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Abstract 7 

1. Many ecological studies require climate data, but readily available datasets are poor 8 
surrogates for the conditions that organisms experience in nature. Understanding the 9 
climatic conditions experienced by organisms requires modelling microclimate rather 10 
than relying on coarse, station-based climate data.  11 

2. I present microclimf, a mechanistic microclimate model designed for computationally 12 
efficient, gridded estimation of microclimate, within, and below vegetation canopies. 13 
The model is written in C++ with an R front end and requires only readily available 14 
spatial datasets as inputs. It incorporates a simplified Lagrangian canopy model, an 15 
optional snow model, and routines for efficient large-area processing at user-defined 16 
spatial and temporal resolutions. Outputs include temperature, humidity, wind speed 17 
and radiation fluxes.  18 

3. Validation across diverse environments—including boreal and tropical forests—19 
showed strong agreement with in-situ temperature measurements (RMSE 0.69–2.9 °C), 20 
demonstrating the model’s utility for ecological applications requiring fine-scale 21 
climatic data. 22 

4. The package addresses the need for improved estimation of regional and landscape--23 
scale predictions of the conditions experienced by organisms, thereby facilitating more 24 
robust understanding and prediction of species responses to climatic changes.  25 

 26 
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Introduction 30 

Many ecological studies require climate data, but readily available datasets are poor surrogates 31 
for the conditions that organisms experience in nature (Bramer et al., 2018; Potter et al, 2013). 32 
Global datasets are normally derived from, or representative of conditions measured by weather 33 
stations. However, organisms experience microclimatic conditions that sometimes differ 34 
substantially from those measured by weather stations, which shade direct sunlight and are 35 
located in open areas 1-2m above ground. It is thus increasingly recognised that estimates of 36 
microclimatic conditions are useful for the study of relationships between organisms and 37 
climate (De Frenne et al., 2021; Kemppinen et al., 2023; Lembrechts et al., 2019, Potter et al., 38 
2013).  39 
 40 
The means of deriving estimates of microclimate using biophysical principles has a long and 41 
well-established history: the basic equations for doing so were first developed for numerical 42 
weather prediction over a century ago (Richardson, 1922). By the 1950s, universal theory 43 
explaining near-ground temperature and vapour profiles were developed (Monin & Obukhov, 44 
1954) and still form the basis of microclimatology today.  Over the next few decades, these 45 
principles were applied widely in agricultural contexts, as the methods for quantifying energy 46 
and water balance that underpin biophysical microclimate modelling are the same as those used 47 
for calculating evapotranspiration (Monteith, 1965; Penman, 1948). They are also similar to 48 
those applied in land-surface models and have therefore been the subject of much study (Best 49 
et al., 2011; Chen et al., 2016, Flerchinger et al., 2015; Lawrence et al., 2019; Ogée et al., 50 
2003).  51 
 52 
Capitalising on advances in remote-sensing, ecologists have sought to quantify how real-world 53 
vegetation and terrain features influence microclimate conditions at increasingly high spatial 54 
resolutions (Lembrechts & Lenoir, 2020). Ecologically grounded attempts to model 55 
microclimate have generally proceeded using one of two approaches. On the one hand, driven 56 
by the need to model microclimate over large spatial extents, and drawing upon techniques 57 
with which ecologists are familiar, statistical approaches have been used (e.g. Haesen et al., 58 
2021; Lembrechts et al., 2022). Here, the strategy has been to relate in-situ measurements 59 
climate to landscape and terrain features without explicitly considering the underlying 60 
processes. A significant advantage of so doing is that there is no need to run models at high 61 
temporal resolution. If monthly or yearly averaged estimates of microclimate are needed, then 62 
these variables can be related to directly to environmental predictors without the intermediary 63 
step of deriving hourly or daily microclimate, affording substantially computational 64 
advantages. However, there are also significant drawbacks. The most important determinant of 65 
microclimatic variation is solar radiation and its interaction with terrain and vegetation features 66 
(Campbell & Norman, 2012; Gates, 2012). These interactions are influenced strongly both by 67 
the position of the sun and by cloud cover, neither of which are constant in space nor time. 68 
Thus, statistical relationships established at one location or time-period, cannot be used to 69 
predict microclimate reliably at others. 70 
 71 
In contrast, mechanistic models seek to estimate microclimatic conditions based explicitly on 72 
underlying processes (Briscoe et al., 2023; Kearney & Porter, 2009). Temperature and 73 
humidity are calculated from energy fluxes, which are modified by vegetation and terrain in 74 
universally predictable ways. Several such models have been developed for ecological 75 
applications. One of the earliest (Porter et al., 1973) has now been generalized and incorporated 76 
into the R package NicheMapR (Kearney & Porter, 2017). The package includes sophisticated 77 
routines for modelling of heat and mass exchange between organisms and their environments 78 
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and permits prediction of hourly above- and below-ground conditions from meteorological, 79 
terrain, vegetation and soil data. However, NicheMapR is a point model that produces time-80 
series of microclimatic conditions for a specified location. If gridded microclimate outputs are 81 
required, they must be derived separately for each grid cell, which is computationally expensive 82 
and necessitates that predictor variables are provided as inputs rather than computed 83 
automatically from spatial datasets. To enable gridded microclimate outputs, Maclean et al. 84 
(2017) developed a series of functions for such to extend the model of (Bennie, et al. 2008), 85 
released as an R package `microclima` (Maclean et al., 2019). The package computes terrain 86 
variables directly from digital elevation datasets but required calibration with local 87 
observations of temperature and does not readily account for spatial variation in vegetation 88 
cover. The two packages were subsequently integrated (Kearney et al., 2020), but both treat 89 
vegetation as a homogeneous layer of phytomass without vertical structure. Conditions below 90 
canopy are simulated simply by applying a shade factor rather than by explicitly considering 91 
below-canopy microclimatic processes. To overcome this issue, and drawing on earlier work 92 
by Goudriaan (1977), the microclimc package was developed (Maclean & Klinges, 2021). Like 93 
NicheMapR, microclimc is a point model, and therefore computationally slow if applied over 94 
numerous grid cells, an issue compounded by the need to sub-divide the canopy into multiple 95 
layers to perform calculations. A further limitation is its adoption of a flux-gradient approach 96 
to modelling within canopy heat and exchange processes, whereas Langrangian models have 97 
been shown to provide more realistic representations of canopy heat and vapour transfer 98 
(Raupach 1989a;b). 99 
 100 
What is hitherto lacking therefore is a model that (i) is driven with readily available spatial 101 
datasets so that it can be applied easily to variety of circumstances; (ii) provides gridded outputs 102 
at user-specified time-increments and is computationally efficient when applied over large 103 
areas; and (iii) models within canopy microclimate: the environment in which the majority of 104 
terrestrial organisms reside. Here we present the microclimf model that achieves this. Essential 105 
inputs are limited to those that can be readily derived from publicly available spatial datasets, 106 
and while the package permits flexibility in the way that model inputs are provided, those that 107 
are less likely to be known can instead be estimated by specifying a habitat or soil type. It is 108 
written in C++ with an R front-end. 109 
 110 
Model description 111 

In the main text I provide an accessible description of the main features of the model ─ its 112 
workings and how to run it. An expanded mathematical description and a tutorial vignette are 113 
included in Supporting Information.  114 

 115 

Above canopy 116 

Temperature and humidity above canopy are derived using the methods detailed in most 117 
standard textbooks on the subject (e.g. Campbell & Norman, 2012; Gates, 2012; Monteith & 118 
Unsworth, 2013), namely using Monin-Obukhov Similarity Theory (MOST; Foken, 2006). 119 
Thus, the temperature of a vegetated surface is derived by treating the canopy as a single 120 
vertically homogeneous layer of phytomass and computing the energy balance of this layer. 121 
Incoming radiation is either absorbed by the surface or reflected upwards. The surface also 122 
emits thermal radiation and the ground surface below the vegetation either stores or releases 123 
heat. Remaining energy is then partitioned between latent or sensible heat. Each of these terms 124 
has a temperature-dependence, and to derive the temperature of the canopy surface, the energy 125 
balance is equated to zero and solved for temperature using the Penman-Monteith equation 126 
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(Monteith 1965, Penman 1948).  Thus, during the day, downward radiation heats the vegetated 127 
surface causing increases in emitted thermal radiation, evapotranspirative cooling and sensible 128 
heat loss to the air. Some of the energy is also used to heat the underlying ground surface. At 129 
night, when the net radiation balance is likely to be negative, the vegetated surface is assumed 130 
to cool. Warming or cooling is assumed to continues until the incoming radiation is balanced 131 
by outgoing sources and the temperature is derived by assuming these fluxes reach steady-132 
state. This is not strictly true of the ground surface, which accumulates or dissipates heat over 133 
longer time-scales. However, by computing the rate of energy exchange with the underlying 134 
ground surface, the principles of energy balance can still be applied. Once the temperature of 135 
the vegetation surface has been derived, the temperature and vapour pressure at any given 136 
height above canopy follow a predictable log-linear height profile thereby enabling derivation 137 
of air temperature or relative humidity at any user-specified height above canopy. Each 138 
component of the energy balance is now described in more detail.  139 
 140 
Absorbed radiation is given by the sum of its shortwave and longwave components (i.e. solar 141 
radiation and thermal radiation emitted downwards from the sky). The fractions of total 142 
incoming shortwave and longwave radiation that are absorbed are determined by the albedo 143 
and emissivity of the surface respectively. Emissivity is assumed constant and is set at 0.97. 144 
Albedo is a function of ground and vegetation reflectance, which are provided as user inputs, 145 
but is assumed to vary spatially as a function of canopy cover and temporally as a function of 146 
the direct to diffuse fraction of radiation and by inclination angle of leaves and the ground 147 
surface relative to the position of the sun. It is calculated using the Dickenson-Sellers two 148 
stream radiation model (Sellers, 1985), but with minor modifications proposed by Yuan et al 149 
(2017) and to accommodate terrain shading and inclined ground surfaces below the canopy. 150 
Emitted radiation is calculated using the Stefan-Boltzmann equation and thus scales with 151 
temperature of the surface measured in Kelvin to the power of 4.  152 
 153 
The sensible heat flux is assumed to scale linearly with the difference in temperature between 154 
vegetated surface and air above it at reference height (provided as a user input). The gradient 155 
of this linear relationship is a measure of the thermal coupling of the surface to the atmosphere, 156 
itself varying as a function of both the structure of the vegetation and wind speed. Wind speed 157 
is provided as a user input but adjusted for terrain sheltering following Ryan (1977). The 158 
structural effects of vegetation manifest through their effects on the height above ground at 159 
which the wind profile extrapolates to zero and via their influence on surface friction and hence 160 
the shape of the vertical wind profile, which in turn affects how efficiently heat or vapour are 161 
transferred. The wind profile is calculated from vegetation height and the plant area index of 162 
vegetation following Raupach (1994).  Additionally, corrections for atmospheric stability are 163 
made following Businger et al. (1971).  164 
 165 
The latent heat exchange flux is assumed to scale linearly with the difference in vapour pressure 166 
between vegetated surface and air above it. The effective vapour pressure of the surface is 167 
inferred from surface temperature using Tetens equation (see e.g. Campbell & Norman, 2012). 168 
As with sensible heat, the vapour coupling of the surface to the atmosphere is function of both 169 
the structure of the vegetation and wind speed, but with an additional resistance to vapour loss 170 
caused by stomatal impedance. Bulk surface stomatal resistance is calculated based on a user-171 
specified minimum stomatal resistance, representing conditions under optimal photosynthesis 172 
and ample light. Values for the major global vegetation types are provided by Körner (1995). 173 
Actual stomatal resistance is then reduced as a function of radiation following the approach of 174 
Kelliher et al. (1995).  175 
 176 
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Following De Vries & Van Wijk (1963) and Campbell & Norman (2012), it is assumed soil 177 
surface temperature follow approximately sinusoidal diurnal and annual cycles. The rate of 178 
heat storage and release by the soil is then derived from the amplitude of the diurnal or annual 179 
soil surface temperature cycle, and from the thermal conductivity and specific heat capacity of 180 
the soil. The latter are determined from soil water content and physical properties derived from 181 
soil type. Soil water content is either provided as a user input or is calculating using a simple 182 
two-layer soil model, applied for a point location at the centre of the study area and then 183 
spatially distributed within each time step using a topographic wetness index. The diurnal and 184 
annual cycles in ground surface temperature are calculated from the energy balance of the soil 185 
surface using the Penman-Monteith equation, but with absorbed and emitted radiation adjusted 186 
for canopy shading.   187 
 188 
Because ground heat flux depends on ground surface temperature and vis-versa and owing also 189 
to interdependencies between the atmospheric stability and sensible heat exchange, the model 190 
must be run iteratively until convergence. This becomes computationally inefficient if applied 191 
to multiple grid cells of a study area as sometimes more than 50 iterations are required to 192 
achieve convergence. However, it can be shown numerically (see Supporting Information) that 193 
the offset error associated with deriving surface temperatures ignoring ground heat flux and 194 
diabatic correction, scales approximately linearly with the temperature difference between the 195 
surface the air above it computed without iteration. Thus, by solving the energy balance 196 
equations iteratively for one location, the temperature of other locations can be derived without 197 
iteration. The microclimf package thus implements a two-stage process. First, a point model is 198 
run iteratively for a hypothetical location within the study area with a flat ground surface and 199 
mean (or modal for categorical data) vegetation and soil properties. Outputs from this model 200 
are used to derive the temperatures of other grid cells within the study area without iteration. 201 
This affords the additional advantage that the grid model can then be run for specified time 202 
periods only: e.g. the day of the month with the warmest or median temperature rather than 203 
hourly over an entire year.  204 
 205 

The model assumes that the weather variables provided as a user input represent conditions 206 
above canopy. This is problematic if seeking to model the exchange above tall canopies as 207 
weather datasets available for user input normally represent conditions 1.5-2m above ground. 208 
To circumvent this problem the microclimate model is used to height-adjust the weather data 209 
This is achieved by making the assumption that weather data are derived from a weather station 210 
located in a flat open area with short vegetation in accordance with World Meteorological 211 
Organization guidelines (WMO, 2021) and then extrapolating the log-linear height profiles of 212 
wind, temperature and vapour pressure upward.  213 

 214 

Below ground 215 

Relative to ground surface temperatures, both annual and diurnal temperature cycles are 216 
attenuated and occur later in the day or year with increasing depth. A simple empirical 217 
approach, in which the temperature at any given time or depth is determined from the rolling 218 
mean of ground surface temperatures over the last n hours, replicates well the results from the 219 
more complex multi-layer soil model in NicheMapR and is therefore used (Fig. S3). The 220 
number of hours over which the rolling mean is calculated is contingent on depth and soil 221 
properties. When running the grid model for selected hours only, outputs from the point model 222 
are used to construct the diurnal cycle for the grid model.  223 
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 224 

