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Introduction

A basic fact of community ecology is that most ecosystems are comprised of many species and processes.
Mathematical models trying to capture these ingredients and explain empirical phenomena usually face the
problem of having vast numbers of unknown parameters and uncertain assumptions. It is not obvious when
such mathematical models can truly be quantitatively predictive, or even conceptually helpful – to this day,
this branch of ecological theory carries a heavy burden of proof.

This document is an informal introduction to disordered systems in community ecology, an approach
inspired by statistical physics, whose starting point is trying to capture a few central ecological processes or
mechanisms and replacing many other unknown details by some form of randomness.

The challenge comes in two parts: synthesizing observable phenomena into general(-ish) concepts that
can be given mathematical counterparts of this kind, and understanding said mathematical objects enough to
make them usable (e.g. predictive or explanatory). The first part requires conceptual effort from theoretical
ecologists, a lot of which happens either before writing any equation, or going back to reality after all the
math is done. Physics-inspired thinking and tools help with the second part, guiding modelling choices and
revealing their consequences more robustly than standard explorations through numerical simulations.

My hope with this manual is to help people on each side better understand the broader picture and
how to concretely work on this challenge, at least in the context of the specific approach I have been using,
which I think has a lot of potential for connecting and synthesizing a range of existing work and questions
in theoretical community ecology.

Disclaimers:

• This is a work in progress, major changes and corrections are likely to happen.

• This guide is informally written, and meant as a frank and practical compendium of all the ideas, issues,
assumptions and tricks I wish I had been told as I started working on this topic. I will not hesitate to
voice opinions. I will strive to be inclusive of ideas, but not exhaustive in citations, and I will allow
myself biases in choices of references as long as I feel all necessary information is conveyed. There exist
more traditionally written overviews or related efforts, see e.g. [1] for a mathematical audience, or [2]
and Barbier & Leibold (in prep), though none cover all the material I would like to discuss here.

• It contains a lot of speculation, shortcuts and simplifications. I will strive to signal those whenever
possible, be explicit about the level of certainty I assign to various statements (through “epistemic
notices” at the start of setions and mid-text when relevant) and, of course, cite works going in depth
into the arguments or the mathematics that are simply broached upon here.

Structure and entry points:

This guide is meant to be useful to researchers coming from a variety of backgrounds, from empirical ecologists
wondering what the fuss is about, to theoretical physicists trying to figure out how they can contribute to
ecological understanding. As a consequence, the guide is modular, with several entry points to choose from:

• 1 Modelling: how do we go from reality to a certain class of mathematical objects (dynamical equations
with random parameters), what are the explicit or hidden assumptions in this process

• 2 Theory: what can we say about these mathematical objects, their behaviors and predictions

3



4

• 3 Epistemology: what is the meaning of randomness and what are conceptual justifications for using
it in community ecology

• 4 Empirics: what are the most salient general phenomena we are trying to explain in many-species
ecosystems, and what are their possible explanations in our framework

Readers with an ecology background are likely to be happier starting with either of the latter two chap-
ters, whereas those with a complex systems (physics, applied math...) background will probably be more
comfortable starting with the former two, as well as the brief introduction below.

Main questions tackled here

Figure 1 illustrates the three broad questions I find most salient in community ecology:

• Biodiversity: why do we encounter so many species, why are some common and some rare?

• Dynamics: how does a community change over time, what makes it sensitive or resilient to sources of
change?

• Functioning: what does a community (or a species) use and produce, what is the role of each compo-
nent species or individual in that process?

Of the three axes shown in the figure, two axes, biodiversity and dynamics, will be extensively discussed in
this guide. Questions of functioning will receive some attention but notably less, for reasons that I present
briefly below and in Chapter 1.

For all these questions, there is a tension in the literature between two broad types of explanations (this
line of thinking is pursued further in Chapter 3):

• the classical ecology approach: deterministic explanations based on a limited number of hopefully
well-understood factors (“low-dimensional” explanations), usually particular to a given system

e.g. “increasing nitrogen supply in lakes leads to a predominance of blue-green algae”

• the classical complex systems approach: explanations based on a large number of often poorly-
understood factors (“high-dimensional” explanations), usually probabilistic and generic i.e. meant
to apply to many different systems

e.g. “communities with a high diversity of species and interactions are more likely to be unstable and
fluctuate in composition”

Of course this distinction is not absolute, and there are approaches that mix aspects of both types2.
Clearly, our central approach here is the second one. But I believe it is fair to say that the most important

existing ecological insights into functioning are of the first kind. This does not mean that the complex systems
approach has nothing to say there – there is ample literature on the topic, although often oriented in focus
toward resource consumption, see e.g. [4] – but I feel it has a harder time addressing how empirical ecologists,
conservationists, ecosystem managers... think about ecosystem functioning.

Even for other questions, I believe it especially important for researchers from complex systems to keep
in mind the suspicion that, perhaps, whichever ecological phenomenon they are interested in modelling may
be “low-dimensional” in some significant way, and I will provide both theoretical and empirical arguments
for this. Conversely, I invite ecologists to consider the value of exploring the “high-dimensional” mindset and
the kind of questions and answers it may provide.

Ultimately, I believe we need a mix of both, though it is unclear at this stage whether this should arise
as different models for different concerns, or as models combining a crucial few deterministic factors with a
probabilistic and generic outlook on all the other aspects of each system.

2For instance, using body mass and metabolic rates as the main features characterizing each species in order to predict
ecological patterns, see e.g. [3], is a “low-dimensional”, deterministic, yet generic explanation (applying across all forms of life).
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Figure 1: Some central questions of community ecology. There are at least three axes of investigation, all
connected but arguably shaped by the influence of different disciplines: an axis of biodiversity originating in
naturalist studies, an axis of dynamics notably tied to mathematical modelling and forecasting, and an axis
of functioning influenced by systems thinking and physiology, seeing ecological communities as influx-outflux
relationships or organisms.
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Chapter 1

Modelling

Summary

This chapter is meant as an entry point to our approach for the mathematical mod-
eller, regardless of prior knowledge in community ecology. It will focus on giving a
rapid overview of what kinds of models may be appropriate to deal with the kind
of data that we have, rather than explaining the history of those models or deep
insights into their workings or their ecological interpretations. Other researchers
might prefer to start elsewhere while still possibly benefitting in some aspects of
this chapter. I argue that we land on Lotka-Volterra models, not anything simpler
or more complex, because they are qualitatively adequate for the most universal
patterns observed in empirical abundance distributions, and list a few reasons to
go further, e.g. functioning.

A classical way of building up to mathematical models in population and community ecology is what
I would call the mechanism-based approach: we start from simple settings such as a single individual
or population, list processes and mechanisms such as reproduction, resource consumption, competition,
movement in space... and show how they could be expressed in mathematical terms. I direct the interested
reader toward existing textbooks that do this, e.g. [5].

Here I tend to mainly follow a different, outcome-based approach: introducing model ingredients based
on how they can explain some empirical observations in many-species communities, regardless of whether these
ingredients provide a plausible or realistic description of underlying mechanisms. If the distinction between
the two approaches or the justification for the latter is unclear, I suggest starting by reading Appendix A at
the end of this chapter.

I think the most basic question of community ecology (see Fig. 1) can be stated as such:

How can we explain why various taxa (e.g. species) are found, in conjunction or not, at
certain points in space and time?

As noted in Chapter 4, the most widely available type of data relevant to this question are tables of pres-
ence/absence or abundance of various species across a variety of samples, sites, timepoints, environments,
etc. and our specific approach to this question leads us to ignore explanations that are very specific to a
taxon or environment, and instead focus on more generalizable aggregate properties such as community-wide
statistics and distributions.

1.1 Sampling models

Epistemic status: Not my work, not checked very thoroughly.

A natural first step is to try to find simple regularities in the data itself: can we find a probabilistic model
that generates data with the same distributions and statistics as the empirical observations?

7



8 CHAPTER 1. MODELLING

Figure 1.1: A simple model summarizing statistical regularities for several microbial datasets of (relative)
abundance of various species (rows) across various samples or time points (columns), reproduced from
Grilli [6]. The various patterns seen here are discussed in more detail in Chapter 4.

While such phenomenological approaches (random sampling [6], Maximum Entropy [7], stochastic geom-
etry [8]) postulate almost no ingredients beyond the observed patterns, those very few ingredients often take
the form of hidden or seemingly benign assumptions, which often turn out to play a deviously profound role
in predicted outcomes.

As a central recent example, I briefly recall a series of work by Grilli and colleagues on several microbial
datasets of abundance of many species across many samples, suggesting that a number of distinct patterns
in that data (expounded on in Chapter 4) can be summarized by drawing species abundances from a set of
simple rules:

• fat-tailed distributions for abundances and their fluctuations: a lognormal distribution of “typical
abundances” or “carrying capacity” Ki characterizing each species i in a given dataset, and a Gamma
distribution of fluctuations of each species’ abundance Ni(x, t) around that typical value between sam-
ples x or times t, see Fig. 1.1 and [6]

• occasional jumps in carrying capacity for at least part of the species [9]

• correlated carrying capacities for the same species across environments [10]

• correlated carrying capacities between species based on phylogenetic proximity [11]

Practical note: Trying to reproduce these results in the same or different datasets is a good way
to encounter many subtleties of ecological data analysis. Issues with sampling (not seeing rare species)
can dramatically bias a naive analysis of abundance distributions, for instance giving a rather convincing
appearance of a power-law shape for the mean abundance distribution even in fake data generated using a
lognormal for the very same distribution.

In this model (or suite of models), species are noninteracting, and their abundances are driven indepen-
dently by “environmental factors” varying in space and time. Their empirical success does not necessarily
entail that this is actually the microscopic truth, and indeed we suggest in chapters 2 and 4 that similar
results could arise with fluctuations entirely driven by species interactions instead.
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1.2 Stock and flux models

Going beyond models of noninteracting species, we may want to explicitly incorporate interactions and causal-
ity via a dynamical model, in order for instance to better predict the outcomes of experimental modifications
of the system.

The simplest option is to think of each species (or other variable) as a stock, and model fluxes between
these stocks, most simply through linear relationships1

dNi

dt
= si +

∑
j

FijNj (1.1)

with sources si (or drains si < 0) and Fij coefficients for influxes or outfluxes of i controlled by j. Its
equilbrium

0 = si +
∑
j

FijNj

is a simple mass balance equation saying that all the fluxes coming in and out of a compartment must sum
to zero.

Such representations are found throughout ecology, associated with

• models of chemical (e.g. nutrient) concentrations

• internal population structure, i.e. splitting a species into multiple categories (different ages, sizes,
genetic types) with linear fluxes between them (e.g. aging, somatic growth, mutations ... transferring
individuals between categories)

• empirical/management ecosystem models like Ecopath/Ecosim [12] where compartments are indeed
often species, and fluxes represent transfers of biomass or nutrients e.g. due to predation

Furthermore, while this point might be lost on readers at this stage and I will come back to it later, many
models somehow imposing “limits” on how much interaction can happen between species, e.g. saturated or
ratio-dependent predation [13, 14], will in fact recover exactly or approximately something like the linear
model (1.1) and many arguments in favor of these limiting mechanisms may simply be arguments in favor of
being linear or close enough.

1.3 Lotka-Volterra as an archetype

1.3.1 Why Lotka-Volterra, why stop there

Not quite my reason why: As a simple matter of principle, the above models fail to capture a property
that seems essential when we talk about biological populations, i.e. their ability for exponential growth,
one of ecology’s major concerns since Malthus and Darwin. Exponential growth would suggest a dynamical
model that looks like dN/dt = RN , and then, since that growth cannot go on forever, we would replace the
constant growth rate R by a diminishing function such as R(N) = r(1 − N/K), giving the logistic model
with an equilibrium (“carrying capacity”) N = K. We could then make that equilibrium depend on other
species as well, giving the classic Lotka-Volterra model

dNi

dt
= riNi(1−

∑
j

AijNj)

One notable property is that the equilibrium of this model is still a mass balance equation like the equilibrium
of (1.1), so we may try to simply connect the two classes of models through their equilbrium properties.

