

1 **Title:** Combined warming and drying slow temperate-boreal tree litter decomposition, while
2 warm-grown leaf litter foreshadows an unexpected decomposition signal

3 **Authors:** Rachel A. King^{1*}, Samuel P. Reed^{2,3*†}, Habacuc Flores-Moreno^{3,4}, Raimundo
4 Bermudez⁵, Artur Stefanski^{3,5}, Laura J. Williams⁶, Sarah E. Hobbie⁷, Peter G. Kennedy⁸, Peter B.
5 Reich^{3,9}

6 ***Rachel A. King and Samuel P. Reed should be considered joint first author and are listed
7 alphabetically**

8 Corresponding Author Email: sam@friends-bwca.org

9 **Affiliations:**

10 ¹National Center for Ecological Analysis and Synthesis, Santa Barbara, CA. USA

11 ²Friends of the Boundary Waters, St. Paul, MN. USA.

12 ³ Department of Forest Resources, University of Minnesota, St. Paul, MN. USA

13 ⁴Commonwealth Scientific and Research Organization, Brisbane, QLD. AU

14 ⁵College of Natural Resources, University of Wisconsin Stevens Point, Stevens Point, WI. USA

15 ⁶Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW. AU

16 ⁷Dept. of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN. USA Dept.

17 of⁸Plant & Microbial Ecology, University of Minnesota, St. Paul, MN. USA

18 ⁹Institute for Global Change Biology, University of Michigan, Ann Arbor, MI. USA

19 **Conflict of Interest:** There are no conflicts of interest.

20 **Keywords:** Decomposition, warming, precipitation, plant traits, temperate-boreal ecotone,
21 carbon cycling, climate change, B4WarmED

22 **Figures & Tables:** 4 Figures (All Color), 4 Tables

23

24

25

26

27

28 **Abstract**

29 Plant litter decomposition is a primary control on terrestrial carbon fluxes and is critical to soil
30 temperature, fauna, and nutrients, among many other biotic and abiotic factors. Individually, the
31 key mediators of decomposition—litter traits, temperature, and moisture—are relatively well
32 understood. However, our understanding of how combined climate drivers influence
33 decomposition remains limited, as *in situ* experiments testing how combined warming and
34 rainfall reduction impact decomposition are rare. Additionally, despite our knowledge that
35 warming temperatures can alter leaf traits, few studies test how changes in leaf traits with
36 increasing temperature can then influence decomposition. To this end, using the Boreal Forest at
37 an Ecotone in Danger (B4warmED) experiment, we tested how warming and rainfall reduction
38 impact the decomposition of leaf litter from eight boreal and temperate tree species. We found
39 that combined warming and rainfall reduction increased litter half-life by $42\% \pm 11\%$ in
40 comparison to litter exposed to ambient climatic conditions. However, only rainfall reduction
41 increased litter mean residence time by $37\% \pm 18\%$ in comparison to ambient rainfall plots. We
42 also tested how leaf litter grown in ambient and warmed growing conditions decomposed when
43 transplanted into ambient and warmed environments. We found that warm-grown litter had a
44 $22.4\% \pm 6.5\%$ lower half life than ambient grown litter under ambient temperatures. Ambient-
45 grown and warm-grown litter had slower, but equal decomposition rates in warmed
46 environments. Our research indicates that climate change may slow carbon cycling in systems
47 where moisture becomes a limiting factor. Additionally, our finding that warm-grown litter
48 decomposition is more sensitive to temperature highlights a key limitation of many
49 decomposition studies that only use ambient-grown litter. This result also points to a new
50 ecological knowledge gap with ramifications for carbon modeling under global change.

51

52

53

54

55

56

57 **Introduction**

58 Plant litter decomposition mediates substantial carbon flows through terrestrial
59 ecosystems, with estimates of 50 to 70% of NPP moving into the litter pool annually and
60 between 53 and 66% of soil mineral-associated organic material, or stable soil carbon, being
61 contributed by plants (Wardle et al. 2004, Butenschoen et al. 2011, Chang et al. 2024). The
62 balance of litter decomposition rates and litterfall determines litter layer depth, which can
63 influence a wide variety of ecosystem biotic and abiotic factors, such as seed germination, soil
64 temperature, pH, moisture, fire potential, soil micro- and macrofauna, and soil carbon storage
65 (Molofsky and Augspurger 1992, Sayer 2006, Cornelissen et al. 2017, Briones 2018, Nave et al.
66 2024). Temperature, moisture, and plant traits are primary controls on litter decomposition and
67 given the importance of litter decomposition in ecosystem carbon cycling (Prescott 2010), the
68 effects of each are relatively well understood individually. Increasing CO₂ and climate change
69 will have both direct (changes in ambient temperature and precipitation) and indirect (changes in
70 plant traits) impacts on decomposition rates (Aerts 1997, Cornwell et al. 2008). However, our
71 understanding of how multiple, interacting global change factors influence decomposition rates
72 is limited, especially in relation to how climate influences plant traits and resulting
73 decomposition.

74 Ecologists have long predicted that a warming climate will increase litter decomposition
75 rates, particularly within colder regions, as microbial decomposer activity will increase
76 (Waksman and Gerretsen 1931, Kirschbaum 1995). Climate variables such as temperature and
77 precipitation are considered to be the strongest direct drivers of litter decomposition in terrestrial
78 ecosystems (Lavelle et al. 1993, Aerts 1997). However, there have been mixed results regarding
79 how warming alone influences decomposition, with many studies showing either negligible or
80 reduced decomposition rates with warming (Lu et al. 2013, Ward et al. 2015, Cornelissen et al.
81 2017, Chuckran et al. 2020, Krna et al. 2023, Liu et al. 2024). Aerts (2006) theorized that
82 warming does not have a positive effect on cold biome decomposition because moisture becomes
83 the limiting factor. Similarly, plant performance in northern latitudes under shifting temperatures
84 has been shown to depend on concurrent soil moisture levels (Reich et al. 2018). Thus, it is
85 particularly informative to assess if and how altered warming and moisture interact to alter litter
86 decomposition in a northern climate, although few studies have tested both of these factors
87 within a robust, *in situ* experimental framework (Prieto et al. 2019). Even rarer are studies that

88 explore how global change can influence litter decomposition in boreal-temperate ecotones,
89 where compositional change is expected to be particularly rapid with a changing climate and
90 temperate species are expected to be favored over boreal species (Evans and Brown 2017).
91 Whether our understanding of litter decomposition in boreal systems can be applied to
92 decomposition in the temperate-boreal ecotone under climate change is unknown.

93 Climate can also have an indirect effect on litter decomposition by changing plant traits
94 and resulting litter quality (Chapin 2003, Cornwell et al. 2008). Warming may prolong leaf
95 senescence and increase nutrient resorption, which would reduce leaf litter quality and likely
96 slow decomposition (Yuan and Chen 2009, Estiarte and Peñuelas 2015, Prieto and Querejeta
97 2020, Zani et al. 2020). In addition, warming has been shown to increase
98 forest litter C:N by \approx 10% on average potentially due to increasing
99 leaf structural compounds (Wan et al. 2023), while precipitation has been shown to
100 have no consistent effect on litter C:N (Sun et al. 2021), highlighting the uncertainty of how
101 climate change may affect future litter stoichiometry and resulting decomposition (Zhang et al.
102 2008, Elser et al. 2010). Despite these potential changes in plant traits and chemistry, very few
103 studies test the combined influence of growth condition and decomposition environment by
104 decomposing ambient- and warm-grown plant material under ambient and warmed
105 environmental conditions (Prieto et al. 2019, Krna et al. 2023). By testing only how ambient
106 litter or tea bags decompose in warmed environments, we may be overlooking a key interaction
107 between climate and plant traits, thereby hindering our ability to predict how litter quality and
108 decomposition rates are altered by global change factors.

109 To test **A**) how combined warm and dry conditions influence decomposition rates and **B**)
110 how ambient and warmed growing conditions influence plant traits and resulting decomposition
111 under varying temperature treatments, we conducted two decomposition experiments within the
112 Boreal Forest Warming at an Ecotone in Danger (B4WarmED) project (Fig. 1). B4WarmED is
113 rare among global climate change experiments in manipulating temperatures both aboveground
114 and belowground without the use of chambers (Rich et al. 2015). Additionally, due to this
115 experiment's placement in the temperate-boreal ecotone, we are able to illustrate how a changing
116 climate might influence carbon flows and soil conditions in a rapidly changing environment
117 (Evans and Brown 2017). These changes in decomposition may then serve as an important
118 indicator of how carbon flows and decomposition will shift as temperate species ranges shift

119 northward (Smith and Goetz 2021). The first experiment (hereafter “Climate of Decomposition”)
120 was designed to assess the direct effect of climate (temperature and precipitation) on
121 decomposition by decomposing ambient-grown leaf litter in all factorial combinations of
122 ambient or elevated temperature (+3.4 °C) and ambient or reduced rainfall (-40% ambient
123 rainfall). We hypothesized that combined warming and rainfall reduction would lead to the
124 slowest decomposition rates, while warming alone would accelerate decomposition relative to
125 combined warming and rainfall reduction (**H1**; Aerts 2006). The second experiment (hereafter
126 “Climate of Plant Growth”) was designed to test interactions between plant growth conditions
127 under different climate scenarios and whether resulting changes in plant traits altered
128 decomposition under ambient or elevated temperatures. Specifically, we hypothesized that
129 warm-grown litter would have reduced litter quality (e.g. higher C:N or Lignin:N ratios)
130 resulting from either nutrient resorption from prolonger senescence (Montgomery et al. 2020) or
131 changes in leaf construction due to warming (Suseela and Tharayil 2018), both potentially
132 leading to slower leaf decomposition in both ambient and warmed environments (**H2**; Prieto and
133 Querejeta 2020).