Below canopy 225 

It is now widely recognised that the process that transfer heat and vapour below canopy cannot 226 
be predicted using conventional flux gradient theory inherent in the MOST approach (e.g. 227 
Bonan, et al. 2021). To replace MOST in this context, Raupach (1989a;b) developed an analytic 228 
Lagrangian theory, which assumes that temperature and humidity are determined from the 229 
concentration of heat and vapour emanating from foliage within the canopy. In this ‘localized 230 
near-field’ theory (LNZT), the mean concentrations of heat or vapour are expressed as the sum 231 
of a diffusive far-field contribution that obeys MOST, and a non-diffusive near-field 232 
contribution, which is determined from local sources by assuming the turbulence to be locally 233 
homogeneous. The diffusive far field component is essentially the sum of heat or vapour 234 
emanating from individual canopy elements weighted by wind speed-dependent convective 235 
conductance. The non-diffuse near-field contribution is determined primarily from local 236 
sources, and thus contingent primarily on foliage density at the location of interest.  237 
 238 
LNZT models thus require that the canopy is divided into numerous layers each with known 239 
foliage density. Since this is both computationally intensive and relies on explicit knowledge 240 
of canopy structure, in microclimf, the following simplifying assumptions are made. First it is 241 
assumed that the sum of sensible and latent fluxes from individual canopy elements are 242 
equivalent to the fluxes for the entire canopy. This is reasonable and forms the basis of much-243 
used MOST models, though see Bonan et al. (2021) for a detailed discussion of this point.  244 
Second, that the shape of the vertical heat and vapour transfer functions follows the original 245 
form proposed by Raupach (1989b) in the point model, but in the grid model can be 246 
approximated by a similar function that can be solved analytically without specific knowledge 247 
of the distribution of foliage and is therefore relative insensitive to canopy structure. This is a 248 
less reasonable assumption, but numerical analysis (Fig. S6) shows that doing so has only a 249 
minor influence on temperature and humidity. Lastly, it is assumed scaling of heat or vapour 250 
transfer with wind speed is consistent at the top of the canopy with what would be predicted 251 
by MOST models. This fails to account for transfer being partially contingent on periodic 252 
flushing of warm or moist air from the understory of the canopy by stronger wind gusts. It is 253 
nevertheless an implicant assumption of MOST models and is partially handled by adopting 254 
the unifying approach proposed by Harman & Finnigan (2007) who also provide detailed 255 
discussion of this point.  Making these assumptions it is possible to derive and humidity at any 256 
given height below canopy as a function of the temperature and effective humidity of the 257 
ground surface and at the top of the canopy.  258 
 259 
The mathematical formulation of both the LNZT model and the simplifying assumptions that 260 
are made are quite convoluted but described in detail in Supporting Information. The general 261 
pattern is that during the day, when the net radiation budget is positive, air temperature and 262 
vapour pressure gradually decrease with height in the top half of the canopy because the air is 263 
warmed and wetted by the canopy, but near the top, are closely coupled to cooler and drier air 264 
above canopy. In the third of the of the canopy temperatures increase with height, because near 265 
the ground, the air becomes more closely coupled to the ground surface, which usually cooler 266 
owing to the effects of canopy shading. At night, when the net radiation budget is negative, 267 
these temperature and humidity profiles are inverted with respect to height, but typically less 268 
pronounced.  269 
 270 
Snow cover 271 
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When snow is present, the following adjustments are made to the energy balance model. To 272 
calculate absorbed radiation, the albedo of the canopy is replaced by snow albedo, which is 273 
assumed to vary with snow age. Snow is assumed to absorb radiation isotropically and is 274 
therefore not contingent on the angle of the sun relative to the surface. Foliage density, canopy 275 
height and leaf transmittance are adjusted to accommodate the presence of snow. When 276 
calculating the latent heat flux from the canopy, the surface is assumed to be freely evaporating 277 
or sublimating and therefore not contingent on stomatal resistance. When calculating the 278 
ground heat flux, snow surface rather than ground surface temperature is used. If the height for 279 
which model outputs are required lies below the snowpack but above the ground surface, 280 
microclimate is calculated as for below ground, but with the thermal properties of the ground 281 
replaced by the thermal properties for snow. If the requested output height lies above the 282 
snowpack, the effective transfer distance for heat and vapour is adjusted to account for snow 283 
depth. For example, if outputs are requested at 5 cm above ground and the snowpack is 4.5 cm 284 
deep, the model assumes a 5 mm height above the snow surface, with air temperatures closely 285 
coupled to the snowpack temperature 286 
 287 
Snow depth is modelled using a mass balance model in which the change in mass per unit time 288 
is computed from snow-water equivalent precipitation, sublimation or fusion, and if air 289 
temperature is above 0°C, then from rain melt. Sublimation and fusion are computed from the 290 
latent heat term of the energy balance equation. Following Anderson (2006) and Kearney 291 
(2020) rain melt is assumed to scale linearly with the rate of rainfall and by the amount by 292 
which air temperatures is above freezing. Separate mass balances are computed for the ground 293 
and canopy, with snow interception by the canopy computed following Hedstrom and Pomeroy 294 
(1998). The snow mass budget is converted to snow depth using estimates of snow density 295 
derived from snow, age depth and climate classes following Sturm et al. (2010) and Kearney 296 
(2020). Snow is also redistributed spatially at regular intervals to simulate snow accumulation 297 
in hollows.  298 
 299 
By default, users must provide an initial snow depth, and the snow model is run in hourly time 300 
increments for every grid cell and over the entire time-period for which input weather data are 301 
provided. This is necessary as snow depth at given point in time is contingent on snow depth 302 
in earlier time-steps. However, users also have the option to run a computationally faster 303 
approximation of the snow model if microclimate outputs for short, selected time-periods only 304 
are required. Here the snow mass balance is computed at hourly intervals for single location 305 
only. Local deviations from this are then calculated from spatially variable melt-factors inferred 306 
from landscape properties. Details and comparisons between the two approaches are shown in 307 
Supporting Information.  308 
 309 
Model validation 310 
Though hitherto unpublished, the model has already been used extensively and tested for a 311 
variety of applications. A summary overview is provided here, with further details given in 312 
Supporting Information. To validate `microclimf` regionally (see Kolstela et al., 2024), 150 313 
TOMST loggers were deployed across three Finnish landscapes from May to August 2020, 314 
with temperatures recorded at 15 cm above ground. Loggers were stratified by terrain and 315 
canopy cover, capturing a wide range of slopes, aspects, and vegetation types. Modelled and 316 
measured temperatures showed reasonable agreement (RMSE 2.9 °C overall; 2.2–3.2 °C across 317 
sites), with smaller discrepancies under dense canopies. Global validation using data from 70 318 
tropical forest sites (Trew et al. 2024) also reasonable agreement (RMSE 2.73 °C), with 319 
‘microclimf’ outperforming measured in-situ differences from the macroclimate (RMSE 320 
3.62 °C). 321 
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 322 
In the examples above, microclimate predictors were derived from gridded climate and 323 
geospatial datasets, with errors arising from both model structure and input data—sources that 324 
could not be separated. Additionally, the loggers used are prone to measurement error (Maclean 325 
et al., 2021), making it difficult to attribute the cause of discrepancies. To circumvent these 326 
problems, localised validation was conducted using more precise in-situ measurements. In 327 
northern Spain (43.5°N, 5.7°W), 8 SurveyTag loggers were deployed in a meadow from April 328 
to July 2024, recording hourly temperatures c. 5, 40 and 80 cm above ground. SurveyTag 329 
loggers offer improved accuracy in sunlight through the use of ultra-fine thermocouples and 330 
rapid burst averaging (Maclean et al., 2021). Weather inputs were taken from an on-site 331 
weather station, and vegetation structure was repeatedly surveyed via photogrammetry. A 332 
parallel study was conducted at a grassland site in Cornwall, UK (50.166°N, 5.273°W), with 333 
16 loggers deployed between October and December 2023. In both cases, modelled and 334 
measured temperatures showed strong agreement (Spain RMSE: 1.105 °C, n = 16,936; 335 
Cornwall RMSE: 0.690 °C, n = 24,567; Fig. 1) with the model outperforming measured 336 
differences from macroclimate data (Spain RMSE: 2.364 °C; Cornwall RMSE: 0.734 °C). 337 
 338 
As a final test, 36 loggers were deployed 1m above ground under forest canopy at five sites 339 
across the south of the UK between March and September 2024 (Cornwall: 50.179°N, 5.083°W 340 
and 50.335°N, 4.974°W; Devon: 50.577°N, 3.902°W; Surrey: 51.184°N, 0.857°W and West 341 
Sussex: 51.067°N, 0.105°W). Again, modelled and measured temperatures showed strong 342 
agreement (RMSE: 1.477 °C, n = 139,168; Fig. 1c) with the model outperforming measured 343 
differences from macroclimate data (RMSE: 1.765°C). 344 
 345 
Example application 346 

To illustrate the basic use of `microlimf`, the model is applied to derive microclimate surfaces 347 
for Caerthillean Cove in Cornwall, United Kingdom (49.968°N, 5.215°W). More detailed 348 
instructions and explanation of the optional ways in which the model can be set up are provided 349 
in the tutorial vignette. The model is coded as an R package on Github and so first needs to be 350 
installed using:  351 

require(devtools) 352 
install_github("ilyamaclean/microclimf") 353 
 354 
The data required to drive the model for this example are built into the package, but normally 355 
the starting point of the workflow is to gather and prepare the model inputs and four datasets 356 
are required.  (i) standard hourly meteorological climate-forcing variables representative of 357 
macroclimatic conditions across the study site, usually in the form of a data frame with single 358 
values for each hour (though the option to include an array of coarse-gridded values is also 359 
available).  (ii) A high spatial variation digital elevation dataset. (iii) A time-invariant high-360 
resolution dataset of soil properties: soil type and ground reflectance, or alternatively more 361 
detailed information on soil physical properties. (iv) high spatial resolution datasets of 362 
vegetation properties, of which the most important are vegetation height and plant area index. 363 
Other properties such as leaf inclination angles can be derived from habitat type if unknown. 364 
Vegetation variables can either be static or vary seasonally and the package handles this 365 
flexibly. The vignette describes the model inputs in more detail. The accompanying R package 366 
`microclimdata` (Maclean 2025) enables automated download and processing of these datasets 367 
globally.  368 
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The next stage is to run function `runpointmodel`, which runs the microclimate model for a 369 
single grid cell at the centre of the study area using mean or modal vegetation or soil properties, 370 
here demonstrated using the inbuilt datasets that accompany the package.  371 

library(microclimf) 372 
micropoint <- runpointmodel(climdata, reqhgt = 0.05, dtmcaerth,  373 

vegp, soilc) 374 
attributes(micropoint) 375 
 376 
The input `reqhgt` is the height above ground (m) for which the model is run. Assigning 377 
negative values means the model is run below ground.  This function returns (1) a data frame ` 378 
of weather variables, but with temperature and wind speed height-adjusted to be above canopy 379 
if necessary and (2) a data frame of microclimate point model outputs required for running grid 380 
model. Other outputs, such as the latitude and longitude of the grid cell over which the model 381 
was run, the height to which weather data were adjusted and a POSIXlt object of observation 382 
times are also used by the grid model. 383 

The following code plots the output shown in Fig. 2a, representing a time series of ground 384 
surface, canopy temperatures. 385 

 386 

microp <- micropoint$dfo 387 
tme <- as.POSIXct(micropoint$tmeorig) 388 
par(mar=c(5,5,3,3)) 389 
plot(microp$Tg ~ tme, type="l", ylim = c(-5, 50), col = 390 
rgb(1,0,0,0.5),  391 
     xlab = "Month", ylab = "Temperature") # temperature of ground 392 
surface 393 
par(new = TRUE) 394 
plot(microp$Tc ~ tme, type="l", ylim = c(-5, 50), col = 395 
rgb(0,0.5,0.5,0.5),  396 
     xlab = "", ylab = "") # temperature of canopy 397 
 398 

At this point users have the option to subset the model, e.g. to return microclimate data for the 399 
hottest day in each month as in the example below.  400 

# Subset point model outputs 401 
micropoint_mx <- subsetpointmodel(micropoint, tstep = "month",  402 

what = "tmax") 403 
 404 

The object returned from that function has the same format as that returned by ̀ runpointmodel`, 405 
but only data for the relevant days have been selected. This is then passed to the grid modelling 406 
function as follows: 407 

# Run grid model 5 cm above ground with inbuilt datasets 408 
mout_mx <- runmicro(micropoint_mx, reqhgt = 0.05, vegp, soilc, 409 

dtmcaerth) 410 
attributes(mout_mx) 411 
 412 
This function returns a list of multi-layer rasters compatible with the `terra` package. Each 413 
raster comprised a different microclimate variable, with individual layers corresponding to 414 
values for each hour. If `reqhgt `> 0 (above ground) then by default the model returns the 415 
following: hourly air and leaf temperature (°C) with leaf temperature (set to the average 416 
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temperature of the canopy if ̀ reqhgt ̀ is above canopy), relative humidity (%), wind speed (m·s-417 
1), the upward and downward direct, diffuse and longwave radiation fluxes (W·m-2) (all at 418 
‘reqhgt’) and the fractional soil water content in the upper 10 cm of soil (m-3·m-3). If reqhgt = 419 
0, then wind speed, leaf temperature and relative humidity are not returned and the temperature 420 
values returned are for the soil surface. If reqhgt < 0, then only temperature and soil water 421 
content are returned. To save memory, users are optionally afforded flexibility with which 422 
variables to return.  423 
 424 
Any of these variables can then be plotted for any hour using the `terra::plot` function as in the 425 
example below, which is used to generate Fig. 1b.  426 
 427 
# Plot air temperatures on hottest hour in micropoint  428 
# (2017-06-20 13:00:00 UTC) 429 
require(terra) # required to plot SpatRasters 430 
mypal <- colorRampPalette(c("darkblue", "blue", "green",  431 
                            "yellow", "orange", "red"))(255) 432 
plot(rast(mout_mx$Tz[,,134]), col = mypal, range = c(20, 48)) 433 
  434 

Because returned datasets are stored in internal memory, the model cannot be run over very 435 
large areas and extended time-periods. Function `runmicro_big` can thus be used to run the 436 
model in tiles. Here, terrain sheltering, topographic wetness and slope and aspect are first 437 
calculated across the entire study area to avoid edge tiling effects. As an additional guard 438 
against tiling effects users have the option to specify the extent of overlap between tiles and to 439 
mosaic individual tiled datasets together using a distance-weighting with function 440 
`mosaicblend`. An example of an output mosaiced in this way, maximum air temperature 5 cm 441 
above ground modelled at one metre grid resolution for a 1km2 region surrounding Caerthillean 442 
Cove is shown in Fig 3. Here the output as been rendered as a 3D visualisation using the ‘plotly’ 443 
package. 444 
 445 
Additionally, because a common application of microclimate models is to run high-resolution 446 
species distribution models, functions `runbioclim` and `runbioclim_big` automatically derive 447 
microclimate equivalents of a set of 19 bioclimate variables commonly used in such analyses 448 
(Fick and Hijmans 2017). When doing so, seasonal and annual rainfall variables are instead 449 
replaced by soil moisture variables as the latter are likely more ecologically informative and 450 
vary much more at fine spatial scales.  451 
 452 
While the model can be run in entirety using functions ̀ runmicro`, individual steps of the model 453 
can be run in stages to improve model diagnoses and testing.  Function `soilmdistribute` 454 
distributes soil moisture from the point model spatially by topographic wetness. Function 455 
`twostream` runs the Dickenson-Sellers two stream radiation model. Function `wind` applies 456 
terrain sheltering and calculates wind speed at the user specified height above ground. Function 457 
`soiltemp` calculates soil surface temperature. Then either the ̀ aboveground` or ̀ belowground` 458 
functions are used to derive microclimate above or below ground. The sequence in which 459 
model components are run is in the order listed here, but if a prior stage has not yet been run, 460 
functions handle this automatically and runs that stage.  461 
 462 
In the workflows described above, the model is run without accounting for snow cover. To 463 
model snow depth, the function `runsnowmodel` is used after running and potentially sub-464 
setting the point model. Then when using `runmicro` to derive microclimate variables, the 465 
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optional function input snow is set to TRUE and the snow model output passed to this function 466 
as follows: 467 
 468 
smod <- runsnowmodel(climdata, micropoint, vegp, soilc, dtmcaerth) 469 
mout <- runmicro(micropoint, reqhgt = 0.05, vegp, soilc, dtmcaerth,  470 

snow = TRUE, snowmod = smod) 471 
 472 

Computational performance and limitations 473 
Subject to memory constraints, the input weather datasets can be of unlimited length—474 
allowing, for instance, the model to be run continuously over a 20-year period. Because the 475 
model calculates annual cycles in ground heat flux, it performs best when run over complete 476 
calendar years. Computation time depends on settings such as whether snow is modelled and 477 
whether the grid is run for all days of the year. On a standard desktop PC, and with snow 478 
modelling disabled, the model requires approximately 2.6 milliseconds per grid cell to generate 479 
monthly outputs for a full year. This translates to around 26 seconds for a 10 km × 10 km area 480 
at 100 m resolution. Generating hourly outputs for the same area takes approximately 360 481 
seconds. By comparison, the equivalent analyses using the NicheMapR package would take 482 
3.5 hours for monthly outputs and 9.6 hours for hourly outputs, albeit with some scope to 483 
reduce run times by coding bespoke R wrappers for the underlying FORTRAN code. Using 484 
‘microclimc’ the equivalent analyses would take even longer: approximately 4.0 and 20.3 hours 485 
for monthly and hourly outputs respectively. `Microclimf` thus offers the utility of a full 486 
mechanistic model but remains computationally efficient even when applied to large spatial 487 
extents.  488 
 489 
To date, validation has focused mainly on temperature; the ability of the model to estimate 490 
other microclimate variables requires further testing. Simplifying assumptions—such as the 491 
model’s inability to account for periodic flushing of moist air from the forest understory—may 492 
affect humidity estimates, with implications for applications like fire risk modelling. 493 
Nonetheless, the package meets a key need for improved regional and landscape-scale 494 
estimates of the conditions experienced by organisms. This, in turn, enhances our ability to 495 
quantify species–environment relationships and improves understanding and prediction of how 496 
organisms respond to environmental change. 497 
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 659 

(a) (b) (c) 

   
Fig.1. Comparison of observed and modelled temperatures in grassland sites in Asturias, Spain 660 
(a) and Cornwall, UK (b), and beneath forest canopies in southern England (c). Root-mean-661 
square error (RMSE), number of observations (n), and Pearson’s R2 are shown for each site. 662 
Further details are provided in supporting information.   663 



16 
 

 664 

(a) (b) 

 
 

Fig. 2. Outputs from the microclimf model shown for Caerthillian Cove in Cornwall, United Kingdom 665 
(49.968°N, 5.215°W). In (a) hourly outputs in 2017 from the point model are shown as a time-series of 666 
hourly input air temperature (blue) and canopy temperatures (red). The plot colour is partially 667 
translucent and grey represents the overlap. In (b) one metre resolution air temperature 5 cm above 668 
ground is shown for 2pm on the 1st June 2017 for a 50m x 50m area. The areas shown in blue are shaded 669 
by vegetation.  670 
  671 
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 672 

 
 673 
Fig. 3 microclimf model outputs generated with `runmicro_big` for a 1 × 1 km area around 674 
Caerthillian Cove, Cornwall, UK (49.968°N, 5.215°W). The map shows temperatures 5 cm 675 
above ground at 2 pm on 1 June 2017, modelled at 1 m resolution.  676 



Supplementary information: Field testing 

Spain: unimproved grass meadow 

Logger deployment: In Asturias, Spain (43.5°N, 5.7°W, https://www.wildcrickets.org/), between 21st 

Apr and 5th July 2024, 8 SurveyTag loggers (ConceptShed, Falmouth, UK, https://surveytag.co.uk/) 

were mounted horizontally at a height of c. 40 cm above ground on four wooden poles, spaced 

approximately evenly over a 2.2 Ha unimproved meadow. Additionally, 3 SurveyTag loggers were 

mounted at heights of 5.7, 35.9 and 84.1 cm above ground at the centre of the study area. SurveyTag 

loggers are designed to operate without radiation shielding, allowing them to measure air temperature 

in natural conditions. Radiation-induced bias is minimised by using a 0.075 mm K-type ultra-fine 

thermocouple, which ensures the sensor is closely coupled to the surrounding air (Maclean et al. 2021). 

To further enhance accuracy, each logger records 1,024 rapid burst measurements over 1.9 seconds and 

stores the mean, reducing temperature fluctuations caused by air turbulence. Grass height was mown 

twice during this period, but was otherwise permitted to grow naturally, varying in height from 5.1 to 

54 cm.  A total of 16,963 hourly measurements were taken. 

 

Weather data: at the centre of the study site, a Vantage Pro2 Automatic Weather Station (Davis 

Instruments, Hayward, CA) recorded air and dewpoint temperature, wind speed, wind direction, 

barometric pressure, downward shortwave radiation and rainfall at hourly intervals, over the same 

period over which loggers were deployed. Downward longwave radiation data were obtained from the 

ERA5 reanalysis dataset (Hersbach et al. 2020), produced by the European Centre for Medium-Range 

Weather Forecasts (ECMWF). Diffuse radiation was derived from total downward shortwave radiation 

following Skartveit et al. (1998) 

 

Vegetation and ground data: Grass height, vertical variation in leaf area, and the leaf inclination angle 

coefficient were estimated by photographing a white board marked with height intervals. At intervals 

of between 7 and 10 days, photos were taken horizontally at ground level through the grass at distances 

of 10, 25, 50, and 100 cm from the board using a smartphone (Samsung Galaxy S22 Ultra). Images 

were ortho-corrected using the rubber-sheeting tool in ArcGIS, then processed to produce binary 

classifications distinguishing grass (white board obscured) from non-grass (white board visible) pixels. 

The fraction (F) of the image obscured by grass within each height band was then computed. Then by 

applying by rearranging following formula: 

 

𝐹 = 1 − exp(−𝐾𝑃𝐴𝐼) 
 

where 𝑃𝐴𝐼 represents the total one sided area of foliage per unit cross-sectional area within each height 

band between the camera lens and the white board. Then, by assuming 𝑃𝐴𝐼 per unit distance from the 

white board was approximately constant over the four distances, a value for K was estimated using 

linear-regression. From Campbell (1986) 

 

𝐾 ≈
√𝑥2

𝑥 + 1.774(𝑥 + 1.182) − 0.733
 

 

Permitting the leaf inclination angle coefficient 𝑥 to be derived as: 

 

𝑥 =
1.361𝐾

2.774𝐾 − 1
 

 

A simple allometric relationship was used to derived leaf width (𝑙𝑤) vegetation height (ℎ) as 𝑙𝑤 =
0.08ℎ and the clumping coefficient was set at 0.25 following visual inspection of photographs. For the 

remainder of vegetation parameters, typical values for unimproved grassland were derived from 

literature (Kattge et al. 2011) and were thus set at 0.25 (leaf reflectance), 0.22 (leaf transmittance), 0.30 



mol/m2/s (maximum stomatal conductance) and 100 μmol/ m2/s (value of PAR when stomatal 

conductance is at 50 percent of its maximum value). Slope and aspect were measured using a digital 

inclinometer and compass, and soil type, known for the study area, was set as clay-loam. Ground 

reflectance was estimated from colour-infrared (0.5m grid resolution) and red-green-blue (0.25m grid 

resolution) aerial images sourced from Edina Digimap (Morris, Medyckyj-Scott & Burnhill 2000; 

https://digimap.edina.ac.uk/) using the procedure coded into the microclimdata package (Maclean 

2025). 

