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Abstract 20 

Behavioural ecotoxicology has emerged as a key research area, offering sensitive and 21 

ecologically meaningful endpoints for detecting contaminant effects. Much of this work has 22 

focused on pharmaceutical pollutants, now widely recognised as contaminants of emerging 23 

concern. Given the field’s rapid growth and increasing data availability, we synthesised four 24 

global databases to evaluate the environmental relevance of tested concentrations—using 25 

behavioural ecotoxicology and pharmaceuticals as a case study. We compared data from over 26 

760 behavioural studies with more than 10 million pharmaceutical occurrence data in surface 27 

water and wastewater. On average, minimum tested concentrations were 43 times higher than 28 

median surface water levels and 10 times median concentrations in wastewater. Roughly half 29 

of all compounds were never evaluated at concentrations below the upper end of wastewater 30 

detections (95th percentile). We found weak alignment between the pharmaceuticals most 31 

frequently tested and those most commonly detected in aquatic environments. These results 32 

reveal a mismatch between experimental design and environmental exposure conditions. We 33 

recommend incorporating occurrence data into dose selection, prioritising the inclusion of at 34 

least one environmentally realistic concentration—ideally near a measure of central tendency. 35 

For pharmaceuticals, we provide a consolidated database and an automated tool to support 36 

environmentally informed study design. 37 

 38 
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 43 

Synopsis: 44 

We found that pharmaceutical exposures used in behavioural tests often exceed 45 

environmentally relevant concentrations, limiting their ecological relevance. 46 

  47 



Introduction 48 

Behavioural ecotoxicology has emerged as a rapidly expanding field, offering sensitive and 49 

ecologically meaningful endpoints for detecting contaminant effects on wildlife [1–3]. Behaviour 50 

is the product of sub-organismal molecular and physiological processes that ultimately 51 

determines functions essential for survival and reproduction—such as foraging, predator 52 

avoidance, and social interaction.  Therefore, it is often said to serve as an early warning signal 53 

of potential population-level impacts [3–6]. Reflecting this relevance, research in behavioural 54 

ecotoxicology has more than tripled over the past two decades [7], with growing interest in 55 

integrating behavioural data into environmental risk assessments [8,9]. 56 

Much of this work has focused on the effects of pharmaceutical pollutants, which are 57 

now widely recognised as contaminants of emerging concern. Over 990 active compounds or 58 

their transformation products have been detected in aquatic environments globally [10]. These 59 

substances enter waterways via wastewater discharge, agriculture, and pharmaceutical 60 

manufacturing, and often persist due to continuous input and/or resistance to degradation [11]. 61 

Designed to act at low concentrations, many pharmaceuticals target conserved biological 62 

pathways—making even trace exposures a potential risk to non-target species [2,12,13]. 63 

Given the growing interest in behavioural endpoints, particularly regarding 64 

pharmaceutical pollutants, and their potential regulatory application, it is critical to assess 65 

whether laboratory exposures in this field include environmentally realistic conditions. 66 

Specifically, do the concentrations tested align with those observed in aquatic environments? 67 

Here, we integrated a global database of behavioural studies—EIPAAB (Evidence of the 68 

Impacts of Pharmaceuticals on Aquatic Animal Behaviour), spanning 48 years and 1,739 69 

species–compound combinations [14]—with three major international monitoring datasets that 70 

track pharmaceutical occurrence and concentrations in aquatic systems [10,15,16]. Our aims 71 

were twofold: (1) to assess whether the concentrations tested in behavioural studies reflect 72 

those measured in surface waters and wastewater, and (2) to evaluate whether the 73 

pharmaceuticals most frequently studied in behavioural ecotoxicology align with those most 74 

commonly detected in the environment. 75 

 76 

Materials and Methods 77 

Databases 78 

The databases used for this investigation were: (1) The Evidence of the Impacts of 79 

Pharmaceuticals on Aquatic Animal Behaviour (EIPAAB) database [14]; (2) The NORMAN 80 



EMPODAT database for chemical occurrence (accessed on 18/03/2025; [16]); (3) The 81 