134

135 **Materials & Methods**

136 *Study Sites & B4WarmED Design*

137 This research was conducted at B4WarmED, a long-running free-air warming and rainfall
138 reduction experiment in northern Minnesota, USA (Fig. 1). For details of the experimental
139 design and treatments see Rich *et al.* 2015 and Stefanski et al. 2020. In brief, the experiment was
140 established in 2008 at two sites along the boreal-temperate forest ecotone: one at the Cloquet
141 Forestry Center (CFC, 46°40'46" N, 92°31'12" W, 382 m a.s.l.) near Cloquet, MN and the other
142 at the Hubachek Wilderness Research Center (HWRC, 47°56'42" N, 91°45'29" W, 415 m a.s.l.)
143 near Ely, MN. At CFC and HWRC, mean annual precipitation is 824 mm and 715 mm,
144 respectively, and mean annual temperature is 4.9 °C and 2.8 °C (averaged from 1980-2019 from
145 nearby weather stations), while the study period mean annual precipitation was 827 mm and 667
146 mm, respectively, and mean annual temperature was 4.0 °C and 3.6 °C (averaged from 2018-
147 2020 from nearby weather stations). Both sites are situated on coarse-textured upland soil (CFC:
148 Cloquet Series - coarse-loamy over sandy or sandy-skeletal, isotic, frigid Typic Dystrudepts;
149 HWRC: Rollins Series - sandy-skeletal, isotic, frigid Typic Dystrudepts (Web Soil Survey 2025)

150 and, prior to the experiment, were forested with approximately 70-year-old mixed aspen, pine
151 and birch forest.

152 Each site contains six experimental blocks with the preexisting forest overstory retained
153 on three blocks (hereafter “closed canopy”) and removed from the remaining three (“open
154 canopy”) in 2008. Within each block there are four circular research plots of 3 m diameter, two
155 of which were warmed 3.4°C above ambient temperature using infrared ceramic heaters
156 aboveground and resistance-type warming cables belowground while the other two blocks
157 remained at ambient temperature. At the CFC site, only belowground warming remained active
158 in 2019 and 2020 in the closed canopy plots due to concerns about potential fires in the
159 understory. We accounted for this in the analysis by including site as a random effect, though we
160 did not test differences in the warming effect between the two sites. In the open canopy plots,
161 rainfall was also manipulated. Starting in 2012, rainout shelters were periodically deployed to
162 exclude approximately 40% of summer rainfall (i.e. June to September) in the open canopy plots,
163 one warmed and one ambient temperature plot per block, while the remaining two plots per
164 block received ambient rainfall. Soil moisture, measured as volumetric water content from 0–20
165 cm depth, was continuously monitored via a 30 cm Campbell Scientific CS-616 probe inserted
166 into the soil at 45°. In each plot, one to two year old tree seedlings of species commonly found in
167 the temperate or boreal region of North America were planted and allowed to grow for four to
168 five years. Due to the differences in canopy conditions and experimental design between open
169 and closed canopy plots, we did not compare decomposition responses between these plots.

170 *Litter Decomposition Experiments*

171 We collected leaf litter from 8 species within the experiment: *Acer rubrum* L., *Acer*
172 *saccharum* Marshall, *Betula papyrifera* Marshall, *Quercus macrocarpa* Michx., *Quercus rubra*
173 L., *Pinus banksiana* Lamb., *Pinus strobus* L., and *Populus tremuloides* Michx. For the Climate
174 of Decomposition experiment, we collected litter from individuals grown in open canopy plots
175 exposed to ambient precipitation and temperature. In our Climate of Plant Growth experiment,
176 we collected leaf litter in closed canopy plots from directly below individuals grown in both the
177 ambient temperature and + 3.4 °C warmed plots (litter source). Our naming convention for the
178 Climate of Plant Growth experiment is either warm-grown or ambient-grown as the litter source
179 (the ambient or warming treatment that litter was retrieved from) and then warmed plots or
180 ambient plots as the litter destination (the ambient or warming treatment where litter was

181 deposited). We are certain that this ambient and warm grown litter came from the planted trees
182 for most species due to the overstory being dominated by aspen with very few nearby like-
183 species. It is possible, however, some aspen leaf litter from the overstory entered our aspen leaf
184 samples. To collect the litter, each experimental plot was visited weekly during the fall of 2011,
185 2012, and 2013 and recently fallen leaves from planted seedlings were collected, air-dried at
186 room temperature, and stored in paper bags.

187 Litter bags (100 x 100 mm) were constructed from 1 mm nylon mesh and filled with 2 g
188 of species-specific litter weighed to the nearest milligram. This amount of litter approximates the
189 average litter density resulting from annual litterfall in temperate and boreal systems (Young An
190 et al. 2017). We were not able to collect enough litter from experimental plots for either of the
191 two *Pinus* species. Thus, the *Pinus* litter for the Climate of Decomposition experiment (litter
192 from ambient conditions in the open canopy) was collected from *P. banksiana* and *P. strobus*
193 trees growing outside the research plots but within the experimental sites. For the Climate of
194 Plant Growth experiment (litter from ambient temperature and elevated temperature at closed
195 canopy sites), we used *Pinus* litter collected from the experimental plots but deployed bags with
196 a lower mass of tissue (ranging from 0.5 to 1.7 g), with the heavier bags assigned for collection
197 at later time points. For both experiments, litter bags were strung together in groups of four with
198 two strings of four bags (one bag for each species) assigned to be collected per time point per
199 plot. Litter bags were randomly assigned to positions along the strings, and strings were
200 deployed randomly inside plots with some constraints to avoid interfering with the growth of
201 trees in the plots and avoid being stepped on by workers. Litter bags were deployed in the field
202 in late fall 2017 and subsets retrieved in early spring 2018, fall 2018, fall 2019, and fall 2020.
203 For the Climate of Decomposition experiment, ambient litter was placed in each treatment
204 combination (ambient temperature + ambient rainfall; ambient temperature + reduced rainfall;
205 warmed temperature + ambient rainfall; warmed temperature + reduced rainfall). For the Climate
206 of Plant Growth experiment, both ambient-sourced litter and warm-sourced litter were placed in
207 ambient and warmed temperature destination treatments (ambient-grown litter + ambient
208 temperature destination; ambient-grown litter + warm temperature destination; warm-grown
209 litter + ambient temperature destination; warm-grown litter + warm temperature destination).
210 Once retrieved, litter was removed from the bags, dried at 60°C for 48 hours, cleaned for dirt
211 particles and weighed.

212 From the pool of litter for each species and site, a subset of the initial litter was finely
213 ground and analyzed for total nitrogen and carbon with a Costech elemental analyzer at the
214 University of Minnesota, USA (ECS 4010 CHNSO Analyzer Valencia, California, USA), and
215 for carbon fractions (cell solubles, hemicelluloses plus bound protein, cellulose, and lignin plus
216 other recalcitrants) with an ANKOM Fiber Analyzer (Ankom Technology, Macedon, New York,
217 USA, using #F57 filter bags). Additionally, specific leaf area (SLA, $\text{cm}^2 \text{ g}^{-1}$) was measured on
218 green leaves from all species in 2011, 2012, and 2013. We used the mean SLA across years for
219 each species-treatment combination as a covariate in some analyses.

220 **Statistical Methods:**

221 *Decomposition model fitting and parameter estimates*

222 We fit four commonly used decomposition models to the proportion of litter mass
223 remaining at each time point and estimated the parameters for each model for further comparison
224 of the dynamics of litter decomposition. These included three decomposition models from the
225 exponential family (single, double, and asymptotic) and the Weibull model (Cornwell et al.
226 2008, Gill et al. 2021). The exponential family of decomposition models is based on the single-
227 pool decomposition model, in which the proportion of litter mass remaining, X , is a function of a
228 decomposition constant, k_s , and time, t :

$$229 \quad X = e^{-k_s t} \text{ (eq 1)}$$

230 The double-pool and asymptotic exponential models add an additional pool to the model,
231 creating a two-pool model with litter fractions that can decompose at different rates. In the
232 double exponential model, one fraction of litter ($1-C$) decomposes at a rate of k_1 and the
233 remaining litter fraction (C) decomposes at a rate of k_2 :

$$234 \quad X = (1 - C)e^{-k_1 t} + (C)e^{-k_2 t} \text{ (eq 2)}$$

235 The asymptotic model splits the litter into two fractions, A and $(1-A)$, where A represents
236 a proportion of the initial litter mass with a decomposition rate of zero and the remaining litter
237 fraction decomposes with a rate of k_a :

$$238 \quad X = A + (1 - A)e^{-k_a t} \text{ (eq 3)}$$

239 While litter decomposition rates would never realistically be zero, over short time periods the
240 asymptotic model's assumption of a pool with a negligible decomposition rate holds true (Berg
241 2014).

242 The last model, the Weibull model, is not based on the exponential decay model and
243 instead represents the litter decomposition process through a continuous Weibull distribution of
244 residence times (Weibull 1951; Cornwell and Weedon 2014). Here, litter mass remaining is a
245 function of scale (β) and shape (α) parameters of this distribution:

$$246 \quad X = e^{-(\frac{i}{\beta})^\alpha}$$

247 The Weibull model does not have specific decomposition constants to compare across
248 treatments, rather we estimate the time to 50% mass loss and the mean residence time (MRT) of
249 the litter. These metrics indicate both early and late-stage litter decomposition as represented by
250 litter half-life and MRT, respectively.