 

Results: The root-mean-square error for each individual logger is shown in Table S3 (RMSE micro). 

Logger data have been uploaded to Zenodo (https://doi.org/10.5281/zenodo.15364781). The root-mean-

square difference between modelled and air temperatures recorded by the weather station are also shown 

(RMSD macro). The RMSE of modelled air temperature was always lower than the RMSD from 

measured air temperature. Averaged across all loggers, the RMSE was 1.105°C in comparison to an 

RMSD of 2.364°C.  

 
Table S3. Root-mean-square error for each individual logger (RMSE micro) and root-mean-square difference 

between modelled and weather station air temperatures (RMSD macro). Coordinates are rounded to one decimal 

place to protect the anonymity of the study site, which is privately owned and hosts sensitive, long-term research 

infrastructure. 

Logger ID Height above 

ground (cm) 

Latitude (°N) Longitude 

(°W) 

RMSE micro 

(°C) 

RMSD macro 

(°C) 

SurveyTag_01 36.2 43.5 5.7 1.109 2.435 

SurveyTag_02 36.8 43.5 5.7 1.102 2.474 

SurveyTag_03 36.9 43.5 5.7 1.097 2.351 

SurveyTag_04 37.1 43.5 5.7 1.149 2.246 

SurveyTag_05 39.2 43.5 5.7 1.056 1.757 

SurveyTag_06 39.3 43.5 5.7 1.119 2.16 

SurveyTag_07 35.9 43.5 5.7 1.057 2.498 

SurveyTag_08 43.2 43.5 5.7 1.117 2.099 

SurveyTag_09 5.7 43.5 5.7 1.123 2.976 

SurveyTag_10 39.8 43.5 5.7 1.122 2.343 

SurveyTag_11 84.1 43.5 5.7 0.428 1.198 

 

United Kingdom: unimproved grass meadow, above vegetation 

Logger deployment: In Cornwall, United Kingdom (50.166°N, 5.273°W), 16 SurveyTag loggers were 

mounted horizontally on four wooden poles, spaced 45 m apart in a relatively flat and open unimproved 

grass field. Loggers were positioned at heights of 5, 10, 50, and 100 cm above ground and set to record 

hourly temperatures from 29 October to 31 December 2023. Grass height was maintained at 3 cm 

average height by regular mowing throughout the measurement period. Loggers were checked daily for 

failure two of the loggers initially deployed, which failed, replaced immediately. A total of 24,576 

hourly measurements were taken. 

 

Weather data: at the centre of the study site, a MiniMet Automatic Weather Station (Skye Instruments 

Ltd, Powys, UK) was programmed to record temperature, relative humidity, wind speed, wind direction 

and downward shortwave radiation at hourly intervals over the same period over which loggers were 

deployed. Prior to deployment, all instruments were factory recalibrated. Additional hourly 

precipitation, cloud cover and atmospheric pressure data were obtained from WMO weather station 

(Camborne, UK, MIDAS station ID: 1305) located 5.03 km from the field study site. Downard 

longwave radiation was derived from air temperature, relative humidity and cloud cover following 

Crawford & Duchon (1999) and diffuse radiation from total downward shortwave radiation following 

Skartveit et al. (1998).  

 

Vegetation and ground data: Vegetation coefficients were derived using the same method described 

above. Slope and aspect were measured using a digital inclinometer and compass, and soil type, known 



for the study area, was set as clay-loam. Ground reflectance was estimated from colour-infrared (0.5m 

grid resolution) and red-green-blue (0.25m grid resolution) aerial images sourced from Edina Digimap 

(Morris, Medyckyj-Scott & Burnhill 2000) using the procedure coded into the microclimdata package 

(Maclean 2025).  

 

Results: The root-mean-square error for each individual logger is shown in Table S4 (RMSE micro). 

Observed and modelled data and the vegetation, ground and other input data used to drive the model 

are available on Zenodo (https://doi.org/10.5281/zenodo.15364781). Since models were deployed in 

winter when microclimate temperatures are not so different from reference air temperature, the root-

mean-square difference between modelled and air temperatures recorded by the weather station are also 

shown (RMSD macro). Though both modelled and measured microclimate air temperatures were quite 

close to air temperature at reference height, the RMSE of modelled air temperature was always lower 

than the RMSD from measured air temperature. Averaged across all loggers, the RMSE was 0.597°C 

in comparison to an RMSD of 0.734°C.  

 
Table S4. Root-mean-square error for each individual logger (RMSE micro) and root-mean-square difference 

between modelled and weather station air temperatures (RMSD macro).  

Logger ID Height above 

ground (cm) 

Latitude (°N) Longitude (°W) RMSE micro 

(°C) 

RMSD macro 

(°C) 

SurveyTag_01 5 50.1662 5.27247 1.015 1.262 

SurveyTag_02 10 50.1662 5.27247 0.818 1.013 

SurveyTag_03 50 50.1662 5.27247 0.347 0.464 

SurveyTag_04 100 50.1662 5.27247 0.178 0.232 

SurveyTag_05 5 50.16644 5.27258 1.011 1.255 

SurveyTag_06 10 50.16644 5.27258 0.845 1.010 

SurveyTag_07 50 50.16644 5.27258 0.356 0.463 

SurveyTag_08 100 50.16644 5.27258 0.178 0.231 

SurveyTag_09 5 50.16608 5.27257 1.083 1.281 

SurveyTag_10 10 50.16608 5.27257 0.802 1.032 

SurveyTag_11 50 50.16608 5.27257 0.360 0.474 

SurveyTag_12 100 50.16608 5.27257 0.182 0.236 

SurveyTag_13 5 50.16618 5.27292 1.045 1.191 

SurveyTag_14 10 50.16618 5.27292 0.805 0.950 

SurveyTag_15 50 50.16618 5.27292 0.363 0.433 

SurveyTag_16 100 50.16618 5.27292 0.171 0.216 

 

United Kingdom: woodland, below vegetation 

Logger deployment: a total of 36 SurveyTag loggers were deployed between 11th Feb and 12th Oct 2024 

across four sites in southern England. Each logger was mounted horizontally one metre above ground 

below canopy in woodlands dominated either by Norway Spruce (Picea abies) or English Oak (Quercus 

robur). The sites were (from west to east) Mylor Bridge near Falmouth in Cornwall (50.18°N, 5.08°W), 

Trelassick Wood near Truro in Cornwall (50.33°N, 4.97°W), Bellever Forest within the Dartmoor 

National Park in Devon (50.57°N, 3.90°W), Alice Holt, near Farnham in Surrey (51.18°N, 0.86°W) and 

Wakehurst Park near Crawley in West Sussex (51.06°N, 0.10°W). The precise locations of logger and 

their associated forest type are shown in Table S5. 

 

Weather data: climate data for each survey location were sourced using the mcera5 R package (Klinges 

et al. 2022), which automatically downloads a freely accessible climate reanalysis product provided by 

the European Centre for Medium-Range Weather Forecasts. These climate data are available at hourly 

temporal and 25 km grid resolutions The 25 km grid resolution data were then downscaled to 1km 

spatial resolution using the microclimdata package (Maclean 2025). This package automatically sources 

one km grid resolution daily precipitation and minimum and maximum data from Hadley UK Gridded 

Climate Observations dataset (Hollis et al. 2019). The function ‘haduk_blend’, then locally adjusts the 

diurnal temperature range and daily precipitation totals in the 25 km data, preserving the intra-diurnal 

patterns in these data. The remaining climate datasets are downscaled using bilinear interpolation. 

 



Vegetation and ground data: Leaf area index (LAI) was derived from hemispherical photographs taken 

using a Yarrashop mobile phone fisheye lens mounted on a smartphone, processed using the Hemisfer 

software (Schleppi & Paquette 2017). At each site, photographs were taken twice monthly during the 

leaf-on and leaf-off periods (February to mid-April and mid-September to October), and monthly at 

other times. Lens distortion parameters were estimated prior to LAI calculation using the calibration 

procedure described in the Hemisfer manual. Canopy height was obtained from the 10 m global canopy 

height model produced by Lang et al. (2023), downloaded and processed using the microclimdata R 

package. Other vegetation parameters were assigned based on published values for the dominant 

vegetation type at each site. To account for uncertainty in vegetation inputs, limited model tuning was 

carried out. A Morris sensitivity analysis was used to identify the six most influential vegetation-related 

parameters affecting microclimate outputs. These parameters were then optimised using the bayesOpt() 

function from the ParBayesianOptimization R package, with root mean square error (RMSE) as the 

performance criterion. Maximum and minimum values for each parameter were set at double and half 

the initial predicted value, respectively, to define plausible bounds for the optimisation. The optimiser 

began by running the point version of the microclimate model at a set of initial parameter combinations. 

These results were used to fit a Gaussian Process (GP) emulator, which approximates the relationship 

between parameter values and model performance across the tested space. The emulator was then used 

to guide the selection of new parameter combinations, balancing exploration and exploitation via the 

expected improvement criterion. As additional forward model runs were performed, the GP emulator 

was iteratively updated, allowing efficient convergence on a parameter set that minimised RMSE. This 

approach enabled efficient convergence on an optimal parameter set while avoiding the computational 

cost of brute-force sampling. Derivation of ground parameters followed the procedure outlined for 

above canopy.  

 

Results: The root-mean-square error for each individual logger is shown in Table S5 (RMSE micro). 

Observed and modelled data and the vegetation, ground and other input data used to drive the model 

are available on Zenodo (https://doi.org/10.5281/zenodo.15364781). Root-mean-square difference 

between modelled and air temperatures recorded by the weather station are also shown (RMSD macro). 

Though both modelled and measured microclimate air temperatures were quite close to air temperature 

at reference height, the RMSE of modelled air temperature was always lower than the RMSD from 

measured air temperature. Averaged across all loggers, the RMSE was 1.477°C in comparison to an 

RMSD of 1.765°C.  

 
  



Table S5. Root-mean-square error for each individual logger (RMSE micro) and root-mean-square difference 

between modelled and weather station air temperatures (RMSD macro) for loggers deployed below canopy.  

Logger 

ID 

Forest type Site Latitude (°N) Longitude 

(°W) 

RMSE micro 

(°C) 

RMSD 

macro (°C) 

ah_nsp_1 Norway Spruce Alice Holt 51.18394 0.85707 1.538 2.214 

ah_nsp_2 Norway Spruce Alice Holt 51.18393 0.85715 1.505 2.134 

ah_nsp_3 Norway Spruce Alice Holt 51.18427 0.85705 1.530 2.309 

ah_nsp_4 Norway Spruce Alice Holt 51.18429 0.85759 1.515 2.267 

ah_oak_1 Oak Alice Holt 51.17737 0.85242 1.553 1.653 

ah_oak_2 Oak Alice Holt 51.18004 0.85402 1.524 2.015 

ah_oak_3 Oak Alice Holt 51.17999 0.85440 1.557 1.850 

ah_oak_4 Oak Alice Holt 51.17978 0.85509 1.560 1.958 

ah_oak_5 Oak Alice Holt 51.18059 0.85361 1.506 2.084 

be_nsp_1 Norway Spruce Bellever Forest 50.57701 3.90211 1.422 1.752 

be_nsp_2 Norway Spruce Bellever Forest 50.57697 3.90234 1.367 1.775 

be_nsp_3 Norway Spruce Bellever Forest 50.57270 3.90339 1.444 1.388 

be_nsp_4 Norway Spruce Bellever Forest 50.57274 3.90340 1.488 1.464 

be_nsp_5 Norway Spruce Bellever Forest 50.57278 3.90328 1.320 1.549 

be_nsp_6 Norway Spruce Bellever Forest 50.57283 3.90296 1.283 1.741 

be_oak_1 Oak Bellever Forest 50.56677 3.89258 1.353 1.568 

be_oak_2 Oak Bellever Forest 50.56742 3.89306 1.396 1.673 

be_oak_3 Oak Bellever Forest 50.56768 3.89278 1.289 1.722 

cw_nsp_1 Norway Spruce Cornwall 50.33543 4.973782 1.447 1.503 

cw_nsp_2 Norway Spruce Cornwall 50.33538 4.973955 1.501 1.566 

cw_nsp_3 Norway Spruce Cornwall 50.33516 4.97320 1.437 1.468 

cw_nsp_4 Norway Spruce Cornwall 50.33518 4.974113 1.501 1.608 

cw_nsp_5 Norway Spruce Cornwall 50.33521 4.973614 1.459 1.588 

cw_nsp_6 Norway Spruce Cornwall 50.33518 4.973637 1.492 1.535 

cw_oak_1 Oak Cornwall 50.17850 5.082619 1.491 1.631 

cw_oak_2 Oak Cornwall 50.17929 5.078606 1.386 1.376 

cw_oak_3 Oak Cornwall 50.17922 5.079226 1.437 1.538 

wh_nsp_1 Norway Spruce Wakehurst Park 51.06707 0.104812 1.472 1.718 

wh_nsp_2 Norway Spruce Wakehurst Park 51.06707 0.104812 1.430 1.854 

wh_nsp_3 Norway Spruce Wakehurst Park 51.06707 0.104812 1.467 1.344 

wh_nsp_4 Norway Spruce Wakehurst Park 51.06707 0.104812 1.515 1.671 

wh_oak_1 Oak Wakehurst Park 51.05979 0.101671 1.443 1.685 

wh_oak_2 Oak Wakehurst Park 51.05979 0.101870 1.427 1.843 

wh_oak_3 Oak Wakehurst Park 51.05979 0.101870 1.577 1.681 

wh_oak_4 Oak Wakehurst Park 51.05979 0.101870 1.576 1.495 
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Overview

The starting point for modelling is use to standard Monin-Obukhov Similarity Theory (MOST, Foken 2006) to
derive the energy balance of a vegetated surface. Thus, vegetation and the underlying ground surface are
treated as single vertically homogeneous layer of phytomass – essentially a ‘big leaf’. Components of the energy
balance have a temperature dependence, and the temperature of the surface is then derived by assuming the
energy fluxes, all expressed in , reach steady state such that

where  is absorbed radiation,  is emitted radiation,  sensible heat,  latent heat and  the rate of heat
storage by the ground. Radiation absorbed by the canopy  is given by

where  is downward shortwave radiation,  is downward longwave radiation,  is the combined canopy
and ground albedo, calculated following Sellers (1985) – see below, and  the emissivity of the canopy surface,
set at 0.97. Emitted radiation is given by
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where  the temperature of the canopy surface ( ). Sensible heat is a function of the difference in temperature
between the canopy heat exchange surface ( ) and the air ( ) at reference height ( ):

where  and  are the density and specific heat of air respectively ( ) and  is the resistance to
heat transfer ( ) given by

where  is the friction velocity of wind ( ) given by

where  ( ) is the wind speed at reference height. Here  is the Von Kármán constant (taken as 0.4) and
 and  the diabatic correction coefficient for heat and momentum calculated following Businger et al

(1971). The zero plane displacement height  and the roughness lengths for momentum ( ) and heat (
) are calculated from vegetation height and the total plant area index for the canopy following

Raupach (1994). Latent heat is given by

where  is the latent heat of vapourization ( ),  atmospheric pressure ( ),  and  are the
effective vapour pressure of the canopy exchange surface and air respectively ( ). The resistance to vapour
exchange ( ) is given by  where  is bulk surface stomatal resistance ( ), calculating
following Kelliher et al (1995) from solar radiation and a user-specified minimum stomatal resistance (see below).

Following van Wijk & de Vries (1963) and Campbell and Norman (2012), a closed-form equation for the ground
heat flux is derived by assuming that the diurnal and annual cycles in ground surface temperature are
approximately sinusoidal and that soil properties, including heat conductance are moderately uniform within the
soil profile. The flux is then proportional to the amplitude of these cycles in manner dictated by soil physical
properties and water content, but exhibits a phase shift, with the maximum heat flux density occurring 1/8 cycle
before the maximum temperature. This means that soil surface temperatures peak later in the day or year than
the peak in solar radiation. The method is elaborated on below.

The energy balance of the canopy is then solved for temperature by linearising the emitted radiation and latent
heat terms using the Penman-Monteith equation

where  is the vapour pressure deficit of the atmosphere ( ),  where  is the slope of the saturated
vapour pressure curve calculated using Tetens equation,  is an effective relative humidity of the canopy
surface to accomodate drought conditions and

is radiative conductance. To derive the ground heat flux, the temperature ( ) of the ground surface is also
derived using the Penman-Monteith equation
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where  is radiation absorbed by the ground surface,  the emissivity of the ground surface and  is the
effective relative humidity of the ground surface calculated from soil moisture.

Temperature ( ), vapour pressure ( ) and wind speed ( ) at any given height  above canopy are then
computed as

where

Following Raupach (1989a,b), the air temperature  at height  below canopy is given 
where  is a far-field component and  a near-field component. Assuming the canopy to comprise 
layers each at height , the far field component at height  is given by

where  is the heat concentration at the top of the canopy at height , with  being temperature at
the top of the canopy,  is the near field-component at the top of the canopy (see below),  is the
thermal diffusivity at height  given by  and  is the sensible heat flux at height  approximated
by  where  is the heat flux from the ground. Here  is the temperature of
canopy elements such as leaves derived using the Penman-Monteith equation by considering the energy
balance of the leaf and  is the boundary layer resistance of the leaf given by , where  is
leaf width ( ) and  is wind speed given, from Harman & Finnigen (2008) as

Here  is wind speed at the top of the canopy at height ,  and  is a mixing length given by
 where  with  and 

The near field component at height  is given by

where  is the source concentration given by  where  is foliage density for layer  ( )
and  is a kernal function given by  where

.

No precise formulations for  and  are given by Raupach, but a plausible profile is proposed as

Following Ogée et al (2003), a value for  can be derived by making thermal diffusivity equivalent to its above
canopy formulation at height  such that
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where  is a diabatic correction for stability.

Owing to several inter-dependances in the model – e.g. between  and , between leaf and air temperature
and between the diabatic coefficients and sensible heat fluxes, the model needs to be run iteratively to
convergence. This is computationally intensive when seeking to model microclimate over large areas at high
resolution. Thus when running the grid model, a point model is run iteratively first and outputs from the point
model used as basis for running the grid model without iteration. Individual components of the model and
methods for avoiding iteration when applying the grid model, are now described in more detail.

