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Abstract 

Understanding the mechanisms that underlie resilience in marine invertebrates is critical as 

climate change and human impacts transform coastal ecosystems. Metabolic plasticity, or an 

organism’s capacity to modulate energy production, allocation, and use, plays a central role in 

mediating resilience under environmental stress. While research on marine invertebrate stress 

responses has grown, integrative studies that examine metabolic plasticity by connecting 

molecular, physiological, and organismal scales remain limited. In this Perspective, we advocate 

for the rigorous and thoughtful use of metabolomic and lipidomic approaches to understand 

resilience in marine systems through the lens of metabolic plasticity. We provide 

recommendations for experimental design, summarize current methodologies, and provide an 

overview of commonly used data analysis approaches. Advances in other molecular 

approaches such as genomics, epigenomics, and transcriptomics can be harnessed to further 

explore stress responses through multi-omic integrative analyses. As quantitative integrative 

analysis remains limited in marine fields, we call for a stronger integration of molecular, 

metabolomic, physiological, and organismal data sets to link mechanisms to phenotypes. We 

explore the use of these approaches in studies of marine invertebrates and highlight promising 

areas of multi-omic research that deserve exploration. By embracing metabolic complexity and 

scaling from molecules to phenotypes, we suggest that the marine invertebrate research 

community will be better equipped to understand, anticipate, and mitigate the impacts of 

environmental change on marine ecosystems.  
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Introduction 

Energy metabolism is a central component of organismal responses to environmental 

stressors. Under a particular environmental condition, the Oxygen- and Capacity-Limitation of 

Thermal Tolerance (OCLTT) hypothesis suggests that the optimal temperature for an organism 

is one that maximizes its aerobic scope. Within the upper and lower bounds of tolerance, or 

“pejus” temperatures, organisms must respond to environmental stressors using metabolic 

compensation (Pörtner 2010; Pörtner et al. 2017). Outside this range, organisms shift to 

anaerobic processes, and stress responses are characterized by energy conservation and 

essential function maintenance at the expense of growth or reproduction (Pörtner 2010; Pörtner 

et al. 2017). Metabolic compensation can occur prior to the onset of physiological or organismal 

manifestations of stress. In order to understand transitions between active and passive 

tolerance (sensu (Pörtner et al. 2017)), whole-organism physiology metrics do not provide a 

complete picture of organism stress responses .  

Molecular examinations of metabolic responses using metabolomics and lipidomics (see 

definitions in Box 1) are increasingly being used to investigate plasticity in response to 

environmental stressors in marine invertebrates (Figure 1A). Metabolomic and lipidomic fields 

emerged in the 20th century allowing for increased high-throughput profiling through advances in 

mass spectrometry and nuclear magnetic resonance (NMR) techniques (Viant 2008; Lindon and 

Wilson 2016; Beale et al. 2018). However, use of these approaches in non-model systems was 

not more prevalent until the 2000s due to challenges and limitations in protocol development 

and compound identification in non-model systems (Viant 2008; Williams et al. 2011; Schock et 

al. 2014; Carriot et al. 2021). In recent years, improved instrument sensitivity, expanded 

databases and libraries, reduced costs, and improved computational approaches have made 

metabolomics and lipidomics more accessible (Putri et al. 2013; Beale et al. 2018; Munjal et al. 

2022).  
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Recent work has investigated energetic constraints that lead to stressor susceptibility, 

and highlighted pathways of resilience and resistance to sublethal stressors. For example, 

American lobster (Homarus americanus) exposure to ocean acidification resulted in broad 

metabolic reprogramming that was not associated with changes to resting metabolism, 

suggesting that metabolic homeostasis was maintained by plasticity in energy usage (Noisette 

et al. 2021). Poorer survival and lower concentrations of stress-associated lipid classes 

highlights the susceptibility of staghorn coral Acropora cervicornis to low pH and irradiance 

conditions in deeper waters; however, increased diversity of various lipid classes also suggests 

deepwater corals employ heterotrophy more than shallow reef counterparts to meet energetic 

demands in stressful conditions (Rodriguez-Casariego et al. 2023). Additionally, examination of 

metabolic responses to stress can reveal sublethal impacts that are not detectable at the 

whole-organism level. For example, a study in coral larvae detected metabolic reprogramming 

under elevated temperature without a decrease in survival (Huffmyer et al. 2024). In the blue 

mussel, Mytilus edulis, 1H-NMR metabolomics revealed differential energetic responses to OA 

stress in males as compared to females (Ellis et al. 2014). Further, manila clams (Ruditapes 

philippinarum), exhibit variable responses to environmental toxins indicated by changes in major 

metabolite abundance (Liu et al. 2011) and metabolite abundance is indicative of thermal stress 

effects in soft corals (Farag et al. 2018). Sublethal changes in lipidomic responses are also seen 

in blue mussels (M. edulis) in which the composition of lipids shifts with diet in newly settled spat 

(Laudicella et al. 2020).    

Due to their direct connection to energy metabolism, metabolomic and lipidomic  

approaches can be used to quantify metabolic plasticity. Metabolic plasticity can be achieved by 

processing the same compounds in different pathways to achieve similar results for cellular 

metabolism (Fendt et al. 2020), or through wholesale shifts in metabolic pathways, particularly 

in changing conditions or hostile environments (Jia et al. 2019). While the concept of metabolic 

plasticity has its origin in cancer biology, we encourage its use in organismal biology to guide 
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proper use of metabolomic and lipidomic approaches. Placing metabolic plasticity at the center 

of investigations provides critical insight into mechanisms of organismal response to stress. 

This perspective highlights the applications of these technologies to the interrogation of 

metabolic plasticity. We propose a framework to navigate experimental and analytical decisions 

centering these concepts. We also demonstrate the power of combining these methods with the 

study of other molecular mechanisms, such as gene expression. Finally, we highlight the 

importance of understanding these molecular mechanisms in the context of whole-organism 

physiological metrics. As metabolomics and lipidomics technologies become widely-used in 

organismal biology, establishing consensus around these practices will allow for rigorous, 

reproducible, and biologically meaningful analyses to examine plasticity in important 

ecosystems. 

 

Experimental design choices influence the capacity to characterize metabolic 

plasticity  

Sampling considerations 

As is the case with any molecular tool, experimental design choices will influence data 

interpretation and robustness. Choices should be made in the context of hypotheses and budget 

for each individual experiment. We encourage readers to refer to published literature when 

determining the appropriate number of technical and biological replicates (Blaise et al. 2016; 

Jacyna et al. 2019; Lee et al. 2022). Mass spectrometry labs can also provide guidance on 

sample sizes, but most facilities recommend six biological replicates per treatment for adequate 

analytical power. Samples used should be chosen with the scientific question in mind, especially 

if sampling involves tissue isolation (Figure 2). For example, gill tissue may be appropriate for 

studying aerobic respiratory responses to stress while the gonad tissue is appropriate for 

understanding stress effects on reproductive tissues (Downey-Wall et al. 2020; Venkataraman 
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et al. 2024). One study in the softshell clam (Mya arenaria) examined metabolomic responses in 

gill, mantle, and adductor muscle tissues following temperature exposure and found significant 

variation between tissue types (Beaudreau et al. 2024). In abalone (Haliotis iris) (Nguyen et al. 

2021) examined tissue-specific metabolomes in haemolymph and muscle tissue and found that 

muscle tissues were less affected by thermal stress than the haemolymph. In corals, single 

polyp approaches allow for examination of spatial biochemical structuring in complex holobiont 

systems (Roach et al. 2021) with separate host and symbiont analyses showing distinct 

metabolic responses between the partners (e.g., (Gamba et al. 2022)). For organisms in which 

tissue specific sampling is conducted or not possible, researchers should interpret metabolome 

responses at the organism scale.  

Samples should be processed and preserved in a way that minimizes enzyme activity 

during metabolite extraction (Liu and Locasale 2017). In order to quench metabolic activity and 

prevent degradation of compounds, samples should be isolated (e.g., seawater removed) and 

immediately snap-frozen in liquid nitrogen, stored at -80°C, and transported using dry ice or 

liquid nitrogen. Samples should not be stored in reagents such as RNALater to avoid any 

alterations to metabolic state during preservation. Avoid freeze thaw cycles and perform any 

necessary processing or extraction steps on ice or dry ice as required for specific protocols. 

Researchers should refer to Liu and Locasale (2017) for a review of compound extraction 

protocols. 