Umweltbundesamt (UBA, German Environment Agency) Pharmaceuticals in the Environment 82 

database (PHARMS-UBA; accessed on 19/12/2024; [10]), and (4) Wilkinson et al. (2022) 83 

Pharmaceutical pollution of the world's rivers database [15] (see Table 1). 84 

The EIPAAB database was developed by Martin et al. (2025) [14] through a systematic 85 

review of 5,988 articles using a ‘PECO’ framework: studies involving aquatic organisms (P) 86 

exposed to pharmaceuticals (E), with behavioural outcomes (O) and a control group (C). The 87 

search spanned Web of Science, Scopus, and additional sources (e.g., reference lists, social 88 

media calls for supplementary literature). The final database includes 901 articles published 89 

between 1974 and 2022, covering 1,739 species–compound combinations and 426 unique 90 

pharmaceutical compounds. For the present study, we used metadata on compound names, 91 

CAS numbers, minimum exposure concentrations, publication year, and article motivation 92 

(e.g., environmental, medical, or basic research). 93 

The NORMAN EMPODAT Chemical Occurrence Database [16] is maintained by the 94 

NORMAN Network, an independent consortium of over 80 organisations focused on emerging 95 

substances across Europe. Established in 2009, the database contains geo-referenced 96 

monitoring and biomonitoring data across water, sediment, biota, soil, sludge, and air, with an 97 

emphasis on substances not yet included in routine monitoring programs. As of the latest 98 

update, it includes over 96 million data entries covering 4,567 substances from 39 European 99 

countries. Data are submitted via a standardised Data Collection Template (DCT) available 100 

through the NORMAN website. For the present study, we extracted metadata on compound 101 

names, CAS numbers, measured concentrations, concentration units, year, environmental 102 

matrix, reporting organisation, and whether the study followed one of the three-tier validation 103 

protocols (see Supplementary Materials, Quality Assurance and Quality Control (QA/QC) 104 

metadata; Table S1). 105 

The PHARMS-UBA database, maintained by the German Environment Agency (UBA), 106 

was compiled through three systematic literature reviews focused on measured environmental 107 

concentrations of pharmaceuticals [17–19]. The initial review [17] covered data from 1987 to 108 

2013 using multiple search strategies across peer-reviewed and grey literature, as well as 109 

European Commission databases. The subsequent reviews [18,19] extended the dataset 110 

through 2020. Together, these efforts screened over 12,000 articles and compiled 276,895 111 

entries covering 992 pharmaceutical compounds (Version: pharms-uba_v3_2021_0). For this 112 

study, we used metadata on compound names, CAS numbers, measured concentrations, 113 

concentration units (µg/L), statistical descriptions (aggregate or individual value), the 114 



environmental matrix in which the substance was detected, and literature credibility (see 115 

Supplementary Materials, Quality Assurance and Quality Control (QA/QC) metadata). 116 

The Wilkinson et al. database was produced through a standardised global sampling 117 

campaign of pharmaceutical pollution in rivers, spanning 1,052 locations across 104 countries 118 

and targeting 258 active pharmaceutical ingredients [15]. The resulting dataset, published as 119 

“Database of pharmaceutical concentrations at all the sampling locations monitored in this 120 

project” (Dataset S4), provides consistent occurrence data across regions. For this study, we 121 

extracted metadata on compound names and measured concentrations. 122 

 123 

Database filtering and tidying 124 

To ensure comparability across datasets, all concentration data were filtered to include only 125 

values reported in mass per volume of water (e.g., µg/L) for relevant surface water and 126 

wastewater samples. For the NORMAN EMPODAT database, we retained entries from eight 127 

surface water and four wastewater matrix categories (see Supplementary Materials, Data 128 

filtering). Wastewater data could not be filtered by influent or effluent status, as this metadata 129 

was unavailable. As a result, NORMAN wastewater values may reflect higher concentrations 130 

than would be expected for effluent alone, and thus our relative comparison between tested 131 

and observed wastewater concentrations is likely somewhat conservative. We also restricted 132 

entries to compounds listed in the NORMAN Pharmaceuticals Suspect List (PHARMA 133 