Radiation and albedo

The albedo of the vegetated surface can be defined as the proportion of shortwave radiation that is reflected –
i.e. total downward flux less that absorbed. It is dependent upon both the fraction absorbed by the canopy and by
underlying ground surface. Whereas the reflectance of a surface - the ratio of the radiant flux reflected from a
material to the incident radiant flux is an innate property of the surface, the albedo of a vegetated surface
depends both the properties of the vegetation and the underlying ground surface, but also changes in relation to
the transmission of radiation through the vegetation and hence also on the angle of the reflecting surfaces
relative to the solar beam. It therefore changes as a function of both the sun’s position and the fraction of direct
radiation relative to diffuse radiation.

From Sellers (1985) and Yuan et al (2017), but with adaptation allowing for radiation to pass through larger gaps
in the canopy, albedos are derived using a two-stream radiative transfer model. The two-stream model is also
used to derive the radiative flux within the canopy and the energy balance of foliage elements within the canopy.
We therefore describe the model in full.

The underpinning assumption of a two-stream model is that solar radiation arrives at the top of the canopy in the
form of either diffuse or direct radiation. Because the leaves are partially reflective and translucent, a portion of
the direct radiation at any given point within the canopy is scattered in either an upward or downward
direction.The a portion of the diffuse radiation is likewise scattered both upward and downward. Consequently
there are several radiation streams that need to be derived: (i) Downward direct, (ii) downward diffuse, (iii)
upward diffuse, (iv) the contribution of downward direct to downward diffuse and (v), the contribution of
downward direct to upward diffuse. There is is no upward direct, as any radiation upward is assumed to be
scattered isotropically and therefore diffuse. The albedo is determined from the upward and downward streams
at the top of the canopy, but it is also possible to derive upward and downward streams within the canopy.

Downward direct radiation

It is convenient to envisage the canopy as being divided into multiple layers, each with a series of nodes 
situation at the top of each layer and numbered sequentially downward from the top of the canopy. Let us
combine the effects of leafs and other canopy elements such as branches and tree trunks and let  be the
cumulative area of these canopy constituents per unit ground area (from the top of the canopy) to node  and let

 be the cumulative area at the node below. From e.g. Campbell (1985), the attenuation of radiation at node 
is then described as  where  is the downward flux of direct radiation that would be
intercepted by a surface perpendicular to the solar beam at node ,  the is the downward flux of direct
radiation intercepted perpendicular to the solar beam at the top of the canopy, and  is a radiation extinction
coefficient, which depends on the inclination angle of canopy elements relative to the solar beam (vertically
orientated leaves will block out more sunlight when the sun is low above the horizon).

However, rather than defining each canopy element individually, it is more convenient to characterise the canopy
as comprising surfaces that have a continuous distribution of inclinations. From Campbell (1986) and Campbell
(1990), it is reasonable to assume that the real distribution of inclinations can be approximated by assuming they
conform to a prolate or oblate spheroid distribution. By adjusting the ratio of horizontal to vertical axes of the
spheroid, canopy element angle distributions of any canopy from erectophile to planophile can be simulated.
Defining  as the ratio of average projected elements on horizontal surfaces, such that  for a vertical
distribution,  for a horizontal distribution and  for a spherical distribution,  is approximated as
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where  is the solar zenith angle (see below). In the special case where , the equation can be simplified to
 and when , . When ,  and therefore does not depend on

the sun’s position.

This assumes canopy elements are small and randomly distributed. In reality, canopy elements are non-
randomly distributed and radiation can penetrate through larger gaps in the canopy unimpeded. We thus define a
gap fraction ( ) representing the fraction of the canopy that is unobscured by vegetation when the sun is at its
zenith. The probability of the sunbeam’s path through the canopy being unobscured diminishes as the optical
path length increases, but the extent to which it does depends on the shape of the vegetation clumps. It is
assumed that the shape of the clumps is dictated by the inclination angles of leaves such that canopies with
planophile leafs will typically have planophile clumps of vegetation.

A correction must also be applied when the canopy overlies an inclined ground surface. While it can be
assumed, for a given habitat type, that the inclination of canopy elements is unaffected by ground surface
inclination, the optical path length through the canopy will be shorter for ground surfaces facing in the direction of
the sun. A full equation for the transmission of direct radiation through the canopy is thus given by

where  is the fraction of direct radiation transmitted through larger canopy gaps,  and
, where  and  are the values of  derived using the equation above, when the

solar zenith angles are  and  respectively,  adjust the gap transmission for height above
ground  relative to total canopy height  and  is the cumulative canopy element area now concentrated into
‘non-gaps’ given by  and  is the fraction of direct beam radiation intercepted by an inclined
surface given by

where  the slope angle of the surface measured from horizontal,  the solar azimuth (direction from north) and
 the aspect of the surface (relative to north). Slopes and aspects are calculated from digital elevation data, but

set to zero when running the point model.

The position of the sun

To calculate radiation absorption in real environments, it is necessary to calculate the solar zenith and azimuth.
The solar zenith ( ) depends on latitude  and time as follows

where  is the hour angle in solar time ( ) given by

and  is the current declination angle of the sun calculated from the Astronomical Julian day ( ) as

The Astronomical Julian day is the continuous count of days since the beginning of the Julian period. The date
1st Jan 2022 has an Astronomical Julian day of 2459581. The solar time is calculated from longitude ( ) and
local time ( ) as

where  is the longitude of the local time zone meridian (e.g. 0 for Greenwich Mean Time) and  is the
equation of time – a correction applied to account obliquity due to tilt of the Earth’s rotational axis and for the
east-west component of the analemma, namely the angular offset of the Sun from its mean position on the
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celestial sphere due the eccentricity of the Earth’s orbit. These two factors have different wavelengths,
amplitudes and phases that vary over geological timescales. From Milne (1921)

where  is the mean anomaly given by .

The solar azimuth ( ) is calculated as

Diffuse radiation

The diffuse radiation streams can be written using two sets of differential equations:

Here  is upward diffuse radiation (i.e. that reflected upward by canopy elements and the ground surface, 
is downward diffuse radiation (analogous to the processes described for direct radiation above) and  is
downward direct radiation.

Each of the equation’s components describes a different physical process. In both equations, the left hand term
describes the overall attenuation of upward or downward radiation through the canopy. The first right hand term
in the top equation describes the fraction of upward diffuse radiation that is re-scattered in upward direction and
the equivalent in the bottom equation describes the fraction of downward diffuse radiation that is re-scattered
downward.  is the absorption coefficient for incoming diffuse radiation per unit leaf area and  is the backward
scattering coefficient. The second term on the right hand side in the top equation describes the fraction of the
downward diffuse radiation that is converted into an upward diffuse flux by back-scattering and the equivalent in
the bottom equation describes the fraction of the upward diffuse radiation that is converted into an downward
diffuse flux by back-scattering.The final term on the right hand side of the top equation refers to the contribution
to the upward diffuse flux by the scattering of direct radiation penetrating into the canopy to . The equivalent in
the bottom equation is the contribution from scattering of direct radiation to the downward diffuse flux.  and 
are thus the backward and forward scattering coefficient for direct radiation respectively.

The term  is given by , where  is the single scattering albedo of individual canopy elements given
by  where  is canopy element reflectance and  is canopy element transmittance, both provided
as user inputs.

The term  is given by  where  is given by  and  is an integral function of the
inclination distribution of canopy elements approximated by  where  is the mean inclination angle
of canopy elements in the zenith direction. From Campbell (1990)  and from Verhoef (1984)
and Pinty et al (2006) . The forward scattering coefficient for incident direct radiation,  is
given by .

Solving the differential equations for a two-stream model is not entirely straightforward, but is achieved by setting
boundary conditions at the bottom and the top of the canopy. A full explanation of their derivation is given in
Sellers (1985) and Yuan et al (2017). Only the final equations are presented here. These are as follows:

where  is upward diffuse radiation and  is downward diffuse at ,  is downward diffuse at the top of the
canopy,  is ground reflectance. Here  is transmission of diffuse radiation through larger gaps in the
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canopy and  and  are the contribution of direct radiation to the diffuse upward and downward flux
respectively given by

and

The equations for calculating albedos are given by

and

where  is white-sky albedo (i.e. Bi-Hemispherical Reflectance: that reflecting diffuse radiation),  is black-sky
albedo (i.e. Directional Hemispherical Reflectance - that reflecting direct radiation) and  and  are the values
of  and  with . The total albedo is given by

where  is the diffuse radiation fraction given by .

The derivation of the terms  is given below.
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Here  is the blue sky albedo of the ground surface, effectively the the ground reflectance  adjusted for
inclination given by 

Longwave and emitted radiation

Leaves and other elements of the canopy typically have very low reflectance to longwave radiation so there is
limited scattering of longwave radiation. In consequence, the longwave radiation streams within the canopy can
be thought of as originating from three sources. Firstly from the ground surface, where incident longwave
radiation at any given height below canopy is determined by ground temperature and the tranmission of radiation
from the ground surface. The second is from all the individual canopy elements, which in turn is determined by
the temperature of those surfaces and tranmission from those surfaces. The third is downward from the sky,
which is determined by the effective sky temperature and tranmission from the sky.

Dividing the canopy into  layers and defining  as the total one sided plant area within a layer , the
downward flux of radiation  at  is given by

and the upward flux  is given by

where  is the transmission of longwave radiation between  and  given by

where  adjust the grap transmission for distance from  to  and  is the is the
total one sided plant area between  and . Here  and  are the emissivities of the ground surface and canopy
elements respectively (both set at 0.97),  the Stefan–Boltzmann constant and  and  are absolute
temperatures of the ground surface and canopy elements respectively in Kelvin. Here plant areas  refer to the
plant areas concentrated into non-gaps.

In order to calculate the longwave radiation incident on a canopy element one must know the vertical
temperature profile of canopy elements, but in order to calculate this, one must know the longwave radiation
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absorbed by that element. Resultantly the model is run iteratively.

Emitted radiation is given by

The linearisation of emitted radiation, required to solve for temperature in the Penman-Monteith equation
assumes

where the radiative resistance  is given by

Leaf and ground radiation absorption

The two-stream model also used to calculate radiation absorbed by the ground surface ( ), given by:

where  is the emissivity of the ground surface.

Radiation absorption by canopy elements at height , averaged over the upward and downward-facing surfaces,
is given by

where  is the emissivity of canopy elements and 

Radiation adjustments in the grid model

In the grid model, downward radiation is adjusted for terrain such that  is set to zero if solar altitude is less
than the horizon angle ( ) in azimuth direction , and  and  are adjusted by sky view factor 

The horizon angle is computed for each grid cell as

where  is the elevation of the focal grid cell  is the elevation of the grid cell in direction  and  the horizontal
distance from the focal grid cell to grid cell . The maximum is taken over 10 points of increasing distance from
the focal grid cell along a given solar azimuth direction .

The sky view factor is computed as

where

Sensible Heat

From Fourier’s and Fick’s laws, the diffusive eddy transport of heat is described by  where  is
the molar density of air ( ),  the rate of change in temperature  ( ) with height  ( ) and  is
eddy thermal diffusivity ( ). However, in practical terms, as reference air temperature (i.e. that recorded by
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a weather station) is measured at some height above canopy, it is more convenient to describe the sensible flux
in the form  where  is the resistance to heat transfer ( ), the average of the
inverse of thermal diffusivity derived by integration between two heights.

Treating the vegetated surface as a single vertically homogeneous layer of phytomass, eddy thermal diffusivity is
given by  where  is the Von Kármán constant (~0.4),  is a diabatic influencing
factor for heat and  is the friction velocity of wind ( ) given by

where  is the wind speed ( ) at height  (that at which provided wind speed is measured),  is the zero
plane displacement height ( ) – the height at which the wind profile above canopy extrapolates to zero,  is a
roughness length ( ) for momentum and  is a diabatic correction coefficient for momentum (see below).
From Raupach (1994)

and

where  is the height of the canopy ( ),  is given by , where  is the total one side plant
area (living + dead vegetation) per unit ground area and  is a diabatic correction factor for heat.

Substituting the equation for thermal diffusivity into that for eddy transport of heat, and integrating the resulting
equation from the canopy heat exchange surface to the height at which air temperature is measured, gives the
equation for the bulk surface aerodynamic resistance:

where  is a roughness length for heat.

Diabatic effects

From Harman & Finnigen (2008) the diabatic influencing factors and coefficients feature when the canopy
surface is strongly heated or cooled and are given by

where from Businger et al (1971)

with  under unstable conditions ( ) and

under stable conditions ( ). The equivalent formulae for heat are given by
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With  under unstable conditions and  under stable conditions. Here 
is the Obukhov length given by

where  is the gravitational constant (~9.81) and  is the average temperature of the height profile ( ), taken as
the average of the canopy and the air.

From Yasuda (1988)

under unstable conditions and

under stable conditions. To avoid unrealistic reversals of the temperature profiles caused by an extreme diabatic
influence, the diabatic coeffcients are capped such that

Additionally, to avoid the diabatic influencing factor for heat resulting in a negative roughness length for
momentum, it is capped to

Grid model simplifications

The issue with deriving the sensible heat flux in a computationally efficient manner is that the wind friction
velocity ( ), needed to derive , depends on the diabatic coefficients, but these in turn depend on  and . It
is therefore necessary to run the model iteratively until convergence. This is computationally intensive if seeking
to do so over numerous grid cells. The approach in microclimf is therefore to run point model iteratively to
convergence for a flat reference location  at the centre of the study area with mean (or modal) soil and
vegetation properties. The wind friction velocity of this reference location ( ) can then be directly related to the
friction velocity of any other location ( ) such that

where  is given by

where here  is wind speed at some reference height  such that it is near identical at all locations,  and 
the zero-plane displacement heights for the target and reference locations respectively,  and  the
roughness lengths for the target and reference and target locations respectively  and  the
respective diabatic coefficients.

It can be shown empirically (Fig. S1) that effects of the diabatic coefficients on this ratio are relatively minor and
therefore

Thus, once  has been derived iteratively, the friction velocity for any other location can be derived from the
roughness lengths and zero-plane displacement heights (and hence from plant area and vegetation height),
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without the need to run the model iteratively across the entire landscape. The final term,  is a terrain wind
shelter coefficient that is applied to target locations computed, following Ryan (1977) as

where  is the horizon angle in an upwind direction computed using digital elevation data.

A small issue is that the diabatic coefficient for momentum ( ) is needed to compute wind speeds at user-
specified above canopy ( ). A similar ratio approach is used for doing so such that

where  is the diabatic correction coefficient for the reference location. This eliminates the need to derive
 iteratively.

Latent Heat

A full expression for the latent heat flux from the canopy is given by

where , the latent heat of vaporisation is given by

where here  is the average of the surface and air temperature measured in degrees: 

 is atmospheric pressure (kPa),  is the effective relative humidity of the surface and  the temperature-
dependent effective relative humidity of the surface (kPa) given from Tetens equation by
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In microclimf,  is set to 1.0 immediately following rain and 0.8 at other times. In application of this formula in
the Penman-Monteith equation, air temperatures are capped to not drop below dewpoint. The resistance to
vapour exchange is given by  where  is bulk surface stomatal resistance.

To a reasonable approximation (Raupach 1994; Kelliher et al 1995),  is the inverse parallel sum of the stomatal
resistances of individual leaves and the soil combined, the former, which under ample root water supply, non-
extreme temperatures and low humidity deficit, varies only in response to variation in photosynthetically active
radiation. Self-shading by leaves largely compensates for the presence of additional foliage contributing to the
parallel sum under densely foliated canopies and under sparse canopies, evaporation from soil surface largely
compensates for lack of evapotranspiration from foliage. Thus, following (Kelliher et al 1995), a simple
relationship between bulk surface stomatal conductance and photosynthetically active radiation (PAR) can be
derived as

where  is an estimate of PAR absorption in ,  is downward shortwave radiation (
),  is the value of Q, when stomatal conductance is at 50 percent of its maximum and  is a

user provided maximum stomatal conductance, provided as molar conductance ( ) to ensure
conformance with Körner (1994) who gives values for major vegetation types of the globe. The formulation

 converts between stomatal resistance ( ) and stomatal conductance.

To derive stomatal resistance for individual canopy elements ( ), the formulation is

For the soil, there is no stomatal resistance, and conductance for vapour is given by . The effective
relative humidity of the soil is approximated by  where  is the volumetric soil
moisture fraction,  the saturated water fraction and  the residual soil moisture fraction. The later to are
provided as user inputs, though an inbuilt dataset allows one to estimate them from soil type.

The linearisation of the latent heat term to solve for temperature in the Penman-Monteith equation assumes that

where  is the vapour deficit of the atmosphere where  is saturated vapour pressure and  is the
slope of the saturated vapour pressure curve given by 

The soil model

Ground heat flux

Following van Wijk & de Vries (1963) and Campbell and Norman (2012), the ground heat flux  at time  (in
seconds) is deriving by assuming that the diurnal and annual cycles in ground surface temperature are
approximately sinusoidal such that

where  and  are the amplitude in the diurnal and annual temperature cycles,  thermal conductivity (
),  and  are the angular frequencies, given by  and

 where  is the number of days in the year. Here  and  are the diurnal and
annual damping depths given by  and  where  is thermal diffusivity given by

 where  and  are the volumetric density and specific heat of the soil respectively.

From Campbell (1986), thermal conductivity ( ) is given by

= 0.61078 exp( )ec
21.875Tc

+ 265.5tc

θC

= +rv rHa rc rc

rc

= 3
ρ~

rc
gmx

Qa

+ 3Qa Q50

= 4.6Qa R↓
sw μmol ⋅ ⋅m−2 s−1 R↓

sw

W ⋅ m−2 = 100Q50 gmx

mol ⋅ ⋅ sm−2

= /rc ρ~ gc s ⋅ m−1

rL

=
ρ~

rL
gmx

Qa

+Qa Q50

− arv rH

= ( − )/( − )θG SM Smn Smx Smn SM

Smx Smn

( − ) = ( − ) + ( − ) ≈ (Δ( − ) + D)
λρ~

rV pA
ec ea

λρ~

rV pA
ec es

λρ~

rV pA
es eA

λρ~

rV pA
TC TA

D = −es ea es Δ

Δ = d /dTes

G t

G = +
(0) sin[ (t − (D)) + π/4]2

–√ AD ks ωD t0

DD

(0) sin[ (t − (A)) + π/4]2
–√ AA ks ωA t0

DA

AD AA ks

W ⋅ ⋅m−1 K−1 ωD ωA = 2π/(24 × 3600)ωD

= 2π/(24 × 3600 × n)ωD n DD DA

=DD 2κ/ωD
− −−−−−

√ =DA 2κ/ωA
− −−−−

√ κ

κ = /ks ρscs ρs cs

ks



where

where  is the bulk density of soil ( ),  and  the volumetric quartz and mineral content of the soil
respectively,  the mass fraction of clay and  the volumetric water fraction of the soil.

The volumetric density ( ) and specific heat ( ) of the soil are then given as follows

Typical values of , ,  and  for given soil types are shown in Table 1.