251 To compare the fit of the four models, we fit the models to pooled replicates for each
252 species-treatment combination and assessed fit using Akaike's Information Criteria (AIC_c;
253 Burnham and Anderson 2004). We used a Δ AIC value of 3 between the lowest AIC value and
254 remaining values to determine whether a model represented the data significantly better than the
255 alternative models. The asymptotic and Weibull models performed the best based on these
256 criteria, and there was no significant effect of our experimental treatments on the best model type
257 (Fisher's exact test: $p = 0.96$, open canopy; $p = 0.08$, closed canopy; Table S1). For the
258 remaining analyses, we decided to use the Weibull model for parameter estimates for two
259 reasons: 1) using the asymptotic model sometimes poses challenges for statistical analysis when
260 the asymptote is essentially zero, and 2) the Weibull model can capture more complex
261 decomposition dynamics such as an initial lag phase or changes in decomposition rates over time
262 (Cornwell and Weedon 2014). We estimated the parameters for the Weibull model on individual
263 time-series (3 per species-treatment combination) and used these to calculate the time to 50%
264 mass loss and the litter MRT. We screened individual time points to remove data points that
265 were likely erroneous based on error risk after (Bjorkman et al. 2018).

266 We conducted analyses using R software v. 4.3.1 (R Core Team 2024). Any outliers for
267 half-life and MRT greater than 2.5 standard deviations from the average half-life and MRT for
268 open and closed canopy variables were removed. We tested how log-transformed litter half-life
269 and MRT varied with treatment using linear mixed effects models in the *lme4* package (Bates et
270 al. 2015). To test treatment effects on litter decomposition in the Climate of Decomposition
271 experiment under an open canopy, we used warming treatment, rainfall reduction, and their
272 interaction as fixed effects with site and species as random effects (Warming *

273 RainfallReduction + (1|Site:Species)). Similarly, for the Climate of Plant Growth experiment
274 under a closed canopy, we used litter source (ambient-grown or warm-grown litter), litter
275 destination (ambient plots and warmed plots), and their interaction with site and nested species
276 as random effects (LitterSource * LitterDestination+ (1|Site:Species)). The random effects
277 structure was selected by comparing the performance of three different combinations of site and
278 species random effects and choosing the structure with the lowest AIC value. These models only
279 focus on treatment effects in order to best represent the influence of warming, rainfall reduction,
280 and litter source on litter decomposition.

281 Following treatment-specific analyses, we evaluated how plant traits and abiotic factors
282 influenced litter decomposition. To test potential mechanisms of decomposition change with
283 treatments, separate LMMs with litter lignin:N, C:N, SLA, %N, and N per unit area, and soil
284 moisture as covariates were created. We centered and scaled covariates prior to fitting models.
285 Due to correlations between litter traits, we fit separate models for each litter trait and soil
286 moisture and then selected the best model using AIC values. We then compared the performance
287 of the models with covariates and treatments to the models with treatments alone using AIC and
288 R^2 values to see if the covariates helped to explain any additional variation not encompassed by
289 the treatment effects. All model assumptions were tested with the *DHARMA* package with Tukey
290 adjusted post hoc analyses in the *emmeans* package (Hartig 2017, Lenth et al. 2022).
291 Proportional differences between treatments are based on log-transformed means.

292 **Results**

293 *Experiment 1: Climate of Decomposition*

294 The climate of litter decomposition impacted both litter half-life and MRT, but the effects
295 of temperature and rainfall reduction varied. Beneath an open canopy, our targeted 3.4 °C
296 warming and 40% rainfall reduction individually increased litter half-life (Warming: $F_{1, 162.7} =$
297 3.8, $p = 0.052$; Rainfall Reduction: $F_{1, 162.4} = 22.4$, $p < 0.001$; Table 1). Specifically, rainfall
298 reduction increased litter half-life by $28\% \pm 6.8\%$ SE in comparison to plots with ambient
299 rainfall ($t = 4.7$, $df = 162$, $p < 0.0001$), while warming alone increased litter half-life by $11\% \pm$
300 5.9% SE ($t = 1.9$, $df = 163$, $p = 0.05$). Together, combined warming and rainfall reduction
301 increased litter half-life by $42\% \pm 11\%$ in comparison to plots with ambient temperatures and no
302 rainfall reduction ($t = 4.7$, $df = 163$, $p < 0.001$; Fig. 2a), consistent with our expectations. In

303 contrast, only rainfall reduction had a strong effect on litter MRT (Warming: $F_{1, 160.9} = 0.13$, $p = 0.72$; Rainfall Reduction: $F_{1, 161.2} = 5.6$, $p = 0.02$). Across all open canopy plots, rainfall
304 reduction increased average leaf litter MRT by $37\% \pm 18\%$ SE in comparison to plots with
305 ambient rainfall ($t = 2.4$, $df = 161$, $p = 0.02$, Fig. 2b).

307 For both half-life and MRT, the applied climate treatments explained a small amount of
308 variation relative to the species and site random effects. Less than 10% of the total variation
309 explained by the models came from the fixed effects of climate treatments (Table 1), and the
310 models for half-life explained more variation than those for MRT ($R^2_{\text{cond}} = 0.41$ vs $R^2_{\text{cond}} = 0.27$).
311 However, all but one species showed a clear increase in both litter half-life and MRT from the
312 ambient temperature and ambient rainfall treatments to the +3.4C and reduced rainfall treatments
313 (Fig. S1). The half-life ranged from a minimum of 1.9 years to a maximum of 4.0 years in
314 ambient temperature and ambient rainfall to a range of 2.8 - 5.2 years under warmed and reduced
315 rainfall conditions. Litter MRT was substantially more variable across treatments, with a range
316 of 4.3 years to 35.8 years in the ambient temperature and ambient rainfall treatments to 5.2 years
317 to 30.7 years under warmed and reduced rainfall treatments.

318 Including covariates in the models improved the fit for litter half-life but not for litter
319 MRT. For litter half-life, the best fit model with covariates improved slightly upon the inclusion
320 of leaf N_{area} in addition to the heat and water treatments (Table S2, S3). Including leaf N_{area}
321 increased the R^2_{marg} from 0.08 to 0.19 for litter half-life, though the variation explained by
322 random effects decreased from ICC of 0.36 to 0.27 (Table 2). Leaf N_{area} had a positive
323 relationship with litter half-life, so leaves with greater N_{area} took longer to decompose. Including
324 soil moisture did not improve the model fit for either litter half-life or MRT (Tables 2, S2, S4,
325 S5, $\Delta\text{AIC} < 2$), so for litter MRT the models with treatments alone performed best.

326 *Experiment 2: Climate of Plant Growth*

327 Underneath a closed canopy, litter source and litter destination treatment had a slight
328 interactive effect on litter half-life ($F_{1, 169.1} = 3.4$, $p = 0.07$; Table 2; Fig. 3a). Warm-grown litter
329 under warmed conditions had a $36\% \pm 11\%$ SE greater half-life than warm-grown litter under
330 ambient conditions ($t = 3.6$, $df = 169$, $p = 0.002$), while there was no difference in half-life
331 among ambient-grown litter under ambient or warmed temperatures. Under ambient temperature
332 conditions, litter grown in warmed plots had a $22\% \pm 6.5\%$ SE shorter half-life than litter grown

333 in ambient temperature ($t = -3.0$, $df = 169$, $p = 0.015$). Litter from both sources had similar half-lives when decomposing under warmed conditions ($t = -0.44$, $df = 169$, $p = 0.66$). Warming also increased litter MRT by $26\% \pm 15.4\%$ SE in comparison to ambient conditions ($F_{1, 162} = 4.4$, $p = 0.060$; Fig. 3b). However, litter source did not influence litter MRT and there was no interaction between warming and litter source on mean residence time (Table 3).

338 As in the Climate of Decomposition experiment, experimental treatments explained a
339 small amount of variation in decomposition in comparison to species and site random effects.
340 Treatments explained slightly more variation for litter half-life ($R^2_{\text{marg}} = 0.064$) than for litter
341 MRT ($R^2_{\text{marg}} = 0.016$, Table 3). Species level patterns showed that under ambient temperature
342 conditions, all but one species showed a decrease in litter half-life with warm-grown litter but the
343 trend was more variable in the warmed decomposition environment (Fig. S2). Litter MRT did
344 not show a clear trend, with some species showing increases in MRT and others decreases in
345 each treatment (Fig. S3). Under ambient temperature with ambient-sourced litter, litter half-life
346 ranged from 2.1 yrs to 5.0 years, while under warmed conditions with warmed litter the range of
347 half-lives expanded from 1.2 yrs to 6.1 years. Litter MRT followed a similar pattern: the range of
348 MRTs increased when comparing ambient-sourced litter grown under ambient conditions (3.1 -
349 11.7 years) to warmed litter grown under warmed conditions (1.7 - 22.9 years).