SusDat), comprising 9,626 compounds and 13,324 unique CAS numbers. For the PHARMS-134 

UBA database, we included six surface water and four effluent categories, covering samples 135 

subject to varying levels of treatment (e.g., primary, secondary). Only concentrations reported 136 

in mass per volume and as single values or aggregate central tendencies (e.g., mean or 137 

median) were retained; minimum and maximum summaries were excluded. Aggregated values 138 

comprised just 0.33% of the final dataset, and aggregated values represented unique data (i.e. 139 

they were not an aggregate of single values already in the database). No filtering was required 140 

for the Wilkinson et al. dataset, as all entries represented pharmaceuticals measured in surface 141 

water and were consistently reported in mass per volume of water. For the EIPAAB database, 142 

we retained only studies with an environmental motivation (i.e., removed research with a 143 

medical or basic research focus, as classified in Martin et al., 2025) and exposure 144 

concentrations reported in mass per volume units. 145 

To compare the pharmaceuticals used in the behavioural test database (EIPAAB) to 146 

those detected in the environment, we combined all environmental occurrence data across the 147 

three databases (n = 10,010,937; see Table 1 for a database breakdown) and created a 148 

compound-level summary (n = 1650 compounds). This summary included:  149 



● Total occurrence (i.e. total rows)  150 

● Number of samples (which differs from total occurrences because some values were 151 

summary values based on aggregated data from multiple samples) 152 

● Number of positive detections (i.e. above limit of quantification, not including 153 

aggregated values) 154 

● Median measured concentration 155 

● The upper and lower 95% credible intervals (95% CrIs) of measured concentrations 156 

using empirical quantiles 157 

● Percentage of positive detections (for compounds with >10 single sample values) 158 

● Relative rank occurrence (1–1650) 159 

● Relative rank detection frequency (i.e. rank of number of positive detections divided by 160 

total occurrence; 1–1424) 161 

Estimates of median concentration and 95% credible intervals (CrIs) were calculated 162 

separately for surface water and wastewater matrices, using only positive detections (i.e., 163 

values above zero or above detection limits). This approach was taken for two reasons: (1) we 164 

assume that researchers designing exposure studies are simulating contamination scenarios 165 

at impacted sites, rather than aiming to replicate a theoretical global average; and (2) excluding 166 

non-detections provides a more conservative basis for comparing tested concentrations in 167 

behavioural studies with those observed in the environment. When sample size was not 168 

reported for aggregate values, we assumed a value of two—resulting in likely underestimates 169 

of total sample size. Only PHARMS-UBA provided central tendency values; among these, 170 

4,023 entries lacked sample size metadata (<0.05% of all data), making our estimates of 171 

sample count very close to actual values. To reduce the influence of extreme outliers on 172 

compound-level comparisons, we used the upper bound of the 95% CrI as a more conservative 173 

estimate of the maximum concentration rather than the actual maximum observed 174 

concentration.  175 

  176 



Table 1. Number of pharmaceutical compounds and data entries from each of the four databases that 177 
were included in this study (not the total number present in each database, see Methods, data filtering 178 
and tidying for more details). In EIPAAB, each entry represents a distinct pharmaceutical exposure 179 
assay (a single article may contain multiple assays across compounds or species). In the environmental 180 
databases (NORMAN, PHARMS-UBA, and Wilkinson), each entry corresponds to a single 181 
measurement of a compound in a water sample. PHARMS-UBA includes some aggregate entries (e.g., 182 
mean or median values), though these account for only 0.33% of the total. 183 

Source Number of compounds  Data 

EIPAAB 184 767 

NORMAN* 1,379 9,382,388 

PHARMS-UBA 911 562,865 

Wilkinson 61 64,132 

Total 1,760 10,010,152 
* The NORMAN database was filtered to remove data from the German Environment Agency (UBA), and restricted 184 
to 2014-2022, as the PHARMS-UBA also included data from NORMAN prior to 2014; thus, this number is not the 185 
true total number of pharmaceutical samples present in the whole NORMAN database. 186 

