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Abstract 20 

Behavioural ecotoxicology has rapidly emerged as a key area of research, offering sensitive 21 

and ecologically meaningful endpoints for detecting sub-lethal effects of contaminants. Much 22 

of this work has focused on pharmaceutical pollutants, now widely recognised as contaminants 23 

of emerging concern in aquatic systems. Given the field’s rapid growth and the availability of 24 

large-scale open-access datasets, we have synthesized across four global databases to 25 

evaluate the environmental relevance of tested concentrations—using behavioural 26 

ecotoxicology and pharmaceutical pollutants as a case study.  We compare exposure data 27 

from more than 760 behavioural studies with over 10 million aquatic pharmaceutical 28 

occurrence records from global monitoring databases. On average, minimum tested 29 

concentrations were 43 times higher than median surface water levels and 10 times higher 30 

than median concentrations in treated wastewater. Over half of all tested compounds were 31 

never evaluated at concentrations below the highest end of wastewater detections (upper 95% 32 

credible interval). Additionally, there was only weak alignment between the pharmaceuticals 33 

most frequently tested and those most commonly detected in aquatic environments. These 34 

findings reveal a disconnect between experimental design and environmental exposure, 35 

potentially limiting the ecological and regulatory relevance of behavioural endpoints in 36 

pharmaceutical risk assessment. 37 

 38 
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 43 

Synopsis: 44 

We found that pharmaceutical exposures used in behavioural tests often exceed 45 

environmentally relevant concentrations, limiting their utility for ecological risk assessment.  46 



Introduction 47 

Behavioural ecotoxicology has emerged as a rapidly expanding field, offering sensitive and 48 

ecologically meaningful endpoints for detecting contaminant effects on wildlife [1–3]. Behaviour 49 

is the product of sub-organismal molecular and physiological processes that ultimately 50 

determines functions essential for survival and reproduction—such as foraging, predator 51 

avoidance, and social interaction.  Therefore, it is often said to serve as an early warning signal 52 

of potential population-level impacts [3–6]. Reflecting this relevance, research in behavioural 53 

ecotoxicology has more than tripled over the past two decades [7], with growing interest in 54 

integrating behavioural data into environmental risk assessments [8,9]. 55 

Much of this work has focused on the effects of pharmaceutical pollutants, which are 56 

now widely recognised as contaminants of emerging concern. Over 990 active compounds or 57 

their transformation products have been detected in aquatic environments globally [10]. These 58 

substances enter waterways via wastewater discharge, agriculture, and pharmaceutical 59 

manufacturing, and often persist due to continuous input and resistance to degradation [11]. 60 

Designed to act at low concentrations, many pharmaceuticals target conserved biological 61 

pathways—making even trace exposures a potential risk to non-target species [2,12,13]. 62 

Given the growing interest in behavioural endpoints, particularly regarding 63 

pharmaceutical pollutants, and their potential regulatory application, it is critical to assess 64 

whether laboratory exposures in this field include environmentally realistic conditions. 65 

Specifically, do the concentrations tested align with those observed in aquatic environments? 66 

Here, we integrated a global database of behavioural studies—EIPAAB (Evidence of the 67 

Impacts of Pharmaceuticals on Aquatic Animal Behaviour), spanning 48 years and 1,739 68 

species–compound combinations [14]—with three major international monitoring datasets that 69 

track pharmaceutical occurrence and concentrations in aquatic systems [10,15,16]. Our aims 70 

were twofold: (1) to assess whether the concentrations tested in behavioural studies reflect 71 

those measured in surface waters and wastewater, and (2) to evaluate whether the 72 

pharmaceuticals most frequently studied in behavioural ecotoxicology align with those most 73 

commonly detected in the environment. 74 

 75 

Materials and Methods 76 

Databases 77 

The databases used for this investigation were: (1) The Evidence of the Impacts of 78 

Pharmaceuticals on Aquatic Animal Behaviour (EIPAAB) database [14]; (2) The NORMAN 79 



EMPODAT database for chemical occurrence (accessed on 18/03/2025; [16]); (3) The 80 

Umweltbundesamt (UBA, German Environment Agency) Pharmaceuticals in the Environment 81 

database (PHARMS-UBA; accessed on 19/12/2024; [10]), and (4) Wilkinson et al. (2022) 82 