Time series, or time course, metabolomic experiments can provide key insights into 

metabolic regulation, plasticity, and stress responses by examining the dynamic nature of the 

metabolome and gaining a more complete view of relationships between key metabolites or 

pathways of interest (Sriyudthsak et al. 2016). These experiments must be designed with 

consideration of the appropriate time scale to test hypotheses. For example, metabolism of 

glucose through central carbon metabolism occurs on the order of seconds to minutes while 

changes in lipid store composition may take hours to days, with each of these processes 
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requiring a different time series design to capture on appropriate time scales. Previous work has 

conducted metabolomics time series studies on the order of seconds to minutes to characterize 

compound synthesis (Sekar et al. 2018) and metabolic responses to starvation in microbial 

systems (Link et al. 2015). Longer time scales such as weekly to monthly sampling is better 

suited to capture seasonal changes, as done to characterize cold acclimation in plants 

(Angelcheva et al. 2014; Rathore et al. 2021). Therefore, researchers should design time series 

experiments with prior knowledge of the rate of metabolic pathways of interest, the turnover rate 

of target metabolites, and/or the time scale of physiological responses of interest. We direct 

readers to previous reviews and studies that discuss data analysis and considerations specific 

to time series and dynamic metabolomic studies (Smilde et al. 2010; Nägele et al. 2016; 

Sriyudthsak et al. 2016).  

Analytical considerations for data acquisition 

Analytical platform choice is an important methodological consideration and should be 

selected based on the target compounds of interest, their chemical composition, desired output 

data format, and the robustness of the databases used for compound identification (Figure 2). 

Prior to identifying a platform for data acquisition, researchers should determine what kind of 

data is best suited for addressing their hypotheses. Metabolomic and lipidomic data can be 

acquired in three different formats: targeted, semi-targeted, or untargeted. Targeted experiments 

provide specific concentrations of molecules (absolute quantitation), allowing researchers to 

investigate hypotheses associated with specific pathways or compounds of interest (e.g., 

glycolysis) (Bennett et al. 2008; Cajka and Fiehn 2016; Park et al. 2016; Liu and Locasale 2017; 

Lee and Yokomizo 2018; Georgoulis et al. 2022). Targeted lipidomics revealed how changes in 

membrane remodeling were associated with physiological tipping points in response to low pH 

in the Pacific oyster (Crassostrea gigas) (Lutier et al. 2022). However, targeted experiments 

require intimate knowledge of metabolic pathways in the organism of interest. Researchers, 
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especially those working in non-model marine systems, should consider why they require exact 

concentrations of molecules to answer their research questions, and if the nomenclature for 

molecules of interest is conserved between their organisms and those used to generate 

compound databases. In contrast, untargeted experiments tend to provide relative feature 

abundance differences between experimental conditions or populations (semiquantitation) 

(Doroghazi et al. 2014; Cajka and Fiehn 2016; Liu and Locasale 2017; Lee and Yokomizo 

2018).  The majority of studies identified in Appendix A used untargeted data acquisition 

approaches (Figure 1B). This approach may be useful in non-model systems, where several 

molecules are likely uncharacterized by existing databases and can allow for novel compound 

identification. For example, a study in reef-building corals used untargeted metabolomics and 

compound identification to identify lipid classes (e.g., betaine lipids) that distinguished between 

thermally resilient and sensitive colonies (Roach et al. 2021). Also in corals, untargeted 

metabolomics identified dipeptides that were important in heat stress responses (Williams, 

Chiles, et al. 2021). While untargeted data acquisition can enable novel compounds 

identification, feature annotation is time consuming and requires comprehensive reference 

databases and organismal knowledge (Liu and Locasale 2017). Identification of unknown 

compounds may be easier for lipidomics due to conserved nomenclature conventions based on 

compound structure. When collecting relative abundance data, we encourage readers to 

confirm measurements with facilities and interpret data in terms of relative changes rather than 

absolute quantification. Semi-targeted data acquisition may be a good alternative to targeted or 

untargeted assays (Breitling et al. 2006; Gika et al. 2016; Liu and Locasale 2017; Reisz et al. 

2019). Diversity of waxy ester and triglyceride compounds detected with semi-targeted 

lipidomics in the coral Acropora cervicornis highlight how outplanting in deep environments 

promotes heterotrophy (Rodriguez-Casariego et al. 2023). These experiments identify and 

absolutely quantify a large number of molecules, enabling comparisons of specific molecule 

abundances and pathway-level analyses. Unlike targeted analyses, it does not require the 
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researchers to specify in their hypotheses which molecule(s) may differ between treatments or 

populations. 

Metabolomic and lipidomic analyses most commonly are conducted to estimate 

metabolite absolute or relative concentrations at a particular point in time, known as 

“steady-state” measurements (Figure 1B). However, a key challenge in employing these 

methods is the limitation in interpreting “metabolic flux”, or the rate at which metabolites pass 

through a metabolic pathway (Jang et al. 2018). Although characterizing shifts in metabolite 

concentration with steady-state metabolomics can inform researchers of relative differences in 

concentration of metabolites, concentration alone does not directly relate to metabolic flux. For 

example, increased pool size of a metabolite may be the result of either increased production or 

decreased downstream metabolism, resulting in accumulation (Jang et al. 2018), as seen in a 

study of coral larvae (Huffmyer et al. 2024). Therefore, we caution researchers from making 

strong conclusions regarding metabolic flux from steady-state analyses. Stable isotope tracing 

offers an approach to quantify metabolic flux of pathways of interest by tracking the 

incorporation of labeled atoms from stable isotope tracers into metabolites (Jang et al. 2018). 

Tracing metabolic flux of pathways of interest using probes targeted for specific hypotheses 

(e.g., 13C labeled carbon or 15N labeled nitrogen), provides detailed insights into pathway activity 

and regulation that cannot be obtained with steady-state metabolomics alone (Jang et al. 2018). 

We direct the reader to previous literature that describes stable isotope tracing methods in detail 

(Creek et al. 2012; Fan et al. 2012; Chokkathukalam et al. 2014; Jang et al. 2018; Balcells et al. 

2019). For example, stable isotope tracing approaches have been employed across non-human 

taxa and systems including Drosophila (Wang et al. 2022), soils (Wilhelm et al. 2022), and 

plants (Freund and Hegeman 2017), but are far less utilized than steady-state methods in 

marine invertebrates (Figure 1B). One area of research that features stable isotope 

metabolomic tracing is the investigation of symbiotic nutritional exchange and nutrient 

metabolism in reef-building corals. For example, (Chiles et al. 2022) utilized nitrogen (15N) 
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tracing experiments to investigate nutrient shifts during heat stress and (Huffmyer et al. 2024) 

conducted carbon (13C) tracing to examine changes in symbiotic relationships under high 

temperatures. Also in corals, (Hillyer et al. 2018) documented widespread changes in carbon 

metabolism during coral bleaching using carbon (13C) metabolomic tracing. In the blue crab 

(Callinectes sapidus) (Holt and Kinsey 2002; Kinsey and Lee 2003) and red abalone (Haliotis 

rufescens) (Tjeerdema et al. 1993), 31P NMR studies track flux through central energy 

metabolism reactions and provide insights on shifts in energetic state under environmental 

stress. Application of stable isotope tracing metabolomic studies can provide rich information on 

metabolic flux and can provide a more complete understanding of metabolic plasticity in marine 

invertebrates. However, isotopic tracing studies are more expensive and researchers should 

carefully consider advantages and limitations of selected methods for addressing hypotheses of 

interest.  