350 Including litter traits and soil moisture as covariates did not improve model fits for the
351 Climate of Plant Growth experiment. Model performance was similar for both litter half-life and
352 MRT (Tables S6, S7) even though the variation explained by the fixed effects (R^2_{marg}) increased
353 when covariates were included (Table 4). The litter traits that explained the most variation in the
354 decomposition parameters varied for litter half-life and MRT: for half-life, the lignin:N ratio was
355 the best litter trait predictor (Table S8) and for MRT it was litter %N (Table S9). However, only
356 the lignin:N ratio had a significant impact on litter half-life, with higher lignin:N ratios resulting
357 in longer half-lives (i.e., slower decomposition). Soil moisture did not have a substantial
358 influence on decomposition for either half-life or MRT. Litter traits themselves did not vary
359 consistently with growth condition across species (Fig. 4, $p > 0.05$), though litter lignin:N and
360 SLA had slight declines under warming.

361 **Discussion**

362 Global climate change is leading to numerous interacting stressors and disturbances
363 within forest ecosystems, many of which can strongly influence nutrient and carbon cycling

364 (Foster et al. 2016, Seidl et al. 2017, Tripathy et al. 2023, Sáez-Sandino et al. 2025). Few studies
365 can rigorously test how key biological processes among multiple tree species respond to multiple
366 global change factors in a field-based experimental setting, posing a significant knowledge gap
367 in our understanding and predictions of climate impacts and mechanisms of change. Using a
368 globally unique experiment, our work highlights how combined warming and rainfall reduction
369 can slow litter decomposition, especially early-stage decomposition, of numerous deciduous and
370 coniferous tree species. We also found that warm-grown litter can have unexpected responses to
371 the decomposition environment, as warm-grown litter had the fastest decomposition under
372 ambient conditions yet similar decomposition to ambient-grown litter in a warmed
373 decomposition environment. Furthermore, soil moisture and litter trait covariates resulted in little
374 to no improvement to the models, suggesting that additional unmeasured factors, such as the soil
375 microbial community, may be important mechanisms to fully understand how climate mediates
376 decomposition. Each of these results represents a significant step forward in our understanding of
377 decomposition processes in an era of rapid global change, with particularly important
378 ramifications for nutrient cycling and soil processes, though there is still room to investigate the
379 specific mechanisms that underpin our research.

380 *Combined rainfall and warming slow decomposition*

381 Our finding that combined warming and rainfall reduction can slow tree leaf litter
382 decomposition in the temperate-boreal ecotone generally aligns with our hypothesis, ecological
383 theory, and the limited number of studies that have experimentally manipulated both of these
384 global change factors (Aerts 2006, Butenschoen et al. 2011, Prieto et al. 2019, Petraglia et al.
385 2019). Since rainfall reduction led to slower early and late-stage decomposition, regardless of
386 warming treatment, our experiment points to moisture as a key limiting factor throughout the
387 litter decomposition process. Soil moisture is fundamental to microbial decomposition, as water
388 is a needed resource for microbes and facilitates the transport and consumption of organic
389 resources from the litter (Schimel 2018). When soil conditions become too dry, microbial
390 communities can also go dormant, leading to slower decomposition (Jones and Lennon 2010).

391 However, rainfall reduction may result in additional changes to the decomposition
392 environment that are not captured just by water availability. When we tested soil moisture as a
393 covariate along with rainfall reduction, the rainfall reduction treatment remained significant in
394 the models. This suggests that soil moisture contributes to decomposition but that additional

395 changes from reduced rainfall could be occurring in our experimental plots and mediate the
396 observed changes in decomposition. Other studies have found that persistent rainfall reduction
397 leads to reductions in microbial biomass (García-Palacios et al. 2016b), as well as decreases the
398 abundance of soil fauna involved in decomposition (Biryol et al. 2024). As such, future studies
399 investigating how soil organisms are changing in response to reduced rainfall will advance our
400 understanding of how decomposition is influenced by changing climatic conditions.

401 Our hypotheses regarding warming treatments were only partially supported, as warming
402 alone resulted in slower decomposition. However, it is likely that the combined warming and
403 rainfall reduction treatments exacerbated evaporative drying and further slowed early-stage
404 decomposition, considering that litter half-life was slowest in dry and warm conditions in
405 accordance with our hypothesis. The few studies that have examined a combination of soil
406 moisture and warming on litter decomposition have also found that warming effects are mediated
407 by moisture (Butenschoen et al. 2011, Petraglia et al. 2019). This may be due to early-stage
408 decomposer communities becoming homogenized with dry conditions; for example, Christiansen
409 et al. (2017) demonstrated that warming-induced decomposer homogenization can be correlated
410 with lower decomposition rates. Homogenized decomposer communities may reduce the number
411 of functional groups and potential facilitative interactions, which can be important for
412 decomposition (Christiansen *et al.* 2017). However, there are likely numerous controls on litter
413 decomposition that are positively correlated with warming and moisture, highlighting the
414 complexity and peril of selecting a single mechanistic explanation (Prescott 2005a). Our results
415 add needed context to our understanding of litter decomposition by showing how the effects of
416 warming can be mediated by moisture, however more research is needed on the exact
417 mechanisms of decompositional change in cold biomes (Baldrian et al. 2023).

418 Considering that our work takes place in the temperate-boreal ecotone and found
419 consistent responses from numerous species from both biomes, our results indicate that both
420 northern-temperate and southern-boreal forests may experience slowing decomposition with
421 warming and decreased precipitation. The most obvious impact of slowing decomposition is that
422 leaf litter may accumulate to a greater degree with warming and rainfall reduction in each forest
423 biome. This litter accumulation could then slow soil nutrient cycling, which would add further
424 stress to trees in an already N-limited ecosystem (Reich et al. 1997, McLaughlan et al. 2007).
425 Additionally, this dry and slow-decomposing litter may be less likely to be transformed into

426 mineral-associated organic matter, potentially altering the ratios of carbon stored in mineral-
427 associated versus particulate organic matter within forests and the overall stability of carbon in
428 the soil (Cotrufo et al. 2015, Prescott and Vesterdal 2021). More dry, slow-decomposing litter
429 may also be vulnerable to fire and resulting carbon release (Grootemaat et al. 2015, Cornelissen
430 et al. 2017). Alternatively, an accumulation in litter could moderate a drying environment and
431 further support species that are dependent on the “brown” food web, which is particularly
432 important for soil fauna in the temperate forest (Sayer 2006). Each of these potential ecological
433 outcomes are possible in boreal and temperate forests but highlight the substantial uncertainty of
434 global climate change’s localized ecological effects.

435 *Warm-grown litter is more sensitive to temperature*

436 In contrast to our second hypothesis, where we predicted that warm-grown litter would
437 lead to slower decomposition regardless of temperature treatment, we found that warm-grown
438 litter in ambient decomposition environments had the lowest half-life. This may lead us to expect
439 that warm-grown litter in warmed decomposition environments would also have a lower half-
440 life. However, in warmed environments we found no difference in the half-life of warm-grown
441 and ambient-grown litter. This finding partially contrasts Prieto et al (2019)—to our knowledge,
442 the only similar experimental study. Prieto et al. (2019) decomposed ambient- and warm-grown
443 litter from a dryland shrub in each litter type’s home conditions and found that combined warm
444 growing conditions and warming decomposition environments led to a 32% decrease in
445 decomposition activity compared to ambient litter decomposition (Prieto et al. 2019). This
446 contrast could potentially be explained by warming significantly reducing litter quality in Prieto
447 et al. (2019) in comparison to our study, which saw little to no effect of warming on our
448 measured litter traits. Additionally, current ecological theory predicts that temperature sensitivity
449 of decomposition increases as litter carbon quality decreases (Fierer et al. 2005, Conant et al.
450 2008, Suseela et al. 2013, Schwieger et al. 2025). Our measure of litter quality (% lignin
451 measured on ANKOM) is relatively coarse, but the higher sensitivity of warm-grown litter would
452 suggest that litter quality changed in some way. These theoretical and experimental contrasts
453 could have important ramifications for carbon modeling under global change, especially if
454 models incorporate climate-driven changes in litter quality into their projections.

455 Warm grown litter decomposing faster in ambient environments is potentially due to
456 warming-induced changes to plant traits that made these leaves more palatable to early-stage

457 decomposers in the ambient plots (Prescott 2005b, Moorhead and Sinsabaugh 2006, Sáez-
458 Sandino et al. 2025). Although we hypothesized that leaf litter C:N would increase in warm
459 grown litter, responses were inconsistent across species, with increases in C:N for some species
460 and decreases in others. This aligns with a global meta-analysis by Schwieger et al. (2024) where
461 C:N did not correlate with warming. Other studies emphasize the importance of micronutrients
462 (e.g., Na, Mg, Ca, K) and protein content, which we did not examine (García-Palacios et al.
463 2016a, Canessa et al. 2021, Wang et al. 2021). The composition of the leaf endophytes in litter
464 has also been proposed as a mediator of decomposition (Wolfe and Ballhorn 2020) and could be
465 another way the litter growing environment impacts decomposition rates. Additionally, why
466 there were no differences in warm- and ambient-grown litter in warmed decomposition
467 environments is similarly unclear. It is possible that the effects of warming overwhelmed the
468 effects of leaf traits and resulting litter quality. Or, alternatively, homogenized or altered
469 decomposer communities at warmer temperatures led to slower decomposition rates regardless
470 of litter quality (Treseder et al. 2016). Indeed, recent work in the same experimental platform has
471 shown warming affects the composition of decomposer communities, which might help to
472 explain why the difference in decomposition rates between ambient-grown and warm-grown
473 litter was not consistent in ambient and warmed plots (Cantoran et al. 2025, Sáez-Sandino et al.
474 2025).