Pharmaceutical pollution of the world's rivers database [15]. For a numerical summary of the 83 

data included from each database, see Table 1. 84 

The EIPAAB database was developed by Martin et al. (2025) [14] through a systematic 85 

review of 5,988 articles using a ‘PECO’ framework: studies involving aquatic organisms (P) 86 

exposed to pharmaceuticals (E), with behavioural outcomes (O) and a control group (C). The 87 

search spanned Web of Science, Scopus, and additional sources (e.g., reference lists, social 88 

media calls). The final database includes 901 articles published between 1974 and 2022, 89 

covering 1,739 species–compound combinations and 426 unique pharmaceutical compounds. 90 

For this study, we used metadata on compound names, CAS numbers, minimum exposure 91 

concentrations, publication year, and article motivation (e.g., environmental, medical, or basic 92 

research). 93 

The NORMAN EMPODAT Chemical Occurrence Database [16] is maintained by the 94 

NORMAN Network, an independent consortium of over 80 organisations focused on emerging 95 

substances across Europe. Established in 2009. the database contains geo-referenced 96 

monitoring and biomonitoring data across water, sediment, biota, soil, sludge, and air, with an 97 

emphasis on substances not yet included in routine monitoring programs. As of the latest 98 

update, it includes over 96 million data entries covering 4,567 substances from 39 European 99 

countries. Data are submitted via a standardised Data Collection Template (DCT) available 100 

through the NORMAN website. For this study, we extracted metadata on compound names, 101 

CAS numbers, measured concentrations, concentration units, year, environmental matrix, and 102 

reporting organisation. 103 

The PHARMS-UBA database, maintained by the German Environment Agency (UBA), 104 

was compiled through three systematic literature reviews focused on measured environmental 105 

concentrations of pharmaceuticals [17–19]. The initial review [17] covered data from 1987 to 106 

2013 using multiple search strategies across peer-reviewed and grey literature, as well as 107 

European Commission databases. The subsequent reviews [18,19] extended the dataset 108 

through 2020. Together, these efforts screened over 12,000 articles and compiled 276,895 109 

entries covering 992 pharmaceutical compounds (Version: pharms-uba_v3_2021_0). For this 110 

study, we used metadata on compound names, CAS numbers, measured concentrations, 111 

concentration units (µg/L), statistical descriptions (aggregate or individual value), and the 112 

environmental matrix in which the substance was detected. 113 



The Wilkinson et al. database was produced through a standardised global sampling 114 

campaign of pharmaceutical pollution in rivers, spanning 1,052 locations across 104 countries 115 

and targeting 258 active pharmaceutical ingredients [15]. The resulting dataset, published as 116 

“Database of pharmaceutical concentrations at all the sampling locations monitored in this 117 

project” (Dataset S4), provides consistent occurrence data across regions. For this study, we 118 

extracted metadata on compound names and measured concentrations. 119 

 120 

Database filtering and tidying 121 

To ensure comparability across datasets, all concentration data were filtered to include only 122 

values reported in mass per volume of water (e.g., µg/L) for relevant surface water and 123 

wastewater samples. For the NORMAN EMPODAT database, we retained entries from eight 124 

surface water and four wastewater matrix categories (see Supplementary File 1). As influent 125 

and effluent could not be distinguished, both were included. We also restricted entries to 126 

compounds listed in the NORMAN Pharmaceuticals Suspect List (PHARMA SusDat), 127 

comprising 9,626 compounds and 13,324 unique CAS numbers. For the PHARMS-UBA 128 

database, we included six surface water and four effluent categories, covering samples subject 129 

to varying levels of treatment (e.g., primary, secondary). Only concentrations reported in mass 130 

per volume and as single values or aggregate central tendencies (e.g., mean or median) were 131 

retained; minimum and maximum summaries were excluded. Aggregated values made up just 132 

0.33% of the final dataset, and aggregated values represented unique data (i.e. they were not 133 

an aggregate of single values already in the database). No filtering was required for the 134 

Wilkinson et al. dataset, as all entries represented pharmaceuticals measured in surface water 135 

and were consistently reported in µg/L. For the EIPAAB database, we retained only studies 136 

with an environmental motivation (as classified in Martin et al., 2025) and exposure 137 

concentrations reported in mass per volume units. 138 

To compare the pharmaceuticals used in the behavioural test database (EIPAAB) to 139 

those detected in the environment, we combined all environmental occurrence data across the 140 

three databases (n = 10,010,937; see Table 1 for a database breakdown) and created a 141 

compound-level summary (n = 1650 compounds). This summary included:  142 

● Total occurrence (i.e. total rows)  143 

● Number of samples (which differs from total occurrences because some values were 144 

summary values based on aggregated data from multiple samples) 145 

● Number of positive detections (i.e. above limit of quantification, not including 146 

aggregated values) 147 

● Median measured concentration 148 



● The upper and lower 95% credible intervals (95% CrIs) of measured concentrations 149 

using empirical quantiles 150 

● Percentage of positive detections (for compounds with >10 single sample values) 151 

