formulated) of organisms d) mean190

turnover (or production/loss) of organisms (or biomass)191

e) mean local CV of species in time.192

1.3 Applicability of disorder193

A simple objection to the use of randomness is that species typically seem to be much more different from194

each other than simple random draws from a distribution. To clarify this point, we can think about degrees195

of heterogeneity:196

• “variance-like” heterogeneity: quantitative variation within a group of species that can be adequately197

quantified by statistical moments (e.g. a mean and a variance) of their parameters, recognizing that198

we will expect to occasionally see some species that lay at the extremes of the distribution.199

• “systematic” heterogeneity: irreducible qualitative differences among such groups (e.g. autotrophs200

versus heterotrophs).201

Disorder is clearly applicable to “variance-like” heterogeneity1hereas ”systematic” variance is more natu-202

rally suited for partially structured models (described below). Even so, an important lesson from experience203

is that differences that appear irreducible and fundamental can sometimes be ignored, and entities that204

seem like they belong to different classes can sometimes be bunched together for practical purposes. For205

example, even species that are very different on a per capita basis, such as bacteria & whales, may be more206

comparable in terms of biomass (as demonstrated e.g. by allometric relations holding over many classes of207

organisms (Hatton et al., 2021) at least for the purpose of understanding certain macroecological patterns.208

Consequently, whenever we think about using randomness in a model, we try to find the representation209

of the system that makes species as equivalent as possible so that their parameters can be represented by210

their ’variance like’ heterogeneity.211

1w
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To illustrate, we start with a simple theoretical example, using the non-spatial, unperturbed version of212

the equations (1) i.e.213

dNi

dt
= riNi

(
1−

Ni −
∑S

j ̸=i AijNj

Ki

)

The carrying capacity Ki is the equilibrium abundance in the absence of other species. Let us assume for214

now that we are looking at a competitive system where all species have a carrying capacity Ki > 0 (though215

everything that follows can be extended to e.g. trophic systems where predators cannot survive without216

prey).217

We could then change variables to ηi = Ni/Ki, usually called the relative yield (see references and218

discussion in Barbier et al. (2021)), and still have a Lotka-Volterra model:219

dηi
dt

= riηi

1− ηi −
S∑

j ̸=i

αijηj

 (3)

with different interaction coefficients (αij = AijKj/Ki). If the Aij are independent random parameters, then220

the αij are not independent (and conversely): they are correlated by row and by column due to the factors221

Ki. To apply disordered systems theory, the most appropriate choice is the one where parameters (α, or K222

and A, or others) are as uncorrelated as possible. We note that this is not necessarily the most intuitive223

representation, and its variables might not be as interpretable as abundances, biomasses or relative yields224

(see e.g. Spaak and De Laender (2020)).225

Hereafter we will use terminology suggesting that our variables Ni represent abundances, but it is crucial226

to recognize that this will not always be the right choice; instead, they should be understood as a general227

proxy for a species’ importance in community dynamics, perhaps expresses in biomass units or consumption228

rates etc. When we see apparent inequalities between species, we should first ask how much is really due229

to some species being more or less important, or whether we can restructure out model to capitalize on230

expressing it in other units.231

2 Results232

2.1 What can be predicted, inferred and tested empirically233

Above, we emphasized that disordered systems theory is focused on deriving robust predictions from dynam-234

ical models that are parameterized using a statistical approach to describe their parameters. What kinds235

of data are likely to be robust in this way and what kinds of patterns can we predict about them from the236

disordered systems approach?237
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Communities can be described by an amazing variety of attributes (or ‘observables’), that can be analyzed238

for possibly regular arrangements; means, correlations, etc. that we can generally call ‘patterns’. As we239

pointed out earlier, many of these patterns can be very complicated in their details, for example, by often240

being very species-specific in nature and these are unavailable to study by our approach since we ignore species241

identities when we replace their attributes as drawn from statistical distributions. Many of these patterns,242

especially the more detailed ones, are also likely to be ‘fragile’ in that they depend on specific detailed243

assumptions that may or may not actually hold. For example, pairwise correlations in species abundances244

seem like they could be linked to pairwise interactions between them, but this is generally not the case due to245

the complex intertwined interactions involving multiple (and potentially all) species in the system. Schaffer246

(1981) showed that even if they could be measured, these correlations did not have any clear link to the247

pairwise interactions among the species, illustrating the fragility of relating patterns to the driving processes248

in the complex community.249

By taking a disordered systems approach to community ecology, we accept that many possible patterns250

involving observable outcomes are likely to be fragile in this regard, and we try to focus on those that are251

not; see Figure 3. As discussed in earlier sections of this paper, the models we create sacrifice the need252

for detailed parameters (or predictors), which are often difficult to quantify anyway, and look for more253

‘macroscopic’ predictors that can work equally well in making predictions about these more robust patterns.254

Next, we discuss one of the most robust properties of RLV models, the existence of qualitatively distinct255

dynamical regimes, which informs which patterns we can study. We then discuss more extensively how and256

why we may select robust yet informative patterns to fit our model quantitatively.257