However, it is not at all obvious that the model’s ability to exhibit exponential growth is truly essential
to understanding the patterns that we see in data – we could imagine such extreme growth to be relevant
only in edge cases (some epidemics, a Petri dish, an anthropogenic invasion) and largely irrelevant in the

1It is worth noting that linear models are both an interesting starting point and quite singular in many ways.
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majority of natural communities. It could be that, fundamentally, most observed abundances are not driven
by these exponential tendencies, but tightly controlled by other causal factors (e.g. nutrient fluxes, oceanic
currents...), in which case a Lotka-Volterra model might entirely miss the correct causality and fail to predict
any realistic dynamics.

My reason why: Rather than just a matter of principle, I propose an empirical argument for the relevance
of using Lotka-Volterra-like models when dealing with abundance data.

In almost all settings, especially natural ones, species abundances are seen to fluctuate quite dramatically
in time and space (see for instance databases of population time series [15]), and these fluctuations very
often seem to be multiplicative in nature – meaning that populations go up and down by some fraction of
their current abundance, rather than by roughly constant increments – as evidenced by various widespread
patterns [16, 6]. Such multiplicative fluctuations are very likely associated with something like exponential
growth, with a changing growth rate R(t), perhaps due to external factors in the environment or due to
interactions with other species that are themselves fluctuating.

As I will argue below in Sec. 1.5, I don’t believe that going “further” than Lotka-Volterra can introduce
similar deep qualitative changes that appear as universally mandated by available data. This is not to say
that I necessarily think Lotka-Volterra is the right way to model ecosystems in general, let alone any specific
ecosystem, but I feel that the most valid reasons to discard Lotka-Volterra are tied to:

• either considerations particular to certain ecosystems or interactions

• or principled (ecological or mathematical) considerations, such as wanting to account for other as-
pects of an ecosystem than just species abundances, rather than broad empirical patterns within said
abundances.

As noted in Chapter 4, however, it is not entirely implausible that exponential growth and LV might be the
wrong model for those large fluctuations; to quote from that chapter:

“[If indeed] the patterns we are seeing are best explained by exponential tendencies
modulated by changing biotic contexts, then we may posit that the central dynamical
process to take into consideration is reproduction (the engine of exponential growth),
which is what unifies species – or at least local populations – and demarcates them
strictly from each other. If however environmental fluctuations are the main driver, it
is not obvious that species are the right grain – there is usually significant variation
in environmental preferences within a species, and similar preferences across species,
therefore it could become more relevant to use a model of ecotypes.”

1.3.2 The focal model

Our focal model throughout this document (as it can recover, at least qualitatively and often quantitatively,
many of the properties of the other options above) is a spatialized Lotka-Volterra model with growth rates ri,
interactions Aij (the carrying capacity or abundance in the absence of other species is given by Ki = 1/Aii),
perturbations ξi, and dispersal (movement) between adjacent patches x and y with rates Di

dNi(x, t)

dt
= riNi(x, t)

1−
∑
j

AijNj(x, t)

+ ξi(x, t) +
∑
y

Di (Ni(y, t)−Ni(x, t)) (1.2)

What is N? Prima facie, stock, abundance, biomass etc. but it is actually better to think in terms of
dynamical importance: everything else being equal, species that end up with large N will typically have
more impact on others2. The idea that our variables effectively represent dynamical importance generalizes
better than the straightforward interpretation of N as abundances, for reasons detailed in Sec. 1.4.2 and in
Chapter 4.

2This is especially true as we later draw parameters such as Aij independently for all species.
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What is r? The combination of all sources of growth and mortality that do not depend on the abundance
of any species (so-called “density-independent” factors), and may be a function of species traits as well as
temporally constant environmental features.

What is the environment? All the things we are not modelling that are not part of significant dynamical
feedbacks – this may include non-biological phenomena such as the weather, but also other species such as
prey or predators that are impacting the focal species we are modelling, but are not significantly impacted
by them, or on very different time scales.

What is ξ? Any contribution to abundance variations due to “perturbations” broadly defined, i.e. variable
factors that we are not modelling explicitly – possibly happening at larger scales (like weather conditions) or
at smaller scales (like individual births and deaths at uncertain times) or in adjacent systems (e.g. a sudden
migratory influx from a neighboring community). We can approximate changes in growth rate r by choosing

perturbations proportional to N , i.e. ξ(N, t) = Nξ̂(t).

What is Aij? Interactions between all the variables that we are modelling because they might be part of
significant feedbacks.

As discussed below, when using a Lotka-Volterra model, we assume that these various forces are (more-or-
less) additively combined in the instantaneous dynamics, but can become entangled in complex ways in
their long-term consequences.

1.3.3 Important features

The main ecological features that this model strives to capture are the following, roughly in decreasing order
of generality.

• species can be extinct (Ni = 0) or present, and the composition of surviving species, i.e. the set Ω of
species i such that Ni > 0, is a major characteristic of an ecosystem state3.

• populations tend to grow or decay exponentially when rare, but this exponential growth is impacted by
various factors. Here, we further assume that we can separate instantaneous growth into contributions
from external and internal factors: on the one hand, interactions (Aij) between the modelled variables,
and on the other hand ri and ξi which represent fixed and fluctuating impacts of an environment
(both abiotic and biotic) that is not itself impacted by the modelled variables. We note that these
contributions of environment and interactions, while they are separated and simply additive here in
short-term growth, become unavoidably entangled in their long-term effects [17] (for instance, it is not
possible to decompose equilibrium abundances into a simple sum of contributions of the environment
and contributions of species interactions or dispersal).

• spatial fluxes can be approximated by simple “diffusion-like” dispersal between adjacent patches, which
is enough to qualitatively capture many of the consequences of accounting for space and movement.
We could further assume that growth rates ri or interactions Aij depend on the spatial location to
introduce spatial heterogeneity. We also note that, here, interactions only happen within one locality,
thus the community (or site) scale can be defined as the spatial scale over which species interactions
can be modelled as well-mixed – we do not consider here systems where, for instance, different species
might interact over vastly different scales, see e.g. [18].

3In fact, it is a bit of a peculiarity of the most basic version of the model (ξi = Di = 0) that it allows only one ecosystem
state per composition: for a given set Ω, assuming they can coexist at equilibrium, their abundances must verify:

0 = 1−
∑

j∈survivors
AijN

∗
j for all i. (1.3)

Such a linear system can only have one solution (per set of survivors); however, that equilibrium need not be stable (and
reachable), as we discuss in Chapter 2.
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As noted above, any fundamental dynamical properties of LV are due to the exponential tendency of
population growth, i.e. dNi/dt is (mainly) proportional to Ni in (1.2). This tendency may be lost if we have
direct fluxes FijNj as seen above in (1.1) rather than bilinear interactions of the form AijNiNj . This has been
proposed to change the dynamics possibly quite dramatically [19], notably by introducing “bottlenecks” –
some outcomes of inter-species dynamics can be slowed down due to the intra-specific processes. Dispersal in
(1.2) can play a similar role, but it is also special as it involves a conserved quantity (see below in Sec. 1.5.2).
The most obvious consequences are that these fluxes can rescue extinct species, and they induce much less
extreme feedbacks and fluctuations4

1.4 Disorder in Lotka-Volterra-like models

Simply put, disorder is drawing all the parameters in our dynamical model at random, and trying to find the
“hyperparameters” or macroscopic features (e.g. maybe which distributions to use, maybe what mean and
variance and correlations they should have), that most successfully reflect empirical phenomena. Conceptual
and epistemological reasons for why this may (or may not) be a good idea are discussed in Chapter 3.

The most important ingredient of disordered systems theory, compared to previous probabilistic ap-
proaches such as sampling theories (a la Grilli [6]) or neutral theories, is assuming that interactions Aij can
be modelled as random values – while assuming randomness in other parameters (e.g. ri, Di in (1.2)) typi-
cally does not lead to altogether different ways of thinking5, assuming random interactions has surprisingly
far-reaching implications for coexistence and dynamics, as we strive to show through theoretical predictions
in Chapter 2.

We also note a reason why we may simply stick with Lotka-Volterra, ignoring futher refinements such as
nonlinearities in interactions (functional responses), dispersal, etc. While these details may matter a lot in
few-species models, in the disordered limit, we speculate that they often fall within “irrelevant” details, in
the sense that they can impact quantitative outcomes but they do not really alter the space of qualitative
behaviors of the focus model, or only in a very straightforward way. See for instance nonlinearities in [20,
21, 22] and neural network models: in most of these cases, a lot of the phenomenology is similar to that of
the random LV model, and differences are easy to guess from basic intuitions.

1.4.1 Low-dimension versus high-dimension

As discussed in the Introduction of the overall document and in Chapter 3, disordered systems approaches
are “high-dimensional” explanations, relying on the existence of many processes and details that we need
not know exhaustively to obtain a predictive model – yet, there is plenty of ecological phenomena that may
point at “low-dimensional” structures being quite important as well.

A very important candidate for low-dimensional phenomenology is the existence of “public goods” that
all the species in an ecosystem interact through (impacting it and being impacted by it) – for instance, water
availability in an arid environment [23], or pH in a microbial community [24]. It is thus worth keeping in
mind that, every time we propose a disorder-based model, it can be useful to confront it to one or several
low-dimensional alternatives and see if we have more evidence for one or the other (e.g. as we did in [25]).

1.4.2 Applicability of disorder

A simple objection to the use of randomness is that species typically seem to be much more different from
each other than simple random draws from a distribution. To clarify this point, we can think about degrees
of heterogeneity:

• “variance-like” heterogeneity: quantitative variation within a group of species that can be adequately
quantified by statistical moments (e.g. a mean and a variance) of their parameters, recognizing that
we will expect to occasionally see some species that lay at the extremes of the distribution.

4These are consequences that go beyond just linear fluxes, and extend to a lot of “sub-exponential behavior”.
5Still, some candidates for novel behaviors: desynchronization of oscillatory dynamics, Anderson localization due to disper-

sal coefficients fluctuating randomly in space, maybe a potential for Turing patterns when pairs of species with asymmetric
interactions have sufficiently different dispersal.



1.4. DISORDER IN LOTKA-VOLTERRA-LIKE MODELS 13

• “systematic” heterogeneity: irreducible qualitative differences among such groups (e.g. autotrophs
versus heterotrophs).

Disorder is primarily applicable to “variance-like” heterogeneity 6 Differences between classes (for instance,
the fact that a plant usually cannot consume or parasitize an animal) typically must be added “by hand”
into our model, because they are highly impactful and structured.

. Even so, an important lesson from experience is that differences that appear irreducible and fundamental
can sometimes be ignored, and entities that seem like they belong to different classes can sometimes be
bunched together for practical purposes. For example, even species that are very different on a per capita
basis, such as bacteria & whales, may be more comparable in terms of biomass (as demonstrated e.g. by
allometric relations holding over many classes of organisms [3] at least for the purpose of understanding
certain macroecological patterns.

Consequently, whenever we think about using randomness in a model, we must seek the representation
of the system that makes species as equivalent as possible. To illustrate, we start with a simple theoretical
example, using the non-spatial, unperturbed version of the equations (1.2) i.e.

dNi

dt
= riNi

1−AiiNi −
S∑

j 6=i

AijNj


We see that Aii = 1/Ki defines the carrying capacity Ki, i.e. the equilibrium abundance in the absence of
other species. Let us assume for now that we are looking at a competitive system where all species have a
carrying capacity Ki > 0 (though everything that follows can be extended to e.g. trophic systems where
predators cannot survive without prey).

We could then change variables to ηi = Ni/Ki, usually called the relative yield [25], and still have a
Lotka-Volterra model:

dηi
dt

= riηi

1− ηi −
S∑

j 6=i

αijηj

 (1.4)

with different interaction coefficients (αij = AijKj/Ki). If the Aij are independent random parameters, then
the αij are not independent (and conversely): they are correlated by row and by column due to the factors
Ki. This is ecologically meaningful, as it can, for instance, largely decide whether many species coexist or go
extinct7.

If we thus first choose variables and write our model such that species are as equivalent as possible –
which translates here to choosing parameters (α, or K and A, or others) to be as narrowly distributed and
uncorrelated as possible.

We note that this is not necessarily the most intuitive representation. For instance, in a resource com-
petition setting where individuals of one species consume much more than individuals of another, the best
variable to express the importance of a species might not be its abundance, but rather its total consumption
(see e.g. [26]).

Hereafter we will use terminology suggesting that our variables Ni represent abundances, but it is crucial
to recognize that this will not always be the right choice; instead they should be understood as a general
proxy for a species’ importance in community dynamics, perhaps expresses in biomass units or consumption
rates etc. When we see apparent inequalities between species, we should first ask how much is really due to
some species being more or less important, and how much is due to the fact that we are not measuring their
importance in the right units?