Metabolomic analyses are commonly performed using nuclear magnetic resonance 

(NMR) or mass spectrometry (MS), or a combination of the two (Ren et al. 2015). Most MS 

analyses are conducted gas chromatography mass spectrometry (GC-MS) or liquid 

chromatography mass spectrometry (LC-MS), the latter of which is commonly analyzed using 

high performance liquid chromatography (HPLC) or ultra high performance liquid 

chromatography (UHPLC). The specification of these platforms and technical descriptions of the 

analytical pipelines has been described elsewhere (Naz et al. 2014; Beale et al. 2018). LC-MS 

is generally preferred for analyzing a wider range of polar, non-volatile compounds due to the 

capacity for characterization of a wider range of molecule types (e.g., fatty acids and lipids), 

while GC-MS is best suited for volatile molecules (Ren et al. 2015). In metabolomics 

applications, GC-MS platforms are considered to provide a robust and reproducible approach 

with more highly developed and universal databases for identification (Beale et al. 2018), while 

lipidomic analyses are conducted more commonly using LC-MS platforms (Cajka and Fiehn 

2014). NMR (commonly, 1H-NMR), on the other hand, is used to quantify metabolites by placing 
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a sample in a magnetic field and using the inherent magnetic properties to identify the 

metabolites (Markley et al. 2017; Bingol 2018; Emwas et al. 2019). NMR offers highly 

reproducible measurements and high resolution to quantify metabolite concentrations and can 

detect a broader range of metabolites, but is limited in sensitivity and can be higher in cost 

(Emwas 2015; Ren et al. 2015; Markley et al. 2017; Bingol 2018). While NMR and MS both 

present limitations and challenges, recent efforts have emphasized the advantages of using 

both methods for complete characterization of the metabolome (Nagana Gowda and Raftery 

2015). We recommend that researchers determine whether targeted, semi-targeted, untargeted 

analyses are required, then select the platform or combination of platforms best suited for the 

size and nature of compounds of interest. Researchers should consider the robustness of 

reference databases and standards to allow for reliable and accurate compound identification 

from spectral data. Previous work has discussed considerations for compound identification 

datasets and potential challenges in dataset nomenclature (Kind et al. 2009; Neumann and 

Böcker 2010; Blaženović et al. 2018; Sindelar and Patti 2020; Misra 2021; de Jonge et al. 

2022). If researchers are resourcing analyses to an external facility, we encourage readers to 

discuss analytical choices and database resources with the facility team. 

 

Data analysis to effectively address questions on marine invertebrate plasticity 

Using appropriate analytical methods to address hypotheses and challenges with 

commonly used approaches 

​ The choice of analytical method to address questions and hypotheses is a critical 

decision analyzing metabolomic or lipidomic data (Figure 3). Each approach has unique 

advantages and challenges and we argue that researchers should use multiple approaches to 

analyze data. Here, we provide an overview of analytical approaches to answer commonly 

asked questions and examine pitfalls and challenges. We focus on the general concepts of 
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statistical approaches using data that has been combined from negative and positive ion 

modes, and previously undergone necessary peak alignment and quantification, spectral 

deconvolution, and corrections (Ren et al. 2015) and point readers to previous discussions of 

these aspects of data analysis (Issaq et al. 2009; Li et al. 2014; Smith et al. 2014; Zhao et al. 

2019). Choice of statistical method to analyze metabolomic and lipidomic data must be 

appropriate to address the scientific question and statistical hypotheses. Prior to conducting 

statistical analyses, it is critical to conduct biologically appropriate normalization, assess quality 

controls (i.e., pooled biological quality control samples), and control for batch and confounding 

effects. We also point readers to previous reviews that discuss analytical approaches in more 

detail (Worley and Powers 2013; Checa et al. 2015; Ren et al. 2015; Zhao et al. 2019).  

 

How does the composition of the metabolome/lipidome or the concentration of a 

metabolite/lipid of interest change across groups or treatments? 

Some lines of questioning may require testing the concentrations of particular 

metabolites. If single metabolite tests are necessary, analysis of variance (ANOVAs) or linear 

models (general and generalized linear models) are useful for testing specific hypotheses and 

are robust and widely used. However, metabolomic and lipidomic data frequently violate test 

assumptions of normality and heteroskedasticity and exhibit collinearity, which further requires 

data transformation or the use of non-parametric tests (e.g., Kruskal-Wallis or Mann-Whitney U 

tests) (Vinaixa et al. 2012). If multiple ANOVA tests are used to evaluate differences in 

metabolites or lipids, multiple comparison p-value adjustments and corrections for false 

discovery rate are necessary (Broadhurst and Kell 2007; Vinaixa et al. 2012). When 

identification of a single metabolite is desired, laboratory assays may be more appropriate than 

whole metabolome characterization (e.g., succinate quantification in (Zittier et al. 2018) and 

glycogen quantification in (Chen et al. 2022)).​  
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Many studies evaluate the composition of the metabolome or lipidome as a multivariate 

response and examine variation in these responses between groups, treatments, or across 

time. The most commonly used unsupervised multivariate statistical approach is performing a 

permutational analysis of variance (PERMANOVA), which is non-parametric and well-suited for 

highly dimensional and non-normal data (Anderson 2017). However, PERMANOVA tests are 

sensitive to differences not only in centroid location between groups of interest, but also to 

differences in dispersion, or spread (Anderson 2017). Therefore, PERMANOVAs should be 

paired with permutational analyses of dispersion (PERMDISP) to evaluate whether multivariate 

differences between groups are a product of centroid location (i.e., significant PERMANOVA but 

non-significant PERMDISP) or centroid location and/or dispersion (i.e., significant PERMANOVA 

and significant PERMDISP) (Anderson 2017). For example, Beauclercq et al. (2023) utilized 

PERMANOVA and PERMDISP analyses to examine the influence of saxitoxin on metabolites 

and lipids in M. edulis immune cells. They found significant differences in fatty acid profiles 

when mussels were fed the toxin-producing Alexandrium catenella versus the non-toxic 

Tetraselmis suecia algae. Since PERMANOVA tests are sensitive to unbalanced sample sizes 

and the distance metric (e.g., Euclidian, Bray-Curtis) used, researchers should select distance 

metrics appropriate for their data sets. PERMANOVAs are also not intended to identify drivers of 

differences between groups, which should be addressed using supervised and other methods 

outlined below.  

  

How do metabolomic or lipidomic features correlate with quantitative responses or time? 

Examining the relationships between metabolomic and lipidomic features with 

quantitative responses, phenotypes, or time can be accomplished through several 

correlation-based and network approaches. We point the reader to work discussing the nature 

of dynamic metabolomic datasets and analyses in more detail (Smilde et al. 2010). Here, we 

discuss several approaches utilized in biological studies. 
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First, weighted gene co-expression network analyses (WGCNA) are commonly used in 

gene expression studies to identify modules, or groups, of genes that share expression patterns 

(i.e., co-expression) (Langfelder and Horvath 2008). This approach can be applied not only to 

gene expression data, but also to metabolomic and lipidomic data, which is less frequently 

utilized (Pei et al. 2017). For example, WGCNA has been applied to characterize metabolomic 

responses in tomato plants (DiLeo et al. 2011), dinoflagellate algae (Sui et al. 2014), and 

pathogenic fungi (Sun et al. 2024) but has yet to be applied in the study of marine invertebrate 

metabolomic or lipidomic analyses. WGCNA analyses are useful to identify groups of 

metabolites or lipids that share abundance patterns and are useful for constructing networks of 

highly dimensional datasets. Following identification of feature modules, module expression 

values can then be correlated against quantitative traits of interest including time, physiological 

responses, or survival (Langfelder and Horvath 2008; Pei et al. 2017). For example, a study in 

corals identified metabolite modules using WGCNA and correlated these modules to gene 

ontology terms obtained from transcriptomics analyses, although they found no significant 

correlations (Drury et al. 2022). Exploration of the utility of WGCNA approaches in the study of 

marine organism responses is warranted. However, WGCNA/WCNA approaches are dependent 

on user-defined parameters (e.g., soft thresholding power) and may be confounded by 

multicollinearity, autocorrelation, and/or missing values. Correlation is not causation, and 

researchers should state conclusions from correlation-based approaches appropriately.  

​ ANOVA-simultaneous components analyses (ASCA) can also be useful to examine 

multivariate responses across time or multiple levels of factors of interest (e.g., modeling the 

effects of time and experimental levels) (Jansen et al. 2005; Smilde et al. 2005; Bertinetto et al. 

2020). The strength of ASCA analyses is the ability to decompose multivariate data according to 

factors or variables of interest and visualize the effects and is particularly well suited for 

characterizing changes in -omic responses across time (Jansen et al. 2005). For example, this 

approach has been used to identify metabolites that contributed to differences by treatment, 
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lifestage, and their interaction in cuttlefish exposed to ocean acidification conditions (Minet et al. 

2025). Similar to unsupervised Principal Components Analyses (PCA), ASCA approaches are 

sensitive to unbalanced sample design, small sample sizes, and assume linear relationships 

between multivariate responses and experimental factors (Bertinetto et al. 2020). Additional 

analyses are required to identify the differential compounds contributing to the effects of 

experimental variables.   

 

Which compounds drive differences between treatments or groups?  