2.1.1 Dynamical regimes258

Contrary to simple statistical models (e.g. a linear relation or a normal distribution) where varying parameters259

will only lead to quantitative changes in predictions, dynamical models like RLV can transition between260

qualitatively different behaviors depending on their parameters, such as a stable equilibrium or limit cycles.261

These regimes can be associated with entirely different patterns, rather than just quantitative differences:262

for instance, an oscillatory regime affords new patterns such as cycle period. Different regimes of the same263

model often entail different trends of pattern metrics with control parameters (e.g. diversity may increase264

then decrease as we keep increasing dispersal), which has important consequences for fitting. This is typically265

associated with a change in which terms dominate in the dynamical equation (for instance, dispersal rate may266

go from being small compared to extinction rate, to being large compared to it (Barbier et al., 2022)). But267

this is not always sufficient to distinguish meaningfully different regimes – for instance, strong competition268

may lead to either chaotic fluctuations or multiple stable states depending on slightly more specific features269
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of that competition.270

As shown in the Box ‘Diagram of dynamical regimes’, RLV models tend to have long-term behaviors that271

fall into a few broad classes; a single steady state point equilibrium, bounded fluctuations within a given272

domain or multiple outcomes that are “alternate attractors” (involving multiple possible combinations of273

either bounded fluctuations or steady-state points).274

The existence of these distinct regimes, and how they relate to community-level parameters, is, in itself,275

a prediction amenable to empirical testing, as it is particularly robust to model details, and has recently276

received direct experimental support (Hu et al., 2022).277

2.1.2 Selecting robust yet informative patterns278

It is clear that we can only use our approach to try to predict ‘macroecological’ patterns that represent279

aggregated features and cannot predict more specific ones, see e.g. McGill (2010); Grilli (2020). Nevertheless,280

this still results in a wide array of possible features of the system that we can hope to study. The patterns of281

greatest interest should have two properties. First, they should be robust to the details we have omitted. We282

are thus not interested in patterns that are likely to be highly contingent on particular details, even if we can283

consider them as highly aggregated properties. This has been a criticism leveled against any specific measure284

of community stability, asymptotic resilience, where the rarest species tends to play a key role (Arnoldi et al.,285

2018). Secondly, we seek patterns that are likely to be sensitive to the driving variables we include (i.e. the286

means and variances of the parameters). We imagine that some patterns are so robust that they are not287

informative about anything. For example, McGill (2010) showed that properties such as the local Species288

Abundance Distribution (SAD) and the Species Area Relationship (SAR) are qualitatively (and perhaps to289

some degree quantitatively) robust to model formulations involving very different parameters. In this case,290

these patterns are consequently rather uninformative. Instead, we seek patterns that have some intermediate291

status so as to be robust to the details we ignore but sensitive to those we include.292

Identifying these patterns can be an important step, although it can be challenging. In some cases, it is293

possible to use analytical models to identify them. In this case, there is an explicit formulation of both the294

robustness and characterization of the sensitivity (which patterns are sensitive to which parameter types).295

For example, Bunin (2017) used a technique called ’cavity modeling’ to derive explicit equations relating the296

total biomass, total biomass turnover, species richness, species eveness, and population stability (figure 4),297

from a disordered model driven by variation in the carrying capacities of the species, the mean, variance, and298

mean asymmetry of interaction coefficients, and the total diversity of the species pool. This allowed them to299

specify just how the various patterns should relate to each of the driving variables.300

Although optimal for insights into the causal effects in a system, such analytical solutions are often301
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difficult or impossible to obtain. Instead, the search for relevant patterns will probably require simulations.302

Additionally, or alternatively, these patterns can be inspired by the interests of the researcher, perhaps based303

on previous knowledge such as might be obtained from previous work using e.g. ’classical simplicity’ or304

previously documented macroecological patterns.305

An important use of DSMs is to predict the generic effects of biodiversity. We may thus think about306

patterns observed when biodiversity is experimentally controlled. Among those, the relationship between307

diversity and total biomass provides an estimate of average competition (Fort, 2018; Wang et al., 2021),308

while a positive relationship between biodiversity and temporal variability would be indicative of a fluctuating309

dynamical regime (Roy et al., 2020; Hu et al., 2022). However, the informativeness of these patterns may310

break down when they are not experimental but correlative, i.e. when diversity is not directly manipulated.311

So, why we should try to identify such ‘robust-but-informative’ patterns anyway? We can think of at312

least three reasons to seek to make such predictions:313

1) We seek to make these predictions for their own sake. This might be useful in forecasting where we can314

ask questions about what could happen under different conditions and might be useful in predicting effects315

of e.g. climate change, eutrophication, repeated invasions, fragmentation etc. Under this scenario we wish316

to work from left to right in figure 2. We might be particularly interested in predictions that are robust to317

possible details since there are more likely to be reliable, see Figure 3. This approach may also, at least to318

some extent, allow us to extrapolate predictions for situations that lie outside the range of current variation319

since the robustness implies that they can do so unless there are fundamental changes to the structure of the320

models and when they might apply.321

2) We seek to infer information about the predictor variables that we have modelled. In particular, mea-322