6Initially, it was proposed to model physical systems with many particles of roughly the same nature, not ecosystems where
organisms differ utterly in scale and physiology, like viruses from trees.

7Let us make the empirically-plausible assumption that the carrying capacities Ki are widely distributed (e.g. as a lognormal).
Then, if the Aij are independent and narrowly distributed, individuals from all species have comparable per capita competitive
impacts on others, and thus, a few species with very large K will likely win the competition and exclude most others.

By contrast, if the αij are independent and narrowly distributed, each species impacts others through the fraction of carrying
capacity it has Ni/Ki, no matter how small that capacity is (as appears in some experiments discussed in [25]). This is sensible
if, for instance, some species consume much more resources per capita: then their K is smaller, but a few individuals from that
species can still impact other species a lot. In this case there is no telling whether species with large K will win or lose the
competition.
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1.5 Broader landscape of disordered models

Here we briefly discuss model ingredients that are not explored in this guide, but did or could receive a
disordered treatment.

1.5.1 Functions and niches

Common wisdom seems to indicate that, while species composition tends to fluctuate dramatically in complex
communities, there is a much more stable notion of “functional composition” or niches – in other words,
different species may occupy the same role.

Ecological function or niche – what a species does, its role in an ecosystem – is poorly defined, but is often
taken to encompass resources consumed and services provided (e.g. metabolites and other chemical products,
pollination, decomposition...). It is usually not as measurable and as universal as species abundances:

• the functions occupied by organisms cannot be observed directly, and we often use low-dimensional
proxies: a limited number of measurable traits that are thought to be determining for their roles
(“functional”), with body size being the most universal and often used as a single axis of variation
structuring ecosystems [27],

• at the other extreme, phylogenetic relatedness is sometimes taken as a proxy for functional relatedness,
which could be seen as an infinite-dimensional notion of function (it would take an infinite number of
relevant traits to avoid any convergent evolution and ensure that phylogenetically distant species are
always functionally different)

• most other examples tend to be more domain specific e.g.

– the leaf economics spectrum [28].

– the main situation where one has many explicitly measured traits is molecules consumed and
produced, directly and extensively observable through metabolomics, but this is largely restricted
to microbial communities and may not exhaust the function/niche of the species (i.e. they may
also differ in many ways not captured by their metabolic needs and products)

Therefore, it is much harder to reliably evaluate a community’s functional compositon than its taxonomic
(species) composition.

Functions/niches could be represented implicitly e.g. in the parameters of a Lotka-Volterra model. Most
simply, we could assume that growth rates and interactions are derived from underlying functions or niches,
such as species competing if they occupy the same niche, and indeed we can for instance have a Lotka-Volterra
approximation of resource competition that captures a lot of the important phenomenology [29, 30].

But we could also want to tend toward a hybrid model between mass balance-like stability (for the
functions) and Lotka-Volterra-like dynamics (for the species) This suggests a model where both species and
functions are explicitly represented. This would allow us to go beyond explaining patterns of abundances
only, and toward patterns related to function (e.g. questions such as “are all niches saturated or are there
still open niches that some invader could come and occupy”).

1.5.2 Other potentially important model ingredients

Here are some more mathematical ingredients which I speculate could qualitatively impact the aggregate
many-species patterns of interest to us:

• Conservation laws: models in physics and chemistry often behave in very particular ways because of
strong laws such as the conservation of energy and matter. Such laws are typically absent in ecological
models, but having invariants (symmetries, constants of motion) could drastically change the space of
possible dynamics, see e.g. in chemical networks [31].

– The most obvious example here is spatial fluxes, which conserve abundance (no individual is
created or killed by dispersal itself, though they may die in places along the way), and this is a
non-negligible reason why I am inclined to consider space explicitly in (1.2), rather than just for
purposes of being “realistic”.
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– Another salient example is nutrient conservation and cycling. Lotka-Volterra models do not ac-
count for the fact, perhaps made salient by agronomic advances such as Liebig’s, that specific
nutrients (e.g. nitrogen) are found to be strong limiting factors on the growth and reproduction
of many species. As a consequence, many models explicitly incorporate stoichiometry of a few
basic nutrients, especially when dealing with plants or aquatic life (as other lifeforms tend to have
less flexibility in their composition). While nutrients are not strictly conserved (there are influxes
and leaks), some or many ecosystems may be in a regime where a large fraction of the nutrients
involved in population growth is cycling locally, and this could possibly lead to very different
dynamics.

• Fluctuating interactions: another way to account for hidden complexity in interactions is to make them
fluctuate over time, see e.g. [?]. If these fluctuations are strong enough to dwarf the time-averaged
differences between species, we expect to go back to a kind of neutral model, since no species will
maintain a particular role or advantage over time through its interactions, except through the action of
chance (which may well become entrenched due to rich-get-richer mecanisms). It is not entirely clear
how much of a qualitative difference fluctuating interactions may make – in some implementations
they can amplify inequalities between species to the point of allowing “condensation” where a single
species becomes an outlier holding a non-negligible fraction of the whole system’s biomass. These kind
of outliers exist in economic data e.g. a single city comprising a third of a country’s population, and
can be modelled with highly fluctuating interactions [32]. For ecological data, it is not obvious to
me that we truly encounter such outliers, versus simply large values within a well-defined probability
distribution.

• Really non-additive (e.g. multiplicative) interactions: our model (1.2) assumes that the impacts of
other species are somewhat substitutable, since their combined effect is simply the sum of their indi-
vidual effects. One alternative is multiplicative interactions, where effects combine as a product: in
the example of multiple essential resources, if a single resource is missing, consumer growth is zero.
Long multiplicative chains of interactions would be a natural way of obtaining wide distributions (e.g.
abundances). Many models of higher-order interactions combine additive and multiplicative aspects:
they often use products like Aijk...NiNjNk..., but they usually sum over many such terms, and this
additive aspect tends to outweigh the multiplicative aspect and lead to broadly similar phenomenology
to that of our focal model, see e.g. [33].

Other ingredients not mentioned here (e.g. higher-order interactions [34], more nonlinear growth or
interaction terms [13], discrete individuals and mechanistic derivations for growth and interactions [35]...)
fall within the class of those that I cannot yet see produce an equally deep qualitative difference, though they
may play a role in quantitative fits or particular patterns.

Appendix A: Justifying the outcome-based approach

The most common way of building a model in ecology is finding ingredients that one assumes are important
(e.g. species, nutrients, interactions...), putting them together in a reasonable way, and trying to understand
and interpret their outcomes.

There is also a long tradition of “null models” attempting the opposite: start from known behaviors or
patterns (e.g. species diversity, abundance distribution), and try to find the simplest set of model ingredients
that give us these outcomes, ideally assuming as little as possible beyond that8.

In the latter perspective, many differences in ingredients, even striking ones such as a model being discrete
or continuous, deterministic or probabilistic, spatial or non-spatial, can be treated as irrelevant if they do
not impact the target outcomes. One way of articulating this idea is: all details matter, but they do not
necessarily matter for what we care about.

8On the spectrum between these two traditions, one extreme is represented by the purest mechanistic reductionism, anchoring
ecology in physics and chemistry where ingredients are truly knowable as exactly as possible, e.g. [36]. The other extreme includes
the phenomenological approaches discussed below. Most approaches have a little bit of both, and there is no real sharp divide
except those imposed by habit.



16 CHAPTER 1. MODELLING

Predictions regarding different aspects of the same system may require different degrees of detail. Fidelity
to microscopic ingredients is often unnecessary to make good aggregate predictions (atoms are not bouncy
balls at all, but that description is enough to understand an ideal gas). Furthermore, trying to increase
microscopic fidelity does not necessarily improve accuracy when predicting large-scale outcomes, and can
even detract from it if poorly estimated parameters are added (for instance, it might be better to model
individuals in a crowd as mindless atoms than using a very wrong model of their psychology).

Hence, we want to think of models not in terms of how they fit our microscopic intuition, but:

• what kind of macroscopic behaviors and patterns they can encompass at all (e.g. a strictly static model
cannot be used to predict dynamical patterns),

• whether we can adjust model parameters so that predicted patterns fit their empirical counterparts
quantitatively,

• whether parameters fitted using some patterns also correctly predict other patterns – in which case
the model is a workable description of macroscopic reality, even if its details turn out to be untrue to
microscopic reality.



Chapter 2

Theory

Summary

This chapter attempts to summarize the state-of-the-art of our understanding of
our main mathematical objects, without concerning itself too much with empirical
relevance (except inasmuch as what qualifies as “main” results here is strongly
skewed by conceptual relevance to comunity ecology). The main question be-
ing answered here is: what can random interactions between species and random
(spatio-temporal) environments entail in terms of biodiversity or dynamics? I will
also much more briefly consider the impact of spatial fluxes on the answers to that
question, since knowledge there is more limited and speculative.

Here we attempt to give a bird’s eye view of the main theoretical behaviors of the Random Lotka-Volterra
model (chosen on grounds detailed in Chapter 1)

dNi(x, t)

dt
= riNi(x, t)

1−
∑
j

AijNj(x, t)

+ ξi(x, t) +
∑
y

Di (Ni(y, t)−Ni(x, t)) (2.1)

that is, the phenomena, dynamics, regimes etc. that this model can explore.

NB: What do I mean by behaviors? Simpler models such as sampling models (see Chap 1) tend
to have only one possible qualitative behavior, e.g. they predict that species abundances follow a lognormal
distribution, with only quantitative aspects changing as we vary parameter values. But more complex models
have the potential for qualitative changes of behavior: a model of competing species may display either coex-
istence or exclusion; a predator-prey model may reach a fixed equilibrium or a cyclical trajectory. Different
behaviors can avail us of different patterns to compare to data, as we cannot, for instance, study temporal
correlations in a fixed equilibrium. Often, the existence of multiple qualitative behaviors in a model reflects
the fact that several processes are at play in the model, and their relative importance may change depending
on parameter values, leading to very different outcomes.

One might expect that any dynamical behavior is possible in the Random Lotka-Volterra model, since
drawing coefficients at random could potentially lead to any structure. Yet, perhaps surprisingly, this model
only has a limited set of behaviors of interest, as some occur predictably and all the other possibilities become
vanishingly unlikely when species numbers are large.

This section summarizes the regimes in the Random Lotka-Volterra model that were exposed across a
wide range of previous works, without going through precise mathematical results, instead emphasizing the
basic intuitions that characterize each regime. We list a brief description of every regime in Tables 1 and 2,
which are all detailed in the rest of this section.

17
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2.1 Quick summary

In brief, Random-Lotka Volterra (and similar) models typically will display one of three main behaviors1 [37]:

• simple equilibrium where species abundances tend toward a well-defined reference value tracking
how “fit” they are in their abiotic and biotic environment;

• fluctuating dynamics where either external noise or chaos created by complex interactions leads to
permanently fluctuating abundances without a stable ordering of which species is more or less fit [38];

• multiple equilibria where the observed composition depends on past history through priority effects,
and where some form of long-term dynamics (which could be interpreted as ecological succession) can
happen through jumps between many alternate stable states [39].

These chaotic and successional dynamics in many-species Random LV are very different from preexisting
ecological intuitions of few-species chaos [40] or deterministic (Clementsian) succession (see discussion in
[41]). They mainly rely on the exploration of many different combinations of species, either undirected in
time (chaos) or directed on average (succession) even though individual jumps between compositions are
largely unpredictable. These three main behaviors can be further detailed in terms of how many species
survive and thrive at any point in time, depending largely on the strength of interactions, as we now explain.

2.2 Regimes driven by interactions (no noise, no space)

The simplest version of a random Lotka-Volterra model already provides some important insights about how
interaction statistics affect model regimes.

We can start with the most basic Lotka-Volterra equation with relative yields (1.4) for many species,
S � 1,

dηi
dt

= riηi

1− ηi −
S∑

j 6=i

αijηj


The dynamics will tend to bring the expression in parentheses close to zero, even if it doesn’t cancel out
exactly (it will if there is a stable equilibrium, but that is not always the case).