​ After data exploration through unsupervised analyses and examining experimental 

effects such as time and treatment variables, the next step is often identification of individual 

metabolites or lipids (i.e., features) that drive significant differences. Partial least squares 

discriminant analysis (PLS-DA) can identify metabolites or lipids that distinguish between 

groups of interest (Kalivodová et al. 2015; Saccenti and Timmerman 2016). PLS-DA analyses 

are a supervised approach that use group labels (e.g., treatments) to reduce dimensionality by 

identifying latent variables that explain relationships between predictors and multivariate 

responses (Saccenti and Timmerman 2016). Feature importance can then be examined as 

Variable Importance in Projection, or VIP, values that quantify the discriminatory power of 

individual metabolites or lipids in the PLS-DA model (Galindo-Prieto et al. 2014). It is important 

to note that a feature’s high VIP value indicates statistical importance, but not necessarily  

biologically importance. Conclusions and interpretations of biological importance of a particular 

metabolite or lipid must be made by conducting functional or pathway analyses and when 

contextualized with phenotypic or physiological responses (see Enabling biological 

interpretation of metabolic plasticity through enrichment analyses). PLS-DA analyses are useful 

for highly dimensional datasets and for biomarker selection, but can be sensitive to sample size 

imbalance and overfitting when sample size is low (Gromski et al. 2015). Supervised analyses, 

such as PLS-DA, should be paired with unsupervised analyses such as PERMANOVA tests and 
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PCA visualizations, or other alternative approaches (Gromski et al. 2015), to validate the 

influence of experimental variables of interest.  

​ Significance Analysis of Microarray (or Metabolites; SAM) models provide an additional 

method to identify differential features between treatment groups of interest (Nadon and 

Shoemaker 2002; Xia and Wishart 2011). SAM models use feature-specific modified t-tests 

combined with permutation analyses and account for false discovery rate to determine whether 

a specific feature is differentially present (Nadon and Shoemaker 2002). Use of SAM in 

conjunction with other multivariate methods demonstrated that heat-hardening upregulates 

metabolic pathways to promote homeostasis in elevated temperatures in Mytilus 

galloprovincialis mussels (Georgoulis et al. 2022). In contrast, SAM methods identified 

metabolites that differed by symbiont profiles, but not heat stress, in the coral Pocillopora acuta 

(Haydon et al. 2023). This approach can be useful with highly dimensional datasets and when 

features may not be independent of each other or when sample sizes are small (Nadon and 

Shoemaker 2002). However, if sample size is low and differences in feature concentration or 

relative abundance are minimal, SAM models can fail to detect significant differences (Nadon 

and Shoemaker 2002).  

Machine learning (ML) approaches are increasing in use as “big data” becomes more 

readily available for biological studies (Greener et al. 2022). Machine learning approaches, 

broadly, are computer systems that learn or adapt using statistical models to mimic human 

behavior and recognize patterns and are useful when datasets are too complex, too large, or 

require automation beyond the capacity of human analysis (Greener et al. 2022). A description 

of ML approaches and a guide for use in biological sciences has been previously published 

(Greener et al. 2022) and we point readers to this resource if ML analyses are of interest. 

Traditional machine learning methods are those that perform tasks including regression, 

classification, dimensionality reduction, or clustering using limited layers and are therefore 

appropriate for small data sets and provide the advantage of increased interpretability (Reel et 
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al. 2021; Greener et al. 2022). Indeed, traditional ML approaches include analyses we have 

previously discussed, including PCA and PLS-DA. Deep learning models, however, are a subset 

of ML that utilize neural networks and include many layers to learn hierarchical representations 

of data (Reel et al. 2021; Greener et al. 2022). Deep learning is appropriate for large and 

complex datasets that are beyond the scope of human ability to recognize patterns or model 

high complexity (Reel et al. 2021; Greener et al. 2022). Deep learning approaches require large 

amounts of data — the more complex the problem, the more data is required — and are “black 

box” approaches that result in reduced interpretability (Reel et al. 2021). In the sections below 

we discuss the use of deep learning ML for multi-omic integration. However, just because ML 

approaches can be used in biological sciences does not mean that they are appropriate for 

every study. ML approaches require careful attention to choice of models (e.g., supervised or 

unsupervised), objectives (e.g., clustering, regression, or classification) and proper design of 

test and training datasets and procedures for training, validating, and testing models (Greener et 

al. 2022).  

Best practices in quantitative analyses: Contextualizing results and applying 

complementary approaches 

​ Given the large number of data analysis tools available to researchers and the diverse 

sets of hypotheses tested using lipidomic and metabolomic data, we strongly encourage the 

field to use multiple complementary analysis approaches to validate findings. Applying multiple 

statistical approaches to the same metabolomic or lipidomic dataset enhances the reliability, 

depth, and interpretability of findings. Different statistical methods capture distinct aspects of 

data structure — univariate analyses identify individual metabolites or lipids that differ 

significantly between conditions, while multivariate techniques (ex. PCA, PLS-DA) (Kalivodová 

et al. 2015; Saccenti and Timmerman 2016) and ML approaches reveal patterns and 

interactions across multiple variables (Reel et al. 2021; Greener et al. 2022). Correlation 
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network analyses can further uncover biochemical pathway relationships (Langfelder and 

Horvath 2008; Pei et al. 2017), while time series approaches track dynamic shifts over 

experimental conditions of interest (Jansen et al. 2005; Smilde et al. 2005; Bertinetto et al. 

2020). By integrating multiple statistical strategies, researchers can validate key findings, 

minimize biases inherent to any single method, and examine broad scale responses as well as 

mechanistic underpinnings of those responses. For example, combination of PCA, PPLS-DA, 

and pairwise tests showed that the bryozoan Bugula neritina metabolome was largely 

unchanged after heat stress, demonstrating this species’ resilience to high temperature (Gauff 

et al. 2025). Sensitivity of Mya arenaria and Mya truncata clams to marine heat waves was 

examined using PERMANOVA, linear mixed effects models, PCA, and PLS-DA analysis. Using 

these multiple methods, researchers found that differences in heat tolerance between species 

was associated by differential use of metabolic pathways (Beaudreau et al. 2024). 

Metabolomic and lipidomic data provide valuable insights into the biochemical state of an 

organism, but these data are effectively interpreted only when contextualized with phenotypic or 

physiological data. A total of 41 studies of the 68 represented in Figure 1 paired molecular data 

with whole-organism physiology or phenotypic data (Appendix A). Metabolites and lipids are 

dynamic molecules that reflect an organism’s immediate response to environmental conditions, 

stressors, or developmental changes (Wenk 2005; Roessner and Bowne 2009; Rey et al. 2022). 

Without integrating physiological responses and phenotypes such as metabolic rate, growth, 

reproduction, or survival, it is difficult to determine whether observed molecular shifts 

correspond to metabolic plasticity and result in either adaptive or maladaptive responses. Clams 

(Sinonovacula constricta) had an increase in Arrhenius breakpoint temperature after heat 

hardening, and increased glycerophospholipid abundance suggests homeoviscous adaptation 

at higher temperatures (Zhang and Dong 2021). Marine copepods (Apocyclops royi) reared in 

hyposaline conditions for multiple generations demonstrated reproductive resilience, but 

metabolomics analysis shows an increase in anaerobic stress is a “cost” to this resilience 

18 

https://paperpile.com/c/aYsnWF/7fyN+t8b3
https://paperpile.com/c/aYsnWF/7fyN+t8b3
https://paperpile.com/c/aYsnWF/YCe9+mUG3+s5Ia
https://paperpile.com/c/aYsnWF/YCe9+mUG3+s5Ia
https://paperpile.com/c/aYsnWF/ZUxQ
https://paperpile.com/c/aYsnWF/ZUxQ
https://paperpile.com/c/aYsnWF/MYSj
https://paperpile.com/c/aYsnWF/RHOV+pO4x+7KQc
https://paperpile.com/c/aYsnWF/ke10


 

(Winding Hansen et al. 2022). The addition of physiological or phenotypic data enables 

researchers to move beyond descriptive metabolomic or lipidomic profiles and instead 

contextualize omic data with organismal function, helping to uncover the mechanistic basis of 

metabolic changes. 

Enabling biological interpretation of metabolic plasticity through enrichment 

analyses 

Researchers often interpret complex datasets by linking metabolites and lipids to known 

biological functions, metabolic pathways, and responses. One approach is to manually map 

compounds to known pathways of interest to interpret larger scale metabolic shifts. This 

approach is best used when metabolite and lipid pathways are well characterized and 

conserved across organisms and when researchers have a hypothesis regarding a specific 

pathway. Of the 68 studies included in Figure 1, 47 manually mapped compounds to known 

pathways. Many studies used databases like the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa and Goto 2000) and Human Metabolome Database (HMDB) (Wishart et al. 