● Relative rank occurrence (1–1650) 152 

● Relative rank detection frequency (i.e. rank of number of positive detections divided by 153 

total occurrence; 1–1424) 154 

Estimates of median concentration and 95% credible intervals (CrIs) were calculated 155 

separately for surface water and wastewater matrices, using only positive detections (i.e., 156 

values above zero or above detection limits). This approach was taken for two reasons: (1) we 157 

assume that researchers designing exposure studies are simulating contamination scenarios 158 

at impacted sites, rather than aiming to replicate a theoretical global average; and (2) excluding 159 

non-detections provides a more conservative basis for comparing tested concentrations in 160 

behavioural studies with those observed in the environment. When sample size was not 161 

reported for aggregate values, we assumed a value two —resulting in likely underestimates of 162 

total sample size. Only PHARMS-UBA provided central tendency values; among these, 4,023 163 

entries lacked sample size metadata (<0.05% of all data), making our estimates of sample 164 

count very close to actual values. To reduce the influence of extreme outliers on compound-165 

level comparisons, we used the upper bound of the 95% CrI as a more conservative estimate 166 

of the maximum concentration rather than the actual maximum observed concentration. 167 

 168 

Table 1. Number of pharmaceutical compounds and data entries included from each of the four 169 
databases used in this study (EIPAAB, NORMAN, PHARMS-UBA, and Wilkinson). In EIPAAB, each 170 
entry represents a distinct pharmaceutical exposure assay (a single article may contain multiple assays 171 
across compounds or species). In the environmental databases, each entry corresponds to a single 172 
measurement of a compound in a water sample. PHARMS-UBA includes some aggregate entries (e.g., 173 
mean or median values), though these account for only 0.33% of the total. 174 

Source Number of compounds  Data 

EIPAAB 184 767 

NORMAN* 1,379 9,382,388 

PHARMS-UBA 911 564,417 

Wilkinson 61 64,132 

Total 1,760 10,011,704 
* The NORMAN database was filtered to remove data from the German Environment Agency (UBA), and restricted 175 
to 2014-2022, as the PHARMS-UBA also included data from NORMAN prior to 2014; thus, this number is not the 176 
true total number of pharmaceutical samples present in the whole NORMAN database. 177 



Analysis 178 

All analyses were conducted in R (v4.2.3) using RStudio (Build 463) [20]. To evaluate 179 

whether pharmaceutical concentrations tested in behavioural ecotoxicology studies reflect 180 

those found in the environment, we fitted Bayesian linear regression models (via the brm 181 

function, brms package; [21]). Models predicted log-transformed minimum tested 182 

concentrations from the EIPAAB database as a function of log-transformed median surface 183 

water or wastewater concentrations, with relative publication year (years since 1992) 184 

included as a covariate. Both models assumed a Gaussian likelihood. 185 

To assess alignment between the most frequently studied pharmaceuticals in 186 

behavioural ecotoxicology and those most commonly detected in the environment, we 187 

compared the frequency of behavioural exposure assays per compound with two 188 

environmental detection metrics: (1) the total number of positive detections and (2) the 189 

percentage of positive detections (i.e., detections relative to total samples). The total number 190 

reflects overall monitoring frequency, while the percentage accounts for sampling effort, 191 

together providing a more comprehensive view of environmental occurrence. These 192 

comparisons were analysed using Bayesian Negative Binomial Regression, appropriate for 193 

overdispersed count data. 194 

All models were run with four MCMC chains using default weakly informative priors, 195 

each with 8,000 iterations and a 1,000-iteration warm-up. Convergence was confirmed via 196 

trace plots and R-hat diagnostics (R-hat = 1.00). Results are presented as posterior means 197 

with 95% credible intervals (CrIs), and inference was based on whether CrIs excluded zero. 198 