Rough ’order of magnitude’ arguments already outline distinct parameter regimes within this model. The
mean and variance of the sum

∑
j αijηj give a simple estimate of how much the species’ abundances will

differ from their carrying capacities (we recall that ηi = Ni/Ki). Interactions do not matter if
∑

j αijηj � 1,
and so we can call this the “weak interaction” limit, where every species mainly follows its own intra-specific
dynamics.

Otherwise, we see that the sum contains S − 1 terms of the form αijηj . When S is large, the expression
in parentheses is thus unlikely to sum to zero if all the αij and ηj are numbers O(1), meaning “of order 1” –
practically speaking, often some value like 0.1 or 10.

Although it is possible that interactions with a particular structure may still allows for perfect net can-
cellation of interaction effects, this is extremely unlikely if interactions are random. For random interactions,
either interactions are small, |αij | � 1, or very few of them are nonzero P (αij 6= 0)� 1, or abundances are
all small (compared to carrying capacity), ηj � 1 or few are nonzero. Thus we can already foresee that the
model has at least three main parameter regimes delineated by interaction strength.

1We remark that when the species number S is not very large (as a rule of thumb, less than 20 in simple simulations), the
boundaries between the regimes discussed here are not so sharp, and communities whose parameters are drawn from the same
distribution may fall in one regime or another depending on luck of the draw; however for many species, most regimes become
clearly distinguishable.
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Regimes Coexistence Dynamics Comments
(a) Diffuse interactions: pairwise interactions are small, but the
combined effect of all interaction partners is significant

1. Feasible All species
Stable point equilib-
rium

Shrinks as 1/
√

logS
when S increases hold-
ing µ, σ constant [42]

2. Unique Fixed Point Many species
Stable (uninvadable)
point equilibrium

[43, 44]

3. Chaotic turnover

All species may
persist(1), turnover of
large set of thriving
species

Large uncorrelated
abundance fluctua-
tions

Fluctuation strength
increases with species
diversity[45, 46]

(b) Sparse interactions: each species can have a significant impact
on the abundance of a few others

4. Intransitive loops All species persist
Abundance fluctua-
tions

Rather found with
asymmetric interac-
tions (Marcus & Bunin
in prep)

5. Multi-stable cliques
Potentially large num-
ber of species per equi-
librum

Many stable equilibria,
history dependence

Rather found with
symmetric interactions
[47], can lead to direc-
tional ”succession” [39]

(c) Strong interactions: each species can have a significant impact
on the abundance of many others (poorly understood regime)

6. Strong interaction
chaos

All species may
persist(1), turnover of
small set of thriving
species

Large correlated fluc-
tuations

[48]

7. Multi-attractor
regime

Few species per attrac-
tor

Many (?) attrac-
tors, sometimes chaos
within each attractor

[48]

Table 2.1: Regimes arising from species interactions (see also Fig. 2.1). Coexistence: how many species
can persist in the system in the sense of being sometimes able to grow from rare, and how many ”thrive”
i.e. are found with large abundances (not very small compared to their carrying capacity). (1) Abundance
fluctuations can lead to species extinctions in finite populations, but every species can regrow from rare; space
can prevent true extinctions, see Table 2.2. Dynamics: presence and multiplicity of equilibria, or persistent
fluctuations. More detailed predictions, e.g. species abundance distributions, are discussed in Chapter 4.
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Interaction
regime

Consequences

Weak noise Any Increased abundance fluctuations

Strong noise Any
New regime: Noise-dominated (”neutral-
like”) dynamics

Spatial heterogeneity
in parameters

1 Species track environmental preferences

all others Same modulated by interactions

Multiple sites (or
continuous space) with
dispersal

1, 2, 4 No qualitative change

3, 6
Allows persistence of fluctuations even if
species go locally extinct [38]

5, maybe 7
Spatial domains [41], directional “succession”
[39]

5 & 7, maybe
3 & 6

New regime: Interaction-driven patch dy-
namics [49]

Strong noise + space Any New regime: Noise-driven patch dynamics

Table 2.2: Effects of adding noise (in the sense of stochasticity in the species dynamics) and space to the
model depending on the species interaction-driven regimes described in Table 2.1. Some of these effects are
speculative as this has been far less studied; we note them.

Diffuse interactions:

Interactions are individually small, but their sum is potentially not negligible (as a collective impact of all
interaction partners together on each target species), i.e. if we define aggregate parameters µ and σ as

µ ≡

〈
S∑
j

αij

〉
= S 〈αij〉 , σ2 ≡ var

 S∑
j

αij

 = S var(αij) (2.2)

then this regime corresponds to
µ, σ2 = O(1) (2.3)

In that case, many species (a macroscopic fraction, i.e. a number that can be arbitrarily large and keeps
increasing proportionally if we increase S while holding µ, σ constant) can coexist with η = O(1) at any given
time.

Strong interactions:

A single species can play a significant role in the abundance of another

〈αij〉 , var(αij) = O(1) (2.4)

Most likely, few species can coexist at any given time and place (a fixed number or one that increases slower
than S, e.g. logS). There is also, as a more fragile case, the possibility that many species coexist with very
small abundances when they are all “similar” enough (e.g. a neutral model with αij = 1 for every interaction
and ηi = 1/S for every species)

(Very) sparse interactions:

Most interactions are entirely negligible, only O(1) interactions per species are nonzero (or not very small).
This results in a system where many species can coexist but have abundances and occurences that are strongly
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Figure 2.1: Diagram of dynamical regimes for the Random Lotka Volterra model without noise or space
(and excluding very sparse interactions). Most existing theoretical studies based on disordered systems are
limited to the diffuse interaction regime shown in inset, where species interactions are important in aggregate
but very weak individually (i.e. µ and σ remain moderate even for very large species number S), as this is
the regime where theoretical tools are most applicable and the most robust predictions can be made. The
strong interaction regime is less understood, mainly through simulations, except in some particular limits.
The grey region indicates where abundances become infinite due to an excess of mutualistic interactions, i.e.
a breakdown of the LV model, which can be solved in various ways. In the inset, the feasible region does
not have the same scaling as others: it shrinks to 0 as S → ∞ while keeping µ, σ constant, as it becomes
infinitely unlikely for all species to coexist, however any finite µ, σ allow a significant fraction of species to
coexist.

affected by a small number of other species. In this case, the resulting regimes may be more complex that
the three we listed above. This case has a tendency to behave more like few-species models, including more
of a menagerie of different dynamics and behaviors than the other two cases, see e.g. [50].

This non-spatial RLV model further shows some subdivisions within these three regimes that further
allows us to make more refined prediction that depend only a few aggregate parameters, i.e. statistics of the
individual species parameters: mainly the sum-of-interactions mean and variance µ and σ2 defined above
in (2.2), heterogeneity in carrying capacities var(K) and additional correlations between parameters, such
as interaction symmetry γ = corr(Aij , Aji) (see [21] for intuitions regarding these parameters and their
meaning). It has been shown theoretically [43] that many details (e.g. higher order statistics such as the
third or fourth moments of interactions, or which distribution they are drawn from – normal, uniform, ect.)
do not affect the outcomes that we are considering here in large (S¿20) biotas.

2.2.1 Diffuse (weak to moderate) interactions

Three dynamical phases are predicted to exist when interactions are weak to moderate (as defined above),
meaning that each pairwise interaction has limited impact on a species, but the total impact of all its
interaction partners is significant. Previous studies, e.g. [51], have found suggestive empirical evidence for
all three phases predicted in that regime, though that does not necessarily mean that this is the empirically
correct regime.
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Feasible phase:

All species coexist and reach a stable point equilibrium together. This requires very low-variance interactions.
Theoretical conditions are given in [42]; they basically require σ ∼ 1/ logS, because the more species there
are, the more likely it is that at least one of them will go extinct due to an unlucky draw of its interactions.

Unique fixed point phase:

A fraction of species go extinct, but the remainder coexist stably in an equilibrium that cannot be invaded by
any of the extinct species (if we reintroduce them, they go extinct again). This requires moderate interactions
whose variance is not too large ( σ = Svar(α) is below a threshold value σc of O(1) given in [43]) which we
call the stability bound.

Chaotic turnover phase:

At any given time, the dynamics tend to approach an equilibrium where a significant fraction of species thrive
at significant abundances, but all such equilibria are unstable and can be invaded by other species that were
previously going extinct. Thus, a constant turnover occurs through a kind of “pinball” dynamics, the system
bouncing between unstable equilibria with different compositions2.

This phase arises because, when interactions vary enough between species pairs, σ > σc, equilibria lose
their stability. This was first predicted by May [53] in a simpler linear setting, and more specifically demon-
strated for Lotka-Volterra and similar models in [54, 55, 43, 44].

Here are several key facts about this phase:

• all species get to thrive at some point, no matter how disadvantaged they are by the luck of the draw in
the original species pool. We must therefore distinguish what we mean by species being present in the
system: all S are observable in the long run, a smaller (but not insignificant) fraction are temporarily
advantaged in the sense that they would grow in abundance if added to the system at a given time,
and a smaller fraction still have large abundances at a given time.

• the typical trend (though it is very noisy in each specific instance) for each species is a relatively quick
jump from very small to significant abundances, followed by a slower decay toward insignificance, and
these jumps appear uncorrelated between species and randomly distributed over time

• species that are rare at a given time, and even rare for most of the time, may nevertheless play a crucial
role in the dynamics.

• the number of species coexisting with significant abundances at any given times lies strictly below the
stability bound (see above), due to the perturbing effect of incoming (currently rare but going up)
species on the abundant ones.

• when S is not very large, we can get limit cycles (periodic behavior) instead of chaos. But as we increase
S, boundaries become sharp, and cycles in the “chaotic” phase are decreasingly likely and increasingly
complex until only chaos occurs in the limit S →∞.

• the high-dimensional type of chaos we describe here is very different from the low-dimensional chaos
that has been described in population models with one or few species (e.g. the logistic map, dynamics
with time lags [40] Schaffer, etc). First, it is driven by diversity, and the intensity of fluctuations should
thus increase if more species are added. Second, it is tied to species going toward extinction and being
able to regrow later to significant abundances.

• it can be difficult to distinguish these fluctuations from others that would be driven externally, e.g. by
environmental stochasticity, as both translate to a growth rate that changes over time (furthermore,
the temporal asymmetry with sudden jumps then decay had been proposed as a marker of externally-
driven fluctuations in other fields such as finance [56], and is here a basic feature of internally=driven
dynamics)

2This can be related to the notion of a heteroclinic network, see e.g. [52]
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• this many-species chaos can extinguish itself: if species can go extinct due to finite population size,
then the large chaotic fluctuations in abundances found here lead to populations going to ever lower
numbers, until some species go extinct. Unless species can then reinvade, this prcoess continues until
the remaining S∗ species are such that σ∗ =

√
S∗var(α) falls below the critical value σc. Chaos can be

maintained by having immigration from an external pool (or mutation) that allows species to reinvade,
and we explain below in Sec. 2.4 that it can also persist in a metacommunity [38].

2.2.2 Strong interactions

When interactions are strong, i.e. individually O(1) (e.g. αij = 0.5), very few (also O(1)) species can coexist
at any given time. This means that many of the theoretical benefits of looking at a many-species system,
such as having well-defined dynamical phases, may be lost. While this parameter regime is only starting
to be understoo [48], we can roughly distinguish two dynamical regimes, chaos and multistability described
below.

The transition between the two regimes occurs around 〈α〉 = 1, but it is possible for systems to be in a
state that mixes chaos and multistabilty, i.e. a dynamical landscape with multiple basins of attraction but
at least some attractors are chaotic rather than fixed points [48]. As noted above, we do not expect well-
separated phases, since few species survive at significant abundance at any given point in time and space, and
thus, it is not obvious that we can benefit from the tendency of dynamics to tend toward a few well-defined
archetypes when there are many interacting variables.

Strong interaction chaos:

This resembles the chaotic phase described above, still with noticeably intermittent dynamics (the typical
trajectory is that species jump to large abundances in a relatively short time, and then decay), but with

• few (O(1) rather than a significant fraction of S) species thriving at large abundances at any given time

• strong correlations between species, to quote [48]: ”As one moves deeper into the chaotic phase, the
collective correlation increases continuously, as the effective community size drops, suggesting a seam-
less transition from a weak-interaction, chaotic regime amenable to full dynamical mean-field theory
treatment to the strongly correlated regime that we have analyzed by simulations and the approximate
focal-species model.”