suring the carrying capacities of species, and even more so, the pairwise interactions coefficients is increasingly323

tedious as the number of species increases. Here we know we won’t be able to obtain detailed information324

on these parameters, but there may be reasons to want to know how their means and variances could affect325

patterns. Under this scenario we would be working from right to left in Figure 2. Barbier et al. (2022) show326

that this can be done using a disordered systems model and further show that this is robust to the amount327

of dispersal in the system.328

3) We seek use this approach in a hypothetico-deductive context to test or derive hypotheses about com-329

munity dynamics (and metacommunity dynamics described below) by evaluating if predictor variables are330

consistent with observable patterns. Under this scenario we would be looking to see if the two approaches331

above are internally consistent (jointly working in both directions in figure 2). This is a substantially more332

ambitious question, especially in the absence of additional information (e.g. manipulative experiments, struc-333

tured use of trait variation etc.), but at least it would allow us to apply the approach within a hypothetico-334
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deductive research framework.335

Barbier et al. (2018) found numerically that various straightforward aggregate predictions of DSMs were336

robust to a number of variations in fine-grained details of network structure, but not always to variations337

that could be interpreted as large-scale structures, e.g. when the network of interactions was either nested,338

directed, or bipartite. This suggests that it might be important to incorporate some general features of the339

networks as additional constraints on the purely disordered systems model, something that one might call340

‘partially structured’ models; we describe and discuss these in a following section.341

2.2 Partially structured models342

Above we have focused on ’fully’ disordered models, but of course this often seems like a strong constraint,343

perhaps applicable only to interactions within a guild of similar species (e.g. grasses, or soil bacteria (Barbier344

et al., 2021; Hu et al., 2022)). Often we can identify important aspects of community variation that we345

think might be important but find it difficult to formulate our model to have narrowly constrained random346

distributions for our parameters as described above. For example, if we wish to model food webs with347

distinct trophic levels, it seems highly problematic to imagine that interactions are adequately characterized348

by a simple mean and variance across all trophic levels. Instead we would be inclined to think that the349

predator-prey interactions between trophic levels would have very distinct parameter distributions (means,350

variances, asymmetries) than the interactions within any of the trophic levels. We can imagine the same351

sort of problem for any so-called set of ’functional groups’ such as plant-pollinator systems. And one can352

also hypothesize other ways that interactions might be partitioned into different components (e.g. within353

and between habitats or in relation to the size of organisms). It seems extremely unlikely that we can354

entirely dismiss such empirically ubiquitous structures and often these seem particularly apparent to empirical355

ecologists who have documented the effects of such factors.356

Is there any way to extend the insights we describe above to account for such ’functional groups’ (for357

example, trophic levels)? This issue is closely related to the way food webs have classically been defined358

since such food webs often (perhaps always!) lump at least some species together based on functional359

considerations. For example, many food webs use the concept of ’trophospecies’, defined as groups of species360

that qualitatively share the same resources and predators. Although this is done largely for practical reasons361

(the detailed differences among species in trophospecies is generally unknown, and formidable to study) this362

is also often justified by the idea that interactions within such groups are relatively uniform and that shared363

interactions with other groups are also relatively uniform even if they are distinct from each other and from364

the within group interactions. Extending disordered models in this way (within vs among groups), is what365

14



is meant by ’partially structured’ (and thus also ’partially disordered’) models.366

Barbier et al. (2018) suggested that this could be done and illustrated how it might modify predictions367

from those based on the completely disordered approach. The idea is essentially to partition interactions into368

within and among functional groups and characterize each of these separately by their means and variances.369

If this approach can be justified and validated, it would provide a useful intermediate perspective between370

disordered systems models and fully specified ones. This seems like a conceptually straightforward, and371

to most community ecologists, meaningfully useful extension of disordered systems models. In fact, in the372

absence of such structure, many ecologists would feel that they may not even have a job!373

Adding structure means adding parameters, typically ending up with as many parameters as classical374

few-species ecological models (e.g. tritrophic chains), or even more (since the presence of disorder means that375

we care not only about average interaction between e.g. trophic levels, but also about the (co-)variance of376

these interactions). Consequently, deciding just how interactions should be approximated by a combination377

of disorder and structure involves careful thinking. We discuss below how and when we expect a gain from378

this approach.379

2.2.1 Types of structures380

We can start by thinking of three possible ways to structure interactions with some degree of heterogeneity:381

keystone species or links, groups or modules, and continuous axes. All of these situations can be theoretically382

understood in simple settings with a slight increase in complexity from DSMs.383

The basic intuition for the importance of the first possibility is that ecology is often a combination of a384

small numbers game and a large numbers one: for instance, it will often occur that a single species has a385

disproportionate and idiosyncratic role in the dynamics (e.g. Starfish in intertidal food webs (Paine, 1966),386