475 Regardless of a missing trait-based explanation, few studies, if any, have tested whether
476 plant growth from multiple tree species under simulated climatic conditions can then influence
477 litter decomposition rates under ambient and warmed environments (Suseela & Tharayil 2017).
478 Our finding that warm-grown litter was particularly sensitive to changing temperatures and
479 decomposed faster under ambient temperatures highlights an important contribution to how we
480 experimentally test the effects of global change factors on litter decomposition. Considering that
481 most decomposition experiments can only use ambient-grown litter or use tea bags (Schwieger et
482 al. 2024), our results indicate that we are likely missing important causal mechanisms in our
483 understanding of how global change influences plant traits and resulting decomposition.
484 Similarly, our finding that warm-grown litter decomposed at the same rate as ambient-grown
485 litter under warm conditions indicates that future changes in leaf traits with warming may not
486 have an appreciable effect on decomposition, particularly if growing seasons are consistently hot.
487 Conversely, it is possible that a more variable climate with fluctuations between warmer and

488 cooler temperatures could lead to faster litter decomposition in cool years, especially among
489 recently dropped leaves with traits that developed in warmer conditions. These findings highlight
490 both a new ecological knowledge gap and a major opportunity to refine our understanding of
491 plant traits, planetary warming, and decomposition.

492 Warming also increased litter MRT, or long-term decomposition, while litter source had
493 no effect on this variable. Warming-induced increases in MRT were likely due to increased
494 evapotranspiration with higher temperatures that caused soil moisture limitation, similar to the
495 findings in Experiment 1. This increase in evapotranspiration with warming may be particularly
496 influential under a closed canopy, where the forest floor is cooler and wetter (Muscolo et al.
497 2014, De Frenne et al. 2021). This result serves as an indirect source of evidence that moisture is
498 a key factor in biotic, late-stage decomposition of litter (Klotzbücher et al. 2011).

499 *Next Steps and Conclusions*

500 Our experiments pose a number of important considerations for future research. First and
501 foremost, our finding that warm-grown litter decomposes differently than ambient-grown litter
502 highlights a need for further exploration of the linkages between plant traits and decomposition.
503 Future decomposition studies manipulating warming, drought, and litter growing condition
504 should measure a wider array of plant traits and soil biotic and abiotic factors that might
505 potentially influence decomposition (Cornwell *et al.* 2008). Researchers should also measure soil
506 microfauna, as they have a strong influence on decomposition at local and regional scales and
507 have been shown to change in response to warming and rainfall reduction, which likely
508 influenced our decomposition outcomes (García-Palacios et al. 2013, Bradford et al. 2016,
509 Christiansen et al. 2017, Nave et al. 2024). Our study also primarily evaluated leaf litter from
510 saplings with ectomycorrhizal associations, which may have different traits and resulting
511 decomposition trends than litter from fully grown trees, trees with arbuscular mycorrhizal
512 associations, herbaceous species, and shrubs (Cornelissen et al. 2007, Keller and Phillips 2019)
513 . This work also occurred in the drier, warmer end of the boreal forest. Therefore, in a colder and
514 wetter boreal environment, warming might lead to faster decomposition, particularly if the
515 positive effects of increased temperature on microbial activity offset any potential negative
516 effects caused by reduced litter moisture (Aerts 2006).

517 Taken together, our results provide compelling evidence that combined global change
518 factors will both directly (through effects on litter microclimate) and indirectly (through effects

519 on plant traits) influence litter decomposition rates in both cold climates and in vulnerable
520 temperate-boreal ecotones. Changes in decomposition rates with warming and rainfall reduction
521 may have a number of broader ecological implications. Most obviously, our results point to
522 slower C cycling with reduced decomposition from warming and drought. However, whether soil
523 organic matter would be converted to more stable forms of C and increase the amount of C
524 stored in soils remains unclear (Prescott 2010, Rocci et al. 2024). An increase in dry litter could
525 also increase the likelihood of understory fires, meaning that there may be more litter but this C
526 is more vulnerable to disturbance (Cornelissen *et al.* 2017). Alternatively, if warm-grown litter is
527 more susceptible to faster decomposition in cooler years, then we may see swings in
528 decomposition rates with more variable temperatures. Each of these potential ecological
529 ramifications highlight the importance of litter decomposition for forest ecosystems and the need
530 for further study of how decomposition is changing with global change factors at local, regional,
531 and global scales.

532

533 **References:**

534 Aerts, R. 1997. Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial
535 Ecosystems: A Triangular Relationship. - *Oikos* 79: 439–449.

536 Aerts, R. 2006. The freezer defrosting: global warming and litter decomposition rates in cold
537 biomes. - *J. Ecol.* 94: 713–724.

538 Baldrian, P., López-Mondéjar, R. and Kohout, P. 2023. Forest microbiome and global change.
539 - *Nat. Rev. Microbiol.* 21: 487–501.

540 Bates, D., Mächler, M., Bolker, B. and Walker, S. 2015. Fitting Linear Mixed-Effects Models
541 Using lme4. - *J. Stat. Softw.* 67: 1–48.

542 Biryol, C., Aupic-Samain, A., Lecareux, C., Gauquelin, T., Baldy, V. and Santonja, M. 2024.
543 Interactive effects of soil moisture, air temperature and litter nutrient diversity on soil
544 microbial communities and *Folsomia candida* population. - *Oikos* 2024: e10345.

545 Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Weiher, E., et al. 2018.
546 Plant functional trait change across a warming tundra biome. - *Nature* 562: 57–62.

547 Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. and Wood, S. A. 2016.
548 Understanding the dominant controls on litter decomposition (W Cornwell, Ed.). - *J.*
549 *Ecol.* 104: 229–238.

550 Briones, M. J. I. 2018. The Serendipitous Value of Soil Fauna in Ecosystem Functioning: The
551 Unexplained Explained. - *Front. Environ. Sci.* in press.

552 Burnham, K. P. and Anderson, D. R. 2004. Multimodel Inference: Understanding AIC and
553 BIC in Model Selection. - *Sociol. Methods Res.* 33: 261–304.

554 Butenschoen, O., Scheu, S. and Eisenhauer, N. 2011. Interactive effects of warming, soil
555 humidity and plant diversity on litter decomposition and microbial activity. - *Soil Biol.*
556 *Biochem.* 43: 1902–1907.

557 Canessa, R., van den Brink, L., Saldaña, A., Rios, R. S., Hättenschwiler, S., Mueller, C. W.,
558 Prater, I., Tielbörger, K. and Bader, M. Y. 2021. Relative effects of climate and litter
559 traits on decomposition change with time, climate and trait variability. - *J. Ecol.* 109:
560 447–458.

561 Cantoran, A., Maillard, F., Bermudez, R., Stefanski, A., Reich, P. B. and Kennedy, P. G.
562 2025. Warming and Reduced Rainfall Alter Fungal Necromass Decomposition Rates and
563 Associated Microbial Community Composition and Functioning at a Temperate–Boreal
564 Forest Ecotone. - *Glob. Change Biol.* 31: e70536.

565 Chang, Y., Sokol, N. W., van Groenigen, K. J., Bradford, M. A., Ji, D., Crowther, T. W.,
566 Liang, C., Luo, Y., Kuzyakov, Y., Wang, J. and Ding, F. 2024. A stoichiometric
567 approach to estimate sources of mineral-associated soil organic matter. - *Glob. Change
568 Biol.* 30: e17092.

569 Chapin, F. S. 2003. Effects of Plant Traits on Ecosystem and Regional Processes: a
570 Conceptual Framework for Predicting the Consequences of Global Change. - Ann. Bot.
571 91: 455–463.

572 Christiansen, C. T., Haugwitz, M. S., Priemé, A., Nielsen, C. S., Elberling, B., Michelsen, A.,
573 Grogan, P. and Blok, D. 2017. Enhanced summer warming reduces fungal decomposer
574 diversity and litter mass loss more strongly in dry than in wet tundra. - Glob. Change
575 Biol. 23: 406–420.

576 Chuckran, P. F., Reibold, R., Throop, H. L. and Reed, S. C. 2020. Multiple mechanisms
577 determine the effect of warming on plant litter decomposition in a dryland. - Soil Biol.
578 Biochem. 145: 107799.

579 Conant, R. T., Drijber, R. A., Haddix, M. L., Parton, W. J., Paul, E. A., Plante, A. F., Six, J.
580 and Steinweg, J. M. 2008. Sensitivity of organic matter decomposition to warming varies
581 with its quality. - Glob. Change Biol. 14: 868–877.

582 Cornelissen, J. H. C., Van Bodegom, P. M., Aerts, R., Callaghan, T. V., Van Logtestijn, R. S.
583 P., Alatalo, J., Stuart Chapin, F., Gerdol, R., Gudmundsson, J., Gwynn-Jones, D.,
584 Hartley, A. E., Hik, D. S., Hofgaard, A., Jónsdóttir, I. S., Karlsson, S., Klein, J. A.,
585 Laundre, J., Magnusson, B., Michelsen, A., Molau, U., Onipchenko, V. G., Quested, H.
586 M., Sandvik, S. M., Schmidt, I. K., Shaver, G. R., Solheim, B., Soudzilovskaia, N. A.,
587 Stenström, A., Tolvanen, A., Totland, Ø., Wada, N., Welker, J. M., Zhao, X. and Team,
588 M. O. L. 2007. Global negative vegetation feedback to climate warming responses of leaf
589 litter decomposition rates in cold biomes. - Ecol. Lett. 10: 619–627.