Multiple attractors:

There exist many different attractors that each allow a relatively small subset of coexisting species. As noted
in the summary above (Sec 2.1), this picture contrasts with some classic ecological intuitions on multistability
in multiple ways. This model will not exhibit regime shifts between just two or a few very distinct states,
like savannas and forests or lake eutrophication [57]; a different picture of the world is needed for those.

Furthermore, with at least some small noise, the system can undergo slow dynamics of jumping from one
attractor ot another [39] but they differ from the classical ecological concept of succession as proposed by
Clements for plant associations: the dynamics do not go determinitically from one stage to the next, each
characterized by a single set of species; instead we see much more stochastic trajectories through many possible
combinations. Instead, this occurs wiith many species forming many different low diversity associations, with
adjacent “spots” retaining distinct compositions despite spatial fluxes. Coexisting subsets are “cliques” of
species that do not compete too strongly, and are stable against all other species invading in small numbers.
But a large enough invasion (or an invasion coupled with an environmental perturbation) can cause species
in the clique to go extinct and the system to jump to a different stable equilibrium corresponding to another
clique.

2.2.3 Sparse interactions

Very sparse interactions, where a substantial majority of pairwise coefficients Aij are negligable, have barely
been studied [47]. One reason is biological: many well-studied ecological networks are relatively sparse, but
those usually describe interactions between different functional groups or trophic positions, e.g. food webs or
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plant-pollinator networks (sparsity then corresponds to the prevalence of specialized predation or pollination
links). Instead, interactions that can most plausibly be treated as fully disordered involve competitive or
multifactorial interactions within a guild of similar species (see Sec 1.4.2), e.g. competition between grasses
in a field, or a mixture of positive and negative effects between soil bacteria, and there is no reason to expect
that such interactions should be sparse.

It seems that due to the fact that a few partners have a significant impact on each species, details about
the interactions tend to matter more than in the diffuse interaction regime. For instance, these models often
have a large number of moderately-important transitions between phases that differ due to some details
rather than in response to overall changes in parameter (. [47]). Work done with sparse interactions are
nevertheless interesting in that they can be strong and still allow many species to coexist. Thus, despite their
a priori unrealistic character for competitive or multifactorial interactions, we could imagine that they may
represent some scenarios encountered in many-species communities.

This work also highlights the distinction between intransitive loops, i.e. a regime of abundance fluctu-
ations driven by mechanisms somewhat akin to rock-paper-scissors interactions (Marcus & Bunin in prep),
and multistable cliques [58, 47], i.e. a regime where species compete strongly enough to exclude their
interaction partners, and thus coexist only in ”cliques” with species that they do not interact with. The
former picture requires asymmetric interactions (one species impacting another but not being impacted in
return), while the latter tends to be associated with symmetric interactions.

The equilibria observed in the multistable phase tend to be very numerous and to “look relatively alike”,
i.e. many will tend to have comparable total biomass, diversity, etc. Nevertheless, we can see a kind of
stochastic succession dynamics: Bunin has shown that equilibria can be assigned a metric of “maturity” that
correlates roughly with species diversity, such that perturbations will on average cause more jumps toward
more mature states [39] (see also [59] in a related model).

2.3 Noise-dominated regimes

The analysis of the simple case we described above serves as a useful baseline model to which we can start to
add other elements. We can start by asking if our assumption of complete determinism can be expanded to
allow for noise (real stochasticity). To do this we use the Lotka-Volterra equations we had before (equation
1 above) and focus on ξi(t). Here we ignore the terms related to dispersal and come to those in the following
section.

dNi(t)

dt
= riNi(t)

1−
∑
j

AijNj(t)

+ ξi(t)

. Heree ξi(t) is a stochastic noise, i.e. a number that varies over time like a random walk (for now let
us assume it is white noise, i.e. uncorrelated across time), that can represent within-species processes like
individual birth and death, or external factors like weather.

If interactions create less variation over time than the perturbations3 the dynamics of species i will be
driven by this noise ξi(t) much more than by ecological features. Otherwise, the effects will be much smaller.
If noise is important it will increasingly lead to models that behave like the ’neutral’ theory of Hubbell (2001)
or to related ’stochastic logistic equation (SLE) models (Grilli). In the case where there is no noise, this
behavior only occurs at one point in the deterministic model (see Figure 4) but actual stochasticity expands
the area in parameter space (refs?) as we discuss below.

One important consideration is that the resulting behavior depends on whether and how ξi might depend
on Ni.

Demographic noise

Fluctuations from discrete birth-death events happening at random times can be shown [60] to induce noise
that increases like the square root of total population abundance, i.e. it can be approximated here as

ξi(t) =
√

(Ni)ξ̂i(t) (2.5)

3i.e. var
(∑

j AijNi(t)Nj(t)
)
� var(ξi(t))
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As shown in [61] the phenomenology is then very close to the original neutral theory of ecology [62], or models
of fixation of neutral mutations4.

Environmental noise

(i.e. changes in conditions that randomly impact growth rates ri) gives

ξi(t) = Ni ξ̂i(t) (2.6)

The model then behaves like the Stochastic Logistic Equation studied by [6] or the environmentally-perturbed
neutral model studied by [61]. An important difference with the original neutral theory is that fluctuations
are much larger and more rapid, so species can go extinct on much shorter time scales.

The noise-free (ξ = 0) chaotic phase discussed above is expected to look very similar to these dynamics
dominated by environmental noise. To see this, we can first rewrite the dynamical equation as:

dNi

dt
= riNi(t)

1−
∑
j

AijNj(t) +
ξ̂i(t)

ri


Chaos occurs when the term

∑
j AijNj(t) acts like a noise perturbing the growth rate, as would environmental

stochasticity, thus the consequences are similar to having nonzero ξ̂. The main difference is that fluctuations
in the chaotic regime are created by interactions with other species, and will depend on the diversity and
abundances of species in the community. In particular, these endogenous fluctuations drop to zero when
diversity falls below a threshold, see Sec. 2.2.1), whereas ξ̂i is in principle completely independent of other
species. An important consequence of this is that external noise may have to be tuned to some level to
preserve species diversity, neither too weak nor too strong depending on the system, whereas endogenous
fluctuations (chaos) are “self-tuning” [38].

To conclude, our focal model somewhat subsumes neutral theory and Stochastic Logistic Equation (SLE)
as particular noise-dominated limiting cases of the RLV model and highlights how noise enhances the pa-
rameter space for behavior that resembles these cases. The framework we describe here also highlights how
discriminating among cases where deterministic RLV dynamics drive dynamics into the ’chaotic regime’ from
simpler models that are driven by noise. One solution to this may be to focus on how species diversity itself
is stabilized (rather than just fluctuations in composition and abundances).

2.4 Spatial (meta-community) behaviors

The introduction of space, bringing us to the full equations (2.1), poses two additional questions:

• How spatial heterogeneity in parameters impacts dynamics and shapes measurable patterns

• How species dispersal between patches can change the dynamics, for instance by rescuing locally extinct
species, even in an homogeneous environment where all parameters (carrying capacities, interactions...)
are constant across space

The analysis of this full model naturally produces more complex outcomes and regimes and the results of
these analyses are poorly studied. Extending ’disordered models’ to address these questions increases the
number of critical aggregate parameters quite significantly since we now need at the very least: the variance
of dispersal rates Di (and whether they correlate with other species properties), and the spatial variance and
autocorrelation of growth rates or carrying capacities, which represent the spatial features of the environment.

Random Lotka-Volterra metacommunities have been less studied than single communities, so we have a
limited array of established results to draw from, and in particular few known behaviors that are truly novel

4We remark that neutral models originally assume a zero-sum game (the total number of individuals is fixed and divided
among species), which can be recovered here (almost exactly) by having identical Aij for all i, j (including Aii). We could also
assume non-interacting species Aij = 0 for i 6= j, in which case the total number of individuals obviously increases with species
number, and is much more free to fluctuate over time. Such models, and everything between the two limits, have also been
studied under the name of neutral models, see e.g. [63]. Many predictions will be similar across this whole range of models, e.g.
abundance distributions [64, 63], while others are obviously different e.g. change of total biomass with diversity.



26 CHAPTER 2. THEORY

compared to well-established ecological intuitions. A significant fraction of the explanations below
are therefore speculative.

2.4.1 Heterogeneous environments

First, without considering dispersal as an additional process, we can simply ask what happens if we let
parameters such as growth rates and interactions (or just carrying capacities) vary across the landscape.
This question has barely been explored in our focal model, although ongoing work is homing in on this
problem.

Here, we have little grounds so far to expect novel behaviors compared to what is already well understood
in metacommunity theory – for instance, more heterogeneous environments will allow more different species
to coexist at the regional level, etc. At the broad level, we thus expect no new qualitative regime from
this addition, though of course it could induce many quantitative variations.

2.4.2 Dispersal in a homogeneous environment

As for simple metapopulations, we can roughly separate three regimes of dispersal [65], starting with two
extremes. On one hand, there are isolated communities, where dispersal is weak enough that patches are
effectively isolated from each other. At the other extreme, a well-mixed system, where dispersal is strong
enough that all patches are equalized and synchronized in dynamics, effectively going to a single large well-
mixed patch. In-between, there may exist a regime where nontrivial spatial dynamics can occur. The observed
regime depends on both dispersal rate and the landscape scale. As discussed in [65], for many models and
questions, interesting behaviors happen at the boundaries between these three regions.

Here we focus on how spatial extension and dispersal change dynamics even if the environment is otherwise
homogeneous, in the sense that dynamical parameters do not vary between localities. We note that an
environment can be considered homogeneous even if has variations, provided they occur on small scales:
when the correlation length of heterogeneity is below the typical spatial scale of dispersal, which increases
with dispersal rate and can extend over many patches even if dispersal occurs only between neighboring
patches, see e.g. [18].

In the diffuse interaction regime, we do not see truly novel spatio-temporal dynamics, but a relatively
straightforward extension of previous equilibrium or chaotic regimes. In the equilibrium regimes, species’
abundances now track their environmental optimum in the feasible phase, or some nontrivial combination
of environment and interactions in the Unique Fixed Point phase ([18], Barbier & Leibold in prep). The
main novelty is that adding space makes it more likely to observe the dynamical regimes characterized by
abundance fluctuations. As discussed in Sec. 2.2.1, chaotic dynamics tend to extinguish themselves in a well-
mixed system5. However they can be rescued by having multiple patches, with dispersal strong enough to
rescue extinct species but too low to synchronize dynamics; asynchronous dynamics emerge easily, requiring
infinitesimally small heterogeneities in the landscape if there are many patches [38]. There is a striking effect
at play here that can already be understood from a single metapopulation: a population that has on average
negative growth rates in every patch can keep rescuing itself forever when patches are coupled, see e.g. [30]
and references therein.

With strong interactions however, we can see new patterns in space: for instance, ecotones separating
clearly distinct domains [41], or directional dynamics with succession, community range expansion etc [43].
Thus we potentially enter the region of patch dynamics in metacommunity theory [49], with local extinc-
tions and invasions driving strong impacts, see also Sec. 4.2.3.

5There are very subtle caveats there that we don’t understand well: for high extinction threshold, it’s mainly transient
behaviors (typically leading to much wider fluctuations than those found later in a stationary chaotic behavior when that is
observed in metacommunities [38]) leading to all these extinctions; if one lowers the extinction cutoff a lot, it seems that chaotic
dynamics are mainly extinguished by deterministic loss of diversity (i.e. species cannot survive in the long term in a single
patch unless they could do so at a fixed point). So it is not necessarily chaos killing itself through ”activated events” (i.e. large
fluctuations touching the extinction threshold), though this may still happen in principle.



Chapter 3

Epistemology

Summary

This (currently short) chapter attempts to demystify the use of randomness and
simple approaches to “complex systems”, explaining when and why we can expect
them to be useful or not, what kind of information they made provide or not, by
explaining what is even meant or assumed by randomness and its inclusion in our
models.

Ecosystems with many species and processes can seem overwhelmingly complex, but the accumulation of
complicated ingredients does not necessarily entail that the whole will behave in complicated ways1. We can
imagine at least three plausible scenarios:

1. Among all these details, a few matter much more than the rest and we can reduce our focus to those.
For instance, body size might be the foremost factor distinguishing aquatic species and structuring
their ecological interactions [27], and then this structure very likely (though not necessarily) has to be
incorporated into a model for it to successfully predict any phenomenon. Ee can call this “classical
simplicity”, since identifying such key mechanisms is a traditional goal of ecology.