Daphnia in aquatic systems, (Mazumder, 1994) or wolves in temperate forests (Ripple et al., 2014), whereas387

many other species can modelled through their aggregate impact on the community. These scenarios can388

be theoretically understood with a ‘focal species’ perspective, often associated with studying the impacts of389

invasion and extinction (Arnoldi et al., 2022).390

One of the most common types of structure that can be added to a random network is blocks or modules,391

such as functional groups, trophic levels, core and peripheral species, etc. This has been investigated theo-392

retically, notably in the context of bitrophic systems (Yoshino et al., 2007; Advani et al., 2018; Feng et al.,393

2024). Stochastic Block Models (Vaca-Castano et al., 2022) are a favored inference tool to estimate these394

matrices of parameters. It might also be possible to detect the existence of groups more easily than we can395

infer their precise parameter values.396

Another important type of structure is quantitative axes along which species are positioned, e.g. traits397
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such as body size or degree of generalism, or trade-off surfaces such as the colonization-competition trade-off.398

They are in some ways more complex than groups since we can imagine arbitrary dependencies of parameters399

in the position of species along the axis, and in other ways simpler, since we expect continuity between400

adjacent values, allowing us to simply ask about, e.g., the slope of variation of parameters with species traits,401

as in models based on metabolic allometry (Brose et al., 2006; Barbier et al., 2018).402

At this time, the use of partially structured models is rather scarce. However, it is a method that has403

tremendous potential. If we look at figure 4, we see that it is likely that reality is not very likely to resemble404

fully disordered systems models and that partially structured models represent the path leading to greater405

realism. It is also the most important element that allows us to interrogate the variety of possible constraints406

that might act on natural ecosystems. Just exactly how to proceed with the selection of different possible407

structuring elements is not clear, but it is an exciting possible way to add realism to the study of highly408

diverse communities without having to resort to the ’true complexity’ approach described above.409

2.2.2 Additional patterns410

Introducing structure opens up new measurable properties, typically the same observables as before now411

resolved by positions in the structure. For instance, resolving a food web into a few trophic levels opens up412

many new properties to measure. Instead of total community biomass or abundance, we can have a more413

fine-grained description across groups, e.g. biomass pyramids. Instead of community stability, we can study414

response of one group to the perturbation of another, e.g. trophic cascades. And instead of species diversity415

versus some control factor like resources or area, we can look at the covariation between groups (e.g. predator416

diversity versus prey diversity) across the range of the control factor. And, when the structure is not made417

of groups but of continuous variation along a trait axis or trade-off surface, we can instead ask about the418

slope of change of these properties across the axis (e.g. the slope of a continuous size spectrum).419

Unfortunately, the number of predictable patterns generally grows faster than the number of parameters420

which might be of increasing interest, but the patterns also become more and more fragile (dependent on421

precise assumptions) as we increase the level of detail of the structure. In the limit, we are back to ’irreducible422

complexity’ where the number of parameters is at least the square of the number of species. This argument423

thus mirrors how complexity affects predictability and understanding when starting from the very simplest424

models.425

Partially ordered models thus represent an important extension of disordered systems models because they426

address how potential deviations from fully disordered models may affect results. Seen in this light, fully427

disordered models can be thought of as ’null’ hypotheses with which to compare any given partially ordered428

model. If no difference in predictions is observed between the two, then the structure may be irrelevant to the429
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prediction and we may conclude that the result is especially robust to the structure we investigated (Barbier430

et al., 2018). Similarly, partially ordered models can be compared with simple models based on ’modules’431

where similar species are lumped together. If no differences in predictions are observed, then it is only the432

structure that is relevant and we may conclude that the complexity of species interactions is unimportant,433

at least for the predictions tested.434

More generally, we might expect that partially structured models would often reveal important differences435

in predictions from fully disordered ones and thus allow us to reject the ’null hypothesis’ and potentially436

replace it with the hypothesis implied by the partial structure we imposed (keeping in mind that there may437

be alternate structures that may do as well or even better). While the work involved in empirically testing438

(either via quantification of natural patterns or by experiments) is not trivial, one could imagine building a439

research program that uses partially structured models to identify which aspects of ’irreducible complexity’440

as we described in our introduction are most important by producing predictions that are most robust to the441

possible full complexity of the system.442

3 Discussion443

3.1 Metacommunities444

Our original equation of interest (Equation 1) specifies local dynamics using the RLV formulation, but also445

includes terms for dispersal with the term Di as a species-specific ’dispersal’ parameter. In equation 1 dis-446

persal is modeled as a diffusion process where the net movement between two sites is proportional to the447

difference in abundance of species I in the two sites. This term converts our model into a ‘metacommunity448

model’ in which local communities are embedded in a set of analogous sites that comprise the ‘metacom-449

munity’. The biota that exists in the metacommunity can itself constrained by the cumulative dynamics of450

all the individual sites. This is in contrast with the more abstract approach we have taken so far consisting451

of an externally defined fixed ‘regional biota’ that simply and independently provides colonists to any given452

local community with no feedback from the dynamics of local communities.453

Thinking about the dynamics of metacommunities can be traced back to early work at least in the late454

1960s (Levins and Culver, 1971) but hasn’t really flourished until the early part of the 2000s (Hubbell,455