Analysis 187 

All analyses were conducted in R (v4.2.3) using RStudio (Build 463) [20]. To evaluate whether 188 

pharmaceutical concentrations tested in behavioural ecotoxicology studies reflect those found 189 

in the environment, we fitted Bayesian linear regression models (via the brm function, brms 190 

package; [21]). Models predicted log-transformed minimum tested concentrations from the 191 

EIPAAB database as a function of log-transformed median surface water or wastewater 192 

concentrations, with relative publication year (years since 1992) and number of doses used in 193 

the study were included as covariates. Both models assumed a Gaussian likelihood. To 194 

evaluate the potential influence of environmental data quality, we repeated the analysis using 195 

a filtered subset of records for which Quality Assurance/Quality Control (QA/QC) metadata 196 

were available (see Supplementary Materials for details).  197 

To assess alignment between the most frequently studied pharmaceuticals in 198 

behavioural ecotoxicology and those most commonly detected in surface waters, we compared 199 

the frequency of behavioural exposure assays per compound with two environmental detection 200 

metrics: (1) the total number of positive detections in surface waters and (2) the percentage of 201 

positive detections in surface waters (i.e., detections relative to total samples). The total 202 

number reflects overall monitoring frequency, while the percentage accounts for sampling 203 

effort, together providing a more comprehensive view of environmental occurrence. These 204 

comparisons were analysed using Bayesian Negative Binomial Regression, appropriate for 205 

overdispersed count data. 206 



All models were run with four MCMC chains using default weakly informative priors, each 207 

with 8,000 iterations and a 1,000-iteration warm-up. Convergence was confirmed via trace 208 

plots and R-hat diagnostics (R-hat = 1.00). Results are presented as posterior means with 95% 209 

credible intervals (CrIs), and inference was based on whether CrIs excluded zero. 210 

 211 

Results 212 

We compared 767 behavioural exposure assays from the EIPAAB database with 10,009,385 213 

environmental water samples, comprising 9,727,633 surface water and 281,752 wastewater 214 

measurements from the NORMAN, PHARMS-UBA, and Wilkinson datasets. Of the 184 215 

pharmaceuticals tested in behavioural studies, 167 (90.8%) had corresponding environmental 216 

detection (either surface water or in wastewater). 217 

Minimum tested concentrations in behavioural studies were not strongly predicted by 218 

median surface water concentrations (Bayesian linear regression: β = 0.127, 95% CrI: –0.133 219 

to 0.389; Fig. 1a). In contrast, there was a positive relationship with median wastewater 220 

concentrations (β = 0.679, 95% CrI: 0.526 to 0.841; Fig. 1b), where a 1% increase in 221 

environmental concentration corresponded to an average 0.67% increase in tested 222 

concentration, after controlling for publication year and the number of doses used. To ensure 223 

this relationship was not driven by a high-concentration outlier (highlighted in Fig. 1b), we 224 

conducted a sensitivity analysis, which confirmed the estimate remained robust (see 225 

Supplementary Materials, Outlier verification). In both surface water and wastewater models, 226 

tested concentrations declined over time. For surface water and wastewater models, tested 227 

concentrations in the behavioural ecotoxicology literature decreased by an average of 10.1% 228 

(β = –0.106, 95% CrI: –0.170 to –0.042) and 12.6% (β = –0.134, 95% CrI: –0.195 to –0.073) 229 

per year, respectively (Fig. S1). The number of test doses used in the exposure did not appear 230 

to predict the minimum dose used (Table S2-S3). 231 



 232 

Figure 1. Relationship between environmental concentrations and tested concentrations in behavioural 233 
studies. (A) Median surface water concentrations vs. minimum tested concentrations in behavioural 234 
ecotoxicology (n = 706); (B) median wastewater concentrations vs. minimum tested concentrations in 235 
behavioural ecotoxicology (n = 714). All concentrations are reported in micrograms per litre (µg/L) and 236 
plotted on a log scale for interpretability. Lines represent Bayesian log–log linear regression estimates. 237 
For panel B, a sensitivity analysis confirmed the relationship was robust to the exclusion of the 238 
highlighted outlier (†; see Supplementary Materials, Outlier verification) 239 