2. Many or all details matter roughly equally and influence outcomes in different, weakly correlated,
directions. Their combined impact will often be simpler than expected (they average out, or create
random-like variation), and only certain aggregate properties persist as important causes and conse-
quences – we can call this “emergent simplicity”.

3. Many or all details matter in a deeply correlated and interconnected way. We intuit that such a
situation is fragile by definition: displacing a single detail can impact all the others in a major way, like
a computer program where removing one character will cause the whole to stop working. We can call
this “true complexity”, and many biological examples exist (e.g. the genetic program in an organism).
But we feel it is legitimate to wonder whether ecosystems are sufficiently closed and co-evolved to allow
the emergence and persistence of such fragile structures (and whether these structures are the leading
forces shaping the behavior of the entire ecosystem).

Our main ideas here are that i) classical and emergent simplicity (options 1 and 2), in the right mix,
might suffice to capture many aspects of complex-looking ecosystems, and ii) emergent simplicity (option
2) has not been explored enough compared to its classical counterpart, being an equally interesting starting
point to improve our understanding of ecological phenomena.

One aim of this guide is to demystify models of emergent simplicity: show when they are useful, when
they teach us something new, but also when they do not, and be honest with any conceptual difficulty in
applying them. Such models, including disordered systems, can reveal phenomena that only happen when
there are many species and details, but also tell us when the behavior of a large heterogeneous community
is a straightforward extension of what could be understood from only two or a few species. Emergence is

1Conversely, simple ingredients do not necessarily lead to a simple system.
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Figure 3.1: Illustrating the argument from high dimensionality for disorder in Sec. 3, i.e. the existence of
many factors shaping interactions between species. When species differ importantly in just a few ways, e.g.
trophic height, we can organize them in simple modules like food chains. When they differ in a vast number of
ways, their interactions become largely unpredictable and, in effect, random-like. Real communities probably
lie somewhere in-between, and can be approached from both sides, e.g. modules or partially structured
models.

only sometimes magical, and studies of complex-looking models contain many red herrings. We believe a
honest and pragmatic presentation will show that only a few new intuitions suffice to capture the main ideas
of emergent simplicity and add it to one’s intellectual palette.

We now try to explain why this outlook naturally leads to the use of randomness in our models. We
propose three explanations (all in some sense plausible and grounded in mathematical arguments developped
in other works), in the hope that at least one of them will resonate and provide a working intuition for when
it is a good idea to turn to randomness.

3.1 Three ways of thinking about randomness

3.1.1 Objective motivation: a confluence of many factors

As noted above, ecological theory has often focused on situations where a few key parameters matter more
than everything else.

On the other hand, when there are many independent sources of variation, their combined effects often
behave like random variables. The canonical example is a dice throw where many deterministic microscopic
factors (spin, speed, orientation, angle to substrate, etc) actually determine the outcome but interfere so
much with each other that none of them dominates, and the result is effectively random.

In other words, randomness can be seen on objective grounds as an “attractor” in the space of all possible
phenomena, in the sense that more and more complicated systems will often tend to act more and more like
randomness generators.

We may treat pairwise species interactions as random if they are sufficiently independent : if the impact
of one species on another is not predictable from the interactions of these two species with other ones. In
a strict competitive hierarchy, or in a food chain, we can rather easily extrapolate how species A & C will
interact if we know how A & B and how B & C interact. If however, say, A & B interact mainly through
light limitation and B & C mainly through pathogens, or some complex and context-dependent combinations
of many such factors, then we cannot truly predict the outcome of any interaction from the knowledge of
others.

Being random-like simply requires that the many interactions in the network are sufficiently uncorrelated,
which is a likely outcome if these interactions arise from many different traits and factors.

A subtler take: Even if each individual interaction is in a sense deterministic and predictable, their
longer-term outcomes in a complex community might still be as if they were random. If there are many
pathways and modes of interaction, a species can have a negative direct impact on another (e.g. a predator
on its prey), but a positive indirect impact through other variables (e.g. a predator by recycling nutrients).
Many positive and negative indirect effects running along various paths through other species can end up
interfering with each other, and acting as random noise.



3.1. THREE WAYS OF THINKING ABOUT RANDOMNESS 29

Figure 3.2: Illustrating the argument from robustness in Sec. 3, i.e. the idea that we may use random models
because they are a simple way to access ”generic” outcomes that we expect to arise in many nonrandom
models [21]. Drawing parameters at random is thus different from ’exploring all the possibilities’ – on the
contrary, for large numbers of parameters, it is unlikely to stumble upon any non-generic possibility.

If however species are organized in sufficiently distinct groups, roles, axes, etc., these direct and indirect
paths all sum up into a coherent impact and we cannot use this randomness assumption, e.g. as trophic
levels, all paths between a top predator and a plant tend to be correlated in their impacts: the top predator
may eat multiple carnivores, each of which eat multiple herbivores, but it all results in a cosnistently negative
impact on the plant.

3.1.2 Heuristic motivation: baseline models for robust phenomena

Even if we do not accept randomness as being “objectively” a good representation of the dynamics we are
modelling, we can still adopt it on heuristic grounds. We admit that we are dealing with intricate complex
systems, possibly devoid of any true randomness, but we only focus on behaviors and patterns that are robust
to these details because we believe these predictions would also hold even if we were to make changes in the
details of the studied system (e.g. shuffle carying capacities, growth rates, or interaction coefficients). It is
then plausible that the same phenomena or patterns will be very frequently be observed if these details are
drawn at random and deviations would require very specific changes that would be very unlikely (Fig. 3.2).
Choosing a random model is useful simply because it is easier to manipulate than most non-random ones
with the same behaviors, and it thus serves as a “baseline” model for this aspect of the dynamics.

3.1.3 Subjective motivation: aggregation and statistical equivalence

A third option is a subjective Bayesian viewpoint: ’Randomness’ simply reflects the degree to which we are
uncertain or uncaring about certain details.

Aggregating implies that the variables we are aggregating over (e.g. the abundances of various species)
are, in some sense, equivalent or exchangeable – that we do not mind adding apples and oranges if what we
care about is total fruit availability. This does not mean that these variables are identical in every way, but
only that none is “special” in how it contributes to the aggregate.

This clearly depends on which aggregate pattern is our focus: it may seem strange to add together the
biomass of predators and prey into a metric of total biomass given that they have very different ecological
implications, but some predictable patterns (e.g. how much fish biomass can we extract from an ocean,
regardless of their trophic level) assume an equivalence between them even though others (e.g. how efficiently
is sunlight converted into fish biomass) do not.
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Random models (and neutral models as a subcase) appear like a natural choice when we believe that we
are indeed justified in treating species as statistically equivalent for a given pattern. In a random interac-
tion network, species are not identical, but no species occupies a very unique role – even a well-connected
“hub” species may not be a remarkable outlier because it occurs within the expected distribution of means
and variances, but can be modeled as a representative sample of the overall community’s distribution of
connectedness. We give a more concrete discussion of this notion of statistical equivalence in Sec. 1.4.2.



Chapter 4

Empirics

Summary

This chapter has two aims: it attempts to synthesize the state of the art on the
question of “how well our models do in the world”, and then offers a larger shop-
ping list of observables one could measure empirically and confront to theoretical
predictions. Many empirical observations seem compatible with a model of nonin-
teracting species driven by environmental noise or interacting species in a chaotic
regime – it is not easy however to discriminate between these two options (or
some combination of the two). Experimental response to perturbations might be
the most approriate and informative way to probe community structure, but this
probing is more subtle than in other disciplines because we rarely know how much
within-species processes are impacted by perturbations. I list various other caveats
and issues that come with any attempt at confronting theory and data, to explain
why there have been few, if any, smoking guns so far for disorder and similar
complex systems approaches in community ecology.

Empirical community ecology often focuses on particular species/taxa and factors (e.g. cyanobacteria and
nitrogen). By taking a disordered systems approach, we choose to lose the labels and focus only on observables
that are somehow aggregated over individual species, samples and times – typically distributions (e.g. the
distribution of species abundances in a community), statistics of these distributions (e.g. the variance or
unevenness of species abundances), and relations between such quantities or statistics (e.g. Taylor’s law
relating mean and variance of abundances).

Furthermore, since we are employing LV-type models (1.2), all the patterns that can be confronted to
theory must be constructed entirely from:

• model variables, typically abundances Ni(x, t) (or perhaps “dynamical importance”, see below),

• model parameters (number of species S, growth rates ri, interactions Aij ...)

• perturbations ξi(x, t)

• observation parameters: number of samples, time range, spatial scale...

As we noted in various places, this means that we cannot very satisfactorily address patterns of ecosystem
functioning beyond rather simple ones.

4.1 Stylized facts

Epistemic status: Rough approximations & speculation, but most of the facts are truly salient in natural
observations (i.e. I would be surprised by any many-species observational dataset not conforming to them).
I discuss differences with experimental settings whenever relevant.
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Here we summarize some qualitative facts that often emerge from empirical observations across a variety
of ecosystems, and how they may be explained in the disordered LV framework. This section refers to the
theoretical regimes and predictions detailed in Chapter 2.

Many-species coexistence

Epistemic status: Peculiarly not easy in experiments with simple environments e.g. a Petri dish with a simple
culture medium.

A rather massive literature addresses the question of coexistence mechanisms. But very often, the pro-
posed mechanisms allow a few species to coexist, or can multiply the number of species that can coexist by a
moderate factor (uncoutable examples including [34]). Far fewer mechanisms are actually credible for going
from a few to a truly large number (hundreds, thousands...) of coexisting species.

It’s broadly understood that there are two main options: either fitness equalization, meaning that no
species has a significant advantage (from single-species dynamics and multi-species interactions) over any
other across all space and time, or self-regulation, meaning that the competitive impact of a species on
others is relatively weak compared to its impact on itself, and thus, no matter its advantage, it will eventually
limit itself enough to not overtake others.

In slightly more detail, we can find four regimes within our model that could sustain large diversity:

• No overall fitness advantage: species have comparable growth advantages (at least in some sites or
part of the time), either because they are truly similar in traits and interactions, or because they are
sufficiently close to a trade-off surface (for instance, species may all fall on a spectrum from faster grower
to stronger competitor, or between various resource consumption strategies, with the advantages of each
being well-balanced so that none of them takes over)

• Diffuse interactions (possibly as an effective result of spatio-temporal averaging, i.e. interactions be-
tween individuals could be very strong, but the community-level impacts could be much weaker, e.g.
due to species being segregated into many microhabitats)

• Sparse interactions (likewise possibly as an effective result, e.g. interactions concentrate among few
species pairs that are very often present together)

• And an idea (at this stage less well-defined for me) of coexistence fundamentally driven by spatial
or temporal heterogeneity (e.g. out-of-equilibrium fluxes) despite strong interactions and large fitness
differences. It is not entirely clear to me that this truly won’t be morally equivalent to one of the
former three options when properly aggregated over time and space, despite a significant corpus on
nonequilibrium coexistence [66, 67].

The main alternative to these four explanations is strong structure, but it is not obvious to identify structures
that lead to many-species coexistence without effectively boiling down to one of these options.

Wide abundance distributions

As discussed in Sec. 4.2.1, realistic abundance distributions are usually very wide (power-law or log-normal).
Among possible explanations within our framework:

• Chaotic or noise-dominated regimes produce the right kind of distributions: no species is truly advan-
taged forever, but the rich-get-richer mechanism of exponential growth allows some lucky ones to blow
up at a given time

• Otherwise regimes where differences between species arise mainly from interactions would give narrower
distributions of the dynamical variables, but it may be that measured abundances are very bad proxies
for these variables (Sec. 4.2.1)

• Otherwise, regimes where differences between species arise mainly from the environment can be arbi-
trarily tuned to produce wide abundance distributions (i.e. we can postulate a wide distribution of
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carrying capacities K by fiat, since we are not modelling where those K come from). Species interac-
tions in that case can only be very small corrections on what is imposed by the environment – if they
were significant, then the environmentally-advantaged species should wipe out all the others1

Few dominant species

Many experiments and observations across biomes and organism types suggest that, despite a large diversity,
a large fraction of abundance or biomass is dominated by very few species. This can fit with the strong
interaction regime in general.