2007) to obtain pathway information. In reef-building corals, (Chiles et al. 2022) examined shifts 

in nitrogen metabolism by examining 15N enrichment of target metabolites and, similarly, 

(Huffmyer et al. 2024) examined shifts in central carbon metabolism via shifts in enrichment of 

glycolytic metabolites. Other studies used other tools like MetaMapp (Barupal et al. 2012). 

Wanamaker et al. (2019) used MetaMapp to assign chemical and biochemical relationships to 

metabolites of interest, then visualized all known relationships using Cytoscape (Shannon et al. 

2003). Using this approach, they found that amino acid metabolism was significantly impacted in 

Dungeness crab (Cancer magister) juveniles exposed to low pH and dissolved oxygen 

conditions (Wanamaker et al. 2019). This targeted examination of pathways of interests 

provides a method for testing hypotheses regarding a particular pathway or function. 
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Enrichment analysis facilitates biological interpretation of molecular datasets by linking 

changes in individual metabolomic and lipidomic responses with large-scale shifts in broad 

biological processes. Originally developed for microarrays and RNA-Seq data (Khatri et al. 

2012; Zhao and Rhee 2023), enrichment analyses identify biological pathways that are 

significantly represented in a dataset based on annotation information available for specific 

features. There are three different kinds of enrichment analyses: ranking-based enrichment, 

overrepresentation-based enrichment, and network topology-based enrichment (Wright et al. 

2015; Ihnatova et al. 2018; Nguyen et al. 2019; Geistlinger et al. 2021; Zhao and Rhee 2023). 

We focus our discussion on utilization of the latter two methods as overrepresentation and 

network topology are more commonly employed with metabolomic and lipidomic datasets (Zhao 

and Rhee 2023).  

Overrepresentation-based enrichment methods determine if specific pathways or 

functions are observed in a target dataset more than expected by chance in comparison to a 

background dataset (Das et al. 2020; Maleki et al. 2020). Network-topology based enrichment 

incorporates additional factors that impact pathway activity, such as feature position in a 

pathway or feature-feature interactions (Bayerlová et al. 2015; Ihnatova et al. 2018; Yang et al. 

2019). With both methods, the dataset used to conduct enrichment analysis will impact the 

interpretation of affected pathways, so it is critical to make an informed analytical choice to 

identify significantly different metabolites or lipids (see discussion of analyses above) (Chicco 

and Agapito 2022; Zhao and Rhee 2023). For example, a particular module of metabolites or 

lipids that correlate with physiological responses (i.e., WCNA analysis) or features that 

significantly differentiate between treatment groups (i.e., PLSDA and VIP analyses) may be 

used as input data for enrichment tests. In contrast, using all detected features without prior 

selection based on biological hypotheses can produce pathway enrichment results that are 

biologically misleading (Chicco and Agapito 2022). Further, the dataset used as the background 

context for enrichment analyses can impact the interpretation of the results. A common practice 
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is to use all detected compounds above a noise threshold (Zhao and Rhee 2023). However, 

different background sets can be used depending on the question. For example, using all 

detected compounds as a background may be useful for an untargeted analysis, but may not be 

an appropriate background for a targeted assay focusing on a specific pathway.​

​ The most commonly used enrichment platform is Metabolomics Pathway Analysis (Xia 

and Wishart 2010) through the web-based GUI MetaboAnalyst (Xia et al. 2009; Pang et al. 

2024) (Figure 4). MetaboAnalyst enables overrepresentation analysis (Enrichment Analysis) or 

a combined overrepresentation and network topology analysis (Pathway Analysis). Users can 

upload a target list into the Enrichment Analysis module, and choose between a user-defined 

background or MetaboAnalyst-provided background reference metabolomes based on human 

data. Significance values for Enrichment Analysis are obtained using Fisher’s tests (Xia et al. 

2009; Xia and Wishart 2010; Pang et al. 2024). No studies from Figure 1 used the Enrichment 

Analysis module from MetaboAnalyst as the sole method of linking compound differences with 

biological function. The Pathway Analysis module from MetaboAnalyst is more commonly used, 

with ten studies in Figure 1 employing this method to assist in biological interpretation of 

results. In this module, similar options to upload targets and define background datasets are 

present. Users must select a KEGG pathway library from a species most relevant for their 

system (last updated by MetaboAnalyst December 2024), and choose between hypergeometric 

or Fisher’s tests for significance metrics. It is important to note that results can vary depending 

on the pathway reference database selected (Figure 4). Therefore, thoughtful selection of the 

reference database and a clear statement on which database was used is required. Pathway 

analysis using the Drosophila KEGG pathway library identified tricarboxylic acid cycle and 

amino acid metabolism as significantly impacted in northern shrimp (Pandalus borealis) 

exposed to ocean acidification and warming. (Guscelli et al. 2023). These complementary 

MetaboAnalyst methods can be employed together: Noisette et al. (2021) used both 

over-representation analysis and pathway topology analysis to identify metabolites underpinning 
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differences in ocean acidification tolerance in H. americanus, and similarly Nguyen et al. (2021) 

used both methods to investigate heat tolerance in the abalone Haliotis iris. MetaboAnalyst can 

be used in conjunction with other enrichment methods. Hillyer et al. (2017) used the Pathway 

Activity Profiling (PAPi) R package (Aggio et al. 2010) to obtain pathway information for 

metabolite data from heat-stressed Acropora aspera corals, then used that information as input 

with MetaboAnalyst to get statistical information. The use of MetaboAnalyst is limited by 

compound annotation databases and prior network topology knowledge (Zhao and Rhee 2023).  

While specific platforms have been developed primarily for metabolomics analyses, they 

can be used for lipid enrichment as well. For example, users can upload a list of target lipids into 

the MetaboAnalyst Enrichment Analysis module for overrepresentation analysis. Lipid-specific 

enrichment tools are becoming more common. The Lipid Ontology (LION) enrichment analysis 

web application (LION/web) is comparable to MetaboAnalyst for lipidomics datasets (Molenaar 

et al. 2019). LION/web facilitates overrepresentation- and ranking-based enrichment for lipid 

ontology terms associated with a target list of lipids (Molenaar et al. 2019). The 

overrepresentation-based Target List analysis allows users to define a background list, and uses 

Fisher’s tests to assess statistical significance. While none of the studies in Figure 1 conducted 

enrichment analysis for lipidomics data, LION/web has been employed to understand the 

lipidome of other organisms and tissue types such rat hepatic cells (Molenaar et al. 2023) and 

cetacean blubber (Bories et al. 2021). 

Compound nomenclature is a source of variability and inconsistency for metabolomic 

and lipidomic enrichment analyses, especially in non-model organisms (Figure 4). Several 

enrichment platforms, including those listed above, use data from humans and other 

model-systems for their reference databases, and web-based enrichment platforms can also 

have outdated pathway annotations (Wadi et al. 2016). This can lead to two issues when using 

enrichment platforms for non-model marine systems: artificially inflated pathway size and 

nomenclature mismatches (Zhao and Rhee 2023). Reference databases can use different 
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ontologies (eg. KEGG) to define pathways, which can change the number of compounds in a 

specific pathway. When more molecules are assigned to a pathway, then more differentially 

abundant targets are needed to identify that pathway as significantly enriched, changing the 

biological interpretation of metabolic plasticity for a specific dataset (Karp et al. 2021). In 

addition to potential pathway misclassification, compound nomenclature variation can lead to 

data not being used in enrichment. For example, if a named compound does not have a 

matching name in the MetaboAnalyst database and sequencer data, and cannot be identified 

through alternative methods (eg. PubChem, KEGG), then that compound is discarded from 

analysis. For example, compounds that have a general nomenclature in a data set (e.g., 

“glucose”) may not map to expected pathways in MetaboAnalyst due to variation in specific 

nomenclature of isomers (e.g., “alpha-d-glucose”), which may alter interpretation of pathway 

enrichment (Figure 4).  