590 Cornelissen, J. H. C., Grootemaat, S., Verheijen, L. M., Cornwell, W. K., van Bodegom, P.
591 M., van der Wal, R. and Aerts, R. 2017. Are litter decomposition and fire linked through
592 plant species traits? - New Phytol. 216: 653–669.

593 Cornwell, W. K. and Weedon, J. T. 2014. Decomposition trajectories of diverse litter types: a
594 model selection analysis. - Methods Ecol. Evol. 5: 173–182.

595 Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy,
596 O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M.,
597 Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P.,
598 Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E.,
599 Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V.
600 and Westoby, M. 2008. Plant species traits are the predominant control on litter
601 decomposition rates within biomes worldwide. - Ecol. Lett. 11: 1065–1071.

602 Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H. and
603 Parton, W. J. 2015. Formation of soil organic matter via biochemical and physical
604 pathways of litter mass loss. - Nat. Geosci. 8: 776–779.

605 De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M.
606 B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E.,
607 Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R.,

608 Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P. and Hylander, K. 2021. Forest
609 microclimates and climate change: Importance, drivers and future research agenda. -
610 *Glob. Change Biol.* 27: 2279–2297.

611 Elser, J. J., Fagan, W. F., Kerkhoff, A. J., Swenson, N. G. and Enquist, B. J. 2010. Biological
612 stoichiometry of plant production: metabolism, scaling and ecological response to global
613 change. - *New Phytol.* 186: 593–608.

614 Estiarte, M. and Peñuelas, J. 2015. Alteration of the phenology of leaf senescence and fall in
615 winter deciduous species by climate change: effects on nutrient proficiency. - *Glob.*
616 *Change Biol.* 21: 1005–1017.

617 Evans, P. and Brown, C. D. 2017. The boreal–temperate forest ecotone response to climate
618 change. - *Environ. Rev.* 25: 423–431.

619 Fierer, N., Craine, J. M., McLaughlan, K. and Schimel, J. P. 2005. Litter quality and the
620 temperature sensitivity of litter decomposition. - *Ecology* 86: 320–326.

621 Foster, C. N., Sato, C. F., Lindenmayer, D. B. and Barton, P. S. 2016. Integrating theory into
622 disturbance interaction experiments to better inform ecosystem management. - *Glob.*
623 *Change Biol.* 22: 1325–1335.

624 García-Palacios, P., Maestre, F. T., Kattge, J. and Wall, D. H. 2013. Climate and litter quality
625 differently modulate the effects of soil fauna on litter decomposition across biomes. -
626 *Ecol. Lett.* 16: 1045–1053.

627 García-Palacios, P., McKie, B. G., Handa, I. T., Frainer, A. and Hättenschwiler, S. 2016a. The
628 importance of litter traits and decomposers for litter decomposition: a comparison of
629 aquatic and terrestrial ecosystems within and across biomes. - *Funct. Ecol.* 30: 819–829.

630 García-Palacios, P., Prieto, I., Ourcival, J.-M. and Hättenschwiler, S. 2016b. Disentangling the
631 Litter Quality and Soil Microbial Contribution to Leaf and Fine Root Litter
632 Decomposition Responses to Reduced Rainfall. - *Ecosystems* 19: 490–503.

633 Gill, A. L., Schilling, J. and Hobbie, S. E. 2021. Experimental nitrogen fertilisation globally
634 accelerates, then slows decomposition of leaf litter. - *Ecol. Lett.* 24: 802–811.

635 Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. and Cornwell, W. K.
636 2015. Burn or rot: leaf traits explain why flammability and decomposability are
637 decoupled across species. - *Funct. Ecol.* 29: 1486–1497.

638 Hartig, F. 2017. DHARMA: residual diagnostics for hierarchical (multi-level/mixed)
639 regression models.

640 Jones, S. E. and Lennon, J. T. 2010. Dormancy contributes to the maintenance of microbial
641 diversity. - *Proc. Natl. Acad. Sci.* 107: 5881–5886.

642 Keller, A. B. and Phillips, R. P. 2019. Leaf litter decay rates differ between mycorrhizal
643 groups in temperate, but not tropical, forests. - *New Phytol.* 222: 556–564.

644 Kirschbaum, M. U. F. 1995. The temperature dependence of soil organic matter
645 decomposition, and the effect of global warming on soil organic C storage. - *Soil Biol.*
646 *Biochem.* 27: 753–760.

647 Klotzbücher, T., Kaiser, K., Guggenberger, G., Gatzek, C. and Kalbitz, K. 2011. A new
648 conceptual model for the fate of lignin in decomposing plant litter. - *Ecology* 92: 1052–
649 1062.

650 Krna, M. A., Tate, K. R., Saggar, S., Buckley, H. L. and Rapson, G. L. 2023. Temperature
651 dependency of litter decomposition is not demonstrated under reciprocal transplantation
652 of tussock leaves along an altitudinal gradient. - *Funct. Ecol.* 37: 1158–1169.

653 Lavelle, P., Blanchart, E., Martin, A., Martin, S. and Spain, A. 1993. A Hierarchical Model
654 for Decomposition in Terrestrial Ecosystems: Application to Soils of the Humid Tropics.
655 - *Biotropica* 25: 130–150.

656 Lenth, R. V., Buerkner, P., Herve, M., Love, J., Miguez, F., Riebl, H. and Singmann, H. 2022.
657 emmeans: Estimated Marginal Means, aka Least-Squares Means.

658 Liu, Y., Zhang, A., Li, X., Kuang, W. and Islam, W. 2024. Litter decomposition rate response
659 to multiple global change factors: A meta-analysis. - *Soil Biol. Biochem.* 195: 109474.

660 Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X. and Li, B. 2013.
661 Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. -
662 *Ecology* 94: 726–738.

663 McLauchlan, K. K., Craine, J. M., Oswald, W. W., Leavitt, P. R. and Likens, G. E. 2007.
664 Changes in nitrogen cycling during the past century in a northern hardwood forest. - *Proc.*
665 *Natl. Acad. Sci.* 104: 7466–7470.

666 Molofsky, J. and Augspurger, C. K. 1992. The Effect of Leaf Litter on Early Seedling
667 Establishment in a Tropical Forest. - *Ecology* 73: 68–77.

668 Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. and Reich, P. B. 2020.
669 Phenological responses of temperate and boreal trees to warming depend on ambient
670 spring temperatures, leaf habit, and geographic range. - *Proc. Natl. Acad. Sci.* 117:
671 10397–10405.

672 Moorhead, D. L. and Sinsabaugh, R. L. 2006. A Theoretical Model of Litter Decay and
673 Microbial Interaction. - *Ecol. Monogr.* 76: 151–174.

674 Muscolo, A., Bagnato, S., Sidari, M. and Mercurio, R. 2014. A review of the roles of forest
675 canopy gaps. - *J. For. Res.* 25: 725–736.

676 Nave, L. E., Gough, C. M., Clay, C., Santos, F., Atkins, J. W., Benjamins-Carey, S. E.,
677 Bohrer, G., Castillo, B. T., Fahey, R. T., Hardiman, B. S., Hofmeister, K. L., Ivanov, V.
678 Y., Kalejs, J., Matheny, A. M., Menna, A. C., Nadelhoffer, K. J., Propson, B. E., Schubel,
679 A. T. and Tallant, J. M. 2024. Carbon cycling across ecosystem succession in a north
680 temperate forest: Controls and management implications. - *Ecol. Appl.* in press.

681 Petraglia, A., Cacciatori, C., Chelli, S., Fenu, G., Calderisi, G., Gargano, D., Abeli, T.,
682 Orsenigo, S. and Carbognani, M. 2019. Litter decomposition: effects of temperature
683 driven by soil moisture and vegetation type. - *Plant Soil* 435: 187–200.

684 Prescott, C. E. 2005a. Do rates of litter decomposition tell us anything we really need to
685 know? - *For. Ecol. Manag.* 220: 66–74.

686 Prescott, C. E. 2005b. Decomposition and Mineralization of Nutrients from Litter and Humus.
687 - In: Nutrient Acquisition by Plants: an ecological perspective. pp. 15–41.

688 Prescott, C. E. 2010. Litter decomposition: what controls it and how can we alter it to
689 sequester more carbon in forest soils? - *Biogeochemistry* 101: 133–149.

690 Prescott, C. E. and Vesterdal, L. 2021. Decomposition and transformations along the
691 continuum from litter to soil organic matter in forest soils. - *For. Ecol. Manag.* 498:
692 119522.

693 Prieto, I. and Querejeta, J. I. 2020. Simulated climate change decreases nutrient resorption
694 from senescing leaves. - *Glob. Change Biol.* 26: 1795–1807.

695 Prieto, I., Almagro, M., Bastida, F. and Querejeta, J. I. 2019. Altered leaf litter quality
696 exacerbates the negative impact of climate change on decomposition. - *J. Ecol.* 107:
697 2364–2382.

698 Reich, P. B., Grigal, D. F., Aber, J. D. and Gower, S. T. 1997. Nitrogen Mineralization and
699 Productivity in 50 Hardwood and Conifer Stands on Diverse Soils. - *Ecology* 78: 335–
700 347.

701 Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E. and Montgomery, R. A.
702 2018. Effects of climate warming on photosynthesis in boreal tree species depend on soil
703 moisture. - *Nature* 562: 263–267.

704 Rich, R. L., Stefanski, A., Montgomery, R. A., Hobbie, S. E., Kimball, B. A. and Reich, P. B.
705 2015. Design and performance of combined infrared canopy and belowground warming
706 in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. - *Glob.*
707 *Change Biol.* 21: 2334–2348.