 199 

Results 200 

We compared 767 behavioural exposure assays from the EIPAAB database with 10,009,385 201 

environmental water samples, comprising 9,727,633 surface water and 281,752 wastewater 202 

measurements from the NORMAN, PHARMS-UBA, and Wilkinson datasets. Of the 184 203 

pharmaceuticals tested in behavioural studies, 167 (90.8%) had corresponding environmental 204 

occurrence data. 205 

Minimum tested concentrations in behavioural studies were not strongly predicted by 206 

median surface water concentrations (Bayesian linear regression: β = 0.135, 95% CrI: –0.123 207 

to 0.393; Fig. 1a). In contrast, there was a positive relationship with median wastewater 208 

concentrations (β = 0.665, 95% CrI: 0.505 to 0.823; Fig. 1b), where a 1% increase in 209 

environmental concentration corresponded to an average 0.67% increase in tested 210 

concentration, after controlling for publication year. In both models, tested concentrations 211 



declined significantly over time. For surface water and wastewater models, tested 212 

concentrations in the behavioural ecotoxicology literature decreased by an average of  10.4% 213 

(β = –0.110, 95% CrI: –0.173 to –0.046) and 12.2% (β = –0.130, 95% CrI: –0.189 to –0.070) 214 

per year, , respectively (Fig. S2 and S4). 215 

 216 

Figure 1. Relationship between environmental concentrations and tested concentrations in behavioural 217 
studies. (A) Median surface water concentrations vs. minimum tested concentrations in behavioural 218 
ecotoxicology; (B) median wastewater concentrations vs. minimum tested concentrations in behavioural 219 
ecotoxicology. All concentrations are reported in micrograms per litre (µg/L) and plotted on a log scale 220 
for interpretability. Lines represent Bayesian log–log linear regression estimates. 221 

 222 

Across 706 compounds with both behavioural and surface water data, only 19% of behavioural 223 

studies used concentrations below the median environmental level, and 38% fell below the 224 

upper 95% credible interval (CrI; Table S2). For wastewater (714 matched cases), just 23.4% 225 

of behavioural studies used concentrations below the median, and 53.1% were below the 226 

upper 95% CrI. On average, concentrations used in behavioural studies were 43 times higher 227 

than median surface water levels (Fig. 2) and 10 times higher than median wastewater levels 228 

(Fig. S5). Overall, 50.4% of compounds (70 of 139) were never tested at concentrations below 229 

the high end of surface water levels, and 44.6% (66 of 148) were never tested below the high 230 

end of typical wastewater levels (defined as the upper 95% CrI). 231 



 232 

Figure 2. Fold difference between tested concentrations and median surface water concentrations for 139 233 

pharmaceutical compounds. (A) Compounds in the lower half of fold differences; (B) compounds in the upper half. 234 

Blue shading in (A) highlights compounds with mean exposure concentrations in behavioural ecotoxicology 235 

studies equal to or below environmental levels (i.e. fold difference ≤ 1). Point colour indicates compound 236 

frequency in the behavioural database. 237 

 238 

There was a weak positive relationship between the number of behavioural exposure assays 239 

per compound (EIPAAB) and the total number of environmental detections (i.e., samples 240 

above detection limits) across the environmental databases (Bayesian Negative Binomial 241 



Regression: β = 1.11 × 10⁻⁴, 95% CrI: 4.24 × 10⁻⁵ to 1.90 × 10⁻⁴; Fig. 3a). Each additional 242 

environmental detection increased the expected number of behavioural assays by just 0.01% 243 

(Fig. S10). A similarly small positive effect was observed for the percentage of environmental 244 

samples testing positive (β = 0.011, 95% CrI: 0.001 to 0.022), where each 1% increase in 245 

detection frequency corresponded to a 1.15% increase in EIPAAB assay count (Fig. S11). 246 

These results are further discussed in Supplementary File 1. 247 

 248 

Discussion 249 

With pharmaceutical pollution as a case study, we evaluated whether the concentrations and 250 

compounds tested in behavioural ecotoxicology align with those most commonly found in 251 

aquatic environments. By integrating over 10 million global environmental concentration 252 

records with 767 behavioural exposure assays, we reveal a substantial disconnect between 253 

tested concentrations and environmental reality, with the minimum tested concentrations in 254 

behavioural studies being, on average, 43 times higher than median surface water 255 

concentrations and 10 times higher than median wastewater concentrations. Over half of all 256 

compounds were never tested at concentrations below the upper 95% credible interval (i.e., 257 

likely maximum value) for their concentrations in wastewater. 258 

We propose that the misalignment between tested and observed concentrations may, in 259 

part, be a result of temporal shifts in the availability of relevant environmental concentration 260 

data and the precision with which we can measure these types of compounds. Improvements 261 

in analytical chemistry have lowered detection limits and enabled broader contaminant 262 

screening capabilities [22], while inclusion of select pharmaceuticals on regulatory monitoring 263 

lists, such as the EU Watch List (starting in 2015 with the Commission Implementing Decision 264 