 240 

Across 706 exposures that used compounds with corresponding positive surface water 241 

detections, just 19% of behavioural studies used concentrations below the median, and 38% 242 

fell below the upper 95% credible interval. For wastewater, 23.4% of behavioural studies used 243 

concentrations below the median, and 53.1% were below the upper 95% CrI, based on the 244 

714 exposures with corresponding positive wastewater detections. On average, 245 

concentrations used in behavioural studies were 43 times higher than median surface water 246 

levels (Fig. 2) and 10 times higher than median wastewater levels (Fig. S2). Overall, 50.4% of 247 

compounds (70 of 139 with corresponding surface water detections) were never tested at 248 

concentrations below the high end of surface water levels, and 44.6% (66 of 148 with 249 

corresponding wastewater detections) were never tested below the highest end of typical 250 

wastewater levels (defined as the upper 95% CrI). The QA/QC-restricted analysis largely 251 

aligned with the primary model, with only one notable deviation for inference (see 252 

Supplementary Materials, QA/QC Sensitivity Analysis; Table S4–S5).  253 

 254 



 255 

Figure 2. Fold difference between minimum tested concentrations (for 706 exposures) and median surface water 256 
concentrations for 139 pharmaceutical compounds with positive environmental detections. (A) Compounds in the 257 
lower half of fold differences; (B) compounds in the upper half. Blue shading in (A) highlights compounds with mean 258 
exposure concentrations in behavioural ecotoxicology studies equal to or below environmental levels (i.e. fold 259 
difference ≤ 1). Point colour indicates compound frequency in the behavioural database. 260 

 261 

There was a weak positive relationship between the number of behavioural exposure assays 262 

per compound (EIPAAB) and the total number of surface water detections (i.e., samples above 263 

detection limits) across the environmental databases (Bayesian Negative Binomial 264 

Regression: β = 1.11 × 10⁻⁴, 95% CrI: 4.24 × 10⁻⁵ to 1.90 × 10⁻⁴). Each additional surface 265 

water detection increased the expected number of behavioural assays by just 0.01% (Fig. 266 



S3A). A similarly small positive effect was observed for the percentage of positive 267 

environmental samples (β = 0.011, 95% CrI: 0.001 to 0.022), where each 1% increase in 268 

detection frequency corresponded to a 1.15% increase in EIPAAB assay count (Fig. S3A).  269 

 270 

Discussion 271 

With pharmaceutical pollution as a case study, we evaluated whether the concentrations and 272 

compounds tested in behavioural ecotoxicology align with those most commonly found in 273 

aquatic environments. By integrating over 10 million global environmental concentration 274 

records with 767 behavioural exposure assays, we reveal a substantial disconnect between 275 

tested concentrations and environmental reality, with the minimum tested concentrations in 276 

behavioural studies being, on average, 43 times higher than median surface water 277 

concentrations and 10 times higher than median wastewater concentrations. Over half of all 278 

compounds were never tested at concentrations below the upper 95% credible interval (i.e., 279 

likely maximum value) for their concentrations in wastewater. 280 

We propose that the misalignment between tested and observed concentrations may, in 281 

part, be a result of temporal shifts in the availability of relevant environmental concentration 282 

data and the precision with which we can measure these types of compounds. Improvements 283 

in analytical chemistry have lowered detection limits and enabled broader contaminant 284 

screening capabilities [22], while inclusion of select pharmaceuticals on regulatory monitoring 285 

lists, such as the EU Watch List (starting in 2015 with the Commission Implementing Decision 286 