Grid model simplifications

When running the model as a point model, because the ground heat flux depends on ground surface
temperature and vis-versa, a solution is found by iteration. To avoid the need to iterate the model over all grid
cells, it assumed that the ground heat flux ( ) at any given target location scales to the ground heat flux ( ) at
a reference location by a parameter  such that

Further, it is assumed that because the ground heat flux associated with daily temperature cycles is much
greater than that associated with annual cycles

where , ,  and  are the thermal conductivities and damping depths for the target and reference
location respectively. The remaining challenge is then to calculate the approximate diurnal temperature
amplitudes  and . This is achieved by using the Penman-Monteith equation, but with  and  set
to zero and diabatic corrections ignored. This avoids inter-dependencies and hence the need to derive values
iteratively. The accuracy of this approximation method is shown in Fig S2.
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Temperatures below ground

In the soil, heat storage is significant, and both the annual and diurnal temperature cycles are attenuated and
occur later in the day or year. Assuming that the annual and diurnal cycles are approximately sinusoidal, that the
soil layer is infinitely deep and with uniform thermal properties, from Campbell & Norman (2012) and de Vries
(1963), the temperature at depth  and time  is given by

where  is mean annual temperature of the ground surface (K),  is depth below ground (m) and negative, 
and  are the amplitude in the diurnal and annual temperature cycles and  and  are the diurnal and
annual damping depths. It can be shown empirically, that the above relationship is approximated well by the
following relationship:

where  is the rolling mean of the ground surface temperature over the last  hours. The number of
hours over which the rolling mean is calculated is contingent on depth and is given by

The assumption of vertically uniform soil properties and an approximately sinusoidal diurnal cycle in ground
surface temperature is necessary in order to get a computationally efficient closed-form solution to the ground
heat flux equation and to the estimation of below-ground temperatures. An alternative approach, following
e.g. Campbell (1985) is to divide the soil into multiple layers and to compute fluxes and temperatures seperately
for each layer. This is the approach adopted by the NicheMapR package as described by Kearney & Porter
(2017). Comparisons of the simplified approach adopted by microclimf with those obtained by the multi-layer soil
model in NicheMapR are shown in Fig. 1. The two methods produce remarkably similar results.
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Where the model input data encompass a full year, but don’t match a given calander year, the annual cycle in
temperatures is simply recycled to accommodate . I.e. to compute temperatures below ground in early
January, data from late December are used. However, the microclimf package allows for the microclimate model
to be run for periods of time that extend for less than a year or for select days only, making it impossible to
calculate a rolling mean of ground surface temperatures than extends back further than the period for which
ground surface temperatures have been calculated. It is recommended that a complete time sequence for a year
or more is modelled when seeking to derive temperatures below ground. However, when this is not the case, the
following approximation method is used:

where where  is the number of hours in a year,  is mean annual air temperature computed if data for an
entire year are available or alternatively provided as a user input, and

and  is an estimate of the mean daily temperature given by

where  and  are daily mean temperature at depth  and the gorund surface respectively derived
for a reference location using the point model and

where  and  are the amplitude of the diurnal cycles in ground surface temperature derived from the
grid model and point model respectively.

Soil water point model
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An estimate of soil water content is required to estimate the thermal heat capacity and conductivity of the ground.
In the point version of the model, microclimf implements a modified version of the Mahrt and Pan (1984) two-
layer model of soil hydrology. The volumetric soil moisture fraction at each daily time-increment  in a top shallow
soil layer is computed as

where  is soil moisture in the previous time increment,  is daily precipitation,  is the daily mean of
hourly positive net radiation. Soil moistures are capped so that  cannot exceed the volumetric water fraction at
saturation ( ) or drop below the residual volumetric water fraction for a given soil type ( ).The assumption is
thus that daily evaportransporation is linearly related to  and thus that the Bowen ratio remains relative
constant during the day when net radiation budget is positive.

At each daily time increment, water is then exchanged with an underlying deeper soil layer of 10 times the
volume as follows:

where  is the soil moisture in underlying deeper soil layer at time  and  is the hydraulic conductivity given by

where  is saturated hydraulic conductivity,  is the mean volumetric water content of the two soil layers given
by . The terms  are coefficients estimated by iteration for given soil types using the outputs of the
more complex multi-layer hydrological model given in Campbell (1986) and included in the NicheMapR package
(Kearney & Porter 2017). Examples of the model output in comparison to a more complex multi-layer model in
NicheMapR are shown in Fig. S4.

Typical values of ,  and  and estimated values for  for given soil types are shown in Table 1.
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Soil water spatial model

To avoid the need to evoke a spatially explicit hydrological model, soil moisture derived from the point model is
simply distributed spatially using the Bevan & Kirkby (1979) topographic wetness index when running the grid
model. Thus soil moisture  in each time increment  and grid cell  is thus computed as

where  rescales  by the soil water fraction at saturation ( ) and wilting point (
),  is mean topographic wetness across the study area and  is the topographic wetness of grid cell 

given by

where, following Bevan and Kirkby (1979),  is the contributing area, essentially accumulated flow,  is the slope
angle and  is a user-defined scaling factor controlling the sensitivity of spatial variation in soil moisture to
topographic wetness, by default set to 2/3. An example of the output obtained using this approach, is shown in
Fig. S5.
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Below canopy model

Conceptual overview

In contrast to above canopy, it is now widely recognised that the transfer of heat and vapour below canopy
cannot be predicted using a MOST approach (e.g. Bonan, et al. 2021). To replace MOST in this context,
Raupach (1989a,b) developed an analytic Lagrangian theory, which predicts the concentration heat and vapour
emanating from a spatially extensive source downwind of the point of interest. In this ‘localized near-field’ theory
(LNZT), the mean concentrations of heat or vapour are expressed as the sum of a diffusive far-field contribution
that obeys MOST, and a non-diffusive near-field contribution, which is determined from local sources by
assuming the turbulence to be locally homogeneous.

To recap formulae presented above:

where  and  are the far-field and near-field contributions,  is air temperature at the top of the
canopy (  scales the source concentration to temperature),  is thermal diffusivity,  resistance
to heat loss by canopy elements such as leaves with temperature  and  is the ground heat flux.

The formulae can seem quite confusing, but essentially capture four processes. First, near the top of the canopy
temperatures will closely match temperatures at the top of the canopy because  as 

(i.e. there is nothing to sum over). Second, as one descends through the canopy, temperatures will typically
increase if the sensible heat flux from canopy elements is positive as would typically be the case when the net
radiation budget is strongly positive. This is because  increases as . This seems a bit counter-
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intuitive as one typically imagines increased shading to result in cooler temperatures, but the key point is that
heat arriving at height  is emanating from canopy elements at all heights. However, near the top of the canopy,
temperatures are more closely coupled to the air above it. The cooling effect of canopies is the result of two
processes: lower down in the canopy, negative sensible heat flux from individual canopy elements that are
shaded is possible even if the total flux from the canopy is positive. More importantly though, the ground heat flux
comes into play: if the ground surface is cooler than the leaves at the top of the canopy there is a strong cooling
effect simply because  as  (see below). The last effect arises due the near-field contribution given
by

where  is the source concentration given by  where  is foliage density for layer  and  is
a kernal function, approximated by

where

The important take homes from these formulae is canopy elements heated by the sun will warm the air
immediately surrounding the elements with the effect influenced strongly by the density of canopy foliage, and
diminishing very sharply with distance (as dictated by the shape of the kernal function).

The Langrangian timescale problem

The term Langrangian essential means that the heat or vapour in a canopy can be considered as being emitted
from (or absorbed by) a large number of point sources (or sinks), namely the individual leaves and other canopy
elements. The spread of the plume from each canopy element is determined by the motion of heat or vapour
‘particles’ emanating from the canopy element in question. Of key importance is the effect of the persistence of
the motions within the canopy on the dispersion properties of these particles, ultimately determined by two
parameters: the particle position variance ( ) and the Lagrangian time scale , both of which appear in the
formulae above, but neither of which are actually known.

However, plausable vertical profiles are proposed by Raupach (1989b) as:

with  (the value of  at the top of the canopy at height ) and . The parameter ,
though generally taken to be vertically constant within the canopy is effectively unknown. Although it is
questionable whether conventional MOST and LNZT theory can be reconciled in this way, following several
authors (e.g. Ogée et al 2003) a solution to the problem is found by making thermal diffusivity equivalent to its
above canopy formulation at height . Since above canopy

and below canopy

Setting  and , it follows that
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Thus, to derive below-canopy microclimate, the above canopy component of the model, in which the canopy is
treated as a single homogeneous layer of phytomass, is run first. This allows  and  and the temperature
and humidity at the top of the canopy to be calculated, which then enables derivation of below canopy
microclimate.

Ground heat flux below canopy

Ground surface temperature  is inferred prior to running the below canopy model and thus, from Fick’s law:

where  is air temperature at height  and  is the mean thermal diffusivity between the ground and height 
given by

Assumptions in grid model

The method described above requires that the canopy is divided into numerous layers each with known foliage
density. Since this is both computationally intensive and relies on explicit knowledge of canopy structure, when
applying the grid model, the following simplifying assumptions are made.

First, it is assumed that the effects of vertical variation in  and  on hte far-field contribution are small,
relative to the effects of thermal (or hydric) coupling to the air above canopy. Thus, the canopy contribution to the
far-field component can be approximated as

where  is the total combined heat flux from canopy elements and  is the average thermal diffusivity within
the canopy given by

The effects of this assumption are shown in Fig. S6b (dotted lines).

Next, recalling that the vegetated surface is initially treating as a ‘big leaf’ – effectively a single vertically
homogeneous layer of phytomass, it should be noted that sensu stricto, this layer comprises both the vegetated
canopy and the underlying ground surface and that therefore the sensible heat flux  from the entire surface can
be broken down into the component fluxes from the canopy ( ) and underlying ground surface  such that

. To a first approximation it can be assumed that the fraction  is approximately equal the
portion of the ground surface unobscured by canopy elements such that

An energy balance equation for air temperature below canopy  at height  can then be written as

yielding

where  is air temperature at the top of the canopy and  is given by
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The mean thermal diffusivities ,  and  are derived by integration:

where

with

In the case where , this simplifies to

The effects of these assumptions on the temperatures are shown in Fig S6b (dashed lines)

To compute the near-field contribution, it is recognised that the effects of  are such that the near-field
concentration at height  are far more influenced by the local source concentration , and the contribution at
heights  are negligible when . Thus  is determined solely from  with a minor empirically-
derived adjustment made to scale  to  based on total leaf area such that

The accuracy of all of these approximation methods is shown in Fig S6.

A near-identical procedure is used for estimated vapour pressure profiles, but with sensible heat fluxes and
temperatures substituted for latent heat fluxes and vapour pressure such that

where , ,  and  and are the effective vapour pressures at height , of the ground, of the canopy and at
the top of the canopy respectively, and
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where  is the total latent heat flux for the canopy.

The snow model

The modelling of snow broadly follows Kearney (2020) except that the energy and mass budget of the snowpack
are computed seperately for the canopy and underlying ground surface.

Snowpack energy balance

The energy balance of both the ground and canopy ground layer are given by

where  is radiation absorbed by the snowpack,  is radiation emitted by the snowpack,  is the sensible
heat flux,  is the latent heat flux due to sublimation,  is the rate of heat storage by the snowpack and  is
the energy flux removed from the pack during melt.

Radiation budget

Radiation absorbed by the canopy is given by

where  is snow surface albedo calculated as

where  is the number of decimal days since he last snowfall.

To calculate the temperature of the snow-covered ground surface, the radiation budget must accommodate the
presence of the canopy. The shortwave component of absorption is calculated using the two-stream model
described above, but with the following adjustments made. First, snow is assumed to absorb direct radiation
isotropically and in consequence is assumed independent of ground slope and aspect. The coefficient  is also
set to one irrespective of leaf inclination angles. Second, both ground ( ) and leaf ( ) reflectance are set to
snow albedo ( ). Third, canopy element transmittance ( ) is adjusted to accommodate the additional presence
of snow such that

where from Warren et al (2006)  in an optical extinction coefficient for radiation transmitted through snow
and  is the average snow water equivalent thickness of snow within each canopy layer given by

where  is the depth of ground snow (m) and  is the depth of canopy snow (m).

Lastly, the plant area index is adjusted to accommodate both the presence of both snow lying on the ground and
distributed through the canopy as follows

The absorption of longwave radiation is given by

where  is calculated as for the plant canopy, but with  and  adjusted for snow. Transmission of longwave
radiation through the canopy given by
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where  is calculated as for the canopy without snow, but with  and  adjusted for snow.

Where , i.e. snow height exceed vegetation height, canopy attenuation is ignored.

Radiation emitted by the snowpacks is given by

and

where  and  are snow surface temperatures for the ground and canopy derived by solving the energy
balance equation using the Penman-Monteith equation.

Sensible heat fluxes

The sensible heat fluxes are given by

where, as for the canopy  and for the ground  and  is the bulk surface aerodynamic
resistance of the snow pack given by

where  is the friction velocity of wind given by . The key distinctions are that the
zero plane displacement height and roughness lengths accommodate the presence of snow and are thus given
by

where  is vegetation height (m),  is snow depth given by  where  is snow water equivalent (m),
 is the density of water and  is the density of snow. Here  is the snow-covered plant

area index above the snow calculated as described above. Following Sturm et al (2010) and Kearney (2020),
snow density is computed as

where  is the maximum allowable density,  is the initial density,  is snow age (in decimal days) and 
and  are fitting parameters, derived fom the snow environment (Table 2).

The roughness length for momentum is computed as
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where 

Latent heat fluxes

Latent heat fluxes are given by

where  is the effective vapour pressure of either the canopy or ground surfaces calculated from snow
temperatures using Tetens equation and  is the latent heat of sublimation of the snow pack.

Rate of heat storage by snowpack

As for the diurnal ground heat flux cycle, the rate of heat storage by the canopy and ground snow packs are
given by

where  is the amplitude of the diurnal snow surface temperature cycles,  is snow thermal conductivity (
),  is the angular frequency given by  and  is the damping depth given by

 where  is thermal diffusivity given by  where  and  are the volumetric density and
specific heat of the snow pack. Snow thermal conductivity is estimated from Djachkova’s formula, following
Anderson (2006) and Kearney (2020)

The Energy Balance equation, excluding  is then solved for temperature using the Penman-Monteith
equation. If snow surface temperature exceeds zero, the snow pack is then assumed to melt until temperatures
attain zero, so snow pack temperature is set to zero. The energy flux removed from the pack during melt is thus
given by:

where  is the specific heat of ice and  is the time-step of the model. Since 
is also approximately constant, the equation simplifies to

The relevance of explicit calculation of  is in the calculation of the mass balance.

Snowpack mass balance

The mass balance of the canopy and ground snow models are given by

where  and  are the change in canopy and ground snow balance (m snow-water equivelent),  is
precipitation (m) falling as snow (assumed to do so when air temperature is below freezing),  is canopy
interception of snow,  and  are the latent heat of sublimation and fusion respectively here measured in

 where the conversion is given by  where  is
the molar mass of water. Here  is rain melt calculated following Anderson (2006) and Kearney (2020) as
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 partitions sublimation and rain melt between the canopy and the underlying round layer (the
portioning of melt is handled explicitely as it is contingent on mass balance of the snowpacks)

Canopy interception

Following Hedstrom & Pomeroy (1998) snow interception by the canopy is given by

where  is the maximum canopy snow load (mm snow water equivalent),  the snow load in the previous
time-step and  is effective canopy cover perpendicular to the direction of snow fall given by

 where  where  is the zenith angle of the direction of snow fall given
by  where 0.8 m/s is the terminal velocity of snow fall and  is mean canopy wind speed derived
by integrating the wind speed profile below canopy such that

where  the wind speed at the top of the canopy is given by .

Modelling snow depth spatially

By default, the snow model is run in hourly time intervals over every grid cell. To accommodate wind-driven snow
accumulation into hollows and crevices in the landscape, every five days snow depth is restributed as follows

where  is redistributed ground snow depth,  is modelled snow depth prior to redistribution and

where

and  is mean  across the study area. Here  is the elevation of any given grid cell  and  is the
mean elevation of the area surrounding  within a radius . The radius is adjusted by mean wind speed across
the five days  such that

where  and  are in metres and  in metres per second.

Approximating snow depth with snapshot data

The microclimf package also has the option to model snow quickly. Here snow melt in any given focal grid cell (
) and over any given time period ( ) is given by

where  is snow melt estimated over the equivelent time-period using the point model run in hourly time-steps
for a reference location at the centre of the study area and  is a melt factor given by
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where  is the sum of snow pack temperatures exceeding freezing over the period , with
 representing the temperature of the snow pack at the reference location and  estimated as

where  is the sky view factor and  is air temperature. This essentially makes makes two assumptions. First
that  where  is net radiation at the focal location and , which is approximately true if
snow albedos are similar at the two locations and any azimuthal biases in the reduction of direct radiation by sky
view are minimal. Second it assumes that the sensible heat fluxes is directly proportional to radiation, which is
approximately true if latent if the rate of heat storage and latent heat are small and increase in a linear manner
with net radiation. This is faultier assumption, but the approach is adequate for deriving microclimate estimates
(Fig S7).

Microclimate model with snow

The snow microclimate model forms an extension of the non-snow model and its formulation is nearly identical to
that used when snow is absent, except that in hours with snow present, the following adjustments are made.

Firstly, as for calculation of the snow energy balance, ground and leaf reflectance are replaced by snow albedo,
the coefficient  is set to 1 and foliage density, canopy height and leaf transmittance adjusted to accommodate
the presence of snow.

Secondly, when calculating the latent heat fluxes, vegetation is assumed to be freely evaporating or sublimating.
Resistance to heat and vapour loss are thus identical and the additional stomatal resistance is ignored.

Thirdly, when calculating the ground heat flux below canopy, ground snow surface temperature rather than
ground surface temperature is used and  is adjusted to  where  is the user-specified height above
ground for which microclimate estimates are produced and  is the snow depth of the ground layer.

Fourthly, when modelling microclimate below canopy, heat fluxes are summed only for those canopy layers that
are above the height of ground snow.

Lastly, if the height for which model outputs are required lies below the snow pack but above the ground surface,
temperatures are calculated as if there were below ground but with the thermal properties of the ground replaced
by the thermal properties for snow. Thus
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Overview

This vignette describes the R package ‘microclimf’. The package contains a series of functions for
modelling above and below canopy or below-ground microclimatic conditions across real landscapes,
providing gridded outputs. In line with standard approaches for mechanistic microclimate modelling, the
model is founded on the principles of energy balance, with the temperature of a surface or the air above it
being contingent on how much energy is received or lost. Opaque surfaces in the environment, namely the
canopy and the ground, absorb radiation from the sun, but also emit radiation as thermal energy. These
surfaces also exchange sensible heat with the surrounding air and undergo latent heat fluxes, namely
evaporative and evapotranspirative cooling. Some of the energy is also stored or released by the ground.
Because the various components of the energy budget have a dependence on temperature, the
temperature of the environment is calculated by assuming that energy budget always remain in balance
and then re-arranging the energy balance equations to solve for temperature. However, because of various
interdependencies, e.g. between the degree of surface heating and the exchange of sensible heat, and the
temperature of the ground surface and the rate of storage by the ground, a closed-form mathematical
solution to the energy budget equations cannot be derived. Rather the model must be solved iteratively,
which is computational expensive if modelling over multiple grid cells.