Large abundance fluctuations

All the chaotic or noise-dominated regimes (see [16] for possible evidence of a mix of demographic and
environmental noise at different levels depending on species and population sizes)

Wide distribution of ranges

There is significant evidence that a few species are dominant over a large fraction of the landscape (or region,
or set of samples...). This is not necessarily what would be obtained by simply coupling many patches
displaying chaotic fluctuations, where there is no guarantee for the same species to prevail in many places at
once (depending on the strength of coupling of course).

Hence

• a chance explanation: dominance is truly by chance and spatial coupling is strong enough to synchronize
it or entrench the winner (this would however tend to help extinguish chaotic fluctuations [38])

• a deterministic explanation: the carrying capacities or interactions deciding who comes up on top are
consistently biased in favor of the same species in many different places. While we can of course draw
the average carrying capacity for each species as a random number across the whole landscape [6], there
is no clear explanation for doing so without positing

Simplifying the system leads to more dominance, less diversity

Epistemic status: This is not as crisp an empirical fact as many of the other ones, which simply require
looking at bare data.

Many systems seem to lend themselves to observations along the following lines: adding much of a
particular resource often tends to dramatically favor one species over others, usually leading to a reduction
of diversity together with an increase in total biomass. On the contrary, adding a source of mortality tends
to lower total biomass but increase diversity.

This might, if it is truly a broad observation, lend some credence to the notion of the environment’s
“complexity” being a key factor in diversity, and that species may often be near some sort of trade-off unless
some external factor suddenly advantages one. This kind of response to perturbations is not something that
is readily obtained in a model with purely random parameters, but it may require a particular structure un-
derlying carrying capacities, interactions and perturbations, thus perhaps pushing us away from a completely
disordered Lotka-Volterra model and toward one structured by (poorly-defined) “resources” or “functions”,
see Chapter 1.

Putting it all together: what is the most plausible regime within our theory?

Disclaimer: there is no obvious reason why a single regime of our model should be the most representative
of everything that is found in nature, even when some stylized facts seem to recur.

1Unless interactions are somehow rigged to correlate negatively with environmental advantage, which typically would mean
that abundances are not the correct variables to reflect dynamical importance (very abundant species would need to have a
much weaker per capita impact, suggesting that per capita is not the best way to compare interactions).
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In terms of accounting for diversity and fluctuation patterns, the most obvious candidates are either the
regime dominated by environmental noise (where species interactions do not matter much or only for some
marginal patterns) or the diffuse or strong chaotic regimes (where species interactions are at the heart of the
dynamics).

The first type of explanation is effectively “passing the buck” of explaining why species abundances and
dynamics display certain features, since it now relies entirely on a correct description of the environment’s
own statistics and variations, rather than on the interplay between the variables in our (LV-like) dynamical
model. This viewpoint, embodied e.g. in sampling models [6] that do away with interactions entirely, can
certainly account for some of the observed phenomenology, and looking more into precise dynamical features
(e.g. perturbations and responses) is likely necessary to discriminate reliably between the two options.

One example feature that could help identify the chaotic turnover regime is that we expect decreasing
temporal correlations between species with increasing diversity, as seen in [68] (who give a different explana-
tion: dilution effects). Another might be observing that species invasions lead to change in the composition
of the existing community [69].

Among the less obvious and more speculative consequences of the dilemma between the two regimes listed
above is the question of whether a description in terms of species is most appropriate: if the patterns we
are seeing are best explained by exponential tendencies modulated by changing biotic contexts, then we may
posit that the central dynamical process to take into consideration is reproduction (the engine of exponential
growth), which is what unifies species – or at least local populations – and demarcates them strictly from
each other. If however environmental fluctuations are the main driver, it is not obvious that species are the
right grain – there is usually significant variation in environmental preferences within a species, and similar
preferences across species, therefore it could become more relevant to use a model of ecotypes.

4.2 List of patterns and predictions

4.2.1 Abundances only

Many sources of data in community ecology take the form of a distribution of species abundance (or at least
presence/absence) for various species in various samples across space or time. Several patterns or distributions
can be constructed from that kind of dataset [6].

We present the theoretical predictions for these patterns, but we must also reemphasize the major caveat
that the variables whose distribution we are describing are not necessarily truly the species abundances, but
rather their dynamical importance, which could be instead tied to e.g. biomass or relative yield or resource
consumption, see Sec. 1.4.2.

Abundance distributions

We show in Table 4.1 the basic predictions of the RLV model in terms of distributions of the variables Ni.
Most empirical data supports a Gamma or otherwise wide distribution, rather than a narrow distribution
(e.g. Gaussian or truncated Gaussian)

This may seem to rule out certain regimes of the RLV, which produce Gaussian distributiosn. Yet it has
sometimes been suggested that the ”correct” variables (see Sec. 1.4.2) such as relative yields Ni/Ki, may
indeed follow a Gaussian distribution [25], with the Ki themselves being widely distributed, for reasons that
require further explanation. Since we often lack knowledge of the Ki, the information of the Ni alone is thus
not a surefire way to rule out the corresponding dynamical regimes.

Additionally, a lot of work around neutral theory has consisted in trying to validate and understand the
claim that SADs are sometimes bimodal, with a cluster of abundant species and a long distribution of low-
abundance ones. This is somewhat similar to what can be observed in RLV in the chaotic turnover regime,
or in the spatial case with dispersal, though evidence is spotty and complicated.

We will not spend much time discussing the various diversity and evenness metrics that can be extracted
from the abundance distribution – e.g. mean and variance of abundances, Hill numbers, ... as they represent
less complete information (but they might be more robust to model details)
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Regime SAD∗

Feasible Narrow (Gaussian) [43]
Unique Fixed Point Narrow (truncated Gaussian) [43]

Chaotic turnover Wide (truncated power-law, Gamma) [48]
Noise dominated Wide (Gamma) [70]
Multistable phase Unknown, likely narrow [37, 48]

Table 4.1: Predicted abundance patterns (∗ Species Abundance Distribution, or distribution of whichever
variable actually matters in the dynamics, see main text.

Abundance co-distributions across space/time

McGill [8] has proposed that different mechanisms will generate the same commonly-studied spatial patterns
if they lead to the same “stochastic geometry”, i.e. an effectively random distribution of individuals in space,
where only a small number of statistical properties matter.

A particularly simple type of stochastic geometry might be one that (i) specifies the degree of clustering
of individuals of the same species, (ii) specifies the (e.g. lognormal) distribution of species abundances, and
(iii) otherwise assumes species to be independently distributed in space. This idea has been picked up and
discussed and tested empirically in recent articles by various groups [71, 6, 68].

We can discuss when a given type of stochastic geometry is expected to arise from a Random Lotka-
Volterra metacommunity. For instance, the above three assumptions are actually quite likely to hold in the
chaotic regime with diffuse interactions, since temporal fluctuations are highly uncorrelated between species
– despite the fact that these fluctuations only exist due to the very interactions between all these species.
But the parameter regime that best maintains chaos is one where dispersal does not strongly couple local
populations of the same species, so intraspecific spatial correlations should be rather limited. It remains to
be seen whether empirical values of dispersal and spatiotemporal correlations will prove compatible with this
chaotic regime.

4.2.2 Abundances and parameters

If we have independent ways of measuring the parameters in our equations, i.e. carrying capacities Ki,
interactions Aij etc., there are more patterns we can measure: for instance, theoretical predictions on how
parameters for coexisting species differ from parameters for non-coexisting ones [72].

With a few exceptions (like the experiment analyzed in [25]), this is however rarely possible in terms of
empirical data. In most cases, we cannot directly measure all the parameters in our model, as that would
require at the very least O(S2) experiments: growing all species in isolation to get the Ki, all species pairs
to get the Aij , and some more combinations to test the model.

Since disordered systems predictions do not require full knowledge of the parameters, we may still hope
to obtain enough partial knowledge to test some theoretical results, e.g. sampling only some of the pairwise
interactions to estimate their mean and variance, and. To our knowledge, no test of RLV following this
principle has succeeded quantitatively, but qualitative agreement between theory and experiments was found
in [51], where a few of the regimes in Chapter 2 were observed.

4.2.3 Abundances and perturbations (stability)

In Chapter 2, we classified dynamics in the RLV model by their qualitative stability: in the absence of
perturbations (ξ = 0), would the dynamics tend to a single stable equilibrium, to persistent fluctuations, or
could it fall in various attractors depending on past history?

But we may also ask about the quantitative stability of a community: how much does it respond
to perturbations ξi(t), how evenly between species, etc. Many quantitative metrics of stability have been
proposed to characterize how stable or unstable a community is, accounting for its response to various such
perturbations [73] e.g.

• Press perturbations, i.e. ξi constant over time (e.g. a new permanent source of growth or mortality is
added, like humans harvesting some species at a fixed rate)
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Figure 4.1: The problem with trying to figure out how much an ecological community’s dynamics is driven
by external factors versus species interactions, or using perturbations to probe its structure: while many
aspects of a perturbation are measurable, we almost never know the actual impact on our model variables or
parameters (with the exception of perturbations destroying a known percentage of a population, e.g. forest
fires, and even then there are subtleties).

• Pulse perturbations, i.e. instantaneous impacts ξi(t) = δ(t− t′)ξi (e.g. a sudden fire or resource bloom)

• Noise ξi(t) = W (t)ξi with W a random walk (e.g. weather fluctuations)

• Periodic perturbations ξi(t) = sin(ωt+ φ)ξi (e.g. night-day or seasonal cycles)

as well as species invasions or extinctions. These perturbations represent impacts on the population dynamics,
and we are interested in how demography then plays out (e.g. how the community recovers from, or even
amplifies, the perturbation).

A systematic way of thinking about stability and comparing it across communities is still lacking but
see [74, 75] for intuitions, a few of which are summarized below and in Appendix.

The problem of measuring stability

A major problem arises when trying to compare ecosystems in terms of stability. We often take time series
N(t) from various ecosystems, look at their temporal variability or total displacement or some such metric,
and use this to conclude than an ecosystem is more or less stable than another.

But it almost never occurs that we really know how strong the perturbation ξ was that induced the
observed variation in abundances N . As illustrated in Fig. 4.1, when we incorporate a disturbance as ξi(t)
in our equations, it is almost always the phenomenological result of physiology, resistance, demographic
phenomena within each species, etc. for which we do not usually have good quantitative understanding.

Meaningful metrics of stability, i.e. those we can use to estimate interaction strengths or other processes
of interest, are usually not so much about “how much an ecosystem moves in total” and more about “how
much an ecosystem moves relative to how much you perturb it”, hence expressions like dN/dξ in Table 4.3.

Predictions that can be tested are more qualitative, such as the existence of relations between various
stability properties.

Perturbations as probes

The response of a community to perturbations is an essential prism through which we can understand what
is happening inside. For instance,

• when a perturbation ξi selectively targets some species i (e.g. a disease, an influx of a specific re-
source...), we can study whether its impact on another species j is weaker or stronger than their impact
on the targeted species, to have a measure of how strongly interacting these species are [76]. The
“amplification” of the response, e.g. the ratio of dNj/dξi to dNi/dξi in the case of press pertubations,
is somewhat robust to the fact that we do not know the magnitude of ξi (in the linear limit it is inde-
pendent of that magnitude).
One complication, however, is that the two species may have different sensitivities or “biomass scales”
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(e.g. the abundance Nj of plants may be much larger than the abundance Ni of herbivores, then we
might expect dNj to always be larger than dNi). Thus, we may only be able to reliably probe more
robust quantities, such as the product

λ =
dNi/dξj dNj/dξi
dNi/dξi dNj/dξj

which represents how strong the feedbacks through other species are compared to feedbacks of a species
on itself (e.g. in a two-species LV, it would be λ = AijAjj/AiiAjj , but in a more complex model it is
a bit more subtle)

• this notion can be generalized into several metrics of how “collective” the dynamics are within the
network of interacting species: e.g. how far the perturbations “propagate” away from the original
speices, and how predictable the long-term responses are from short-term ones [77]

• studying “invasion” events when a species is added to the community is also a way of probing community
stability [78], and allows us to define whether a community is “saturated”, i.e. behaves as if it can sustain
a maximum diversity [79]

Relationships between stability properties

In an arbitrarily complex community, the sensitivity to perturbations of diverse types, or applied to distinct
species, could be very different (e.g. a perturbation on a top predator or basal species may have widely
divergent impacts). In a disordered community however, we expect stability properties to be connected in
predictable ways. We give some examples of these relations:

• the species’ responses to press perturbations and invasions are tightly connected [78] and tell us about
qualitative stability as well: the transition to chaos is seen in a dramatic increase in the sensitivity to
a zero-mean press on carrying capacities [43]

Stability & ordering by abundances

In disordered systems, species contribute differentially to stability properties in a way that is largely de-
termineed by the species’ abundances, or rather by relative yields ηi = Ni/Ki [75]. More precisely, some
stability indicators, despite being computed at the community level, will mostly reflect the stability of the
rarer species, and others that of the more abundant species.