(EU) 2015/495) and NORMAN Network Suspect & Monitoring Lists (starting 2007, with formal 287 

use by the European Commission form 2015), has also increased monitoring efforts—resulting 288 

in a clear picture of which pharmaceuticals are present in surface waters, and at what 289 

concentrations. This is generally supported by annual trends observed in the PHARMS-UBA 290 

database—the database for which we have the best temporal distribution—for both total 291 

sampling effort and the cumulative number of pharmaceuticals reported (Fig. S4). Thus, we 292 

acknowledge that older behavioural studies may have been designed with limited reference 293 

points for environmental relevance. Indeed, we found that tested concentrations have been 294 

reducing by approximately 10% annually, reflecting a broad movement towards more 295 

environmentally realistic exposures.  296 

With this said, when controlling for study year, we detected a positive association 297 

between the minimum test concentrations in behavioural studies and median observed 298 

wastewater concentrations. However, there was no strong support for an association between 299 

test concentrations and surface water concentrations. This may reflect the desire of 300 



researchers to replicate the more extreme scenarios of environmental pollution—such as 301 

effluent-dominated systems—as a basis for study design, either by using direct effluent 302 

concentrations or selecting more extreme concentrations from surface water reports as their 303 

minimum dose. 304 

To our knowledge, our study is the first to perform a cross-database quantitative 305 

comparison of tested to field-observed concentration on this scale. We are aware of only a few 306 

other attempts to compare tested concentrations with environmental observation 307 

concentrations in ecotoxicology, but for those that do exist, our findings seem to align [23,24]. 308 

For instance, Wolf and Segner (2023) [23] reviewed 50 ecotoxicology studies spanning various 309 

chemicals (e.g. pesticides, heavy metals, pharmaceuticals) and showed that the majority of 310 

toxicologically tested concentrations far exceeded those found in nature, with little justification 311 

for their selection. Similarly, Mills et al. (2023) [24] reported that rodent toxicology studies on 312 

microplastics used doses hundreds of thousands of times higher than those found in terrestrial 313 

soils. Although studies like these are few, the patterns suggest a potentially widespread trend 314 

across ecotoxicology: a tendency to prioritise proof-of-concept effects over environmentally 315 

realistic scenarios. 316 

Failing to incorporate environmentally realistic doses is particularly pressing for studies 317 

assessing sublethal endpoints, such as behaviour, which can be highly sensitive to very low 318 

concentrations of contaminants [3,6]. Unlike traditional apical endpoints (e.g. survival or 319 

growth), behavioural traits often respond to subtle (neuro)physiological or hormonal disruptions 320 

that can occur well below concentrations typically associated with overt toxicity [4]. In such 321 

cases, omitting low, environmentally relevant doses may obscure real-world risks. 322 

Furthermore, many pharmaceuticals—including endocrine disruptors, anxiolytics, and 323 

antidepressants—exhibit non-monotonic dose–response relationships, where the effect size 324 

does not consistently increase with concentration [25,26]. In such scenarios, key biological 325 

effects may only emerge at low or intermediate doses, while higher doses may produce 326 

diminished or qualitatively different effects. Failure to include environmentally realistic 327 

concentrations in the experimental design may therefore miss ecologically relevant responses 328 

or lead to misleading conclusions about a compound’s potency or mode of action. 329 

More broadly, the absence of low-dose testing hinders the field’s ability to inform 330 

ecologically meaningful thresholds, complicates the derivation of risk-based benchmarks, and 331 

limits the use of behavioural data in regulatory contexts, where environmental realism is a 332 

growing expectation. In summary, we recognise that it can be important to include doses that 333 

exceed typical environmental doses to establish a dose-response relationship or facilitate the 334 

inclusion of procedural treatments like positive controls, and recognise that reliable no-335 



observed effect concentrations (NOEC) at higher doses can be valuable when monotonic 336 

dose-response relationships can be reasonably assumed. With that said, we advocate for 337 

future studies assessing sublethal endpoints such as behaviour—where the objective is often 338 

to characterise plausible ecological effects rather than to define a dose-response 339 

relationship—consider environmental concentration distributions as a starting point, with doses 340 

centred on (or a least starting with) a measure of central tendency (e.g., the median or 341 

geometric mean of observed concentrations), and spaced using a consistent log-scale interval 342 

(e.g. 3.2x; as typically applied in ecotoxicological studies, [27]), to capture a meaningful 343 

proportion of the environmental concentration distribution. To facilitate this, we provide an R 344 

function, `select_dose()`, that automates the process using environmental data distributions 345 

(Supplementary File 1), along with a table and data file that include the compiled data for 1,139 346 

pharmaceutical compounds (Supplementary File 2). 347 
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