2001; Leibold et al., 2004). This work has greatly expanded our understanding of a wide array of ecological456

dynamics (reviewed by Leibold and Chase (2018)). Needless to say, these dynamics are more complex and457

complicated than those we can study with the simpler externally defined regional biota.458

However, it is hard to argue that it isn’t substantially more realistic. And work done to date in meta-459
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community ecology has certainly shown numerous ways by which dispersal can substantially modify our460

expectations about the distribution of species across sites (and often, through time as well). Developing our461

understanding about metacommunities based on basic principles of local selection (including both ‘environ-462

mental’ and species interactions), dispersal, and stochasticity (as well as speciation that we ignore here) also463

makes for a much more satisfyingly inclusive approach than the one we have studied so far.464

Nevertheless, work to date indicates that there are many complex consequences of taking a metacom-465

munity approach. Could an approach that builds on disordered systems modeling help identify robust and466

testable aspects of this complexity?467

Doing so will take some thinking. If we stick to RLV models, we want to find some formulation of equations468

like the general equation we started with (Equation 1), either with our without the noise term ξi(t). To start469

with, it immediately implies that we need some new aggregate parameters including at the very least: the470

variance of dispersal rates among species (Di), and the spatial variance and auto correlations of growth rates471

or carrying capacities (ri, Ki and/or Aii), which represent the spatial features of the environment. It also472

seems likely we would want to include correlations of these traits with the other traits we have in the basic473

model. We also need to figure out how to structure the model to minimize these variances and correlations474

to optimize the utility of the disordered systems approach (as discussed in section ‘Application of disorder’475

above) . Possible general consequences of taking this approach are, as of now, very poorly studied, and at476

this point our explanations outlined below should be seen as highly speculative even if we can point to some477

existing results.478

However, it is likely that significant new insights can arise. For example, Gravel et al. (2016) studied479

how dispersal among local communities could alter how diversity and complexity are constrained by random480

interactions among the species. They start with the well-known disordered Jacobian model of May (1972)481

that predicts that S <
〈
J2
ij

〉
C in isolated communities. They then ask how making multiple copies of this482

model (one for each of the different sites) and connecting them with dispersal (d, which they hold fixed and483

equal among species) affects this inequality. They also ignore possible effects due to varying growth rates484

and carrying capacities (except in how they alter the values of Jij via the transition to the relative yield485

formulation of the RLV. They find two analytical solutions: one that a) holds at very low dispersal levels,486

resulting in a modified inequality
√

SC
〈
J2
ij

〉
< −⟨Jii⟩+d showing that dispersal can have a small stabilizing487

effect and thus allows for higher S than predicted by May; and b) one that applies at very high dispersal rates488

that results in a modified inequality
√
SC

〈
J2
ij

〉
/E < −⟨Jii⟩ in which E is the effective number of statistically489

independent matrices in the set of local matrices in the metacommunity (if all the local communities have490

the same matrix, E = 1 and we recover May’s result; if each site is statistically independent of all the others,491

then we divide by the number of sites; for cases in between, we have to calculate this effective value for E).492
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They did not find any analytical solution for intermediate values of d, but numerical studies showed that493

dispersal was even more stabilizing than either of these limiting conditions. This study, while incomplete494

in addressing metacommunity dynamics in disordered systems models, nevertheless shows that they can495

dramatically change the predictions we would have made from the simpler non-metacommunity approach.496

They also studied additional aspects of metacommunity dynamics and studied how these might even vary497

with the type of dispersal (local vs global). These results show that multiple aspects of metacommunity498

dynamics respond in a structured way to variation in dispersal. They also show that these responses are499

relatively robust to the dispersal structure (at least in comparing local vs global dispersal).500

Unfortunately, the fact that we focused our approach to he Jacobian matrix near a given equilibrium501

prevents other possible predictions (biomasses, turnover, etc) from being studied. We could nevertheless502

study this with the original spatial RLV model to quantify these effects, which is the focus of ongoing503

work (Roy et al., 2020; O’Sullivan et al., 2021; Garcia Lorenzana et al., 2024). Metacommunities are also504

more complex than single communities, and they can be characterized by numerous other metrics than single505

communities, especially those that involve cross-locality components such as spatial beta-diversity (mean and506

variance), gradient responses to productivity, etc. At this point, work is only beginning, and we anticipate507

exciting developments to come as the field better explores these consequences.508

3.2 Conclusions509

The assumption of disorder or emergent simplicity is that many model details matter only inasmuch as510

they contribute to aggregate processes at the community scale. Thus, using disordered systems models, and511

even more so partially structured models, can be a powerful and general way to extend insights that are512

based on basic mechanistic processes (e.g. dispersal, environment, interactions) to models that involve large513

numbers of species. Such models can therefore be critical tools that can allow the empirical study of natural514

communities (that virtually always contain dozens to thousands of species) while retaining insights that have515

come from typically small scale and few-species studies (both experimental and theoretical). To date, work516

using this approach have been largely restricted to idealized theoretical models. Our goal in this paper is to517

explain the approach in the hope that empirical scientists will be motivated to apply it to a wide array of518

basic and applied questions involving community and metacommunity ecology.519

Here we have focused on applying the disordered (or ‘partially structured’) systems approach to Lotka-520