Regardless of which kind of enrichment analysis is performed, researchers should 

interrogate how appropriate that approach is for their study system and hypotheses. The study 

hypotheses should guide which features are used for enrichment analysis. Researchers should 

consider the appropriateness of the background set used for enrichment, and when possible, 

define study-specific background sets for enrichment. In addition to using enrichment platforms 

with appropriate and recently updated reference databases, multiple enrichment tools should be 

used for analyses to corroborate results and increase confidence in enrichment findings (Chicco 

and Agapito 2022). Analysis output should be groundtruthed by examining changes in features 

involved in enriched pathways, and by considering how molecular changes correspond with 

physiology data. We encourage referencing previously published papers on enrichment 

analysis, including those that compare methods for metabolomic datasets, to assist in 

decision-making (Ma et al. 2019; Chicco and Agapito 2022; Mubeen et al. 2022; Wijesooriya et 

al. 2022; Zhao and Rhee 2023).  
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Linking responses across different levels of biological organization through 

multi-omic integration 

​ Increasing generation and availability of large molecular datasets presents a challenge 

in effectively integrating these data to understand organismal responses with improved 

mechanistic interpretations. Analyzing data using molecular datasets at different levels of 

biological organization enhances the robustness and depth of scientific conclusions, allows 

researchers to bridge molecular mechanisms with functional outcomes, and reveals interactions 

that may be overlooked in single-omics studies. Each approach provides unique insights: 

transcriptomics identifies gene expression patterns; metabolomics provides insights on shifts in 

metabolic pathways; lipidomics captures membrane dynamics and energy storage; and 

epigenomics reveals regulatory modifications.  

Integration of two molecular approaches is a commonly used approach (Figure 1C; 

Appendix A). Of the 68 studies in Figure 1, 19 used gene expression and metabolomics to 

understand the molecular underpinnings of metabolic responses. For example, concurrent 

analysis of transcripts and metabolites can elucidate the relevant level of biological organization 

impacted by environmental stress in C. gigas, which exhibited an altered amino acid, 

carbohydrate, and fatty acid metabolite profiles in response to ocean acidification (Liu et al. 

2020). These changes were not only associated with downregulation of corresponding genes, 

but also reductions in calcification gene expression (Liu et al. 2020). Similarly, thermal stress 

elicited changes to gene expression and metabolites associated with redox pathways in the rice 

coral Montipora capitata (Williams, Chiles, et al. 2021) and analysis of genes and metabolites in 

early developmental stages in M. capitata reveal developmental shifts in metabolism (Huffmyer 

et al. in press). In the Pacific white shrimp (Penaeus vannamei), correlation and network 

analyses of metabolomic and transcriptomic data revealed that regulation of amino acid and 
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lipid metabolism increased energy availability under cold stress (Zhu et al. 2024). Use of 

metabolomic and lipidomic responses is also common, with five studies employing these 

approaches together (Figure 1C; Appendix A). Combined metabolomic and lipidomic analysis 

(e.g., (Reddy et al. 2023)) can reveal changes in active metabolic pathways and energy storage. 

Examination of lipidomic responses, in particular, complements metabolomic data and provides 

a detailed view of lipid storage, lipid metabolism, signaling, and cellular membrane state (see 

reviews in (Imbs et al. 2021; Rey et al. 2022)). For example, Costa et al. (2024) utilized lipidomic 

and metabolomic approaches to assess the impact of red tides on core metabolic pathways in 

reef building corals. In the coral Pocillopora damicornis, lipids and metabolites provided 

predictive biomarkers of organism performance (Sogin et al. 2016), and combined lipid and 

metabolomic analyses revealed shifts in lipid metabolism during reproductive maturation in the 

mud crab Scylla paramamosain (Fu et al. 2022).  

While it is clear that integrative multi-omic approaches improve our mechanistic 

understanding of organism responses, there are significant barriers in conducting this work. For 

example, examining organismal response to environmental stress would ideally include 

measurements of molecular mechanisms (e.g., epigenetics and gene expression), metabolic 

responses (e.g., metabolomics and lipidomics), and physiological and phenotypic 

measurements. This is often not feasible due to limitations in biological material available for 

sampling, limited time, limited personnel, and high cost of molecular approaches. Here, we 

discuss the state of multi-omic integration in the study of marine invertebrates and offer 

recommendations to move the study of metabolic plasticity towards integrative approaches.  

Methodologies for integrative analysis 

The intended outcome of integrative approaches will depend on the specific questions 

and hypotheses. Approaches to integrate multiple -omic data sets generally fall into two 

categories: 1) individual analysis of each data set followed by qualitative integrative 
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interpretation; and 2) quantitative integration of data sets in joint statistical analyses (see review 

in (Santiago-Rodriguez and Hollister 2021)). Here, we will highlight examples of each approach 

and provide recommendations on using these integrative approaches in marine invertebrate 

systems. We propose that multi-omic examinations of organism responses should include both 

individual -omic examination and quantitative integration of multi-omic data when appropriate 

and relevant to biological hypotheses.  

Individual analysis of single-omic layers is a necessary step to identify strong signals and 

patterns at each level of biological organization and ensures proper outlier identification and 

correction of batch effects prior to more complex multi-omic approaches (Santiago-Rodriguez 

and Hollister 2021). The patterns detected in single-omic analyses can help form biologically 

informed hypotheses that may then be pursued through multi-omic integration. One approach to 

considering data across multiple layers is to conduct a qualitative comparison then narrate a 

biological story using conclusions from single-omic analyses. The approach is more common 

with marine invertebrate studies (18 of studies in Figure 1 used qualitative integrative 

interpretation). For example, transcriptomics, metabolomics, and physiological data were used 

to study metabolic shifts across reef-building coral development, in which the authors discuss 

potential interactions and relationships between molecular data (Huffmyer et al. in press). Also 

in corals, Putnam et al. (2016) utilized metabolomics and DNA methylation to examine plasticity 

in response to ocean acidification and qualitatively discussed relationships between the two 

-omics. Some studies use integrative figures that show molecular data layers mapped onto 

shared pathways (Wanamaker et al. 2019; Ren et al. 2020; Sun et al. 2021; Zhu et al. 2024), 

which can assist in making sense of highly dimensional data. It is important to shape these 

investigations using biology-driven questions and fully report the limitations of qualitative 

comparisons when providing evidence for mechanistic explanations. Further, it is critical to 

consider the interplay and interactions of multiple partners in holobiont systems, such as corals 

(Williams 2024).  
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Quantitative multi-omic integration offers a powerful way to move beyond side-by-side 

single-omic layer comparisons and address questions and hypotheses on how organisms 

respond across multiple biological scales. In practice, this includes using statistical and 

computational methods to combine omic layers (e.g., transcriptomics, lipidomics, and 

metabolomics) and uncover relationships and patterns that may not be apparent when 

analyzing each dataset separately (Santiago-Rodriguez and Hollister 2021; Greener et al. 

2022). There is underexplored potential to utilize quantitative integration through statistical 

analyses, which are more common in biomedical contexts (e.g., see review in (Reel et al. 

2021)). Only nine of studies in Figure 1 used a quantitative or statistical approach to integrate 

molecular datasets and are largely correlation based in approach. 

Several statistical approaches used for individual molecular datasets can be applied 

towards integrative analysis. Coexpression and correlation-based approaches, such as WGCNA 

and network analyses, are well suited for identifying groups of genes, lipids, or other features 

that change together across samples and highlight shared biological functions or coordinated 

pathways (Sun et al. 2022; Geng et al. 2024; Zhou et al. 2024; Zhu et al. 2024). Other methods, 

including DIABLO and PLS-DA analyses (e.g., (Sun et al. 2022; Jing et al. 2023; Zhou et al. 

2024)), focus on selecting the most important features that differentiate between treatments or 

groups of interest, which can provide a tool for multi-omic biomarker discovery or building 

predictive models (Zhang et al. 2011; Young and Alfaro 2018; Sweet et al. 2021). For example, 

Sun et al. (2021) utilized pairwise correlations to examine metabolic responses to salinity in the 

clam R. philippinarum and Geng et al. (2024) conducted correlation network analyses to identify 

genes and metabolites correlated with biomarkers in the blue mussel (M. galloprovincialis).  

Machine learning (ML) approaches are becoming increasingly common in multi-omic 

studies and provide an approach to identify hidden or complex patterns, networks, and 

relationships in large data sets, automate analyses, and make forecasts and predictions (Reel 

et al. 2021; Greener et al. 2022). While some ML methods remain difficult to interpret (i.e., 
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“black box” methods), ML offers unique advantages when working with highly dimensional data 

or when uncovering relationships or patterns that are complex (Reel et al. 2021; Greener et al. 