A key aim if microclimf is to ensure computational efficiency, which is achieved in four ways. First, it is
assumed that the energy budget can be solved mathematically using the Penman-Monteith method
(Penman 1948; Monteith 1965) if these interdependencies are ignored, resulting in only modest errors. If
doing so for a single point location, the ratio of the temperature offset from ambient air temperature for that
location relative to that for any other location is preserved when solving the model iteratively. Thus, running
the model iteratively for a single point location and solving the model mathematically for all grid cells,
provides a route to estimating the iterative solution for the entire landscape in a computationally efficient
manner. Second, and a further advantage of running a point model separately is that one can subset
outputs from the point model. While the point model must be run in hourly time-increments there is no need
to do so for the grid model: one can instead opt to select from the point model, only those hours that
correspond to e.g. the monthly maximum, minimum or median temperature. Thirdly, some simplifying
assumptions are about the nature of vegetated canopies to avoid the need to describe vertical variation in
leaf foliage density in detail when characterising below-canopy microclimates. This eliminates the need to
evoke a multi-layer canopy model. Lastly, most of the heavy lifting is done by c++ code, which typically
runs much more quickly than R code. The R functions are essentially wrappers for the underlying c++ code
meaning users get the high-level expressiveness of R, but the computational performance of compiled
c++.

Package install

Start by installing the package form Github as follows:

The package has a few dependencies, which may also need to be installed or updated. If there are any
install issue, a useful starting point for troubleshooting is to install the dependencies first. These are abind,
ncdf4, Rcpp, sf, stats, terra, utils and zoo all of which are on CRAN.

Quick start

Here I provide brief instructions for how to run microclimf. More in-depth instructions are provided below.
Four sets of input variables are needed: (1) a dataset of hourly weather, (2) a digital elevation dataset, (3)
a dataset of vegetation parameters and (4) a dataset of soil properties. The datasets should have exactly
the same format and units as the example datasets included with the package. The spatial resolution and
extent of outputs is determined by the spatial resolution of the digital elevation dataset, and the spatial
datasets of vegetation parameters and soil properties should also match the digital elevation dataset in
terms of resolution and extent. It is important also that the x, y and z dimensions of the digital elevation
dataset are equivalent – i.e. an equal area projection is used rather than say latitude and longitude, with
units of x, y and height all identical and typically in metres.

The first step to run the point model in hourly time increments using function runpointmodel. One then has
the option to subset the point model to say return monthly values and pass these as inputs to the grid
model. Both the point model and grid model can be run in two modes: either with hourly weather data
provided as a data frame in which case the point model is run once only and the weather is assumed
identical across the study area. Alternatively the weather data can be provided as multi-layer SpatRasters,
in which the point model is run for each grid cell of the SpatRaster and the weather is assumed to vary
across the study region.

In the code below, weather data are provided as a data frame. The point microclimate model is run and
then subset to return only those hours corresponding to the day in each month with the hottest and coldest
temperature (as determined by the point model). These are then passed to the grid model. The model
returns temperatures (leaf, ground and air), relative humidity, wind speed, and components of the radiation

require(devtools)

install_github("ilyamaclean/microclimf")



budget, all as 3D arrays, representing values for each pixel and time-period. In the final lines of codes,
selected outputs are plotted

Maximum (right) and mean (left) temperature 5 cm above ground. On warm sunny days, the temperature
immediately above sunward facing slopes gets pretty hot. The colder areas are those that have shade
cover.

Model inputs

Three sets of parameters are needed to run the model: (i) standard hourly meterological climate-forcing
variables representative of macroclimatic conditions across the study site, usually in the form of a
data.frame with single values for each hour (though the option to include an array of coarse-gridded values
is also available - see below). (ii) A suite of parameters describing properties of the canopy in the form of
high-resolution gridded values. (iii) A suite of parameters describing properties of the soil in the form of

library(microclimf)

library(terra)

# Runs point microclimate model with inbuilt datasets
micropoint <- runpointmodel(climdata, reqhgt = 0.05, dtmcaerth, vegp, soilc)

# Subset point model outputs

micropoint_mx <- subsetpointmodel(micropoint, tstep = "month", what = "tmax")

micropoint_mn <- subsetpointmodel(micropoint, tstep = "month", what = "tmin")

# Run grid model 5 cm above ground with subset values and inbuilt datasets (takes ~20 

seconds)

mout_mx <- runmicro(micropoint_mx, reqhgt = 0.05, vegp, soilc, dtmcaerth)

mout_mn <- runmicro(micropoint_mn, reqhgt = 0.05, vegp, soilc, dtmcaerth)

attributes(mout_mx)
# Plot air temperatures on hottest hour in micropoint (2017-06-20 13:00:00 UTC)

mypal <- colorRampPalette(c("darkblue", "blue", "green", "yellow", "orange",  "red"))

(255)

plot(rast(mout_mx$Tz[,,134]), col = mypal)

# Plot mean of monthly max and min

mairt<-apply((mout_mn$Tz + mout_mx$Tz) / 2, c(1,2), mean)

plot(rast(mairt), col = mypal)



high-resolution gridded values. A raster of digital elevation data is also required. Optionally, some additional
parameters can be set when running the models, as detailed below.

Each set of parameters is described in turn. Obtaining the right data to drive the microclimate model is
often one of the most challenging aspects of modelling microclimate. Users may wish to explore the
microclimdata package for automated downloading and processing of various datasets available globally or
regionally for doing so. The package is available on Github: https://github.com/ilyamaclean/microclimdata

Meteorological data

The inbuilt data,frame climdata gives an example of the hourly meteorological variables needed to run the
model:

The data frame contains the following columns: obs_time – POSIXlt object of observation times for each
climate variable, temp – temperatures (deg C), relhum - relative humidity (percentage), pres - atmospheric
pressure (kPa), swdown - total downward shortwave radiation received by a horizontal surface (W/m^2),
difrad - diffuse radiation (W/m^2), lwdown total downward longward radiation (W/m^2), windspeed - wind
speed at reference height (m/s), winddir - wind direction in degrees and precip - hourly precipitation (mm).
Precipitation is used to compute soil moisture and sub-model for this actually runs in daily time-steps.
Thus, if only daily precipitation data are available, hourly data can be provided as daily values / 24.

Importantly, the entries of obs_time must all be in UTC (Coordinated Universal Time).

Any input weather dataset provided must use the same format, column names and units as in this example
dataset. Most of these are standard meteorology variables that are readily available globally. If unknown for
the study area, users may wish to explore the mcera5 package on github
(https://github.com/dklinges9/mcera5) or the micorclimdata package detailed above. Diffuse radiation, is
sometimes harder to come by as many standard weather stations only estimate total radiation. If unknown,
it can be estimated using the difprop function in the microctools package
(https://github.com/ilyamaclean/microctools). The microctools package, also contains a function
converthumidity, for converting absolute or specific humidity or vapour pressure to relative humidity.

Vegetation parameters

The inbuilt dataset vegp gives an example of the vegetation parameters needed to run the model. Here the
attributes are shown and individual parameters plotted. Data are all stored as SpatRasters though in the
inbuilt dataset these are PackedSpatRasters (see terra::wrap).

library(microclimf)

head(climdata)

#>              obs_time  temp   relhum    pres swdown difrad   lwdown windspeed

#> 1 2017-01-01 00:00:00 7.483 92.02474 101.852      0      0 310.6365     5.895

#> 2 2017-01-01 01:00:00 7.456 94.36533 101.801      0      0 310.8483     5.603

#> 3 2017-01-01 02:00:00 7.244 96.83536 101.765      0      0 309.2949     5.470

#> 4 2017-01-01 03:00:00 7.071 98.12848 101.739      0      0 308.5616     5.540

#> 5 2017-01-01 04:00:00 6.988 98.18165 101.721      0      0 307.3412     5.816

#> 6 2017-01-01 05:00:00 6.948 97.45834 101.710      0      0 307.0171     6.253
#>   winddir     precip

#> 1     283 0.04870449

#> 2     294 0.03049236

#> 3     307 0.01623711

#> 4     321 0.01246609

#> 5     334 0.02634117

#> 6     345 0.03545065

https://github.com/ilyamaclean/microclimdata
https://github.com/dklinges9/mcera5
https://github.com/ilyamaclean/microctools


All vegetated data can be provided as either single layer SpatRasters, in which case they are assumed
time-invariant, or as multi-layer SpatRasters, in which case they are assumed to vary seasonally. For
example, in the inbuilt dataset vegp$pai is a 12 layer SpatRaster corresponding to approximately monthly
values when the model is run over an entire year. Had the SpatRaster contained 365 values, vegetation
would be assummed to vary daily. No more than one value per day can be provided. A mixture of single
layer and multi-layer SpatRasters can be provided - the model takes care of things. Note, however, that the
model does not know which layers correspond to which time-period. It is simply that if e.g. 12 layers are
provided, the entire time-sequence over which the model is run is divided into 12 approximately equal
sized chunks and separate vegetation data used for each chunk. Note that the data are matched to the
time-sequence of the original climate date used to run the point model, not the values returned by sub-
setting the point model.

library(terra)

#> terra 1.7.29

attributes(vegp)
#> $names

#> [1] "pai"   "hgt"   "x"     "gsmax" "leafr" "clump" "leafd" "leaft"

#> 

#> $class

#> [1] "vegparams"

# Plot spatial and temporal variation in pai

plot(rast(vegp$pai)[[1]], main = "Jan PAI")

paiarray <- as.array(rast(vegp$pai))

vegpmean<-apply(paiarray, 3, mean, na.rm = TRUE)
plot(vegpmean, type="l", ylim = c(0, 0.25), main = "Seasonal variation in PAI")

# Plot other variables

plot(rast(vegp$hgt), main="Vegetation height") 

plot(rast(vegp$x), main = "Leaf angle distribution") 

plot(rast(vegp$gsmax), main="Max. stomatal conductance") 

plot(rast(vegp$clump)[[1]], main = "Jan Canopy clumping factor") # set to 0 

plot(rast(vegp$leafr),col=gray(0:255/255), main = "Leaf reflectance")

plot(rast(vegp$leafd), main = "Mean leaf diameter") # set to 0.05

plot(rast(vegp$leaft),col=gray(0:255/255), main = "Leaf transmittance") # set equal to 

leafr







If users do know values of these vegetation parameters across their study area, they can be approximated
from habitat type using the vegpfromhab function. This function takes as an input, a raster of habitat types
numerically coded as follows:

1. for Evergreen needleleaf forest,
2. for Evergreen broadleaf forest,
3. for Deciduous needleleaf forest,
4. for Deciduous broadleaf forest,
5. for Mixed forest,
6. for Closed shrubland,
7. for Open shrubland,
8. for Woody savanna,
9. for Savanna,

10. for Short grassland,
11. for Tall grassland,
12. for Permanent wetland,
13. for Cropland,
14. for Urban and built-up,
15. for Cropland / Natural vegetation mosaic and
16. for Barren or sparsely vegetated

It returns an object of class vegparams as required by the model. Here this is illustrated using he inbuilt
habitat SpatRast layer



Note however, that be doing so, all values for a habitat type will be identical, when in reality this is unlikely
to be the case. If one is unable to quantify the main determinants of microclimatic variation then there is
little prospect of being able to model microclimatic conditions accurately and any outputs form the model
should be treated with a high-degree of skepticism.

The model is most sensitive to pai (the total one sided area of both leaves and woody and dead vegetation
per unit ground area) and hgt (vegetation height in metres). The former is needed primarily so that canopy
cover can be estimated, but even for temperatures above canopy, pai partially determines the temperature
profile. hgt is important as determines whether reqhgt is above or below vegetation and also dictates the
shape of the temperature profile above vegetation.

The most sensible use-case for the vegpfromhab function is thus when one has alternative data that could
be used to estimate pai and hgt that can be slotted into the output returned by this function. This is
straightforward as the vegetation inputs to the model as returned by vegpfromhab is just a list of
SpatRasters.

The model is less sensitive to other parameters. The parameter x represents how vertically or horizontally
the leaves of the canopy are orientated and controls how much direct radiation is transmitted through the
canopy at a given solar angle (when the sun is low above the horizon, less radiation is transmitted through
vertically orientated leaves). Users may refer to Campbell (1986) for a detailed explanation. Values for
deciduous woodland are typically around 1, but for grassland may be closer to 0.2. The parameter gsmax is
the maximum stomatal conductance (mol / m^2 / s) of leaves and is needed for evapotranspiration
calculations. Values typically range from 0.23 for deciduous broadleaf forest to 0.55 for wetland vegetation.
Körner (1995) gives values for major vegetation types of the world. The parameter ‘leafr’ is the leaf
reflectance to shortwave radiation, with typical values around 0.4.

The parameter clump dictates how much radiation passes through gaps in the canopy, and therefore
represents the sub-pixel canopy clumpiness, with values ranging from 0 (uniform) to 1 (highly clumped). In
general, it varies with vegetation height and plant area index. The function clumpestimate can be used to
derive an approximate estimate. The parameter leafd is the mean diameter of leaves.

The vegpfromhab function assigns approximate values for leaf reflectance accordance to habitat type.
However, it can also be estimated from surface albedo using function leafrfromalb. In applying this
function, leaf transmittance is assumed proportional to leaf reflectance and a proportionality coefficient can
be specified. In general, model outputs are not sensitive to this coefficient,

plot(rast(habitats), main = "Habitat types") # inbuilt habitat SpatRast layer

tme<-as.POSIXlt(c(0:8783)*3600,origin="2000-01-01 00:00", tz = "GMT")

# Create an object of class vegparams:

veg<-vegpfromhab(habitats,tme=tme)

https://doi.org/10.1016/0168-1923(86)90010-9
https://link.springer.com/chapter/10.1007/978-3-642-79354-7_22


Soil parameters

The inbuilt dataset soilc gives an example of the soil parameters needed to run the model. Here the
attributes are shown and plotted:

This is a list of the following:
soiltype - a PackedSpatRast object of integer soil types
groundr - a PackedSpatRast object of soil reflectance values for shortwave radiation (0 - 1)

Again, users in creating such a dataset, can store soiltype and groundr as either a PackedSpatRast or a
SpatRast object.

Soil type 7 corresponds to Clay loam. A full list of which numeric values correspond to which soil types,
along with parameters associated with these soil types is shown in the soilparameters table:

attributes(soilc)

#> $names

#> [1] "soiltype" "groundr" 

#> 

#> $class

#> [1] "soilcharac"

plot(rast(soilc$soiltype), main = "Soiltype") # Clay loam throughout
plot(rast(soilc$groundr), col=gray(0:255/255), main = "Soil reflectance")



The model also copes with these values being provided as individual data layers if these are added to the
list of SpatRasters contained in soilc. Note that in all instances soil properties (apart from soil moisture,
which is modelled explicitly) are assumed time-invariant.

Additional optional parameters

In addition to specifying reqhgt the height (m) above or below ground for which microclimate estimates are
required, there are also a set of optional parameters that can be provided to the run functions that control
model behaviour. For the point model, these are as follows: * runchecks - logical indicating whether to call
function checkinputs to run checks on format and units of input data (see details under model input
functions). * windhgt - height above ground of wind speed data in weather (see details under wind) * soilm -
a vector of hourly soil moisture values in upper 10 cm of the soil (calculated using a simple soil model if not
supplied - see details under running the point model) * dTmx - maximum amount by which canopy or ground
surface temperatures can exceed air temperatures when running the point model (see details under
running the point model). * maxiter - integer indicating the maximum number of iterations to use when
running the point model (see details under running the point model) Additionally, there are a number of
options for internal use, which can generally be ignored by the user as they are calculated if not supplied,
but in brief, these are: yearG - an option dictating whether or not to account for annual cycles in the ground
flux when a year or more of data are provided, lat and long - the latitude and longitude of the location for
which the point model is run, vegp_p, ground_p the vegetation and ground parameters used for running the
point model, soiltype - the assumed soiltype at the location for which the model is run and mxhgt - the
height to which weather data are adjusted, if not supplied calculated from vegetation height across the
study area.

For the grid model, the following additional parameters can be supplied

dtmc - a coarse-resolution digital elevation dataset matching the resolution of climate data and used
to perform elevation adjustments only if climate data are provided as multi-layer SpatRasters.

soilparameters

#>          Soil.type Number  Smax  Smin     Ksat   b psi_e   Vq     Vm     Vo

#> 1             Sand      1 0.399 0.049 501.1200 1.7   0.7 0.30 0.3000 0.0010

#> 2       Loamy sand      2 0.402 0.054 146.8800 2.1   0.9 0.24 0.3550 0.0030

#> 3       Sandy loam      3 0.403 0.058  62.2080 3.1   1.5 0.18 0.4100 0.0070
#> 4             Loam      4 0.422 0.074  31.9680 4.5   1.1 0.12 0.4400 0.0180

#> 5        Silt loam      5 0.447 0.067  16.4160 4.7   2.1 0.00 0.4700 0.0830

#> 6  Sandy clay loam      6 0.388 0.089  10.3680 4.0   2.8 0.14 0.4640 0.0080

#> 7        Clay loam      7 0.419 0.091   5.5296 5.2   2.6 0.06 0.5090 0.0120

#> 8  Silty clay loam      8 0.441 0.089   3.6288 6.6   3.3 0.04 0.5080 0.0110

#> 9       Sandy clay      9 0.381 0.103   2.8512 6.0   2.9 0.15 0.4655 0.0035

#> 10      Silty clay     10 0.368 0.073   2.1600 7.9   3.4 0.00 0.6240 0.0080

#> 11            Clay     11 0.394 0.073   1.4688 7.6   3.7 0.00 0.6000 0.0060

#>        Mc      rho        mult      rmu        a      pwr
#> 1  0.0100 1.597779 0.000293942 0.037449 0.003018 0.963099

#> 2  0.0350 1.587082 0.000302099 0.038750 0.008320 1.037554

#> 3  0.0600 1.578984 0.000190685 0.024034 0.006535 0.667482

#> 4  0.0844 1.513506 0.000189847 0.023019 0.009031 0.807574

#> 5  0.1240 1.358636 0.000172124 0.020029 0.026067 1.572287

#> 6  0.3648 1.617506 0.000184663 0.021304 1.191259 4.077206

#> 7  0.5422 1.529643 0.000191202 0.021303 0.059765 1.134773

#> 8  0.3948 1.472509 0.000175762 0.019098 0.132554 1.907443

#> 9  0.5050 1.642237 0.000173624 0.016682 0.099531 0.820078
#> 10 0.5500 1.670682 0.000149402 0.014268 0.147172 1.156038

#> 11 1.0000 1.604273 0.000164801 0.016936 0.239373 1.514030



altcorrect - a single numeric value indicating whether to apply an elevation lapse rate correction to
temperatures and pressures (0 = no correction, 1 = fixed lapse rate correction, 2 = humidity-
dependent variable lapse rate correction)
runchecks - as for the point model.
pai_a an array of plant area index values above reqhgt. Estimated by assuming a plausible vertical
distribution of leaf foliage density if left as ’NA` (see details under radiation).
tfact an optional coefficient determining the sensitivity of spatial variation in soil moisture to
variation in topographic wetness (see details under soil moisture).
out an optional vector of logicals indicating which variables to return ordered as for the listed outputs
when rehgt > 0' (e.g. out[1] = TRUE indicates that Tz is returned, out[2] = TRUE that tleaf is
returned etc). By default all variables are returned, but if, for example, only temperature or humidity
are required as outputs, setting relevant values to FALSE can save a lot of memory.
slr, apr and twi - optional SpatRaster objects of slope, aspect, and topographic wetness. If not
supplied, these are calculated from the provided dtm, but users may wish to provide their own values
to avoid edge effects.
hor, svfa and wsa - optional array of the tangent of the angle to the horizon in 24 directions (used for
calculating terrain shading), skyview factors (used for adjusting diffuse and downward longwave
radiation) and wind shelter coefficients in 8 directions (used for determining wind speed). If not
supplied, these are calculated from the provided dtm, but users may wish to provide their own values
to avoid edge effects.
method - set either as R or by default as Cpp. If set to Cpp the entire model is run using c++ code, and
is therefore optimized for speed and memory allocation. If set to R individual components of the
model coded as R wrappers are run as described below. This is marginally slower and much more
memory hungry, but affords users greater flexibility to e.g. interrogate individual model components
or to swap their own functions in and out of the model for individual components.