Volterra models because they represent the most obvious, and historically established, basis to approach521

(meta)community ecology. They can be used as a baseline to study a broad class of models that share522

the premise that population dynamics is the central driver of the patterns that we are interested in, and523
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all other processes (e.g. species interactions, spatial fluxes) are modelled phenomenologically through their524

contributions to population growth or decline. However, we note that the approach could also be extended525

to other formulations of ecological systems (e.g. ecosystem models that are based on nutrient fluxes and526

stocks, which would more likely display linear than exponential dynamics or colonization-extinction models527

that ignore abundance patterns). Consequently, the idea of disordered systems is likely to be useful for a528

number of other ecologically relevant issues even if the Lotka-Volterra structure does not apply.529

The idea of approximating species interactions as random is, of course, not new – it was famously em-530

ployed by May (1972) to discuss the relationship between ecological complexity and stability. Yodzis (1981)531

challenged May’s conclusions by pointing out that food web structure might be important in a way that532

closely reflects our thoughts about using partially structured models. Nevertheless, until recently, theoretical533

predictions based on (partially) random interactions had largely focused on a limited set of (often hard to534

measure) stability properties such as asymptotic resilience (Gravel et al., 2016; Allesina et al., 2015). The535

technical approach used by May and its successors makes less definite assumptions about ecological dynamics,536

but is restricted to these stability properties, whereas the Random Lotka-Volterra model can make predic-537

tions on many other observables such as abundance distributions across species and across space and time,538

complex dynamical regimes, etc. It potentially encompasses, qualitatively or even quantitatively, the predic-539

tions of a number of other randomness-based approaches that did not focus on species interactions: models540

of independent species such as the Stochastic Logistic Equation (Grilli, 2020) and stochastic geometry ap-541

proaches (McGill, 2010), but also neutral theory (Hubbell, 2011) (except for speciation and phylogeny-related542

questions).543

We argue that there are important advantages in using this method. Under full disorder, theory predicts544

(and simulations confirm) that the many parameters required to describe a community matter only in aggre-545

gate, through simple statistics such as mean and variance (Galla, 2006; Bunin, 2017). Partially structured546

models admit more parameters, but still far fewer than a full description of the community. Thus, it is547

possible to make predictions about (meta-)communities without having to estimate all their intricate details.548

Furthermore, using disordered models helps identify empirically robust patterns that are not likely to be549

fragile to the everchanging details of community processes.550

As is true of any approach however, there also important caveats and remaining challenges:551

• How to structure interactions in order to apply partially structured models?552

• How to infer process from patterns (reverse modeling)?553

• Generalizing beyond Lotka-Volterra (e.g. including material cycling or other ecological features that554

could significantly change the types of dynamics observed here)555
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• Long-term dynamics (all the regimes seen here, whether equilibria or chaos or noise-driven, are some556

sort of stationarity, i.e. long-term dynamics whose properties do not change anymore) vs transients557

Nevertheless, it is worth keeping in mind that this overall approach has only just started and that558

improvements are likely in near term. One of the more important ongoing directions is the idea of partially559

structured models. An initial quantitative, albeit limited, exploration of this was proposed by Barbier et al.560

(2018) and here we point to other possible extensions. Work in this direction is particularly important in561

better addressing the various form of structure that empirical scientists have identified and because they can562

provide important testable hypotheses to determine if such structure actually matters for explaining natural563

systems. What is increasingly important is for empirical scientists to capitalize on these insight and develop564

methods to evaluate their utility in natural communities. It is our intent in this review to facilitate this effort565

by providing what we hope is a useful introduction to doing so.566
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Box: The interpretation of disorder673

Taking the goal of understanding aggregate properties, rather than detailed aspects at the species level,674

means that we might be able to parameterize our model with less detail than would be needed to make675

the more complex and precise predictions. Fully disordered systems models take an approach that is based676

on statistical moments of sets of parameters. We start by discussing ’fully disordered’ models where the677

theory is simpler but we subsequently expand our approach to develop ’partially structured systems’ mod-678

els. Figure 2 contrasts the classical approach to complexity that starts with a single species and builds in679

increasingly complex dynamics via modules, networks, etc., with the disordered systems approach that starts680

with completely disordered RLV models, then modifies these with partially structured components as they681

may reveal themselves to be important (e.g. trophic levels or spatial structure). The two can even be seen682

as complementary methods that can cross-check each other.683

Three non-exclusive justifications for the disordered systems approach are worth considering:684

Objective motivation: a confluence of many factors685

When there are many independent sources of variation, their combined effects often behave like random686

variables (see e.g. discussion in Barbier et al. (2021)). The canonical example is a dice throw where many687

deterministic microscopic factors (spin, speed, orientation, angle to substrate, etc.) actually determine the688

outcome but interfere so much with each other that none of them dominates, and the result is effectively689

random. Similarly, we may treat pair-wise species interactions as random if the impact of one species on690

another is not predictable from the interactions of these two species with other ones (i.e. pair-wise interactions691

are not inter-correlated or are affected by other factors that interfere with each other so as to make them so).692