708 Rocci, K. S., Cotrufo, M. F., Ernakovich, J., Foster, E., Frey, S., Georgiou, K., Grandy, A. S.,
709 Malhotra, A., Reich, P. B., Schlerman, E. P. and Wieder, W. R. 2024. Bridging 20 Years
710 of Soil Organic Matter Frameworks: Empirical Support, Model Representation, and Next
711 Steps. - *J. Geophys. Res. Biogeosciences* 129: e2023JG007964.

712 Sáez-Sandino, T., Reich, P. B., Maestre, F. T., Cano-Díaz, C., Stefanski, A., Bermudez, R.,
713 Wang, J., Dhar, A., Singh, B. K., Gallardo, A., Delgado-Baquerizo, M. and Trivedi, P.
714 2025. A Large Fraction of Soil Microbial Taxa Is Sensitive to Experimental Warming. -
715 *Glob. Change Biol.* 31: e70231.

716 Sayer, E. J. 2006. Using experimental manipulation to assess the roles of leaf litter in the
717 functioning of forest ecosystems. - *Biol. Rev.* 81: 1–31.

718 Schimel, J. P. 2018. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and
719 Processes. - *Annu. Rev. Ecol. Evol. Syst.* 49: 409–432.

720 Schwieger, S., Dorrepaal, E., Petit Bon, M., Vandvik, V., le Roux, E., Strack, M., Yang, Y.,
721 Venn, S., van den Hoogen, J., Valiño, F., Thomas, H. J. D., te Beest, M., Suzuki, S.,
722 Petraglia, A., Myers-Smith, I. H., Munir, T. M., Michelsen, A., Løkken, J. O., Li, Q.,
723 Koike, T., Klanderud, K., Karr, E. H., Jónsdóttir, I. S., Hollister, R. D., Hofgaard, A.,
724 Hassan, I. A., Genxu, W., Filippova, N., Crowther, T. W., Clark, K., Christiansen, C. T.,
725 Casanova-Katny, A., Carbognani, M., Bokhorst, S., Björnsdóttir, K., Asplund, J.,
726 Althuizen, I., Alonso, R., Alatalo, J., Agathokleous, E., Aerts, R. and Sarneel, J. M. 2025.
727 Environmental Conditions Modulate Warming Effects on Plant Litter Decomposition
728 Globally. - *Ecol. Lett.* 28: e70026.

729 Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J.,
730 Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairotta, P., Svoboda, M.,
731 Fabrika, M., Nagel, T. A. and Reyer, C. P. O. 2017. Forest disturbances under climate
732 change. - *Nat. Clim. Change* 7: 395–402.

733 Smith, A. J. and Goetz, E. M. 2021. Climate change drives increased directional movement of
734 landscape ecotones. - *Landsc. Ecol.* 36: 3105–3116.

735 Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A. and Reich, P. B. 2020.
736 Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree
737 species to open-air experimental warming and reduced rainfall in a southern boreal forest.
738 - *Glob. Change Biol.* 26: 746–759.

739 Sun, Y., Wang, C., Chen, H. Y. H., Luo, X., Qiu, N. and Ruan, H. 2021. Asymmetric
740 responses of terrestrial C:N:P stoichiometry to precipitation change. - *Glob. Ecol.*
741 *Biogeogr.* 30: 1724–1735.

742 Suseela, V. and Tharayil, N. 2018. Decoupling the direct and indirect effects of climate on
743 plant litter decomposition: Accounting for stress-induced modifications in plant
744 chemistry. - *Glob. Change Biol.* 24: 1428–1451.

745 Suseela, V., Tharayil, N., Xing, B. and Dukes, J. S. 2013. Labile compounds in plant litter
746 reduce the sensitivity of decomposition to warming and altered precipitation. - *New*
747 *Phytol.* 200: 122–133.

748 Treseder, K. K., Marusenko, Y., Romero-Olivares, A. L. and Maltz, M. R. 2016.
749 Experimental warming alters potential function of the fungal community in boreal forest.
750 - *Glob. Change Biol.* 22: 3395–3404.

751 Tripathy, K. P., Mukherjee, S., Mishra, A. K., Mann, M. E. and Williams, A. P. 2023. Climate
752 change will accelerate the high-end risk of compound drought and heatwave events. -
753 *Proc. Natl. Acad. Sci.* 120: e2219825120.

754 Waksman, S. A. and Gerretsen, F. C. 1931. Influence of Temperature and Moisture Upon the
755 Nature and Extent of Decomposition of Plant Residues by Microorganisms. - *Ecology* 12:
756 33–60.

757 Wan, L., Liu, G., Cheng, H., Yang, S., Shen, Y. and Su, X. 2023. Global warming changes
758 biomass and C:N:P stoichiometry of different components in terrestrial ecosystems. -
759 *Glob. Change Biol.* 29: 7102–7116.

760 Wang, L., Chen, Y., Zhou, Y., Zheng, H., Xu, Z., Tan, B., You, C., Zhang, L., Li, H., Guo, L.,
761 Wang, L., Huang, Y., Zhang, J. and Liu, Y. 2021. Litter chemical traits strongly drove the
762 carbon fractions loss during decomposition across an alpine treeline ecotone. - *Sci. Total
763 Environ.* 753: 142287.

764 Ward, S. E., Orwin, K. H., Ostle, N. J., Briones, M. J. I., Thomson, B. C., Griffiths, R. I.,
765 Oakley, S., Quirk, H. and Bardgett, R. D. 2015. Vegetation exerts a greater control on
766 litter decomposition than climate warming in peatlands. - *Ecology* 96: 113–123.

767 Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H. and
768 Wall, D. H. 2004. Ecological Linkages Between Aboveground and Belowground Biota. -
769 *Science* 304: 1629–1633.

770 Wolfe, E. R. and Ballhorn, D. J. 2020. Do Foliar Endophytes Matter in Litter Decomposition?
771 - *Microorganisms* 8: 446.

772 Young An, J., Park, B. B., Chun, J. H. and Osawa, A. 2017. Litterfall production and fine root
773 dynamics in cool-temperate forests. - *PLOS ONE* 12: e0180126.

774 Yuan, Z. Y. and Chen, H. Y. H. 2009. Global-scale patterns of nutrient resorption associated
775 with latitude, temperature and precipitation. - *Glob. Ecol. Biogeogr.* 18: 11–18.

776 Zani, D., Crowther, T. W., Mo, L., Renner, S. S. and Zohner, C. M. 2020. Increased growing-
777 season productivity drives earlier autumn leaf senescence in temperate trees. - *Science*
778 370: 1066–1071.

779 Zhang, D., Hui, D., Luo, Y. and Zhou, G. 2008. Rates of litter decomposition in terrestrial
780 ecosystems: global patterns and controlling factors. - *J. Plant Ecol.* 1: 85–93.

781

Table 1. Treatment effects on litter half-life and MRT in open canopy conditions.

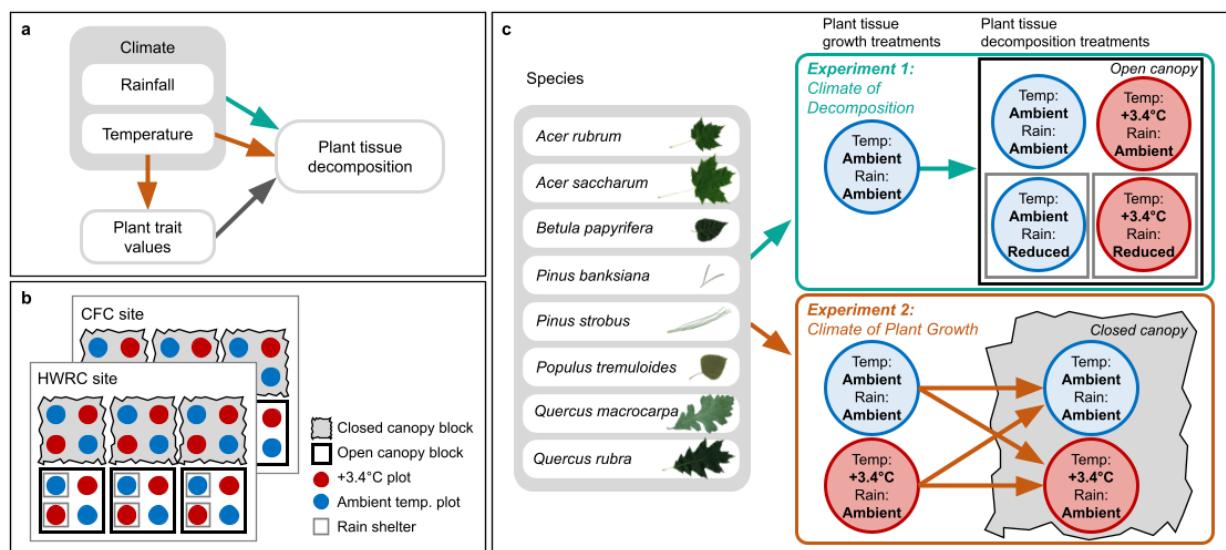
Predictors	log(weibull half life)			log(weibull mrt)		
	Estimates	CI	p	Estimates	CI	p
(Intercept)	1.12	0.98 – 1.26	<0.001	2.22	1.97 – 2.48	<0.001
Warming	-0.05	-0.10 – 0.00	0.054	-0.02	-0.16 – 0.11	0.716
Reduced Rainfall	-0.12	-0.18 – -0.07	<0.001	-0.16	-0.29 – -0.03	0.019
Warming × Reduced Rainfall	0.02	-0.04 – 0.07	0.544	0.09	-0.04 – 0.22	0.162
Random Effects						
σ^2	0.13			0.78		
τ_{00}	0.07	site:species		0.20	site:species	
ICC	0.36			0.20		
N	2	site		2	site	
	8	species		8	species	
Observations	181			179		
Marginal R ² / Conditional R ²	0.085 / 0.415			0.033 / 0.227		

783 Notes: ICC = intraclass correlation coefficient

785 **Table 2.** Effect of experimental treatments, soil moisture, and litter traits on litter half-life and
 786 mean residence time (MRT) in open canopy plots. Empty cells in the estimate column indicate
 787 that variable was not retained in the best model for either Half-Life or MRT.