Running the point microclimate model

To ensure the grid model can be run without iteration, the first stage of modelling is to run a point
microclimate model iteratively for a flat surface at the centre of the study area using as inputs to the model,
vegetation and soil characteristics that are broadly representative of the study area. This is achieved
automatically using function runpointmodel, using as inputs to the model, the same inputs that are supplied
to the grid model as follows:

Interrogating the attributes of micropoint allows us to see what the model returns:

The function essentially gathers various things into a single list object. These are as follows:

weather - the original supplied weather data, but height adjusted if vegetation within the study area
exceeds the height of temperature or wind speed measurements.
dfo - this is a data.frame that stores all the useful stuff that the grid model needs. Most are not worth
remaking on as they are essentially used to handle adjustments made to the grid model outputs to
avoid the need to run it iteratively (e.g. umu scales wind speeds without and without diabatic
correction coefficients included), but four variables are worth remaking on. These are G the rate of
heat storage by the soil (W/m^2), soilm - soil water content expressed as a volumetric fraction, Tg -
ground surface temperature and Tc - the average temperature of vegetation. Plots of Tg and Tc are
shown below.

# Run the point model

micropoint <- runpointmodel(climdata, reqhgt = 0.05, dtmcaerth, vegp, soilc)

attributes(micropoint)



Tbz if the model is run above ground this is just set to NA, but if run below ground, this is a vector of
soil temperatures at depth reqhgt.
lat and long are the latitude and longitude of the centre of the study area, which is the location for
which the point model was run.
zref represents the height above ground to which weather data have been adjusted. If none of the
vegetation is greater than two meters in height the output zref is set to 2 m and windhgt is also two
meters, the returned weather dataset is identical to that provided the function. However, for the grid
microclimate model to derive below-canopy wind and temperature profiles, the reference height
must be higher than the tallest vegetation in the study area. For that reason, if the tallest vegetation
exceeds two meters, zref is set to the maximum height of the vegetation and the wind speeds and
temperatures are adjusted for height in the weather dataset.
subs and tmeorig help the grid model handle sub-setting of the point model (see below). Prior to sub-
setting, tmeorig is a POSIXlt object of dates and corresponding to dates and times in weather and dfo
and subs is just a vector indicating which values have been returned (all prior to any sub-setting).
Below, ground and vegetated surface temperatures are plotted to show what the outputs of the point
model look like.

micropoint <- runpointmodel(climdata, reqhgt = 0.05, dtmcaerth, vegp, soilc)

microp <- micropoint$dfo

tme <- as.POSIXct(micropoint$tmeorig)

par(mar=c(5,5,3,3))

plot(microp$Tg ~ tme, type="l", ylim = c(-5, 50), col = rgb(1,0,0,0.5), xlab = "Month", 

ylab = "Temperature") # temperature of ground surface

par(new = TRUE)
plot(microp$Tc ~ tme, type="l", ylim = c(-5, 50), col = rgb(0,0.5,0.5,0.5), xlab = "", 

ylab = "")



The equivalent to the runpointmodel function when climate data are provided as arrays is `runpointmodela.
An example of its use is shown below.

Subsetting the microclimate model

The point microclimate model is usually run in hourly time-increments using complete time sequences of
weather data to fully allow for the diurnal cycles in ground heat fluxes to be accounted for, but if desired,
the grid model can be run for just say the hottest days in each month to derive maximum temperatures.
This is achieved using function subsetpointmodel. This function takes an object of class ’pointmicroas an 
input and also returns an object of class ‘pointmicro, but with the request hours extracted from
’pointmicroIn the example below, the model is subset to return only those hours corresponding to the 
day in each month with the hottest temperature (as determined by the point model). The function has 

several inputs that control its behaviour. If 'tstep' is set toyearthe day in each year with the e.g. 
the hottest or coldest hourly temperature is identified, and if 'tstep' is set tomonththe days in 
each month in each year with e.g. the hottest or coldest hourly temperatures are returned. Ifwhatis 
set totmaxortminthe hottest or coldest hour within each month or year are identified. Ifwhatis set 
totmedianhourly temperatures within the month or year are ranked and the median hour identified. The 



final option is to provide a vector of the days in the time sequence to return data for using 

inputdays. If providedtstep` is ignored. It is necessary that all hours of a given day are returned for two
reasons. First, it ensures that the ground heat flux in the grid microclimate model can be estimated as it
depends on the full diurnal cycle. Second because the hottest hour on a flat surface may not be the hottest
hour on e.g. a steeply south-westerly facing slope - temperatures will typically peak later in the day when
the slope is directly facing the sun. Returning hourly values for an entire day ensures that these terrain
effects can be properly handled by the grid model.

Preparing model inputs

The entire grid model is run using runmicro, but to illustrate its working, we here run each component of the
model in stages. If running it in stages, the first stage is to gather the input variables and reformat them
ready to run the model. There are two options for preparing the data for running the model. Firstly where
the climate data are in the form of a data frame of hourly weather for a point location. Second, where the
climate data are in the form of course-gridded SpatRasters of values. Both cases are handled flexibly by
the function modelin.

In the examples that follow, the inbuilt datasets of parameter values and a dtm for the study area, dtmcaerth
are used and the model is run using a data.frame of weather data. Subsequently, the equivalent workflow
for when weather data are in the form of course-gridded SpatRasters is shown.

By default modelin calls function checkinputs. This performs some basic checks on the vegetation and soil
parameters data to check for consistency in extent to the dtm. It also ensure values in the climate datasets
are typical of what would be expected, thereby helping to ensure the correct units are used.

In subsequent downscaling of wind, the drag effects of vegetation, determined by vegetation height and
foliage area are accounted for and calculated at this stage. In so doing, it is necessary to accommodate
the possibility that the wind speed is not just affected by the surface roughness in each pixel, but also by
vegetation surrounding the location. This is accommodated for by applying xyf which effectively smooths
the surface roughness coefficients using terra::aggregate where xyf is the aggregation factor. If xyf is set
to NA, the roughness coefficients are averaged across the entire study area. In the example above, we do
not specify a value for xyf, and the default of one is therefore applied, which means that no smoothing is
performed.

Running the model

Soil moisture

The first step of the microclimate model is to estimate soil moisture. This is handled in microclimf, by
spatially distributing the soil moisture values returned by the point microclimate model for each time
increment using the the Bevan and Kirkby (1979) topographic wetness index, such that valleys and flat
areas are assumed to have higher water content. Values are adjusted such that the average for the study
area in each time step is equivalent to the value obtained by running the point model. Users have the
option to control the sensitivity of this topographic adjustment. Irrespective of whether the model is run in
hourly or daily time-increments, these calculations are performed using the soilmdistribute as in the
example below.

micropoint <- subsetpointmodel(micropoint, tstep = "month", what = "tmax")

micro <- modelin(micropoint, vegp, soilc, dtmcaerth)



Radiation

The next stage, needed to calculate soil surface temperature, is to estimate radiation absorbed by the
ground. Because the ground lies below canopy in some instances, it is necessary also to consider the
transmission of radiation through the canopy. The radiation fluxes are modelled using function twostream,
which implements a variant of the Dickenson-Sellers two-stream radiation model described in Yuan et
al. (2017) J Adv Model Earth Sy 9: 113–129 to model radiation interception by the canopy. It also varies
from the Dickenson-Sellers model in more explicitly handing sloped ground surfaces beneath a canopy.

Absorbed radiation is the total incoming radiation received by a surface less that transmitted or reflected.
The total incoming radiation can be partitioned into three sources, each of which is modified by the
environment in slightly different ways. The first is direct radiation from the sun. Here, absorption depends
on the angle of the surface relative to perpendicular. This is the reason why equatorward-facing slopes are

micro<-soilmdistribute(micro)

par(mfrow = c(1,1)) # make sure output is a single panel figure

plot(rast(micro$soilm[,,134]), col = rev(mypal))



warmer than those that face poleward and is indeed the main reason why temperature increases with
latitude. Here the solar beam is more concentrated, rather like shining a torch directly on a surface as
opposed to obliquely. The second source is diffuse solar radiation: that scattered by particles and clouds in
the atmosphere. The final source is longwave radiation emitted from surrounding surfaces and the sky. The
latter two are isotropic (i.e. having the same value when measured in any direction). In consequence, for
these sources, the direction of the surface is unimportant, and radiation interception is instead influenced
by sky-view.

Function twostream calculates all of these fluxes. If reqhgt > 0 it also calculates the fluxes at the height of
interest, including the upward fluxes resulting from reflection by the ground surface and scattering by
leaves within the canopy. Additionally, to aid with modelling of air temperatures, it also calculates the flux
density of radiation absorbed by both the canopy and the ground surface.

To model radiation, the canopy as a turbid medium and the transmission of radiation by vegetation is thus
described using an equation similar to Beer’s law, in which flux density of radiation is assumed dependent
on the total one-side lead area per unit ground area and by an extinction coefficient for the canopy. For
direct radiation, the extinction coefficient is assumed to depend on the distribution of leaf angles (with more
vertically orientated leaves transmitting less radiation at lower solar altitudes). This is where the model
input vegp$x comes into play. For isotropic sources of radiation (i.e. diffuse and longwave), leaf angle is
assumed unimportant.

In the example below the flux density of shortwave and longwave radiation absorbed by the ground surface
at 10:00 hours on 20th Jun 2017 is shown. Below that, the flux density of the upward and downward
radiation streams 5 cm above the ground are shown (the downward flux comprises both direct and diffuse
radiation, the upward flux is assumed entirely diffuse).

micro <- twostream(micro, reqhgt = 0.05)
par(mfrow=c(1,2))

plot(rast(micro$radGsw[,,131]), col = mypal, main = "Shortwave")

plot(rast(micro$radGlw[,,131]), col = mypal, main = "Longwave")

plot(rast(micro$Rbdown[,,131]+micro$Rddown[,,131]), col = mypal, main = "Downward 

shortwave")

plot(rast(micro$Rdup[,,131]), col = mypal, main = "Upward shortwave")



Sensible heat flux and wind

A surface heated by solar radiation will loose some of this heat to the surrounding air, and by virtue of the
laws of energy conservation, the air gains this heat. The exchange of heat between a surface and the
surrounding air is termed sensible heat exchange and is influenced strongly wind speed. The next stage of
modelling is therefore to calculate wind speed.

The function wind models two processes. Firstly, direction-dependent terrain shelter coefficients are
applied. Secondly, the effects of vegetation on wind speeds are determined. If reqhgt is above the
vegetation, the shaped of the wind speed above vegetation is determined by the degree of surface drag, in
turn contingent upon vegetation height and the plant area index of vegetation. If reqhgt is below canopy,
the effects of vegetation is to attenuate wind speeds, but the shape of the wind-height profile below and
above canopy differs. For a given reqhgt some pixels may lie below canopy and some above. This is all
handled automatically by function wind as in the example below.

micro <- wind(micro, reqhgt = 0.05)

par(mfrow=c(1,1))

plot(rast(micro$uz[,,100]), col = mypal, main = "Wind speed")



The lower wind speeds in the valley caused by terrain sheltering are evident. The speckle in the figure is
caused by vegetation.

One minor additional point to note is that when calling any of the component functions after creating the
model input using e.g. modelin there is no need to run the components prior to that. The function
automatically checks whether these have been run, and if necessary does so.

Ground surface temperature

Once radiation absorbed by the ground and wind speed have been calculated, ground surface temperature
can be computed. This is done using either function soiltemp_hr or soiltemp_dy depending on whether the
model input is daily or hourly. Whereas twostream and wind handle both hourly or daily data, because
ground heat fluxes are calculated in different ways depending on whether inputs are hourly or daily, the
functions used for each differ. In the example below, the ground surface temperature on the hottest hour of
the year is calculated using soiltemp_hr and then plotted.

micropoint<-runpointmodel(climdata,0.05,dtmcaerth,vegp,soilc)

micropoint<-subsetpointmodel(micropoint, tstep = "month", what = "tmax")



As can be seen, the soil surface temperatures on bare, south-facing slopes get pretty hot

Above ground

After calculating ground surface temperature, there are two pathways, depending on whether microclimatic
conditions below or above ground are required. If reqhgt > 0 then function aboveground is called as in the
example below. This essentially runs the full microclimate model. Details of the model outputs are specified
below.

micro <- modelin(micropoint, vegp, soilc, dtmcaerth)

micro <- soiltemp(micro, reqhgt = 0.05)

# Plot ground temperature of hottest hour

par(mfrow=c(1,1))

plot(rast(micro$Tg[,,134]), col = mypal, main = "Soil surface temperature")

mout <- aboveground(micro, reqhgt = 0.05)

plot(rast(mout$Tz[,,134]), col = mypal, main = "Air temperature")



In the example above air temperature in the hottest hour is plotted. Users are free to experiment with
plotting other model outputs. The air temperature at 5 cm is somewhat lower than the ground surface
temperature, but much higher than ambient temperature on south-facing slopes, as one would expect

Above canopy

The function aboveground automatically works out which pixels are below canopy, and which above, but the
microclimate is modelled differs. To work out temperatures above canopy, the canopy (and soil surface) are
treated as a single layer of homogeneous phytomass and the energy balance solved to derive the mean
temperature of the canopy. The canopy is then assumed to exchange heat with the air above it such that
close to the heat exchange surface of the canopy, air temperatures similar to canopy temperatures, but are
increasingly close to air temperature at reference height (i.e. the at height of the input weather station
data). The result is a logarithmic temperature-height (and humidity) profile as re-reproduced in the example
below in which the model is run at multiple heights over a small area with spatially uniform, terrain, soil and
vegetation properties.

dem <- aggregate(rast(dtmcaerth), 10) * 0
# Create spatially uniform vegetation and soil parameters  dataset



vegp2 <- list(pai = array(0.05, dim = c(5, 5, 12)),

              hgt = aggregate(rast(vegp$hgt), 10) * 0 + 0.005,

              x = aggregate(rast(vegp$x), 10) * 0 + 1,

              gsmax = aggregate(rast(vegp$x), 10) * 0 + 1,

              leafr = aggregate(rast(vegp$x), 10) * 0 + 0.3,
              clump = array(0, dim = c(5, 5, 12)),

              leafd = aggregate(rast(vegp$x), 10) * 0 + 0.05,

              leaft = aggregate(rast(vegp$x), 10) * 0 + 0.15)

soilc2 <- list(soiltype = aggregate(rast(soilc$soiltype), 10),

               groundr = aggregate(rast(soilc$groundr), 10) * 0 + 0.15)

# Run and subset point model

micropoint <- runpointmodel(climdata, reqhgt = 0.05, dem, vegp2, soilc2)

micropoint <- subsetpointmodel(micropoint, tstep = "month", what = "tmax")

# Create model input
micro <- modelin(micropoint, vegp2, soilc2, dem)

# Run model for multiple heights

reqhgts<-c(0.01,0.02,0.05,0.1,0.2,0.5,1)

temps <- 0

for (i in 1:length(reqhgts)) {

  mout <- aboveground(micro, reqhgt = reqhgts[i])     

  temps[i] <- mout$Tz[2, 2, 132] # Extract temperature for hottest hour   

}

par(mar = c (5, 5, 2, 2))
plot(reqhgts ~ temps, type = "l", lwd = 2, xlab = "Temperature", ylab = "Height")



One minor point worth noting is that when running the point model above ground, the input reqhgt is just
used to determine whether to return the required variables for modelling microclimate above ground and
the point model itself does not need to be run for separate heights as it just returns temperature and other
microclimate variables for the heat exchange surface of the canopy. This is not the case below ground, as
here the point model returns microclimate parameters specifically associated with the specified depth.

Below canopy

Below canopy, variation in the energy budget within the canopy must be more explicitly handled. The
microclimf package contains a theoretically-grounded model emulator of Raupach’s localised near-field
model. In this model, the temperature (or humidity) is assumed to comprise both a `near-field and ‘far field’
contribution. In essence, the canopy is assumed to comprise multiple layers and far-field contribution is
result from heat (or vapour) emanating from the entire canopy downwind of the point of interest. When the
net energy balance of the canopy is positive, the result is an approximately linear increase in temperature
(or vapour) as one descends through the canopy because at lower heights. However, for far-field-height
profile, the effects of ground surface temperature must be accounted for, and the air temperature close to
the ground is thus close to ground surface temperature. An additional ‘near-field’ contribution is then
calculated, in the effect determined by the energy budget and the foliage density close to the height of



interest. To calculate the foliage density, plausible assumptions about the vertical distribution of foliage are
made, such that foliage density is determined from the plant area index. The model is not unduly sensitive
to assumptions about the vertical distribution of foliage.

The net result is a more complex temperature-height (and humidity) profile as re-reproduced in the
example below in which the model is run at multiple heights over a small area with spatially uniform,
terrain, soil and vegetation properties.