For instance, it can be shown (see Appendix) that the commonly used stability indicator known as
asymptotic resilience, i.e. the long-term rate at which a community returns to equilibrium, is very likely to
simply be the return rate of the rarest species. As such, this metric does not clearly represent a “community
property”: the rest of the community could be much more stable than suggested by this metric [80, 74].

The fact that rarity or commonness are such strong predictors of a species’ role in community stability
is because a disordered community does not assign special positions to species. In a structured community,
contributions to stability may have more to do with the particular role of a species, e.g. a top predator
species may have disproportionate importance despite being rare, because of where it sits in the structure.
A random network offers no notion of “where” a species sits, except a statistical one that can be summarized
as: is the species overall favored or disfavored by all the other interactions in the network, i.e. is it abundant
or rare. Being lucky or unlucky is a collective, context-dependent property tied to the whole network: if
one species is more abundant than another in one community, the reverse is as likely to hold in another
community, even if the environmental conditions are all identical.

This prediction has not been tested empirically yet, to the best of our knowledge, but it could be used to
rethink attempts at connecting various stability metrics [73], at least inasmuch as we expect diverse metrics
to be correlated only when they are probing the same (rare or abundant) subset of species.

Invasions and extinctions

In our many-species disordered models, it is natural to ask what happens to the community on average when
any one species is added or removed. This can be closely connected to the community’s response to press
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perturbations, as adding or removing a species is like a permanent change in the growth or mortality of all
the species it interacted with.

In the diffuse interactions regime (Sec 2.2.1), the individual impact of any species on any other is rather
weak. Thus, if an invasion or extinction causes secondary extinctions in the community, the latter will only
concern rare species2, simply because any perturbation can push them over the edge, not due to particular
interactions between them and the added or removed species.

For strong interactions, we can understand under which conditions invaders are likely to cause more
dramatic transformations to the community, see [78]. This happens when the invader experiences a strong
positive feedback, e.g. when it can grow in abundance, kill some competitors which leads to a more favorable
environment with even faster growth, and so on. This, and the emergence of “keystone” species whose
extinction has dramatic impacts, can be understood by looking at the distribution of species’ susceptibilities
to press perturbations, and checking when they diverge or even become negative, as discussed in [78] and
follow-ups (in prep).

4.2.4 Relations between properties across communities

Many commonly studied patterns are relationships between some of the observables listed above, i.e. how
they co-vary across communities that differ in some basic ways, as illustrated in Table 4.2.

Pattern Definition Example studies

Species Area Relationship S∗ vs area [7]
Diversity-variability var(N) vs S∗ [81]

Diversity-invadability invasion success vs S∗ [82]

Dissimilarity-Overlap corr
(
~N(x), ~N(y)

)
vs corr(Ω(x),Ω(y)) [16]

Table 4.2: Some commonly studied composite patterns: relationship between pairs of observables (defined in

Table 4.3) across some axis of variation between systems. (Note: ~N(x) is used to designate the vector of all
species abundances in a community x, while Ω(x) designates the set of present species).

Inference from patterns

Using relationships between diversity and other properties has been one of the main ways of testing the
disordered model and inferring its parameters.

By and large, one of the most easily and robustly inferred properties is average interaction strength, as it
can be deduced from the relationship between species number S and total biomass [83].

One important test that would lend strong credence to the Random-Lotka Volterra model is that, if
ecological fluctuations stem from species interactions as in the chaotic regimes, we would expect these fluc-
tuations to become stronger and less correlated between species in communities with strong interactions or
larger diversity. This has been found in at least one experiment [51] but field evidence has not been accrued
yet3.

We can ask two questions:

• Why are some patterns (e.g. SAD, SAR) far more studied than others?

• Is it useful to test many patterns at once, can we improve our ability to infer model parameters?

Appendix: Warnings and caveats for theory-data comparisons

An important direction to be explored is whether certain basic or composite patterns are more robust to
various types of error, noise, uncertainty:

2Typically species whose abundances are of order µ/S or σ/
√
S.

3See notably evidence in [68], although they give a different explanation based on dilution effects.
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• Measurement errors and biases

• Wrong variables, see Sec 1.4.2

While we can always try to assume the error distribution and infer the real pattern as latent variables, it is
probably much safer to focus on patterns that are intrinsically less affected by these errors.

As an example, relative properties, such as relative change of biomass in response to a perturbation, are
potentially more robust to errors of units/variables, but more prone to errors due to taking a ratio (which is
bad when the error bars of the denominator can touch zero, for instance). This also connects to the problems
of normalization discussed below.

Log or no log

Since abundances often vary over orders of magnitude, we may wonder whether it is meaningful to measure
the statistical moments (mean, variance, etc.) of abundances, or whether we should look at the moments of
their logarithms. Indeed, when random variables have a wide, fat-tailed distribution such as a lognormal or
power-law, the mean and variance may be largely controlled by one or a few very large values, and thus not
be good indicators of the whole abundance distribution.

This is not as simple it may seem, because the usual (arithmetic) mean and variance do matter for the
dynamics – they determine the amount of interaction experienced by other species, for instance, or the flux
of migrants going to other sites through dispersal4.

It may be necessary to have a theoretical understanding in order to decide whether to take the log or
not in specific cases: for instance, we see in [46] that, in the diffuse-interaction chaotic regime, the “correct”
variables to employ to understand the dynamics are the bare abundances for the most abundant species, and
the log abundances for the other ones.

Normalizing observables

Many properties must be normalized to allow for “fair” comparison between ecosystems. For instance, if we
compare biomass production across ecosystems, we may want to normalize by something like system size,
to have a notion of how efficient each ecosystem is relative to its size. Such a normalized metric may then
be “scale-invariant” in the sense that we can meaningfully compare it across measurements done at different
scales.

The choice of how to normalize is self-evident only when considering linear/additive metrics, such as
biomass (the biomass of a system is always the sum of biomasses of subsystems). In that case, normalizing
is always equivalent to taking an average.

There is no correct way to normalize a property like variability. Consider for instance: if variability is
due to demographic noise, then we expect var(N(t)) to be proportional to N(t) (see 4.2.3), so the correct
normalization is to divide the variance by the total biomass. If variability is due to environmental noise,
then var(N(t)) is proportional to N(t)2, so we should normalize by the square of total biomass. Choosing the
wrong normalization here will automatically mean that variance decreases or increases with total biomass
(and thus with scale) regardless of anything else.

What this means is that ”how to normalize” is not a property of the metric, but a property of the
process: some processes will give scale-invariant metrics once normalized by

∑
N , others by (

∑
N)2, others

by something else or nothing at all. Only linear metrics escape this because linearity automatically entails
that one should normalize by

∑
N .

Appendix: Table of observables

Involved variables Example observables

4Indeed, it’s a recurrent theme in these models that counter-intuitive aspects arise from a subtle interplay between arithmetic
and geometric means, see e.g. [30, 84].
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Abundances P (N), composition Ω

• Snapshot / Equilibrium

• Nonequilibrium stationary Cij =
covx,t(Ni, Nj)
R(t, t′) = covx,i(Ni(t), Ni(t

′))

Ntot =
∑

iNi

S∗ =
∑

i(Ni > 0)

Fluctuations: Ei(Cii)

Autocorrelation time
Et,∆t(log |R(t+ ∆t)|/∆t)
Avalanche distributions [85]
Spatial patterns [86]

+ Parameters P (N, θ)

Relative yield E(Ni/Ki)
Properties of survivors [72]:
- Ei(Ki|Ni > 0)− Ei(Ki)
- Ei,j(Aij |Ni, Nj)[25]

+ Perturbations

• Press ξi
Susceptibility χij = dN∗i /dξj

• Extinction N∗i → 0
(ξj = −AjiN

∗
i )

• Invasion 0→ ε

• Pulse ξi(t) = δ(t− t′)ξi

• Noise ξi(t) = W (t)ξi,
cov(ξi(t), ξj(t)) = Σij

• Periodic ξi(t) = sin(ωt+ φ)ξi

|∆N | = Ei

(
(Ni(∞)−Ni(0))2

)1/2

Initial, median, final return rate to
eq.

Variability Ei(var(Ni(t)))

Taylor’s law var(Ni) vs 〈Ni〉 and
other stability-abundance rela-
tions (maybe involving Ni/Ki

instead) [75]

Table 4.3: Main observables: indicators (scalar numbers) aggre-
gated over individual species and locations.



A few take-aways

I conclude with a small selection of take-away messages from all chapters:

• When dealing with many-species, high-dimensional systems, the assumption of disorder or emergent
simplicity entails that many model details are of limited importance, so we can make robust predictions
(qualitatively, sometimes even quantitatively).

• An important consequence is that a model like Random Lotka-Volterra has very few fitting parameters:
theory predicts (and simulations confirm) that the details of interactions matter only through simple
statistics such as mean and variance [21]. Where we might otherwise have assumed simple (e.g. Gaus-
sian) interaction distributions for practicality, here we are guaranteed that there is truly no need to go
to a more complicated one (under known conditions).

• The Random Lotka-Volterra model is a possible baseline to study a broad class of models that all
share a few premises: population growth (and especially its exponential tendency) is the most central
driver of the phenomena we are interested in, and all other processes (e.g. species interactions, envi-
ronment, chance...) contribute in relatively simple ways to that driver. Within this class of models,
RLV potentially encompasses, qualitatively or even quantitatively, the predictions of a number of other
approaches: most evidently the Stochastic Logistic Equation [6], but also neutral theory [62] (except
for speciation and phylogeny-related questions), etc.

• On the other hand, this model is not the be-all and end-all of disordered approaches in community
ecology. We could imagine that different variables and processes would be a stronger driving or limit-
ing force for community patterns, and modelling species abundances and their exponential tendencies
would not provide much explanatory power. Each is a different way to “flatten” the complexity of an
ecosystem, and many others e.g. focusing on environmental spatial structure or on metabolic networks,
could still lead to disordered models.

• In a disordered interaction network, species do not have a priori roles like top predator. Instead, the
most salient emergent outcome is that some species are lucky or unlucky, and thus abundant or rare
(in some sense, usually relative to their carrying capacities). Therefore, many properties, such as how
a species contributes to dynamics and stability, can be predicted by its rarity. Being lucky or unlucky
is a collective, context-dependent property tied to the whole network: if one species is more abundant
than another in one community, the reverse is as likely to hold in another community, even if the
environmental conditions are all identical.

• Disordered LV-like dynamics fall into a few broad regimes or archetypes that dominate in distinct
parameter regimes, including equilibrium-like, chaotic, multistable and noise-dominated ones. Chaotic
and directional dynamics in many-species Random LV are very different from preexisting ecological in-
tuitions of few-species chaos or deterministic (Clementsian) succession. They are strongly tied to species
diversity: they rely on the exploration of many different combinations of species, either undirected in
time (chaos) or directed on average by a metric of maturity (succession) even though individual jumps
between compositions are largely unpredictable.

• Among empirical facts, there is a lot of focus on patterns of inequality between species (abundances,
ranges, etc.). These admit multiple competing explanatiosn within the Random-Lotka Volterra model:
strong inequalities could arise from broadly-distributed carrying capacities or environmental “fitness”

41
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(as in [6, 10]), from noise like neutral theory [62], or from many-species chaotic dynamics. Several other
stylized facts are compatible with both explanations focusing on the environment and explanations
focusing on interactions, and finding reliable ways of detecting where real ecosystems may fall on that
spectrum may be the most obvious next-step challenge for this approach.

• The other obvious challenge is going beyond pure disorder, i.e. representing many-species communities
by a combination of a few salient deterministic features (such as each species’ position along the food
chain, in the case of trophic networks) and many other complex features that can be treated as effectively
random. I currently believe that the right mix of disorder and simple structure could allow us to
understand a large variety of phenomena observed in real ecosystems [21], but a general method for
applying this idea to empirical communities and data is still lacking.
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