2022). A variety of integration strategies exist depending on how and when the data are brought 

together and we refer readers to recent reviews that explain these approaches in detail (Reel et 

al. 2021; Greener et al. 2022; Manochkumar et al. 2023). Concatenation-based methods 

combine all raw features into a single matrix while model-based approaches analyze each omic 

independently before integrating model outputs (Reel et al. 2021). Transformation-based 

strategies, in contrast, reduce each data set into lower dimensions or conduct omic-specific 

transformations prior to building a joint model (Reel et al. 2021). Integration methods can be 

unsupervised (e.g., cluster analyses, factor analyses, Bayesian approaches), which is used to 

discover patterns and structure in a data sets, or supervised (e.g., Bayesian networks, support 

vector machines, hierarchical classifiers, ensemble-based methods) in order to make 

predictions and classifications (Reel et al. 2021; Greener et al. 2022). For example, a 

metabolomics and transcriptomics study in corals used “MAGI”, which provides a method for 

integration of metabolite and gene information (Erbilgin et al. 2019), to study metabolite-gene 

interactions in M. capitata under thermal stress (Williams, Pathmanathan, et al. 2021). Using 

gene-metabolite interaction networks, the authors identified redox pathways involved in 

quenching reactive oxygen species during stress (Williams, Pathmanathan, et al. 2021). 

Ultimately, the choice of method should be guided by the biological question, the size and 

quality of data, and the interpretability of the output (Greener et al. 2022; Manochkumar et al. 

2023). Machine learning approaches for multi-omic integration have promising applications for 

the study of marine invertebrate plasticity, but are not widely employed. We direct readers to 

previous reviews that discuss challenges in multi-omic integration in marine systems for a more 

detailed discussion (Manochkumar et al. 2023).  

28 

https://paperpile.com/c/aYsnWF/HmIN+d03X
https://paperpile.com/c/aYsnWF/HmIN+d03X
https://paperpile.com/c/aYsnWF/d03X+HmIN+S6Cs
https://paperpile.com/c/aYsnWF/d03X+HmIN+S6Cs
https://paperpile.com/c/aYsnWF/d03X
https://paperpile.com/c/aYsnWF/d03X
https://paperpile.com/c/aYsnWF/d03X+HmIN
https://paperpile.com/c/aYsnWF/bCEp
https://paperpile.com/c/aYsnWF/xeHH
https://paperpile.com/c/aYsnWF/xeHH
https://paperpile.com/c/aYsnWF/S6Cs+HmIN
https://paperpile.com/c/aYsnWF/S6Cs+HmIN
https://paperpile.com/c/aYsnWF/S6Cs


 

Best practices for integrative analysis 

As with any analytical approach, best practices for multi-omic integration must be 

grounded in clear biological questions and hypotheses. Supervised methods are best suited for 

predictive tasks, such as classifying phenotypes or forecasting physiological outcomes; 

unsupervised methods are appropriate for discovering structure, patterns, or molecular 

subtypes within the data; and network-based or regression models may be useful when the goal 

is to infer mechanisms or relationships among layers of data (Reel et al. 2021; Greener et al. 

2022; Manochkumar et al. 2023). Regardless of the approach, thoughtful preprocessing (e.g., 

normalization, transformation, filtering) is essential as molecular data often differ in scale, 

distribution, and feature count and high-dimensional data can easily overfit small datasets if not 

properly constrained with cross-validation or regularization techniques (Reel et al. 2021; 

Manochkumar et al. 2023).  

We recommend building a foundation of single-omic analyses before layering in 

complexity in order to develop biologically relevant hypotheses and drive the responsible use of 

more complex integration approaches. Multi-omic integration should be used to explore 

biologically driven hypotheses in greater depth and uncover patterns that aren’t detectable in 

analysis of single-omic levels. However, relying solely on single-omic approaches or one 

integration approach may lead to over simplification of the results or one integration approach 

may lead to overly simplistic conclusions or missing deeper relationships. Correlative strategies, 

while informative, must be interpreted appropriately and the limitations of correlation 

approaches need to be acknowledged. Another challenge is that many integration platforms are 

designed for human or model system datasets and are not always compatible with non-model 

organisms or complex experimental designs (e.g., MetaboAnalyst). However, we can learn from 

biomedical research, where multi-omic integration has driven advances in health and medical 

research (Acharjee et al. 2016; Beaulieu-Jones et al. 2019; Triantafyllidis and Tsanas 2019; 
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Ghassemi et al. 2020; Rubinger et al. 2023; Jain and Jain 2024). These approaches are 

beginning to be applied to ecological and evolutionary biology (see reviews in (Olden et al. 

2008; Christin et al. 2019; Lürig et al. 2021; Greener et al. 2022; Pichler and Hartig 2023)), and 

we argue that they are particularly needed in the study of non-model systems, such as marine 

invertebrates where stress responses involve complex coordination across biological levels and 

are not always apparent through a single-omic layer lens. With careful application, these tools 

can help identify regulatory drivers of resilience, build predictive models of organismal health, 

and illuminate new layers of biological complexity in systems where mechanistic understanding 

has traditionally been limited. 

 

Conclusion 

Metabolomics and lipidomics are powerful tools for examining metabolic plasticity in 

non-model marine invertebrates. We encourage researchers to design clear, testable 

hypotheses and use them to guide molecular investigations. Given the complexity of these data 

types, appropriate statistical analysis may include complementary univariate and multivariate 

approaches to identify compounds of interest, and pairing manual and programmatic pathway 

mapping and enrichment methods to understand the biological significance of results. Pairing 

molecular data with physiology and/or phenotype information may elucidate sublethal impacts of 

stress and provide a holistic understanding of organismal resilience. When appropriate, we also 

encourage researchers to pair metabolomic or lipidomic data with metrics at different levels of 

biological organization such as transcriptomics or proteomics.   

We also identify areas of growth for the application of these methodologies to organismal 

biology. First and foremost, thorough reporting in manuscripts is necessary to provide context 

and improve reproducibility. Of the 68 studies identified in Figure 1, several were not explicit 

about whether or not targeted, semi-targeted, or untargeted data acquisition methods were 

used, or presented pathway or enrichment results without specifying methods. The lack of this 
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necessary information makes it difficult for newer researchers to understand best practices for 

the field. Raw data should ideally be housed in publicly accessible data repositories 

(Santiago-Rodriguez and Hollister 2021), similar to the NCBI Short Read Archive or Gene 

Expression Omnibus. Existing databases include Metabolomics Workbench  

(https://www.metabolomicsworkbench.org/) and MassIVE 

(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp). Effort should be made to improve 

annotation databases for non-model systems to use for compound identification. More accurate 

databases can facilitate improved enrichment analysis or quantitative integration with other 

datasets. 
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Figure 1. Metadata for 68 published studies examining metabolic plasticity. Studies were papers 
examining metabolome and/or lipidome responses to environmental stress in marine 
invertebrates. See Appendix A for search terms and results. A) Cumulative metabolomic (blue 
line) and lipidomics (orange dashed line) papers published between 1993 and 2025. Published 
research papers were identified through Web of Science and ProQuest searches and 
supplemented with manual searches through Google Scholar. In this timeframe, 65 used 
metabolomics and eight studies used lipidomics. Publishing trends are also shown by phylum 
for cnidarian (17), crustacean (13), echinoderm (5), and molluscs (37). Two or fewer papers 
were published for annelids, brachiopods, and bryozoans each over this time frame, and 
therefore are not visualized separately. B) Data acquisition methods of papers in Appendix A. 
Metabolomics and lipidomics data were collected primarily using untargeted experiments 
(77.9%), followed by targeted studies (22.1%), then semi-targeted studies (1.5%). One study 
used both targeted and untargeted methods. The majority of studies (92.6%) examined steady 
state responses, while 7.4% used 31P, 13C, or 15N labeling methods to understand metabolic 
flux. C). Other molecular methods used to integratively study metabolic plasticity with either 
lipidomics or metabolomics. A total of 30 of 65 metabolomics studies integrated an additional 
molecular method, while 7 of 8 lipidomics studies used an additional molecular method. Only 
two studies used more than two molecular methods (Rodriguez-Casariego: (2023): lipidomics, 
epigenomics, transcriptomics, microbiome; Wei et al. (2015): metabolomics, transcriptomics, 
proteomics).  
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Figure 2. Decision tree for metabolomic and lipidomic experimental design. Researchers should 
consider if they are interested in a specific pathway, if they want to examine changes in the 
metabolome or lipidome over time, or quantify rate of change of compounds. For all 
experiments, researchers should use appropriate sample sizes, tissue types, and sampling 
points to address hypotheses. 