(EU) 2015/495) and NORMAN Network Suspect & Monitoring Lists (starting 2007, with formal 265 

use by the European Commission form 2015), has also increased monitoring efforts—resulting 266 

in a clear picture of which pharmaceuticals are present in surface waters, and at what 267 

concentrations. This is generally supported by annual trends observed in the PHARMS-UBA 268 

database—the database for which we have the best temporal distribution—for both total 269 

sampling effort (Figure S10) and the cumulative number of pharmaceuticals reported (Figure 270 

S11). Thus, we acknowledge that older behavioural studies may have been designed with 271 

limited reference points for environmental relevance. Indeed, we found that tested 272 

concentrations have been reducing by approximately 10% annually, reflecting a broad 273 

movement towards more environmentally realistic exposures.  274 



With this said, when controlling for study year, we detected a positive association 275 

between the minimum test concentrations in behavioural studies and median observed 276 

wastewater concentrations. However, there was no strong support for an association between 277 

test concentrations and surface water concentrations. This may reflect the desire of 278 

researchers to replicate the more extreme scenarios of environmental pollution—such as 279 

effluent-dominated systems—as a basis for study design, either by using direct effluent 280 

concentrations or selecting more extreme concentrations from surface water reports as their 281 

minimum dose.  282 

To our knowledge, our study is the first to perform a cross-database quantitative 283 

comparison of tested to field-observed concentration on this scale. We are aware of only a few 284 

other attempts to compare tested concentrations with environmental observation 285 

concentrations in ecotoxicology, but for those that do exist, our findings seem to align [23,24]. 286 

For instance, Wolf and Segner (2023) [23] reviewed 50 ecotoxicology studies spanning various 287 

chemicals (e.g. pesticides, heavy metals, pharmaceuticals) and showed that the majority of 288 

toxicologically tested concentrations far exceeded those found in nature, with little justification 289 

for their selection. Similarly, Mills et al. (2023) [24] reported that rodent toxicology studies on 290 

microplastics used doses hundreds of thousands of times higher than those found in terrestrial 291 

soils. Although studies like these are few, the patterns suggest a potentially widespread trend 292 

across ecotoxicology: a tendency to prioritise proof-of-concept effects over environmentally 293 

realistic scenarios. 294 

Failing to incorporate environmentally realistic doses is particularly pressing for studies 295 

assessing sublethal endpoints, such as behaviour, which can be highly sensitive to very low 296 

concentrations of contaminants [3,6]. Unlike traditional apical endpoints (e.g. survival or 297 

growth), behavioural traits often respond to subtle (neuro)physiological or hormonal disruptions 298 

that can occur well below concentrations typically associated with overt toxicity [4]. In such 299 

cases, omitting low, environmentally relevant doses may obscure real-world risks. 300 

Furthermore, many pharmaceuticals—including endocrine disruptors, anxiolytics, and 301 

antidepressants—exhibit non-monotonic dose–response relationships, where the effect size 302 

does not consistently increase with concentration [25,26]. In such scenarios, key biological 303 

effects may only emerge at low or intermediate doses, while higher doses may produce 304 

diminished or qualitatively different effects. Failure to include environmentally realistic 305 

concentrations in the experimental design may therefore miss ecologically relevant responses 306 

or lead to misleading conclusions about a compound’s potency or mode of action. 307 

More broadly, the absence of low-dose testing hinders the field’s ability to inform 308 

ecologically meaningful thresholds, complicates the derivation of risk-based benchmarks, and 309 



limits the use of behavioural data in regulatory contexts, where environmental realism is a 310 

growing expectation. In summary, we recognise that it is still important to include doses that 311 

exceed typical environmental doses to identify thresholds for effects used in chemical risk 312 

assessment (e.g. predicted no effect concentrations [PNEC], effective concentrations [EC]), to 313 

reveal potential dose-response relationships, and to include procedural treatments like positive 314 

controls. With that said, we advocate for future studies assessing the effects of 315 

pharmaceuticals on animal behaviour—and ecotoxicological studies more broadly—to 316 

leverage the large quantity of environmental concentration data now available and include a 317 

median environmental concentration within the tested dosage range.  318 
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