This implies that sufficiently complex interactions appear as ’random’, in the sense that they cannot693

be resolved in detail, even though this aspect of the dynamics is actually deterministic (determined by the694

complexity of interactions that interfere with each other) and therefore may be hard to distinguish from695

other forms of stochasticity (’noise’). Such randomness can be seen as a conceptual ”attractor” that can696
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describe our expectations for the absence of any additional structuring features of the interactions and can697

consequently generate ’null hypotheses’ by which to compare other possible effects (see the section below on698

Partially structured models). These null expectations thus sum both ’noise’ on the one hand and ’unresolved699

determinism’ on the other.700

Pragmatic motivation: baseline models for robust phenomena701

Even if we do not accept randomness as being “objectively” a good representation of the dynamics we are702

modelling, we can still adopt it on pragmatic grounds. We admit that we are dealing with intricate complex703

systems, possibly devoid of any true randomness, but we only focus on behaviors and patterns that are robust704

to these details because we believe these predictions would also hold even if we were to make changes in the705

details of the studied system (e.g. shuffle carying capacities, growth rates, or interaction coefficients). It is706

then plausible that the same phenomena or patterns will be very frequently be observed if these details are707

drawn at random and deviations would require very specific changes that would be very unlikely (Figure 3).708

Choosing a random model is useful simply because it is easier to manipulate than most non-random ones709

with the same behaviors, and it thus serves as a “baseline” model for this aspect of the dynamics.710

Subjective motivation: aggregation and statistical equivalence711

A third option is a subjective Bayesian viewpoint: ’Randomness’ simply reflects the degree to which we are712

uncertain or uncaring about certain details. If so, aggregating implies that the variables we are aggregating713

over (e.g. the abundances of various species) are, in some sense, equivalent or exchangeable – that we do not714

mind adding apples and oranges if what we care about is total fruit biomass. This does not mean that these715

variables are identical in every way, but only that none is “special” in how it contributes to the aggregate.716

This clearly depends on which aggregate pattern is our focus, it may seem strange to add together the biomass717

of predators and prey to predict total biomass given that they have very different ecological consequences,718

but some predictable patterns assume an equivalence between them even if others many not.719

Random models appear like a natural choice when we believe that we are indeed justified in treating720

species as statistically equivalent for a given pattern. In a random interaction network, species are not721

identical, but no species occupies a very unique role – even a well-connected “hub” species may not be a722

remarkable outlier because it occurs within the expected distribution of means and variances, but can be723

modeled as a representative sample of the overall community’s distribution of connectedness. We come back724

to this notion of statistical equivalence below in Sec. 1.3.725
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4 Box: Diagram of dynamical regimes726

727

We show here dynamical regimes for the Random Lotka Volterra model without noise or space. Existing728

theory on these regimes crucially depends on the overall strength of interactions. We can define three729

main situations leading to distinct predictions: i) each species has a number of interactions αij that are730

each individually important (not negligible compared to αii = 1 or stronger), ii) each pairwise interaction731

has limited impact on a species, but the total impact of all its interaction partners is important, and iii)732

important interactions are sparse and the others are either small or absent.733

In the first case, each species can have a significant impact on many others’ abundances, and negative734

interactions can easily lead to extinction. In speciose communities including such strong negative interactions,735

we expect that few species will coexist (Mallmin et al., 2024). In the second case, each species can be736

understood as interacting with the community as a whole, and a simple community-level description emerges737

readily. We can define aggregate parameters µ and σ2 as the mean and variance of the sum of all interactions738

experienced by a species in the community739

µ ≡

〈
S∑
j

αij

〉
= S ⟨αij⟩ , σ2 ≡ var

 S∑
j

αij

 = S var(αij) (4)

These parameters then turn out to be the main ones controlling all the outcomes (Bunin, 2017). Many740

other possible details such as which distributions interactions are drawn from (normal vs uniform vs other)741

do not affect the conclusions we make about their behavior. Finally, we may have very sparse interactions,742

where a substantial majority of pairwise coefficients Aij are negligible, while some are strong. This regime743

is increasingly studied theoretically (Fried et al., 2016; Marcus et al., 2022). We note that interactions that744
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can most plausibly be treated as fully disordered involve competitive or multifactorial interactions within a745

guild of similar species, e.g. competition between grasses in a field, or a mixture of positive and negative746

effects between soil bacteria. Contrary to e.g. food webs or plant pollinator networks, it is not obvious why747

interactions within a guild should be sparse, and thus we do not discuss this situation in depth here.748

Most existing theoretical studies based on disordered systems are limited to the diffuse interaction regime749

shown in inset, where species interactions are important in aggregate but very weak individually (i.e. µ and σ750

remain moderate even for very large species number S), as this is the regime where theoretical tools are most751

applicable and the most robust predictions can be made. The strong interaction regime is less understood,752

mainly through simulations, except in some particular limits. The grey region indicates where abundances753

become infinite due to an excess of mutualistic interactions, i.e. a breakdown of the LV model, which can be754

solved in various ways.755

One might expect that many dynamical behavior types could be possible in the Random Lotka-Volterra756

model. However, and perhaps surprisingly, the RLV only has a limited set of behaviors of interest, which757

occur predictably whereas all the other possibilities become increasingly unlikely when species numbers are758