 

36 



 

 
 
Figure 3. Analytical considerations for metabolomic and lipidomic experiments. This table 
indicates suitable analytical options (ie., single metabolite tests, unsupervised analysis, or 
supervised analyses) for different experimental objectives (ie., examining changes to 
concentration or composition between treatments; examining correlations between compounds 
and either quantitative responses or time; or identifying compounds that drive differences 
between treatments), and provides an example of what the output visualization may look like. 
Researchers should determine which methods are most appropriate for their data and 
hypotheses. 
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Figure 4. Enrichment with MetaboAnalyst. A) Pros and cons of using MetaboAnalyst. Panels B) 
and C) show MetaboAnalyst (v6.0) Pathway Analysis output for an example differential 
metabolite dataset generated in a previous study of reef-building coral early life stages 
(Huffmyer et al. in press) to highlight potential challenges in using MetaboAnalyst with 
non-model marine invertebrate species. This dataset is available in Appendix B. B) Differences 
in pathway analysis output based on reference KEGG database. Pathway analysis was 
conducted using either humans (Homo sapiens) or Caenorhabditis elegans as KEGG 
references. The top four pathway results are shown. While the top pathway did not change 
based on the database, there are differences in the remaining pathways identified, the number 
of metabolites in the dataset that match the database (Match Status), FDR, and pathway impact 
values. C) KEGG pathway analysis results using C. elegans as a reference. Arrow and label 
box indicate the enrichment of glycolysis or gluconeogenesis pathways. FDR P-value is 
indicated by color. These pathways were not significantly enriched (P-value = 1.0) and were 
considered low impact (impact = 0.10). Details of the glycolysis and gluconeogenesis KEGG 
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pathway are shown, with red boxes indicating metabolites in the test set that matched to the 
KEGG pathway. While the dataset included core metabolites in the glycolysis and 
gluconeogenesis pathways such as “glucose”, “glucose-6-phosphate”, and “pyruvate,” only 
pyruvate was recognized as a hit by MetaboAnalyst. This is due to differences in the 
nomenclature of glucose and glucose-6-phosphate required by Metaboanalyst to match to 
pathways (“alpha-D-Glucose” and “alpha-D-Glucose 6-phosphate”, respectively, as indicated in 
text label boxes). These results demonstrate that nomenclature and specificity of nomenclature 
can limit pathway analysis results in databases that rely on particular nomenclature. Results 
were not different when running against the C. elegans (nematode), Strongylocentrotus 
purpuratus (urchin), Mus musculus (mouse), or human KEGG databases. Note that in the study 
(Huffmyer et al. in press) acknowledged this limitation and additionally examined glycolytic 
metabolic pathways through individual metabolite abundance.  
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Supplementary Information 
 
Appendix A. Web of Science and ProQuest search terms and results for marine invertebrate 
studies examining metabolic plasticity in response to environmental stressors. Searches were 
conducted using a University of Washington login  for Web of Science and ProQuest on March 
24, 2025 and April 4, 2025, respectively. An additional 27 papers were added manually from 
Google Scholar searches. 
 
Appendix B. Test case metabolite dataset from (Huffmyer et al. in press) for illustrative 
purposes using Metaboanalyst (v6.0) platform.  
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Metabolomics: The study of chemical processes 
involving the small molecules that are the direct and 
indirect products of metabolic pathways. Metabolites 
are often classified into primary metabolites involved 
in growth, development, and reproduction, and 
secondary metabolites that are more important for 
ecological function.

Lipidomics: The study of complete fatty acid and lipid 
profiles in a sample. Lipid molecules are crucial for 
short- and long-term energy storage.

Plasticity: Ability of one genotype to produce more 
than one phenotype. 

Metabolic plasticity: An organism’s capacity to 
modulate energy production, allocation, and use.

Steady state: Absolute or relative concentrations of a 
compound at a particular point in time.

Metabolic flux: Rate at which compounds pass 
through a metabolic pathway.

Liquid chromatography mass spectrometry (LC-
MS): Combines physical separation capability of 
liquid chromatography with mass analysis capability 

of mass spectrometry. Can characterize a wide range 
of molecule types, and is considered more robust for 
lipidomic applications.

Gas chromatography mass spectrometry (GC-MS): 
Combines features of gas chromatography with mass 
spectrometry. Best suited for volatile molecules, and is 
considered more robust for metabolomic applications.

Nuclear magnetic resonance (NMR): Quantify 
compounds by placing a sample in a magnetic field 
and using the inherent magnetic properties to identify 
the compounds. 1H-NMR is most commonly used 
with metabolomics data.

Untargeted: Provides relative feature abundance 
differences between experimental conditions for all 
detected compounds.

Targeted: Provides absolute quantitation, or specific 
concentrations of molecules, based on an input list of 
known compounds.

Semi-targeted: Quantifies known compounds and 
detects unknown or unidentified compounds.

Permutational analysis of variance (PERMANOVA): 

Unsupervised multivariate approach used to test if 
centroids of groups are significantly different from 
each other. Often paired with permutational analyses 
of dispersion (PERMDISP).

Weighted gene co-expression network analysis 
(WGCNA): Correlation-based approach originally 
developed to identify groups of genes that shared 
expression patterns. Can be applied to identify 
metabolites or lipids with shared abundance patterns.

ANOVA-simultaneous components analysis 
(ASCA): Decomposes multivariate data according to 
variables of interest. Useful for examining multivariate 
responses across time or multiple additional factors.

Principal components analysis (PCA): Unsupervised 
molecular approach generally used for exploratory 
analysis. Reduces the number of dimensions in large 
datasets to principal components that retain most of 
the original information.

Partial least squares discriminant analysis (PLS-
DA): Supervised approach that uses group labels 
to reduce dimensionality by identifying variables 
that explain relationships between predictors and 
responses. Orthogonal PLS-DA (OPLS-DA) is a 

variation commonly used with metabolomic and 
lipidomic data.

Variable Importance in Projection (VIP): Quantifies 
the discriminatory power of a compound from a PLS-
DA model. 

Significance Analysis of Microarray (SAM): Feature-
specific modified t-tests combined with permutation 
analysis used to determine in a specific compound 
has differential abundance between experimental 
conditions. 

Machine learning (ML): Computer systems that learn 
or adapt using statistical models to mimic human 
behavior and recognize patterns. Useful when datasets 
are complex, large, or require automation.

Overrepresentation-based enrichment: Determines 
if specific pathways or functions are observed in 
a target dataset more than expected by chance in 
comparison to a background dataset.

Network topology-based enrichment: Incorporates 
additional factors that impact pathway activity, such 
as feature position in a pathway or feature-feature 
interactions, into an enrichment analysis.

BOX 1 | Glossary



Are you interested in a specific pathway?

Do you want to examine responses over time?

Experimental design considerations

Targeted 
data acquisition

Semi-targeted 
data acquisition

Time series 
experiment

Metabolic flux 
experiment

Steady state
experiment

Untargeted 
data acquisition

Single timepoint 
experiment

Do you want to directly 
quantify rate of change?

For all experiments:

1. Use a large enough 
sample size
2. Subset a specific 
tissue type when able
3. Sampling points and 
exposure times should 
be chosen to 
appropriately address 
hypotheses

Yes

Yes

Yes

No

No

No



Analytical considerations

How does concentration or 
composition change between 

treatments?

How do compounds correlate with 
quantitative responses or time?

What compounds drive differences 
between treatments?

Single metabolite tests

ANOVA Linear models PERMANOVA WGCNA ASCA PLS-DA + VIP SAM ML

Unsupervised analyses Supervised analyses



Enrichment with MetaboAnalyst

Pros Cons

•	 Tools available to 
analyze data from 
raw spectra through 
enrichment and 
visualization

•	 Interactive platform with 
no coding required

•	 Provides the foundation 
for other analytical 
packages

•	 Extended capabilities 
for untargeted data, 
but better suited for 
targeted data

•	 Issues with shared 
nomenclature or 
inability to identify 
molecules

•	 Limited available 
reference databases

B. Different KEGG databases impact outputA. Pros and cons of MetaboAnalyst for enrichment

C. Nomenclature inconsistencies impact enrichment results

Human 
Pathway

Match 
Status FDR Impact

Starch and 
sucrose 

metabolism
6/17 0.003 0.62

Nitrogen 
metabolism 3/6 0.053 0

Galactose 
metabolism 4/15 0.059 0.05

Valine, leucine, 
and isoleucine 
biosynthesis

3/8 0.059 0

C. elegans 
Pathway

Match 
Status FDR Impact

Starch and 
sucrose 

metabolism
6/16 0.005 0.54

Phenylalanine 
metabolism 3/6 0.07 0.5

Amino sugar and 
nucleotide sugar 

metabolism
6/31 0.07 0.31

One carbon pool 
by folate 5/23 0.07 0.11
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