Predictors	log(weibull half life)			log(weibull mrt)		
	Estimates	CI	p	Estimates	CI	p
(Intercept)	1.14	1.03 – 1.26	<0.001	2.25	2.00 – 2.50	<0.001
Warming	-0.04	-0.11 – 0.04	0.317	0.01	-0.17 – 0.19	0.901
Reduced Rainfall	-0.11	-0.17 – -0.05	0.001	-0.14	-0.29 – 0.02	0.080
VWC	-0.04	-0.15 – 0.06	0.388	-0.13	-0.36 – 0.11	0.297
N area	0.16	0.04 – 0.27	0.009	0.09	-0.16 – 0.35	0.474
Warming × Reduced Rainfall	0.02	-0.04 – 0.07	0.558	0.10	-0.03 – 0.24	0.138
Random Effects						
σ^2	0.13			0.80		
τ_{00}	0.04	site:species		0.17	site:species	
ICC	0.23			0.18		
N	2	site		2	site	
	8	species		8	species	
Observations	169			167		
Marginal R ² / Conditional R ²	0.203 / 0.389			0.056 / 0.224		

788

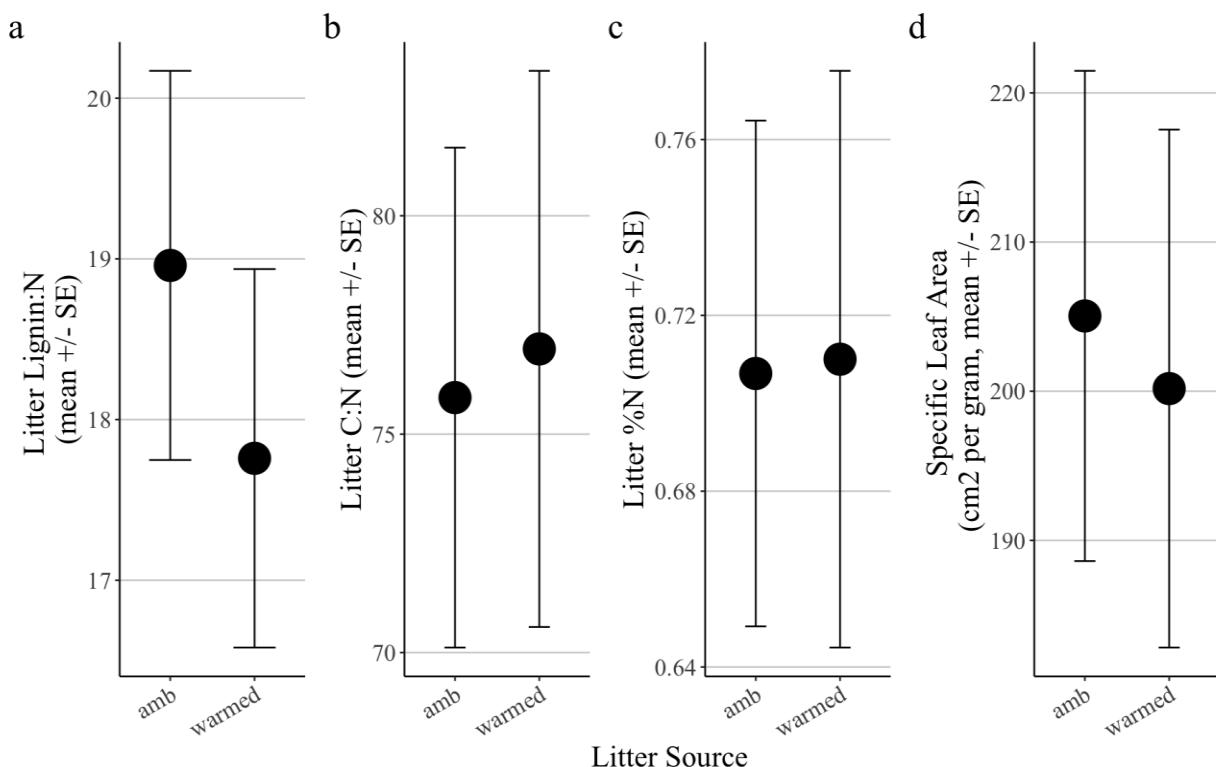

789 **Table 3.** Effect of litter source and heat experimental treatments on litter half-life and mean
 790 residence time in closed canopy plots in the Climate of Plant Growth experiment.

<i>Predictors</i>	log(weibull half life)			log(weibull mrt)		
	<i>Estimates</i>	<i>CI</i>	<i>p</i>	<i>Estimates</i>	<i>CI</i>	<i>p</i>
(Intercept)	1.08	0.92 – 1.24	<0.001	1.80	1.54 – 2.07	<0.001
Warming	-0.10	-0.16 – -0.04	0.001	-0.12	-0.24 – 0.00	0.058
Litter Source	0.07	0.01 – 0.13	0.015	0.02	-0.10 – 0.14	0.791
Warming × Litter Source	0.05	-0.00 – 0.11	0.068	0.03	-0.09 – 0.15	0.617
Random Effects						
σ^2	0.17			0.67		
τ_{00}	0.10	site:species		0.23	site:species	
ICC	0.37			0.25		
N	2	site		2	site	
	8	species		8	species	
Observations	188			180		
Marginal R ² / Conditional R ²	0.065 / 0.410			0.017 / 0.266		

791

792 **Table 4.** Effect of experimental treatments, soil moisture, and litter traits on litter half-life and
 793 mean residence time (MRT) in closed canopy plots. Empty cells in the estimate column indicate
 794 that variable was not retained in the best model for either Half-Life or MRT.

Predictors	log(weibull half life)			log(weibull mrt)		
	Estimates	CI	p	Estimates	CI	p
(Intercept)	0.64	0.23 – 1.05	0.002	1.80	1.50 – 2.09	<0.001
Warming	-0.11	-0.18 – -0.04	0.003	-0.15	-0.29 – -0.00	0.047
Litter Source	0.11	0.04 – 0.17	0.003	0.06	-0.08 – 0.20	0.364
VWC	-0.00	-0.10 – 0.09	0.965	-0.09	-0.28 – 0.10	0.358
Lignin:N	0.02	0.00 – 0.04	0.034			
Warming × Litter Source	0.03	-0.04 – 0.10	0.362	0.00	-0.13 – 0.14	0.954
% N				-0.18	-0.42 – 0.06	0.133
Random Effects						
σ^2	0.17			0.66		
τ_{00}	0.09	site:species		0.22	site:species	
ICC	0.35			0.25		
N	2	site		2	site	
	7	species		7	species	
Observations	147			138		
Marginal R ² / Conditional R ²	0.149 / 0.443			0.078 / 0.308		


797 **Figure 1** Conceptual framework and design of the two experiments that examine the effects of
 798 climate (temperature and rainfall) on plant leaf litter decomposition. (a) We hypothesized that
 799 climatic conditions directly affect decomposition as well as affect decomposition via effects on
 800 substrate chemistry. (b) We tested these hypotheses at the B4WarmED climate change
 801 experiment. The experiment consists of two sites (Cloquet Forestry Center, CFC, and Hubachek
 802 Wilderness Research Center, HWRC) each with 6 experimental blocks: three with an
 803 overtopping tree canopy and three with no canopy overhead. Each block contains four, circular
 804 research plots each 3 m in diameter. Colored circles indicate ambient (blue) or warmed (red)
 805 plots. Grey boxes indicate the rain shelters found in open canopy plots. (c) The hypotheses were
 806 tested with two decomposition experiments. The Climate of Decomposition experiment (top)
 807 used litter from the eight species grown in ambient climatic conditions and assessed rates of
 808 decomposition under each of the four climate treatments (the combinations of ambient or
 809 elevated temperature and ambient or reduced rainfall) in open canopy plots. The Climate of Plant
 810 Growth experiment (bottom) used two different litter sources for each species – tissue grown
 811 under elevated or ambient temperature – and assessed rates of decomposition of each source
 812 under the two temperature treatments in closed canopy plots.

815
816 **Figure 2.** Experiment 1: Log-transformed Weibull half-life (a) or MRT (b) response to warming
817 treatment (Amb or +3.4C) and rainfall reduction treatment (Amb or Dry) averaged across all
818 species. Diamonds represent means while bold horizontal bars represent medians.
819

Figure 3. Experiment 2: Log-transformed Weibull half-life (a) and MRT (b) response to destination heating treatment (AMB or +3.4C) and litter source treatment (AMB or Warmed) averaged across species.

828 **Figure 4.** Select traits of leaf litter grown under ambient (amb) or +3.4C (warmed) conditions.
 829 Leaf lignin:N (a), C:N (b), Percent N (c), and Specific Leaf Area (SLA, d). Traits did not vary
 830 consistently between warmed and ambient conditions ($p > 0.05$ for all).