# Create spatially uniform vegetation a\nd soil parameters  dataset

vegp2 <- list(pai = array(3, dim = c(5, 5, 12)),

              hgt = aggregate(rast(vegp$hgt), 10) * 0 + 10,

              x = aggregate(rast(vegp$x), 10) * 0 + 1,

              gsmax = aggregate(rast(vegp$x), 10) * 0 + 1,

              leafr = aggregate(rast(vegp$x), 10) * 0 + 0.3,

              clump = array(0, dim = c(5, 5, 12)),

              leafd = aggregate(rast(vegp$x), 10) * 0 + 0.05,
              leaft = aggregate(rast(vegp$x), 10) * 0 + 0.15)

soilc2 <- list(soiltype = aggregate(rast(soilc$soiltype), 10),

               groundr = aggregate(rast(soilc$groundr), 10) * 0 + 0.15)

# Run and subset point model (reqhgt just used to determine whether above or below 

ground)

dem <- aggregate(rast(dtmcaerth), 10) * 0

micropoint <- runpointmodel(climdata, reqhgt = 10, dem, vegp2, soilc2)

micropoint <- subsetpointmodel(micropoint, tstep = "month", what = "tmax")

# Create model input
micro <- modelin(micropoint, vegp2, soilc2, dem)

# Run model for multiple heights

reqhgts<- 10^(c(-10:10) / 10)

temps <- 0

for (i in 1:length(reqhgts)) {

  mout <- aboveground(micro, reqhgt = reqhgts[i])     

  temps[i] <- mout$Tz[2, 2, 132] # Extract temperature for hottest hour   

}

par(mar = c (5, 5, 2, 2))

plot(reqhgts ~ temps, type = "l", lwd = 2, xlab = "Temperature", ylab = "Height")



Below ground

If reqhgt is negative, functions below_hr (hourly) or below_dy (daily) are used and it is assumed that
microclimatic conditions below ground are needed. The way the model works is to assume, that once
ground surface temperatures are calculated, that both the annual and diurnal temperatures cycle is
dampened by the specific heat capacity and thermal conductivity of the soil, themselves contingent on soil
physical characteristics and water content. There is also a phase shift

This can be seen in the example below in which the model is run in hourly time-increments for the entire
year at three different depths and time-series of soil temperature plotted.

# Run microclimate model for reqhgt = -0.05m

micropoint1 <- runpointmodel(climdata, reqhgt = -0.05, dem, vegp2, soilc2)

micro1 <- modelin(micropoint1, vegp2, soilc2, dem)

mout1 <- belowground(micro1, reqhgt = -0.05)

T1<-mout1$Tz[2,2,]

# Run microclimate model for reqhgt = -0.2m
micropoint2 <- runpointmodel(climdata, reqhgt = -0.2, dem, vegp2, soilc2)



It should be noted that the below ground microclimate model works best if the model is run over full time
sequences. A simpler approximation method is used when running in the model with sub-set versions of
the model.

micro2 <- modelin(micropoint2, vegp2, soilc2, dem)

mout2 <- belowground(micro2, reqhgt = -0.2)

T2<-mout2$Tz[2,2,]

# Run microclimate model for reqhgt = -1m 

micropoint3 <- runpointmodel(climdata, reqhgt = -1, dem, vegp2, soilc2)
micro3 <- modelin(micropoint3, vegp2, soilc2, dem)

mout3 <- belowground(micro3, reqhgt = -1)

T3<-mout3$Tz[2,2,]

# PLot soil temperature time-series

plot(T1, type="l", ylim = c(0, 25), col = "red", ylab = "Temperature", xlab = "Hour")

par(new = TRUE)

plot(T2, type="l", ylim = c(0, 25), ylab = "", xlab = "")

par(new = TRUE)

plot(T3, type="l", col = "darkgray", lwd = 2, ylim = c(0, 25), ylab = "", xlab = "")



Running the whole model

The whole model is run using runmicro. With method = "R" this function is essentially a wrapper function
that run the various component functions and the call either aboveground or belowground. With method = 
"Cpp" the full model is run using c++ code, which avoids the need to store full arrays of variables returned
by model sub-components in internal memory. Code for running the model in entirety is presented in the
quick start section above.

Model output and formats

When running runmicro the model returns an an object off class microout. If reqhgt > 0 then the following
outputs are returned by default, though note that the user have the option to specify which model outputs
are returned using parameter `out’, which is a vector of logicals indicating which variables to return ordered
as for the listed outputs when ‘reqhgt > 0’ as below.

Model outputs:
Tz - an array of air temperatures at reqhgt (deg C)
tleaf - an array of leaf temperatures at reqhgt (or average canopy temperatures for pixels
where reqhgt is above vegetation (deg C)
T0 - an array of ground surface temperatures (deg C)

relhum - an array of relative humidities at reqhgt (Percentage)
soilm - an array of soil moisture fractions in the top 10 cm of the soil (m^3 / m^3)
windspeed - an array of wind speeds at reqhgt (m/s)
Rdirdown - an array of downward direct (beam) radiation fluxes at reqhgt (W/m^2)
Rdifdown - an array of the downward diffuse radiation fluxes at reqhgt (W/m^2)
Rlwdown - an array of the downward longwave radiation fluxes at reqhgt (W/m^2)
Rswup - an array of upward shortwave radiation fluxes at reqhgt (W/m^2). Assumed to
comprise entirely diffuse radiation.
Rlwup - an array of upward longwave radiation fluxes at reqhgt (W/m^2).

If reqhgt = 0 the same model outputs are returned, with the exception of wind speed, which is always 0 at
the ground surface and relative humidity, where a value for the gorund surface in addition to a value for soil
moisture is meaningless.

If reqhgt < 0 then the same model outputs are return, but tleaf, relhum, windspeed, Rdirdown, Rdifdown,
Rlwdown, Rswup and Rlwup are all set to NA.

The returned model object is a list with each of these variables returned as arrays.

It is also possible to write the outputs as netCDF4 files using function writetonc. This function takes an
object of class microout and writes the outputs to the working directory in netCDF4 format. To save disk
space, the data are stored as integers and therefore e.g. temperature is mulitplied by 100 prior to writing
the data out. To handle the observation times a POSIXlt object of times must be added to the model output
prior to writing. In the following example, the model is run,the POSIXlt object added and data written out
and then read back in using the terra package:

micropoint <- runpointmodel(climdata, reqhgt = 0.05, dtmcaerth, vegp, soilc)

micropoint <- subsetpointmodel(micropoint, tstep = "month", what = "tmax")

mout <- runmicro(micropoint, reqhgt = 0.05, vegp, soilc, dtmcaerth)

mout$tme <- as.POSIXlt(micropoint$weather$obs_time, tz = "UTC")
writetonc(mout, "modelout.nc", dtmcaerth, reqhgt = 0.05)

Tz<-rast("modelout.nc", "Tz")

par(mfrow=c(1,1))

plot(Tz[[12]]/100, col = mypal)



Running the model with arrays of climate data

In the examples above, the climate data provided as inputs to the model are provided as a data.frame.
However, it may be the case that microclimate surfaces are required over larger areas over which the input
climate varies. This situation is at the model input stage and when running the point microclimate model,
and by converting the climate variables to multi-layer SpatRasters rather than vectors as in the example
below. Here a dummy list of climate arrays is created. Functions runpointmodela and subsetpointmodela are
then called. These functions run and subset the point microclimate model over every grid cell of the array.
A coarse resolution dtm is then created that matches the extent, coordinate reference system and
resolution of the climate arrays as this is used during the model input handling stage. The grid model can
then be run as spreviously: the function checks the format of the data passed to it prior to running the
model. HOwever, there are some additional inputs that need to be passed to the function to handle
elevation adjustments to the coarse-resolution climate data.

# Internal functions

.rast <- function(m,tem) {

  r<-rast(m)



The model takes a little longer to run this way, both because of the need to run the point model over
multiple grid cells and because the point model outputs are resampled prior to running the grid model, but
the code is still fairly efficient.

If altcorrect == 0', no elevation correction is performed. Ifaltcorrect > 0’ difference between each
pixel of dtm and dtmc are calculated and an elevation lapse rate correction is applied to the temperature
and pressure data to account for these elevation differences. If altcorrect= 1, a fixed lapse rate of 5
degrees per 100m is applied to the temperature data. If altcorrect= 2, humidity-dependent lapse rates are
calculated and applied.

Running the model over large areas

R stores all data into internal memory and although, by using C++ code, memory requirements are
substantially improved, the RAM requirements of the microclimate model can be pretty high if outputs are
desired for numerous timesteps at high-resolution over large areas. To circumvent this issue the model can
be run as tiles. However, the way that terrain shading effects and topographic wetness are calculated
means that model outputs are prone to edge effects. To circumvent this issue, the function runmicro_big
and runmicro_biga can be used, the former handling climate data provided as a data.frame and the latter
as a list of arrays. These functions calculated the wind shelter and topographic wetness over the entire
study area before running the model in tiles,

In the example below, the application of runmicro_big is shown. First some example data are downloaded
from Zenodo. These data are 10m resolution model inputs for the entire Lizard Peninsula in Cornwall, an
area of approximately 400 square kilometers.

In the first example, using runmicro_big, the model is run in tiles with the climate data provided as a
data.frame. The code first runs the point microclimate model. The relevant terrain variables are then
calculated over the whole study area and the model is then run in tiles. The example takes quite a while to

  ext(r)<-ext(tem)

  crs(r)<-crs(tem)

  r

}

.ta<-function(x,dtm,xdim=5,ydim=5) {
   a<-array(rep(x,each=ydim*xdim),dim=c(ydim,xdim,length(x)))

   .rast(a,dtm)

}

# Create dummy array datasets

dtm <- rast(dtmcaerth) # unpack raster

climarrayr<-list(temp = .ta(climdata$temp, dtm),

  relhum = .ta(climdata$relhum, dtm),

  pres = .ta(climdata$pres, dtm),

  swdown = .ta(climdata$swdown, dtm),
  difrad = .ta(climdata$difrad, dtm),

  lwdown = .ta(climdata$lwdown, dtm),

  windspeed = .ta(climdata$windspeed, dtm),

  winddir = .ta(climdata$winddir, dtm),

  precip = .ta(climdata$precip, dtm))

tme <- as.POSIXlt(climdata$obs_time, tz="UTC")

# Run and subset point model array (using subset defaults)

micropointa <- runpointmodela(climarrayr, tme, reqhgt = 0.05, dtm, vegp, soilc)

micropointa <- subsetpointmodela(micropointa)
# Create coare-resolution dtm matching resolution of climate data

dtmc <- aggregate(dtm, 10, fun = "mean", na.rm = TRUE)

# Run model wiht no altitude correction

mout <- runmicro(micropointa, reqhgt = 0.05, vegp, soilc, dtm, dtmc, altcorrect = 0) 



run, but is included here for illustration purposes. Data are stored in a subfolder called microut in the
directory specified by pathout.

Some warnings are given when running the function to notify the user that direct radiation values in a few
instances close to dawn and dusk are higher than expected clear-sky radiation values. This is taken care of
by the model - the excess is assigned as diffuse radiation, so is nothing to worry about.

The optimal tile size is automatically calculated. Entirely blank tiles (i.e anything with NA in the digital
elevation dataset are skipped). Users have the option to specify the tile size or format of the data written to
disk and there are quite a few other options for flexibly handling how the model is run. The help file
associated with runmicro_big gives details. One useful feature is the ability to specify a tile overlap to avoid
possible tiling effects. Model output variables for overlapping tiles can then, once converted to
terra::SpatRasters, can be merged using function mosaicblend. This applies a distance weigting to the
overlapping area so that sharp boundary effects are avoided. Another potentially useful option is to write
the model outputs as compressed nc files.

In the second example, using runmicro_biga, 1km resolution gridded climate data are used to drive the
model. It is assumed that data have already been dowenloaded and unzipped. Again, the the code first
runs the point microclimate model, but here the point model must be run for each of the ~400 1km grid
cells, which itself takes a little while. Again, the relevant terrain variables are then calculated over the whole
study area and the model is then run in tiles. As with runmicro_big, the size of tiles and the degree of
overlap can be specified as user inputs.

# Download example data from Zenodo

url <- "https://zenodo.org/records/15008936/files/runmicrobig.zip"

pathout<-"C:/Temp/tiles/"

dir.create(pathout)

setwd(pathout)

download.file(url, "modeldata.zip")

unzip("modeldata.zip")

# Read in spatial data

big_vegp <- readRDS("vegp_big.RDS")
big_soilc <-readRDS("soilc_big.RDS")

dtm<-rast("dem.tif")

# Read in climate dataframe

climdatadf <- readRDS("climdatapoint.RDS")

# Run and subset point model

micropoint <- runpointmodel(climdatadf, reqhgt = 0.05, dtm, big_vegp, big_soilc)

micropoint <- subsetpointmodel(micropoint, tstep = "month", what = "tmax")

# Run the model in tiles

runmicro_big(micropoint, reqhgt = 0.05, pathout = pathout, big_vegp, big_soilc, dtm)

# Assumes data already downloaded from Zenodo - see above

pathout<-"C:/Temp/tiles/"

setwd(pathout)

big_vegp <- readRDS("vegp_big.RDS")

big_soilc <-readRDS("soilc_big.RDS")
dtm<-rast("dem.tif")

# Read in gridded climate data

climdatag <- readRDS("climdatagrid.RDS")

# Create other input variables

tme <- as.POSIXlt(c(0:8783) * 3600, origin = "2020-01-01 00:00", tz = "UTC")

dtmc <- aggregate(dtm, 100, fun = "mean", na.rm = TRUE)

# Run and subset point model over each 1km grid cell

micropointa <- runpointmodela(climdatag, tme, reqhgt = 0.05, dtm, big_vegp, big_soilc)



Note that in contrast to when run using a point model input, altitudinal corrections can be handled using the
control parameter altcorrect.

Bioclim variables

It is common practice to seek to model the distributions of species using bioclimate variables, and the most
commonly used are those available from Worldclim. While it is far from the case that simply modelling
species distributions using microclimate data will circumvent all the numerous issues associated with doing
so using coarse-resolution macroclimate data, a function for modelling microclimate equivalents of the
standard 19 bioclim variables is nonetheless provided.

Because rainfall typically does not vary that much at fine- spatial resolution, the function instead calculates
soil moisture equivalents for the rainfall-associated bioclim variables (in the top 10 cm of the soil).

To enhance computational efficiency the microclimate model is run for selected days only. Thus, to
compute “mean annual temperature”, the mean ambient temperature of each day in the input weather data
is calculated, the day with median temperatures in each month selected and the mean across months
calculated. This is not, strictly speaking, the same as the mean temperature, but differences are likely to be
minor, and for each year of data supplied, there is an approximately 30-fold gain in computational efficiency
by calculating e.g. BIO1 in this way. Similarly, to calculate maximum temperature (BIO1), the day of the
year with the hottest ambient temperature is selected, and microclimate temperatures calculated on this
day only. This ignores the possibility that on a slightly cooler, but sunnier day, microclimate temperatures
may be hotter at certain locations. AS with the various runmodel options, If hourly = TRUE all hours within a
given day are selected and calculations performed on hourly data. If If hourly = FALSE only the hours
corresponding to times when hourly temperatures are at their daily maximum and minimum and selected.
This results in a c. 10-fold increase in computational efficiency, but cannot pick out areas where terrain
results in near-ground temperatures reaching a maximum later in the afternoon than the peak in ambient
temperature. If weather data for more than one year are supplied, only one set of median, maximum and
minimum monthly temperature data are selected representing an average across years. Resultantly, there
is little computational penalty if providing data for multiple years in comparison to one year of data.

However, here we illustrate the function for one year of data only using the default inputs provided with the
package. Note that this function flexibly handles the weather data being provided as either a data.frame or
as a list of arrays. In the example below it is provided as a data.frame. The function takes ~20 seconds to
run. The function returns a multilayer SpatRast of each of the bioclim variables

The input parameter temp indicates whether to return air or leaf temperature-derived bioclim variables. If
temp = leaf, for grid cells where reqhgt is above vegetation, vertically averaged canopy temperature is
used.

micropointa <- subsetpointmodela(micropointa, tstep = "month", what = "tmax")

# Run microclimate model in tiles (data saved to "C:/Temp/tiles2/")

runmicro_big(micropointa, reqhgt = 0.05, pathout = "C:/Temp/tiles2/", big_vegp, 

big_soilc, dtm, dtmc, altcorrect = 0)

mypal <- colorRampPalette(c("darkblue", "blue", "green", "yellow", "orange",  "red"))

(255)

# Set back to inbuilt datasets

vegp <- microclimf::vegp

soilc <- microclimf::soilc

bioclim <- runbioclim(climdata, 0.05, vegp, soilc, dtm, temp = "air")
plot(bioclim[[1]], col = mypal) # BIO1



Snow

In all the examples above, no account of snow cover is taken, primarily because the location used for the
examples, being nearly sub-tropical, is snow free. However, the same may not be true of other places, and
the option to account for snow cover is included. This is handled by setting snow = TRUE in the input of
runmicro and then also passing the outputs of the snow depth model. There are two options for running the
snow model: a quick and slower method. The distinction between the only matters when microclimate is
modelling for a subset of days. Using the slow method a full hourly model is run for each grid cell and snow
depth, as one would expect, is partially contingent on snow depth in the previous time-step. The resulting
output is then subset if required. Using the quick method, a point snow model is run for every hour, but the
full grid model is only run for the subset of days for which snow depths are required. To ensure a sensible
snow budget the point model is used to calculate hourly melt, and the nature of the terrain and vegetation
used to calculate a melt factor by which to multiply snow melt derived form the point model. The application
of both approaches is shown below.



In addition to ground snow depth, total snow water equivalent and average snowpack and ground snow
temperature are returned. Though the quick method is a bit crude, the resulting microclimate outputs are

# Run and subset micropoint model using inbuilt datasets

climdata$temp <- climdata$temp - 8 # Make it colder so there is snow

micropoint <- runpointmodel(climdata, reqhgt = 0.05, dtmcaerth, vegp, soilc) 

micropoint <- subsetpointmodel(micropoint, tstep = "month", what = "tmin")

# Run the snow model using the quick method
smod1 <- runsnowmodel(climdata, micropoint, vegp, soilc, dtmcaerth, method = "fast")

# Run the snow model using the slow method

smod2 <- runsnowmodel(climdata, micropoint, vegp, soilc, dtmcaerth, method = "slow")

# Compare mean ground snow depths through time

sdepth1 <- apply(smod1$groundsnowdepth, 3, mean, na.rm = TRUE)

sdepth2 <- apply(smod2$groundsnowdepth, 3, mean, na.rm = TRUE)

plot(sdepth1, type = "l", ylim = c(0, 0.2))

par(new = TRUE)

plot(sdepth2, type = "l", ylim = c(0, 0.2), col = "blue")



very similar to those obtained using the slow method, only really deviating when the two methjods give
different estimates of snow cover. Here we demonstrate this by running and comparing the microclimate
model using both snow outputs.

# Run microclimate model with snow using outputs from the quick model

mout1 <- runmicro(micropoint, reqhgt = 0.05, vegp, soilc, dtmcaerth, snow = TRUE, snowmod 
= smod1)

# Run microclimate model with snow using outputs from the quick model

mout2 <- runmicro(micropoint, reqhgt = 0.05, vegp, soilc, dtmcaerth, snow = TRUE, snowmod 

= smod2)

Tz1 <- apply(mout1$Tz, 3, mean, na.rm = TRUE)

Tz2 <- apply(mout2$Tz, 3, mean, na.rm = TRUE)

plot(Tz1, type = "l", ylim = c(-10, 25), ylab = "Temperature")

par(new = T)

plot(Tz2, type = "l", ylim = c(-10, 25), col = "blue", ylab = "")