’large’ (in practice greater than 15-20, or more, depending on the behavior). Previous studies, e.g. Hu et al.759

(2022), have found suggestive empirical evidence for the first three phases.760

Global coexistence: First, it is possible that all species in the biota can coexist and reach a stable point761

equilibrium together (Bizeul and Najim, 2021).762

Unique fixed point with lower diversity: Here, a fraction of species go extinct, but the remainder coexist763

stably in an equilibrium that cannot be invaded by any of the extinct species (if we reintroduce them, they764

go extinct again).765

Chaotic turnover: Here, the dynamics tend to approach an equilibrium where a significant fraction of766

species thrive at significant abundances, but all such equilibria can be invaded by other species that were767

previously going extinct. There is consequently a constant turnover of species through a kind of “pinball”768

dynamics (Roy et al., 2020; O’Sullivan et al., 2021). We note that when S is small, we can observe limit769

cycles instead of chaos in that region.770

Multiple attractors: When interactions are individually strong, the dynamics may reach multiple stable771

and uninvadable states, the simplest case being bistability between two competitors that can exclude each772

other. In the case of sparse interactions, this may lead to dynamics that are directional, i.e. progressing773

over long times toward more “mature” states (Bunin, 2021), contrary to chaotic turnover which is typically774

adirectional.775
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Box: Step-by-step guide to applying disordered systems theory776

This box serves as a quick summary of the points made throughout the manuscript.777

A step-by-step description of the process could be provided.778

1. Find a parameterization of the system that tries to make the species as equivalent and their interactions779

as uncorrelated as possible (Section 1.3), e.g. expressing them in a common currency like total biomass780

or total resource consumption.781

2. Introduce all elements in the model that are needed to resolve measurable behaviors and patterns782

(Section 2.1)783

3. Try to fit the disordered model to data using the most discriminating patterns, bearing in mind that784

some parameters are hard to resolve depending on which patterns are available to measure (e.g. it is hard785

to distinguish temporal fluctuations due to environmental perturbations versus species interactions).786

4. If disordered predictions are unsuccessful, introduce the minimal amount of structure needed to reach787

satisfactory predictions (Section 2.2).788
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Figure 1: a) Our overall goals is to relate basic ecological processes to community level patterns. b) To do
so, we break the process down into four parts: the model ingredients (Section ??), the different regimes,
dynamics or behaviors it can display (Section 4) and the ’observables’ chosen to characterize empirical
patterns (Section 2.1) that we aim to predict from the model and use to validate it and infer its parameters.
This tripartition is useful since different ingredients can produce the same behavior (e.g. many mechanisms
can lead to chaotic fluctuations in abundances), and different behaviors can produce the same pattern (e.g.
intrinsically chaotic dynamics or dynamics driven externally by environmental fluctuations can lead to similar-
looking time series), see also McGill (2010).
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Figure 2: DSM and PSMs. When species differ importantly in just a few ways, e.g. trophic height, we can
organize them in simple modules like food chains. When they differ in a vast number of ways, their interactions
become largely unpredictable and, in effect, random-like. Real communities probably lie somewhere in-
between, and can be approached from both sides, e.g. with Partially Structured Models.
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Figure 3: We may use random models because they are a simple way to access ‘robust’ or ’generic’ outcomes
that we expect to arise in many nonrandom models (Barbier et al., 2018). Drawing parameters at random is
thus different from ’exploring all the possibilities’ – on the contrary, when the number of parameters becomes
large, the model is unlikely to stumble upon any non-generic possibility.
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Figure 4: Theoretically predicted coexistence, abundance and stability properties for the assembled state of
the random Lotka-Volterra model, as we vary µ = S ⟨Aij⟩, σ =

√
Svar(Aij). The uniform area in the left

of each graph signals the parameter region where abundances diverge (breakdown of the LV model due to
strong mutualism). The bottom-right graph showcases the phase parameter: the sharp line where it diverges
indicates the transition from the single-equilibrium regime (below the line) where our analytical results are
exact for the reference model, to the chaotic regime (above the line) where they are approximate. Reproduced
from Barbier et al. (2018).
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Figure 5: An archetypal representation of a metacommunity. Here we study the Jacobian Matrix foor a
linearizeddynamic model, but the representation still captures the essence of the idea. Local interactions
are represented by the A matrix that has intraspecific interactions (along the main diagonal that represent
environmental selection), interspecific interactions (in the off-diagonal elements of the submatrices along the
main diagonal), and dispersal in the off-diagonal matrices. A relevant formulation of DSM model for this
representation would have each of these elements characterized by means and variances. And additional
structure to generate relevant PSMs would involve modifying this general model to partition these matrices
in relevant ways or by imposing correlations among the parameters. For example, the set of dispersal matrices
could be constrained to allow only local dispersal (only matrices along the most proximal matrix to the main
diagonal have non-zero values) vs global dispersal (there are no off diagonal matrices that are zero).
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